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Abstract. We show quasi-optimality and a posteriori error estimates for the

frictionless contact problem between two elastic bodies with a zero-gap func-

tion. The analysis is based on interpreting Nitsche’s method as a stabilised
finite element method for which the error estimates can be obtained with

minimal regularity assumptions and without the saturation assumption. We

present three different Nitsche’s mortaring techniques for the contact boundary
each corresponding to a different stabilising term. Our numerical experiments

show the robustness of Nitsche’s method and corroborates the efficiency of the
a posteriori error estimators.

1. introduction

In this paper, we analyse the Nitsche method for elastic contact problems. Over
the last decade, this method has been studied by a number of authors, see, e.g.,
[9, 6, 7, 10], and shown to be a robust and efficient method. The advantages are an
easy implementation based on the displacement variables only and, when compared
to mixed methods with Lagrange multipliers, the absence of an ”inf-sup” stability
condition which renders a symmetric positive definite system instead of one with a
saddle point structure.

From a theoretical point of view, the previously mentioned works suffer from two
shortcomings. First, for the problem posed in H1, the solution is typically assumed
to be in Hs, with s > 3/2. Second, the a posteriori error analyses are often based
on a non-rigorous saturation assumption.

We have addressed these issues in our recent articles, cf. [12, 13]. Our approach
dates back to [23] where different ways to enforce weakly the Dirichlet boundary
conditions were discussed in the context of the so called stabilised mixed methods
[2, 3] wherein the bilinear form of the original mixed finite element method is
augmented with a properly weighted residual term to ensure stability. In [23], it
was shown that the local elimination of the Lagrange multiplier leads essentially to
a method introduced by Nitsche in the early age of the finite element analysis [22].
Since Nitsche’s method is straightforward both to analyse (under the additional
smoothness assumption) and to implement, we started to advocate it, in particular
for contact problems, cf. [24, 4].

What we have realised recently is that one should take full advantage of the
relation between Nitsche’s and stabilised method when analysing the former. In
fact, we were able to get rid of both the smoothness and the saturation assumption
for the membrane obstacle problem in [12]. In this paper, we will continue on
this path and perform an error analysis, both quasi-optimality and a posteriori,
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for a simplified two-body contact problem without friction. Besides the theoretical
improvements, we present three versions of the Nitsche’s method where the changes
in the material parameters between the bodies are taken into account. The simplest
is a typical ”master-slave” approach where the contact surface of the stiffer body is
chosen as the master part and the slave surface is then mortared by the Nitsche’s
technique. In the two other variants, the material parameters appear as weights
in the Nitsche formulation so that the methods decide by themselves which part
is the master and which is the slave. In order to simplify the notation, analysis
and implementation of the adaptive methods, we assume that the elastic bodies
are initially in full contact, see, e.g., [17], and leave the case with a non-vanishing
initial gap between the elastic bodies for a future work.

Although our analysis is built upon our earlier works, cf. [12, 14], we will present
proofs of all the main theorems. We also note that the elastic contact problem
literature is vast and therefore we only refer to the review paper [27], and to all
the references therein, for the analysis and application of finite element methods
arising from mixed formulations and to [20, 8], and to all the references therein, for
the a posteriori error analyses of contact problems. We end the paper by presenting
results of our computational experiments.

2. The contact problem

Let Ωi ⊂ Rd, i = 1, 2, d ∈ {2, 3}, denote two elastic bodies in their reference
configuration and assume that the bodies are initially in contact. Moreover, assume
that Ωi are polygonal (polyhedral) domains and denote by Γ = ∂Ω1 ∩ ∂Ω2 their
common boundary. The boundary ∂Ωi is split into three disjoint sets ΓD,i,ΓN,i
and ΓC,i, with ΓD,i denoting the part where homogeneous Dirichlet data is given,
ΓN,i the part with a Neumann boundary condition and ΓC,i the part where contact
can occur, see Figure 1.

Letting ui : Ωi → Rd, i = 1, 2, be the displacement of the body Ωi, the infini-
tesimal strain tensor is defined as

(2.1) ε(ui) =
1

2

(
∇ui + (∇ui)T

)
.

We assume homogenous isotropic bodies and a plain strain problem in the two
dimensional case. The stress tensor is thus given by

(2.2) σi(ui) = 2µi ε(ui) + λi tr ε(ui)I,

where µi > 0 is the shear modulus and λi the second Lamé parameter of the
body Ωi and I denotes the d-dimensional identity tensor. We will exclude the
possibility that the materials are nearly incompressible and hence it holds λi . µi.
(For nearly incompressible materials the standard approach of reformulating the
problem in mixed form [5] should be used.)

By ni ∈ Rd we denote the outward unit normal to ∂Ωi, and define n = n1 =
−n2. In what follows, t denotes any unit vector that satisfies n · t = 0.

We decompose the traction vector on ∂Ωi, σi(ui)ni, into its normal and tan-
gential parts, viz.

(2.3) σi(ui)ni = σi,n(ui) + σi,t(ui).

For the scalar normal tractions we use the sign convention

(2.4) σ1,n(u1) = σ1,n(u1) · n1,
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and

(2.5) σ2,n(u2) = −σ2,n(u2) · n2,

and note that on Γ these tractions are either both zero or continuous and compres-
sive, i.e. it holds that

(2.6) σ1,n(u1) = σ2,n(u2), σi,n(ui) ≤ 0, i = 1, 2.

The physical non-penetration constraint on Γ reads as

(2.7) u1 · n1 + u2 · n2 ≤ 0,

which, defining

(2.8) un = −(u1 · n1 + u2 · n2)

can be written as

(2.9) JunK ≥ 0,

where J·K denotes the jump over Γ.
We thus have the following problem.

Ω1 Ω2ΓΓD,1 ΓD,2

n

Figure 1. Notation for the elastic contact problem.

Problem 1 (Strong formulation). Find ui : Ωi → Rd, i = 1, 2, d ∈ {2, 3}, such
that

(2.10)

−divσi(ui) = fi in Ωi,

ui = 0 on ΓD,i,

σi(ui)ni = 0 on ΓN,i,

σi,t(ui) = 0 on Γ,

σ1,n(u1)− σ2,n(u2) = 0 on Γ,

JunK ≥ 0 on Γ,

σi,n(ui) ≤ 0 on Γ,

JunKσi,n(ui) = 0 on Γ,

where fi ∈ [L2(Ωi)]
d denotes the volume force on Ωi.
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Letting λ = −σ1,n(u1) = −σ2,n(u2) denote a Lagrange multiplier associated
with the contact constraint, we obtain an equivalent mixed formulation in which
the normal traction on the contact surface is an independent unknown.

Problem 2 (Mixed formulation). Find ui : Ωi → Rd, i = 1, 2, d ∈ {2, 3}, and
λ : Γ→ R, such that

(2.11)

−divσi(ui) = fi in Ωi,

ui = 0 on ΓD,i,

σi(ui)ni = 0 on ΓN,i,

σi,t(ui) = 0 on Γ,

λ+ σ1,n(u1) = 0, on Γ,

λ+ σ2,n(u2) = 0, on Γ,

JunK ≥ 0 on Γ,

λ ≥ 0 on Γ,

JunKλ = 0 on Γ.

To present a variational formulation for Problem 2, we introduce function spaces
for the displacements

(2.12) Vi = {wi ∈ [H1(Ωi)]
d : wi|ΓD,i

= 0},
and equip them with the usual norms ‖ · ‖1,Ωi . Moreover, we write V = V1 × V2

and assume that Γ is a compact subset of ∂Ωi \ ΓD,i for i = 1, 2. Thus the normal

components of the displacement traces on the contact zone are in H
1
2 (Γ) with the

intrinsic norm in H
1
2 (Γ) defined by (cf., e.g., [25])

(2.13) ‖w‖21
2 ,Γ

= ‖w‖20,Γ +

∫
Γ

∫
Γ

|w(x)− w(y)|2
|x− y|d dx dy.

The inequality constraint on Γ is imposed by the Lagrange multiplier which
belongs to H−

1
2 (Γ), the topological dual of H

1
2 (Γ), i.e. H−

1
2 (Γ) = H

1
2 (Γ)′. The

duality pairing is denoted by 〈·, ·〉 : H
1
2 (Γ)×H− 1

2 (Γ)→ R, and the norm is then

(2.14) ‖ξ‖− 1
2 ,Γ

= sup
w∈W

〈w, ξ〉
‖w‖ 1

2 ,Γ

.

Moreover, we define the positive part of H−
1
2 (Γ) as

(2.15) Λ = {ξ ∈ H− 1
2 (Γ) : 〈w, ξ〉 ≥ 0 ∀w ∈ H 1

2 (Γ), w ≥ 0 a.e. on Γ}
and introduce the bilinear and linear forms

(2.16) B(w, ξ;v, η) =

2∑
i=1

(σi(wi), ε(vi))Ωi
− 〈JvnK , ξ〉 − 〈JwnK , η〉 ,

and

(2.17) L(v) =

2∑
i=1

(fi,vi)Ωi
.

The variational problem now reads as follows:
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Problem 3 (Weak formulation). Find (u, λ) ∈ V × Λ such that

(2.18) B(u, λ;v, η − λ) ≤ L(v) ∀(v, η) ∈ V × Λ.
We refer to [16, 15] for the derivation of weak formulation from Problem 2 and

for the proof of existence and uniqueness of solutions to problem (2.18).

3. Finite element method

Let the bodies Ωi ⊂ Rd be separately divided into sets of non-overlapping sim-
plices Cih, i = 1, 2. The d − 1 dimensional facets of the elements in Cih are further
divided into the set of interior facets E ih, the set of facets on the contact boundary
Gih, and the set of facets on the Neumann boundary N i

h. We denote by G12
h the

boundary mesh on Γ which is obtained by intersecting the facets of G1
h and G2

h.
In particular, each E ∈ G12

h corresponds to a pair (E1, E2) ∈ G1
h × G2

h such that
E = E1 ∩ E2. The finite element subspaces are

Vi,h = {vi,h ∈ Vi : vi,h|K ∈ [Pp(K)]d ∀K ∈ Cih},(3.1)

Vh = V1,h × V2,h,(3.2)

Qh = {ηh ∈ H−
1
2 (Γ) : ηh|E ∈ Pp(E) ∀E ∈ G12

h },(3.3)

where Pp(K) denotes the polynomials of degree p on K. Moreover, we introduce a
subset of Λ, denoted by Λh, as the positive part of Qh, i.e.

(3.4) Λh = {ηh ∈ Qh : ηh ≥ 0}.
Now, defining a stabilised bilinear form Bh through

(3.5) Bh(wh, ξh;vh, ηh) = B(wh, ξh;vh, ηh)− αSh(wh, ξh;vh, ηh),

where α > 0 is a stabilisation parameter and

(3.6) Sh(wh, ξh;vh, ηh) =

2∑
i=1

∑
E∈Gi

h

hE
µi

(
ξh + σi,n(wi,h), ηh + σi,n(vi,h)

)
E
,

we arrive at the following finite element formulation which is an extension of the
mortar method introduced in [19, 14].

Problem 4 (Stabilised discrete formulation). Find (uh, λh) ∈ Vh × Λh such that

(3.7) Bh(uh, λh;vh, ηh − λh) ≤ L(vh) ∀(vh, ηh) ∈ Vh × Λh.

We will now derive an equivalent formulation wherein the Lagrange multiplier is
not explicitly present. To this end, we start by defining L2(Γ)-functions hi through

(3.8) hi|E = hE ∀E ∈ Gih, i = 1, 2,

and introduce the notation

(3.9) {{σn(uh)}} =
h1µ2

h1µ2 + h2µ1

σ1,n(u1,h) +
h2µ1

h1µ2 + h2µ1

σ2,n(u2,h),

i.e. a convex combination of the discrete normal tractions. Furthermore, we let

(3.10) lh(uh) = −{{σn(uh)}} − βh Juh,nK ,

where

(3.11) βh =
µ1µ2

α(h1µ2 + h2µ1)
.
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Next, we will show that the discrete Lagrange multiplier λh can be eliminated
locally (i.e. element by element). This leads to a Nitsche formulation with the
displacements as sole unknowns. Choosing vh = 0 in the variational inequality
(3.7), gives

(3.12) − 〈Juh,nK , ηh − λh〉 − α
2∑
i=1

∑
E∈Gi

h

hE
µi

(
λh + σi,n(ui,h), ηh − λh)E ≤ 0,

which, in view of the notation defined above, can be written as

(3.13) 〈λh − lh(uh), ηh − λh〉 ≤ 0 ∀ηh ∈ Λh.

Let then E ∈ G12
h be an element on which λh|E > 0 and denote by φE one of the

basis functions of Qh|E . Moreover, choose a test function ηh in (3.13) in such a
way that it vanishes at Γ \E and ηh|E = λh± εφE , with ε > 0 chosen small enough
so that ηh|E > 0. It follows that

(3.14) 0 = 〈λh − lh(uh), φE〉 =

∫
E

(
λh − lh(uh)

)
φE ds

and, since

(3.15)
(
λh − lh(uh)

)
|E ∈ Qh|E ,

we conclude that

(3.16)
(
λh − lh(uh)

)
|E = 0.

This shows that

(3.17) λh = (lh(uh))+ ,

where (a)+ = max(0, a) denotes the positive part of a.
The discrete contact region, defined as

(3.18) Γc(uh) = {x ∈ Γ : λh(x) > 0 },
can now, in view of (3.17), be written as

(3.19) Γc(uh) = {x ∈ Γ : lh(uh(x)) > 0}.
On the other hand, testing with vh in (3.7) and using (3.17) yields

(3.20)

2∑
i=1

(σi(ui,h), ε(vi,h))Ωi − 〈Jvh,nK , (lh(uh))+〉

− α
2∑
i=1

∑
E∈Gi

h

hE
µi

(
(lh(uh))+ + σi,n(ui,h), σi,n(vi,h)

)
E

=

2∑
i=1

(fi,vi,h)Ωi ∀vh ∈ Vh.

It follows from (3.10) that

(3.21)

−〈Jvh,nK , (lh(uh))+〉

=
(
{{σn(uh)}} , Jvh,nK

)
Γc(uh)

+
(
βh Juh,nK , Jvh,nK

)
Γc(uh)

,
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and on Γc(uh) it holds that

(lh(uh))+ + σ1,n(u1) =
h2µ1

h1µ2 + h2µ1

(
σ1,n(u1)− σ2,n(u2)

)
− βh Juh,nK ,(3.22)

(lh(uh))+ + σ2,n(u2) =
h1µ2

h1µ2 + h2µ1

(
σ2,n(u2)− σ1,n(u2)

)
− βh Juh,nK .(3.23)

Therefore, defining the jump

(3.24) Jσn(uh)K = σ2,n(u1)− σ1,n(u2),

and the L2(Γ)-function

(3.25) γh =
αh1h2

h1µ2 + h2µ1

,

and substituting the above five expressions into (3.20), we obtain after rearrang-
ing terms the following Nitsche’s formulation for Problem 4 with uh as the sole
unknown.

Nitsche formulation 1. Find uh ∈ Vh such that

(3.26)

2∑
i=1

(σi(ui,h), ε(vi,h))Ωi +
(
βh Juh,nK , Jvh,nK

)
Γc(uh)

+
(
{{σn(uh)}} , Jvh,nK

)
Γc(uh)

+
(
{{σn(vh)}} , Juh,nK

)
Γc(uh)

−
(
γh Jσn(uh)K , Jσn(vh)K

)
Γc(uh)

− α
2∑
i=1

(hi
µi
σi,n(ui,h), σi,n(vi,h)

)
Γ\Γc(uh)

=

2∑
i=1

(fi,vi,h)Ωi
∀vh ∈ Vh.

Remark 3.1. Since σn(ui) vanishes on Γ\Γc(uh), this set can be reinterpreted as
being part of ΓN,i, i = 1, 2. Consequently, the term

α

2∑
i=1

(hi
µi
σi,n(ui,h), σi,n(vi,h)

)
Γ\Γc(uh)

can be dropped.

Next we present two other variants of Nitsche’s method. The first is the so called
”master-slave” formulation.

Assume that the material parameters satisfy µ1 ≥ µ2. The body Ω1 is the master
part, Ω2 the slave, and the mortaring at the contact surface is only done for the
latter, less rigid body, i.e. the stabilising term is now

(3.27) Sh(wh, ξh;vh, ηh) =
∑
E∈G2

h

hE
µ2

(
ξh + σ2,n(w2,h), ηh + σ2,n(v2,h)

)
E
.

Repeating the steps above, we obtain λh = (lh(uh))+ , with

(3.28) lh(uh) = −σ2,n(u2,h)− µ2

αh2

Juh,nK .



8 TOM GUSTAFSSON, ROLF STENBERG, AND JUHA VIDEMAN

The contact region Γc(uh) is given by (3.19), with lh(uh) taken from (3.28), and
we have the following method.

Nitsche formulation 2. Find uh ∈ Vh such that

(3.29)

2∑
i=1

(σi(ui,h), ε(vi,h))Ωi +
( µ2

αh2

Juh,nK , Jvh,nK
)

Γc(uh)

+
(
σ2,n(u2,h), Jvh,nK

)
Γc(uh)

+
(
σ2,n(v2,h), Juh,nK

)
Γc(uh)

− α
(h2

µ2
σ2,n(u2,h), σ2,n(v2,h)

)
Γ\Γc(uh)

=

2∑
i=1

(fi,vi,h)Ωi
∀vh ∈ Vh.

Again, the term

α
(h2

µ2
σ2,n(u2,h), σ2,n(v2,h)

)
Γ\Γc(uh)

can be dropped, see Remark 3.1.
In the third alternative, we follow [18] and define the stabilising term through

(3.30) αSh(wh, ξh;vh, ηh) =
(
β−1
h (ξh + {{σn(wh)}}), ηh + {{σn(vh)}}

)
Γ
.

Repeating once more the above computations, we arrive at the following method.

Nitsche formulation 3. Find uh ∈ Vh such that

(3.31)

2∑
i=1

(σi(ui,h), ε(vi,h))Ωi +
(
βh Juh,nK , Jvh,nK

)
Γc(uh)

+
(
{{σn(uh)}} , Jvh,nK

)
Γc(uh)

+
(
{{σn(vh)}} , Juh,nK

)
Γc(uh)

−
(
β−1
h ({{σn(uh)}}), {{σn(vh)}}

)
Γ\Γc(uh)

=

2∑
i=1

(fi,vi,h)Ωi ∀vh ∈ Vh,

with Γc(uh) given by (3.19) (and lh(uh) as in (3.17)).

Also here the term

(3.32)
(
β−1
h ({{σn(uh)}}), {{σn(vh)}}

)
Γ\Γc(uh)

can be dropped.

4. Error analysis

The energy norm for the problem is

(4.1)

2∑
i=1

(σi(wi), ε(wi))Ωi
.
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Since we exclude nearly incompressible materials, it holds λi . µi, and hence with
our choice of boundary conditions the Korn inequality is valid in both regions, and
we have the norm equivalence

(4.2)

2∑
i=1

(σi(wi), ε(wi))Ωi ≈
2∑
i=1

µi‖w‖21,Ωi
.

The error estimate will be given in the continuous norm

(4.3) |||(w, ξ)|||2 =

2∑
i=1

(
µi‖w‖21,Ωi

+
1

µi
‖ξ‖2− 1

2 ,Γ

)
but in the analysis we will also use the following mesh dependent norm

(4.4) |||(wh, ξh)|||2h = |||(wh, ξh)|||2 +
2∑
i=1

∑
E∈Gi

h

hE
µi
‖ξh‖20,E .

Theorem 4.1 (Continuous stability). For every (w, ξ) ∈ V ×Q there exists v ∈ V
such that

(4.5) B(w, ξ;v,−ξ) & |||(w, ξ)|||2

and

(4.6) ‖v‖V . |||(w, ξ)|||.
Proof. It is well-known that the inf-sup condition

(4.7) sup
zi∈Vi

〈−zi · ni, ξ〉
‖∇zi‖0,Ωi

≥ Ci‖ξ‖− 1
2 ,Γ

∀ξ ∈ Q,

holds in both subdomains Ωi (cf. [1]). Therefore
(4.8)

sup
z=(z1,z2)∈V

〈JznK , ξ〉
(
∑2
i=1 µi‖∇zi‖20,Ωi

)1/2
≥ C

(
1

µ1
+

1

µ2

)1/2

‖ξ‖− 1
2 ,Γ

∀ξ ∈ Q .

Assume then that (w, ξ) ∈ V ×Q is given and let vi = wi−qi where qi ∈ Vi solves
the problem

(σi(qi), ε(zi))Ωi
= 〈−zi · ni, ξ〉 ∀zi ∈ Vi , i = 1, 2 .

Choosing zi = qi above, we obtain after summing

2∑
i=1

(σi(qi), ε(qi))Ωi
= 〈JqnK, ξ〉 .

Moreover, from (4.7), it follows that

‖ξ‖− 1
2 ,Γ
. sup

zi∈Vi

〈−zi · ni, ξ〉
‖∇zi‖0,Ωi

= sup
zi∈Vi

(σi(qi), ε(zi))Ωi

‖∇zi‖0,Ωi

. µi‖qi‖1,Ωi

and thus (
1

µ1
+

1

µ2

)1/2

‖ξ‖− 1
2 ,Γ
.
( 2∑
i=1

µi‖qi‖21,Ωi

)1/2

.
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Now, it is easy to see that

B(w, ξ;v,−ξ) =

2∑
i=1

{
(σi(wi), ε(wi))Ωi

− (σi(wi), ε(qi))Ωi

}
+ 〈JqnK, ξ〉

&
2∑
i=1

µi‖wi‖21,Ωi
− 1

2

2∑
i=1

µi‖wi‖21,Ωi
− 1

2

2∑
i=1

µi‖qi‖21,Ωi

+

2∑
i=1

(σi(qi), ε(qi))Ωi

&
2∑
i=1

µi‖wi‖21,Ωi
+

(
1

µ1
+

1

µ2

)
‖ξ‖2− 1

2 ,Γ
= |||(w, ξ)|||2

and that ‖v‖V = ‖w − q‖V . |||(w, ξ)|||. �

Above and in the following we write a & b (or a . b) when a ≥ Cb (or a ≤ Cb) for
some positive constant C independent of the finite element mesh.

To derive the discrete stability estimate, we need the following discrete trace
inequality, easily shown by a scaling argument.

Lemma 4.1 (Discrete trace estimate). There exists CI > 0, independent of the
mesh parameter h, such that

(4.9) CI
∑
E∈Gi

h

hE
µi
‖σi,n(vi,h)‖20,E ≤ µi‖vi,h‖21,Ωi

∀vi,h ∈ Vi, i = 1, 2.

Theorem 4.2 (Discrete stability). Suppose that 0 < α < CI . Then, for every
(wh, ξh) ∈ Vh ×Qh, there exists vh ∈ Vh such that

(4.10) Bh(wh, ξh;vh,−ξh) & |||(wh, ξh)|||2h
and

(4.11) ‖vh‖V . |||(wh, ξh)|||h.
Proof. From the discrete trace estimate it follows that

Bh(wh, ξh;wh,−ξh) ≥
(

1− α

CI

) 2∑
i=1

µi‖wi,h‖21,Ωi
+ α

2∑
i=1

∑
E∈Gh

hE
µi
‖ξh‖20,E ,

which proves the result in the mesh-dependent norm of ξh for 0 < α < CI .
On the other hand, the continuous inf-sup condition (4.8) implies that for any

ξh ∈ Qh there exists v ∈ V such that

〈JvnK , ξh〉
(
∑2
i=1 µi‖∇vi‖20,Ωi

)1/2
≥ C1

(
1

µ1
+

1

µ2

)1/2

‖ξh‖− 1
2 ,Γ

.

This means that (cf. the proof of Lemma 3.2 in [12])

〈J(Ihv)nK , ξh〉 ≥ C2

(
1

µ1
+

1

µ2

)
‖ξh‖2− 1

2 ,Γ
− C3

2∑
i=1

∑
E∈Gh

hE
µi
‖ξh‖20,E(4.12)

2∑
i=1

µi‖Ihvi‖1,Ωi
≤ C4

(
1

µ1
+

1

µ2

)
‖ξh‖2− 1

2 ,Γ
(4.13)
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where C2, C3, C4 are positive constants and Ihv ∈ Vh is the Clément interpolant
of v. Using again the discrete trace estimate and inequalities (4.12) and (4.13), we
then obtain

Bh(wh, ξh;−Ihv, 0) =−
2∑
i=1

(σi(wi,h), ε(Ihvi))Ωi
+ 〈J(Ihv)nK , ξh〉

−
2∑
i=1

∑
E∈Gi

h

hE
µi

(
ξh + σi,n(wi,h), σi,n(Ihvi)

)
E
,

≥ C5

(
1

µ1
+

1

µ2

)
‖ξh‖2− 1

2 ,Γ
− C6

2∑
i=1

µi‖wi,h‖1,Ωi

− C7

2∑
i=1

∑
E∈Gh

hE
µi
‖ξh‖20,E .

Now, it is straightforward to show (cf. [14]) that there exists δ > 0 such that

Bh(wh, ξh;wh − δIhv,−ξh) & |||(wh, ξh)|||2h .
and that ‖wh − δIhv‖V . |||(wh, ξh)|||h. �

In our improved error analysis, we use techniques from the a posteriori error
analysis. Let fi,h ∈ Vi,h be the [L2(Ωi)]

d projection of fi, define on any K ∈ Cih
the oscillation of fi by

oscK(fi) = hK‖fi − fi,h‖0,K , i = 1, 2,

and, for each E ∈ Gih, let K(E) ∈ Gih denote the element such that ∂K(E)∩E = E.

Lemma 4.2. For any (vh, ηh) ∈ Vh ×Qh, it holds that

(4.14)

( 2∑
i=1

∑
E∈Gi

h

hE
µi
‖ηh + σi,n(vi,h)‖20,E

)1/2

≤ |||(u− vh, λ− ηh)|||+
( 2∑
i=1

µ−1
i

∑
E∈Gi

h

oscK(E)(fi)
2
)1/2

.

Proof. We follow the reasoning presented for the mortar method in [14]. It is
clearly enough to prove the result in Ω1. Thus, let bE ∈ Pd(E), E ∈ G1

h, be the
usual edge/facet bubble function and define τE on K(E) ∈ C1

h through

τE
∣∣
E

=
hEbE
µ1

(
ηh + σ1,n(v1,h)

)
and τE

∣∣
∂K(E)\E = 0,

where K(E) is such that K(E) ∩ E = E. It follows that

(4.15)
hE
µ1

∥∥∥ηh + σ1,n(v1,h)
∥∥∥2

0,E
.
(
ηh + σ1,n(v1,h), τE

)
E
.

Next, defining τ ∈ V1,h in such a way that τn := −τ · n =
∑
E∈G1

h
τE and testing

problem (2.18) with (v1,v2, η) = (−τ , 0, λ), we obtain

0 ≤ (σ1(u1), ε(τ ))Ω1
− 〈τn, λ〉 − (f1, τ )Ω1

.
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Summing (4.15) over the edges in G1
h, gives then∑

E∈G1
h

hE
µ1

∥∥∥ηh + σ1,n(v1,h)
∥∥∥2

0,E

. 〈τn, ηh − λ〉+ (σ1(u1), ε(τ ))Ω1
− (f1, τ )Ω1

+
∑
E∈G1

h

(σ1,n(v1,h), τE)E

= 〈τn, ηh − λ〉+ (σ1(u1), ε(τ ))Ω1
− (f1, τ )Ω1

− (divσ1(v1,h), τ )Ω1 − (σ1(v1,h), ε(τ )Ω1

= 〈τn, ηh − λ〉+ (σ1(u1)− σ1(v1,h), ε(τ ))Ω1 − (divσ1(v1,h) + f1, τ )Ω1 .

Inverse estimates imply that

(4.16) µ1‖τ‖21,Ω1
. µ1

∑
E∈G1

h

h−2
E ‖τE‖20,K(E) .

∑
E∈G1

h

hE
µ1
‖ηh + σ1,n(v1,h)‖20,E .

Now, one readily sees, using trace inequalities and the norm equivalence (4.2), that∑
E∈G1

h

hE
µ1

∥∥∥ηh + σ1,n(v1,h)
∥∥∥2

0,E

. µ−1/2
1 ‖ηh − λ||− 1

2 ,Γ
µ

1/2
1 ‖τ‖1,Ω1

+ µ
1/2
1 ‖u1 − v1,h‖1,Ω1

µ
1/2
1 ‖τ‖1,Ω1

+

( ∑
E∈G1

h

h2
E

µ1
‖divσ1(v1,h) + f1‖20,E

)1/2 (
µ1

∑
E∈G1

h

h−2
E ‖τE‖20,K(E)

)1/2

,

from which, using the standard estimates for interior residuals (cf. [26]) and the
inverse estimate (4.16) to bound the last term, it follows that( ∑
E∈G1

h

hE
µ1

∥∥∥ηh + σ1,n(v1,h)
∥∥∥2

0,E

)1/2

. |||(u− vh, λ− ηh)|||+
(
µ−1

1

∑
E∈G1

h

oscK(E)(f1)2
)1/2

.

�

We can now establish the quasi-optimality of the method.

Theorem 4.3. For 0 < α < CI it holds that

(4.17)

|||(u− uh, λ− λh)||| . inf
(vh,ηh)∈Vh×Λh

(
|||(u− vh, λ− ηh)|||+

√
〈JunK , ηh〉

)
+
( 2∑
i=1

µ−1
i

∑
E∈Gi

h

oscK(E)(fi)
2
)1/2

.

Proof. On account of the discrete stability estimate, there exists wh ∈ Vh such that

(4.18) ‖wh‖V . |||(uh − vh, λh − ηh)|||h,

and

(4.19) |||(uh − vh, λh − ηh)|||2h . Bh(uh − vh, λh − ηh;wh, ηh − λh).
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Using the bilinearity and (3.7), we obtain

(4.20)

Bh(uh − vh, λh − ηh;wh, ηh − λh)

= Bh(uh, λh;wh, ηh − λh)− Bh(vh, ηh;wh, ηh − λh)

. L(wh)− Bh(vh, ηh;wh, ηh − λh)

= B(u− vh, λ− ηh;wh, ηh − λh) + L(wh)

− B(u, λ;wh, ηh − λh) + αSh(vh, ηh;wh, ηh − λh).

The terms above can be estimated as follows. First, continuity of the bilinear form
B and inequality (4.18) yield

(4.21) B(u− vh, λ− ηh;wh, ηh − λh) . |||(u− vh, λ− ηh)||| |||(uh − vh, λh − ηh)|||.
Next, using the weak formulation (2.18) and the fact that JunK ≥ 0 and λh ≥ 0, we
obtain

(4.22) L(wh)− B(u, λ;wh, ηh − λh) = 〈JunK , ηh − λh〉 ≤ 〈JunK , ηh〉.
Finally, from the discrete trace estimate (4.9) it follows that

(4.23)

αSh(vh, ηh;wh, ηh − λh)

.
( 2∑
i=1

∑
E∈Gi

h

hE
µi
‖ηh + σi,n(ui,h)‖20,E

)1/2

|||(uh − vh, λh − ηh)|||h.

Using Lemma 4.2, and collecting the above estimates, we arrive at the asserted
error estimate. �

Remark 4.1. We refrain from giving an a priori error estimate assuming a regular
solution. The reasons are twofold. Firstly, contact singularities are inevitable and
essential in contact problems. Secondly, to derive an a priori bound, one would
need to estimate the term

√
〈JunK , ηh〉, with ηh being the interpolant to λ. Besides,

and perhaps most importantly, one of the main results of this paper is the fact that
we do not need to assume that the solution belongs to Hs, with s > 3/2.

For the a posteriori error analysis, we define the local estimators

η2
K =

h2
K

µi
‖divσi(ui,h) + fi‖20,K , K ∈ Cih,(4.24)

η2
E,Ω =

hE
µi
‖Jσi(ui,h)nK‖20,E , E ∈ E ih,(4.25)

η2
E,Γ =

hE
µi

{
‖λh + σi,n(ui,h)‖20,E + ‖σi,t(ui,h)‖20,E

}
(4.26)

+
µi
hE
‖(Juh,nK)−‖20,E , E ∈ Gih,

η2
E,ΓN

=
hE
µi
‖σi(ui,h)n‖20,E , E ∈ N i

h,(4.27)

with i = 1, 2. The corresponding global estimator η is then defined as

(4.28) η2 =

2∑
i=1

{ ∑
K∈Cih

η2
K +

∑
E∈Eih

η2
E,Ω +

∑
E∈Gi

h

η2
E,Γ +

∑
E∈N i

h

η2
E,ΓN

}
.
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In addition, we need an estimator S defined only globally as

(4.29) S2 =
(
(Juh,nK)+, λh

)
Γ
.

Theorem 4.4 (A posteriori error estimate). It holds that

(4.30) |||(u− uh, λ− λh)||| . η + S.

Proof. In view of the continuous stability estimate, there exists v ∈ V , with

(4.31) ‖v‖V . |||(u− uh, λ− λh)|||,

and

(4.32) |||(u− uh, λ− λh)|||2 . B(u− uh, λ− λh;v, λh − λ).

Let ṽ ∈ Vh be the Clément interpolant of v. From (3.7), it follows that

(4.33) 0 ≤ −B(uh, λh; ṽ, 0) + αSh(uh, λh,−ṽ, 0)− L(ṽ).

Using the weak formulation (2.18), this gives

(4.34)
B(u− uh, λ− λh;v, λh − λ)

. L(v − ṽ)− B(uh, λh;v − ṽ, λh − λ) + αSh(uh, λh,−ṽ, 0).

Integrating by parts, we obtain for the first two terms above

(4.35)

L(v − ṽ)− B(uh, λh;v − ṽ, λh − λ)

=

2∑
i=1

∑
K∈Cih

(divσi(ui,h) + fi,vi − ṽi)K

−
2∑
i=1

∑
E∈Eih

(Jσi(ui,h)nK ,vi − ṽi)E

−
2∑
i=1

∑
E∈N i

h

(σi(ui,h)n,vi − ṽi)E −
2∑
i=1

∑
E∈Gi

h

(σi,t(ui), (vi,t − ṽi,t))E

−
2∑
i=1

∑
E∈Gi

h

(λh + σi,n(ui,h), (vi − ṽi) · n)E + 〈Juh,nK , λh − λ〉,

Moreover, using an inverse inequality for the H1/2(Γ)-norm (cf. [11]) we get

(4.36)

〈Juh,nK , λh − λ〉 ≤
(
(Juh,nK)+, λh

)
Γ

+
〈
(Juh,nK)−, λh − λ

〉
.
(
(Juh,nK)+, λh

)
Γ

+ |||(u− uh, λ− λh)|||
(
(µ1 + µ2)‖(Juh,nK)−‖21/2,Γ

)1/2
.
(
(Juh,nK)+, λh

)
Γ

+ |||(u− uh, λ− λh)|||
( 2∑
i=1

∑
E∈Gi

h

µi
hE
‖(Juh,nK)−‖20,E

)1/2
.
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Finally, using the discrete trace estimate (4.9) and the standard bounds for the
Clément interpolant, and recalling (4.31), we obtain for the stabilising term

(4.37)

|Sh(uh, λh,−ṽ, 0)|

.
( 2∑
i=1

∑
E∈Gi

h

hE
µi
‖λh + σi,n(ui,h)‖20,E

)1/2

|||(u− uh, λ− λh)|||.

Estimate (4.38) follows from collecting the above bounds. �

The estimator η bounds the error from below. For the proof of the following
theorem we refer to [12].

Theorem 4.5 (A posteriori estimate – efficiency). It holds that

(4.38) η . |||(u− uh, λ− λh)|||.
The analysis of Methods 2 and 3 is analogous. In the a posteriori estimates the

term
2∑
i=1

∑
E∈Gi

h

hE
µi
‖λh + σi,n(ui,h)‖20,E ,

is replaced by

(4.39)
∑
E∈G2

h

hE
µ2
‖λh + σ2,n(u2,h)‖20,E ,

and

(4.40) ‖β−1/2
h (λh + {{σn(uh)}})‖20,Γ,

for Method 2 and 3, respectively.

5. Computational experiments

All computations presented in this section were obtained using the Nitsche for-
mulation 3 with the term (3.32) dropped. Had we considered other formulations,
the results would have been practically identical. We also note that since the
stabilized/Nitsche’s method is variationally conforming (as a mortaring method) it
passes the patch test of [21], p. 425. This was confirmed numerically up to machine
accuracy.

We consider the geometry given by

(5.1) Ω1 = [0.5, 1.0]× [0.25, 0.75], Ω2 = [1, 1.6]× [0, 1],

and define the boundary conditions on the following subsets:

ΓD,1 = {(x, y) ∈ ∂Ω1 : x = 0.5}, ΓN,1 = ∂Ω1 \ (ΓD,1 ∪ Γ),(5.2)

ΓD,2 = {(x, y) ∈ ∂Ω2 : x = 1.6}, ΓN,2 = ∂Ω2 \ (ΓD,2 ∪ Γ).(5.3)

Thus, the geometry is the one given in Figure 1. A nonmatching discretisation
of the geometry is depicted in Figure 2. Initially, the material parameters are
E1 = E2 = 1 and ν1 = ν2 = 0.3 and the loading is

(5.4) f1 = (x− 0.5, 0), f2 = (0, 0).

For this loading, the displacement is constrained on ΓD,i, i = 1, 2, only in the
horizontal direction which minimizes the effect of the singularities – other than the
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ones related to the contact boundary – on the rates of convergence. We consider
both linear and quadratic elements, with α = 10−2 and α = 10−3, respectively.

The adaptively refined meshes are shown in Figure 3a and 3b, and the global
error estimator η + S is plotted as a function of the number of degrees-of-freedom
N in Figure 3c. Since η + S is an upper bound for the total error, the results
suggest that the total error of the quadratic solution is limited to O(N−0.5) when
using uniform refinements and that adaptivity successfully improves the order of
the discretisation error to O(N−1).

Next we fix also the vertical displacement on ΓD,i, i = 1, 2, and consider the
loading

(5.5) f1 = (0,−0.05), f2 = (0, 0),

which causes the left block to bend slightly downwards and, as a consequence, the
active contact region is a nontrivial subset of Γ. The active contact region is found
via an iterative solution of the linearised problem, cf. [12]. See Figure 4a and 4b for
the final meshes and contact stresses, and Figure 4c for the convergence rates. We
observe that the singularity at the upper corner of the contact region is properly
resolved by the adaptive meshing strategy and that the convergence is similar albeit
less idealised as in the first example.

In Figure 5, we demostrate how the improved convergence rates can be obtained
for P2 elements even if the value of the Young’s modulus changes significantly
over the contact boundary. In Figure 6, we demonstrate that the effect of the
stabilisation parameter is small in the asymptotic limit. Finally, in Figure 7, we
consider the loading

(5.6) f1 = (− cos(4π(y − 0.5)), 0), f2 = (0, 0),

which results in an active contact boundary consisting of two disjoint parts and a
perfectly symmetric contact stress.

0.50 0.75 1.00 1.25 1.50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. A finite element mesh and the vertices belonging to Γ.
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(b) P2 after 8 adaptive refinements.
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(c) The convergence rates of the total error estimator η + S as a function of the number
of degrees-of-freedom N .

Figure 3. Block against a block example.
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(b) P2 after 8 adaptive refinements.
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Figure 4. Downward bending block example.
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(a) P2 after 10 adaptive refinements with α = 0.0001.
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(b) P2 after 10 adaptive refinements with α = 0.01.
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Figure 6. Effect of changing the stabilisation parameter.
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Figure 7. Example with a contact boundary consisting of two
disjoint active sets, with von Mises stress σv plotted in the top
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