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H2-OPTIMAL MODEL REDUCTION

USING PROJECTED NONLINEAR LEAST SQUARES∗

JEFFREY M. HOKANSON† AND CALEB C. MAGRUDER‡

Abstract. In many applications throughout science and engineering, model reduction plays an
important role replacing expensive large-scale linear dynamical systems by inexpensive reduced order
models that capture key features of the original, full order model. One approach to model reduction
finds reduced order models that are locally optimal approximations in the H2 norm, an approach
taken by the Iterative Rational Krylov Algorithm (IRKA) among others. Here we introduce a new
approach for H2-optimal model reduction using the projected nonlinear least squares framework
previously introduced in [J. M. Hokanson, SIAM J. Sci. Comput. 39 (2017), pp. A3107–A3128]. At
each iteration, we project the H2 optimization problem onto a finite-dimensional subspace yielding a
weighted least squares rational approximation problem. Subsequent iterations append this subspace
such that the least squares rational approximant asymptotically satisfies the first order necessary
conditions of the original, H2 optimization problem. This enables us to build reduced order models
with similar error in the H2 norm but using far fewer evaluations of the expensive, full order model
compared to competing methods. Moreover, our new algorithm only requires access to the transfer
function of the full order model, unlike IRKA which requires a state-space representation or TF-
IRKA which requires both the transfer function and its derivative. Applying the projected nonlinear
least squares framework to the H2-optimal model reduction problem open new avenues for related
model reduction problems.
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approximation, transfer function
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1. Introduction. Model reduction replaces an expensive, high-fidelity simula-
tion with a low-dimensional, inexpensive surrogate. Although the cost of building
this reduced order model (ROM) is often comparable to simulating of the original full
order model (FOM), this cost is justified in two settings: many-query settings, such
as optimization and uncertainty quantification, and in real-time applications where
the full order simulation is unaffordable. There are a wide variety of approaches for
model reduction, such as Balanced Truncation, Proper Orthogonal Decomposition
(POD), and interpolatory methods; for an extensive overview, see [11]. In this paper,
we address the H2-optimal model reduction problem—a model reduction approach
requiring both the full and reduced order models to be described by a stable, linear,
time-invariant dynamical system. In this setting, the action of these models are com-
pletely defined through either their impulse response h or their transfer function H ,
the Laplace transform of h. Under these assumptions, the transfer function H is an
element of the H2 Hilbert space: the space of functions analytic in the closed right
half plane along with the inner product

(1.1) 〈F,G〉H2
:=

1

2π

∫ ∞

−∞

F (iω)G(iω) dw, F,G ∈ H2, i :=
√
−1.
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Given a space of candidate reduced order models whose transfer functions are in the
set S ⊂ H2, the goal of H2-optimal model reduction is to find the element Hr ∈ S
that is closest to the transfer function of the full order model H in the H2-norm

(1.2) min
Hr∈S

‖H −Hr‖2H2
where ‖F‖2H2

:= 〈F, F 〉H2
.

As we consider a case where S is nonconvex, we consider local optimizers satisfying
the first order optimality conditions as solutions to (1.2).

Here we employ the projected nonlinear least squares framework introduced by
Hokanson [30] to solve theH2-optimal model reduction problem (1.2). This framework
replaces (1.2) by a sequence of small, finite-dimensional projected problems whose
optimizers converge to an optimizer of (1.2). Each projected problem introduces an
orthogonal projector P (µ) into the norm, solving

(1.3) min
Hr∈S

‖P (µ)[H −Hr]‖2H2
.

Exploiting the reproducing kernel structure ofH2 (see discussion in subsection 2.2), we
construct these projectors using kernel vectors v[µ] ∈ H2 where 〈v[µ], F 〉H2

= F (µ)
such that the range of P (µ) is spanned by {v[µj ]}nj=1. This allows the objective
of (1.3) to be rewritten as a weighted least squares problem involving the mismatch
H −Hr evaluated at the interpolation points µ = [µ1, . . . , µn]

(1.4) ‖P (µ)(H −Hr)‖2H2
=

∥∥∥∥∥∥∥
M(µ)−

1
2






H(µ1)

...
H(µn)


−



Hr(µ1)

...
Hr(µn)







∥∥∥∥∥∥∥

2

2

,

where M(µ) is a Gram matrix of the kernel vectors v[µj ] acting to preserve the norm;
i.e., [M(µ)]j,k = 〈v[µj ], v[µk]〉H2

with explicit definition in (4.7). As the projected
problem is a finite dimensional nonlinear least squares problem, we can find local
minimizers of (1.3) using standard optimization techniques given a parameterization
of S; we refer to this as inner loop.

Around this inner loop we construct an outer loop updating the projector P (µ)
such that local optimizers of the projected problem (1.3) converge to a local optimizer
of the original problem (1.2). The following lemma provides the key insight connecting
local optimizers of these two problems.

Lemma 1.1. Suppose S ⊂ H2 admits a parameterization by Hr(·; θ) such that

S = {Hr(·; θ) : θ ∈ D} and D ⊂ Rp is open. Let T (θ) denote subspace containing the

derivatives of Hr with respect to this parameterization at θ,

(1.5) T (θ) := Span
{

∂Hr(·,θ)
∂θ1

, . . . , ∂Hr(·,θ)
∂θp

}
.

If Hr(·, θ̂) is a local optimizer of the projected problem (1.3) and RangeP (µ) ⊇ T (θ̂),

then Hr(·, θ̂) is also a local optimizer of the original problem (1.2).

Proof. If Hr(·, θ̂) ∈ M is a local optimizer of the projected (1.3) problem, then

〈P (µ)[H −Hr(·, θ̂)], T 〉H2
= 0 ∀T ∈ T (θ̂).(1.6)

As P (µ) is an orthogonal projector we can move it into the right argument and noting

P (µ)T = T since, by assumption, T (θ̂) ⊆ RangeP (µ), we have

(1.7) 〈P (µ)[H −Hr(·, θ̂)], T 〉H2
= 〈H −Hr(·, θ̂), P (µ)T 〉H2

= 〈H −Hr(·, θ̂), T 〉H2
.
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Thus H(·, θ̂) is a local optimizer of the original problem (1.8) since

〈H −Hr(·, θ̂), T 〉H2
= 0 ∀T ∈ T (θ̂).(1.8)

Motivated by this insight, we design the outer loop to increase the range of the
projector P (µ) such that (asymptotically) we satisfy the containment requirement
of Lemma 1.1. To maximize reuse existing evaluations of the transfer function, each
iteration of the outer loop adds an interpolation point to the projector; i.e.,

(1.9) µ+ = [µ1, . . . , µn, µn+1] =⇒ RangeP (µ) ⊂ RangeP (µ+).

1.1. Space of ROMs. Although the projected nonlinear least squares frame-
work can be applied to any family of reduced order models S with a finite-dimensional
parameterization, the details of both the inner and outer loop depend on this choice.
Due to their popularity, here we restrict our attention to state-space reduced order
models posed over the field F that is either real R or complex C:

{
x′
r(t) = Arxr(t) + bru(t), xr(0) = 0

yr(t) = c∗rxr(t)

}
, where Ar ∈ Fr×r, br, cr ∈ Fr,(1.10)

and whose transfer function is

(1.11) Hr(z;Ar,br, cr) := c∗r [zI−Ar]
−1br.

This transfer function is a degree (r−1, r) rational function as the resolvent [zI−Ar]
−1

is a degree (r − 1, r) matrix-valued rational function [33, Chap. 1, eq. (5.23)]. We
denote the space of (r − 1, r) scalar-valued rational functions as

(1.12) Rr(F) :=

{
p

q
: p ∈ Pr−1(F), q ∈ Pr(F)

}
,

where Pr(F) denotes polynomials of degree r with coefficients in the field F. There
is a surjective mapping between state-space transfer functions (1.11) and elements of
Rr(F); hence for any rational function Hr ∈ Rr(F) we can nonuniquely identify a
state-space system with matrices A ∈ Fr×r, and b, c ∈ Fr whose transfer function is
Hr. Not all elements of Rr(F) are members of H2. For Hr ∈ Rr(F) to be in H2 all
its poles must lie in the open left half plane; we denote this space as

(1.13) R+
r (F) :=Rr(F) ∩H2 =

{
p

q
: p ∈ Pr−1(F), q ∈ Pr(F), roots of q in LHP

}
.

As many applications of model reduction in science and engineering involve real
dynamical systems—e.g., diffuse optimal tomography [19, 38], structural mechanics
[25, 42], thermal dynamics [16], and optimal control [25]—here we focus our attention
to finding real reduced order models Hr ∈ R+

r (R).

1.2. Advantages. There are two main advantages to our Projected H2 (PH2)
approach compared to existing methods for H2-optimal model reduction.

Unlike other H2-optimal model reduction techniques, PH2 requires only evalua-
tions of the full order model transfer function H(µj)—this places minimal require-
ments on the full order model. In contrast, the Iterative Rational Krylov Algorithm
(IRKA) [28] requires a state-space representation of the full order model. Other meth-
ods require transfer function derivatives; e.g., Transfer Function IRKA (TF-IRKA) [6]
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requires first derivatives and Newton methods [10, 36] require both first and second
derivatives. Quadrature-based Vector Fitting (QuadVF) [23] does not require deriv-
atives, but does need a particular limit of H .

Projected H2 typically yields similar or better reduced order models compared to
other techniques while simultaneously user fewer evaluations of the full order model.
This is significant because for large scale models, evaluating H(z) dominates the cost;
e.g., if H(z) is the transfer function of a large state-space system

{
x′(t) = Ax(t) + bu(t), x(0) = 0

y(t) = c∗x(t)

}
, where

A ∈ Cn×n, b, c ∈ Cn,

H(z) = c∗[zI−A]−1b,
(1.14)

then the cost of evaluating H(z) is dominated by the linear solve. As the numerical
experiments in section 7 demonstrate, our PH2 approach uses fewer transfer function
evaluations than both IRKA and TF-IRKA—often by an order of magnitude. This
is because each iteration of PH2 recycles previous evaluations of H(µj), whereas each
iteration of standard IRKA and TF-IRKA discards these evaluations and requires
2r new evaluations. Similarly, our algorithm tends to find better local minimizers
because each inner loop of PH2 solves an overdetermined rational approximation
problem where we are able to try multiple initializations. In contrast, the rational
interpolant generated by IRKA and TF-IRKA at each step is unique. Compared to
QuadVF, both PH2 and QuadVF solve an overdetermined rational approximation but
differ in how they approximate the H2-norm. QuadVF uses a fixed quadrature rule
evaluating H on the imaginary axis whereas PH2 projects the H2-norm as in (1.3)
using evaluations of H in the right half plane. As our approximation of the H2-norm
is dynamically chosen, it often yields better reduced order models.

2. Properties of the H2 Hilbert Space. To begin, we briefly summarize the
properties of the H2 Hilbert space essential for the development of our algorithm.

2.1. Evaluation of H2 Norm. Although the H2 norm is defined through an
integral in (1.1), when H has a state-space representation (1.14) we can compute this
norm exactly. In this case the impulse response h(t) and transfer function H(z) are

(2.1) h(t) = c∗ exp[At]b and H(z) = c∗[zI−A]−1b.

Then theH2 norm can be computed from either the controllabilityWc or observability
Wo Gramians. Both Gramians are the solution to a Lyapunov equation [3, Sec. 4.3]:

Wc :=

∫ ∞

0

eAtbb∗eA
∗t dt, AWc +WcA

∗ = −bb∗;(2.2)

Wo :=

∫ ∞

0

eA
∗tcc∗eAt dt, A∗Wo +WoA = −cc∗.(2.3)

Using either Gramian, the H2-norm can be evaluated as [3, eq. (5.28)]

(2.4) ‖H‖2H2
:=

1

2π

∫ ∞

−∞

|H(iω)|2 dω =

∫ ∞

0

|h(t)|2 dt = c∗Wcc = b∗Wob.

2.2.Reproducing Kernel Hilbert Space.Reproducing kernel Hilbert spaces [4]
are Hilbert spaces which contain a kernel K[µ] that is also the sampling operator, i.e.,
〈K[µ], F 〉 = F (µ). For the H2 Hilbert space this kernel is v[µ]

(2.5) v[µ](z) := (z + µ)−1, where µ ∈ C+ := {µ ∈ C : Reµ > 0}.
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The reproducing property follows from the Cauchy integral formula [28, Lem. 2.4]

〈v[µ], H〉H2
=

1

2π

∫ ∞

−∞

v[µ](iω)H(iω)dω =
1

2π

∫ ∞

−∞

1

−iω + µ
H(iω)dω

=
−1

2π

∫ ∞

−∞

1

iω − µ
H(iω)dω =

−i

2π
lim

R→∞

∫

DR

1

z − µ
H(z)dz = H(µ),

(2.6)

where DR denotes the counterclockwise path along the boundary of the right half disk
of radius R split along the imaginary axis.

2.3. Meier-Luenberger Optimality Conditions. The first order optimal-
ity conditions for H2 model reduction by state-space systems are called the Meier-

Luenberger conditions [35]. These follow from the optimality conditions (1.8), but are
frequently presented as Hermite interpolation conditions through use of the reproduc-
ing kernel v[µ]. Here we provide a brief derivation under the assumption Hr ∈ R+

r (C)
has only simple poles; for a derivation with out this constraint, see [22]. This assump-
tion allows us to parameterize Hr in terms of poles λ ∈ Cr and residues ρ ∈ Cr

(2.7) Hr(z;λ,ρ) :=

r∑

k=1

ρk
z − λk

=

r∑

k=1

ρkv[−λk](z), λ,ρ ∈ Cr, λk < 0.

Taking derivatives with respect to the real and imaginary parts yields:

∂

∂ Reλk
‖H −Hr(·;λ,ρ)‖2H2

= 2Re
〈
ρkv[−λk]

′, H −Hr(·;λ,ρ)
〉
H2

;(2.8)

∂

∂ Imλk
‖H −Hr(·;λ,ρ)‖2H2

= −2Re
〈
iρkv[−λk]

′, H −Hr(·;λ,ρ)
〉
H2

;(2.9)

∂

∂Re ρk
‖H −Hr(·;λ,ρ)‖2H2

= −2Re
〈
v[−λk], H −Hr(·;λ,ρ)

〉
H2

;(2.10)

∂

∂ Im ρk
‖H −Hr(·;λ,ρ)‖2H2

= −2Re
〈
iv[−λk], H −Hr(·;λ,ρ)

〉
H2

;(2.11)

where v[µ]′ denotes the derivative of v[µ], v[µ]′(z) := −(z + µ)−2. When these deriv-
atives above are all zero, Hr satisfies the first order necessary conditions. Denoting
these parameter values as λ̂ and ρ̂, combining terms pairwise and invoking (2.5) yields

0 =
〈
v[−λ̂k]

′, H −Hr(·; λ̂, ρ̂)
〉
H2

⇔ H ′(−λ̂k) = H ′
r(−λ̂k; λ̂, ρ̂),(2.12)

0 =
〈
v[−λ̂k], H −Hr(·; λ̂, ρ̂)

〉
H2

⇔ H(−λ̂k) = Hr(−λ̂k; λ̂, ρ̂),(2.13)

provided |ρ̂k| > 0. These conditions require a locally optimal Hr to be a Hermite

interpolant of H at the reflection of the poles λ̂ across the imaginary axis. This result
applies to real reduced order models as well, since R+

r (R) is a subspace of R+
r (C)

(2.14) R+
r (R) = {F ∈ R+

r (C) : F (z) = F (z) ∀z ∈ C}.

Further, although this parameterization explicitly excludes higher order poles—i.e.,
Hr(z) = (z − λ)−2 cannot be expressed in this parameterization—in practice this
is not a concern. Rational functions with higher order poles are nowhere dense in
R+

r (C) [22, p. 2739] and hence cannot be resolved in finite precision arithmetic.
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Algorithm 3.1 Iterative Rational Krylov Algorithm (IRKA) (simplified)

Input : FOM system {A,b, c}, initial interpolation points µ(0) = [µ
(0)
1 , . . . , µ

(0)
r ]

Output : ROM system {Ar,br, cr}
1 for ℓ = 0, 1, 2, . . . do

2 Construct rational Krylov spaces V and W given µ(ℓ) using (3.1) and (3.2);
3 Build state-space reduced order model {Ar,br, cr} with V and W via (3.3);

4 Choose µ
(ℓ+1)
j = −|Reλj | − i Imλj , where {λj}

r
j=1 are eigenvalues of Ar;

3. Existing Algorithms. There are a variety of techniques for H2-optimal
model reduction. Each of these requires access to different information about the
full order model described by H . For example, both IRKA [28] and TF-IRKA [6]
are fixed point iterations based on rational interpolants, but IRKA requires access
to a state-space representation of H whereas TF-IRKA only requires access to H(z)
and H ′(z). Van Dooren, Gallivan, and Absil propose a similar fixed point iteration
that allows for higher order poles in the reduced order model [21, 22]. There are also
Newton methods that require access to H(z), H ′(z), and H ′′(z), such as the approach
developed by Meier [36] and a trust-region approach due to Beattie and Gugercin [10].
In addition to these optimal methods, there are also several suboptimal methods that
require only access to H(z). For example, QuadVF uses a quadrature rule to approx-
imate the H2-norm [23] and H2 pseudo-optimality removes the derivative condition
from the Meier-Luenberger conditions and finds a reduced order model with fixed
poles that minimizes the H2 norm [43]. In this section we briefly summarize three of
these algorithms used as comparisons in section 7: IRKA, TF-IRKA, and QuadVF.

3.1. IRKA. The Iterative Rational Krylov Algorithm (IRKA) [28] builds on
earlier work constructing rational interpolants for full order models given in state-
space form [27, 44]. Given a state-space system (1.14) with matrices A, b, and c,
a Hermite rational interpolant at points {µj}rj=1 can be constructed using rational
Krylov spaces W and V

V = Range(V) = Span{[µ1I−A]−1b, . . . , [µrI−A]−1b}, V∗V = I;(3.1)

W = Range(W) = Span{[µ1I−A]−∗c, . . . , [µrI−A]−∗c}, W∗W = I.(3.2)

Then the reduced order model Hr(z) = c∗r [zI−Ar]
−1br with matrices

(3.3) Ar = (W∗V)−1W∗AV, br = (W∗V)−1W∗b, cr = V∗c

satisfies the Hermite interpolation conditions at each µj [28, Cor. 2.2]

(3.4) H(µj) = Hr(µj), H ′(µj) = H ′
r(µj), j = 1, . . . , r

provided W∗V is invertible. This interpolant satisfies the Meier-Luenberger condi-
tions when the poles of Hr—the eigenvalues {λj}rj=1 of Ar—are the interpolation

points flipped across the imaginary axis; i.e., {−λj}rj=1 = {µj}rj=1.
IRKA is a fixed point iteration that uses this Hermite interpolant to find a state-

space reduced order model satisfying the Meier-Luenberger conditions. As summa-
rized in Algorithm 3.1, given a set of interpolation points {µj}rj=1 IRKA constructs a
Hermite rational interpolant using (3.3) and then the poles of this rational interpolant
{λj}rj=1 provide the new interpolation points for the next step, µj = −λj . When
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this iteration converges, the reduced order model Ĥr satisfies the Meier-Luenberger
conditions; moreover Ĥr is a local minimizer as local maximizers are repellent [7, sub-
sec. 7.4.2]. Although IRKA often-times converges in practice, there are only limited
cases where convergence is guaranteed [24] and examples exist where this fixed point
iteration does not converge [7, subsec. 7.4.2]. For large scale model reduction, the
cost of IRKA is dominated by the linear solves in (3.1) and (3.2). There are several
modifications to IRKA that mitigate the cost of these linear solves by, for example,
using inexact linear solves [8, 9], recycling information between iterations [1], and
constructing local approximations of the full order model [17].

3.2. TF-IRKA. A critical limitation of IRKA is the need for a state-space
representation of H for constructing the rational Krylov subspaces V and W used
to build the rational interpolant reduced order model. Transfer function IRKA (TF-
IRKA) [6] removes this constraint by constructing the reduced order model using a
Loewner based approach following the work of Anderson and Antoulas [2]. Given a
set of interpolation points {µj}rj=1, TF-IRKA builds a Hermite interpolant Hr(z) =

c∗r [zEr −Ar]
−1br using evaluations of H(µj) and its derivative H ′(µj) where

(3.5) [Ar]j,k =

{
−µjH(µj)−µkH(µk)

µj−µk
, j 6= k;

−[zH(z)]′|z=µj
, j = k;

[Er]j,k =

{
−H(µj)−H(µk)

µj−µk
, j 6= k;

−H ′(µj), j = k;

and [br]j = [cr ]j = H(µj); here [A]j,k denotes the j, kth entry of A. Then, as in
IRKA, the interpolation points are updated in a fixed point iteration based on the
poles of Hr, here the generalized eigenvalues λ of (Ar, Er); e.g., Arx = λErx. When
H has a state-space representation, the iterations of IRKA and TF-IRKA are identical
in exact arithmetic.

3.3. QuadVF. An alternative approach taken by Quadrature-based Vector Fit-
ting (QuadVF) [23] is to approximate the H2 norm using a quadrature rule and then
solve the resulting weighted least squares rational approximation problem. QuadVF
uses Boyd/Clenshaw-Curtis quadrature rule [14] using n evaluations of H plus its
limit at ±∞ and includes a scaling parameter L > 0

‖H‖2H2
=

1

2π

∫ ∞

−∞

|H(iω)|2 dω ≈ |M+[H ]|2 + |M−[H ]|2
4L(n+ 1)

+

n∑

j=1

wj |H(zj)|2(3.6)

wj=
L

2(n+1) sin2(jπ/(n+1))
, zj=iL cot

(
jπ

n+1

)
, M±[H ]= lim

ω→±∞
iωH(iω).(3.7)

This yields a diagonally weighted least squares rational approximation problem

(3.8) min
Hr∈R+

r (R)

∥∥∥∥∥∥∥∥∥∥∥




√
w1

. . .√
wn√

w+√
w−










H(z1)
...

H(zn)
M+[H ]
M−[H ]



−




Hr(z1)
...

Hr(zn)
M+[Hr]
M−[Hr]







∥∥∥∥∥∥∥∥∥∥∥
2

; w±=
1

4L(n+1)
.

A modified Vector Fitting [29] constructs a rational approximation in barycentric form
minimizing (3.8) by iteratively updating the nodes of the barycentric representation.
Although QuadVF will necessarily yield reduced order models that do not satisfy the
Meier-Luenberger conditions due to the discretization of the H2-norm, this technique
frequently yields reduced order models with small residual norm ‖H −Hr‖H2

.
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4. Projected Nonlinear Least Squares. Our approach for H2-optimal model
reduction extends the projected nonlinear least squares framework introduced by
Hokanson for finite-dimensional problems [30]. In its original presentation, given
a nonlinear least squares problem

(4.1) min
θ∈Rq

‖f(θ)− ỹ‖22 f : Rq → Cn

this framework solves a series of projected problems, cf. [30, eq. (2)]:

(4.2) θℓ := argmin
θ∈Rq

‖PWℓ
[f(θ)− y]‖22 = argmin

θ∈Rq

‖W∗
ℓ [f(θ)− y]‖22,

where PWℓ
is an orthogonal projector onto Wℓ ⊂ Cn with orthonormal basis Wℓ ∈

Cn×mℓ so that PWℓ
= WℓW

∗
ℓ . Then by choosing subspaces Wℓ such that the largest

subspace angle between Wℓ and the range of the Jacobian of f(θℓ) is small, we obtain
an accurate solution the original problem (4.1). The advantage of this approach is that
at each step we solve a nonlinear least squares problem of small dimension mℓ ≪ n. A
caveat though is we must be able to evaluate the inner product W∗

ℓ f(θ) inexpensively.
Applying this framework to H2-optimal model reduction converts an infinite-

dimensional optimization problem into a sequence of finite dimensional nonlinear least
squares problems. Here the reproducing kernel structure of H2 provides the requisite
inexpensive inner product. In the following subsections we build the projector for the
H2 problem (subsection 4.1) and apply Lemma 1.1 to identify the desired range of the
projector (subsection 4.2). Since our choice of projector precludes exact containment,
we quantify the error introduced in terms of the subspace angle (subsection 4.3) and
show this error can be made arbitrarily small (subsection 4.4).

4.1. Projection. Here we construct the projector P (µ) to be an orthogonal
projector onto the subspace V(µ) that spans the kernel vectors v[µk] (2.5):

(4.3) V(µ) := Span{v[µk]}nk=1 ⊂ H2, µ ∈ Cn
+ := {z ∈ Cn|Re zk > 0}.

To build this projector, we first define the linear operator V (µ) : Cn → V(µ) ⊂ H2

and its adjoint V (µ)∗ : H2 → Cn,

(4.4) V (µ)c =
n∑

k=1

ckv[µk], V (µ)∗H =



〈v[µ1], H〉H2

...
〈v[µn], H〉H2


 =



H(µ1)

...
H(µn)


 =: H(µ)

Above we have invoked the kernel identity (2.6) to evaluate the adjoint. These two
operators V (µ) and V (µ)∗ satisfy the adjoint identity:

(4.5) 〈V (µ)c, H〉H2
=

n∑

k=1

ck〈v[µk], H〉H2
= c∗H(µ) = 〈c, V (µ)∗H〉Cn .

We now construct the orthogonal projector P (µ) : H2 → V(µ) as

(4.6) P (µ) := V (µ)[V (µ)∗V (µ)]−1V (µ)∗ = V (µ)M(µ)−1V (µ)∗,

where M(µ) is the positive definite Cauchy matrix

(4.7) [M(µ)]j,k := 〈v[µj ], v[µk]〉H2
= (µj + µk)

−1.
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With these definitions, the projected norm can be evaluated as a weighted Euclidean
norm of the difference between samples of H and Hr evaluated at µ:

‖P (µ)[H −Hr]‖2H2
= 〈V (µ)M(µ)−1V (µ)∗[H −Hr], [H −Hr]〉H2

= 〈M(µ)−
1
2V (µ)∗[H −Hr],M(µ)−

1
2V (µ)∗[H −Hr]〉H2

= 〈M(µ)−
1
2 [H(µ)−Hr(µ)],M(µ)−

1
2 [H(µ)−Hr(µ)]〉Cn

= ‖M(µ)−
1
2 [H(µ)−Hr(µ)]‖22,

(4.8)

where M(µ)−
1
2 is the Hermitian square root of M(µ)−1. Although analytically con-

venient, computationally we use Cholesky decomposition described in subsection 6.5
in place of M(µ)−

1
2 .

4.2. First Order Necessary Conditions. We now revisit Lemma 1.1 to derive
conditions under which a local optimizer of the projected problem is also a local
optimizer of the original problem. For simplicity we consider a parameterization of
R+

r (C) in terms of poles and residues (cf. (2.7))

(4.9) λ̂, ρ̂ := argmin
λ,ρ∈C

r

Reλk<0

‖H −Hr(·;λ,ρ)‖2H2
, Hr(z;λ,ρ) :=

r∑

k=1

ρkv[−λk](z).

As λ and ρ are contained in an open set, we can apply Lemma 1.1. Thus if λ̂, ρ̂ are
local optimizers of the projected version of (4.9), and P (µ) ⊇ T (λ̂, ρ̂), where T (λ̂, ρ̂)
contains the derivatives with respect to this parameterization:

(4.10) T (λ,ρ) := Span
{
ρkv[−λk]

′, iρkv[−λk]
′, v[−λk], iv[−λk]

}r

k=1
⊂ H2,

then λ̂, ρ̂ are also local optimizers of the original problem (4.9). Note these the vectors
in T (λ,ρ) are precisely those that appear in the derivation the Meier-Luenberger
conditions in (2.8)–(2.11). As the span contains all linear combinations, we denote
this subspace using λ alone

(4.11) T (λ) := Span{v[−λj ], v[−λj ]
′}rj=1 ⊇ T (λ,ρ)

with equality holding when ρk 6= 0. Finally, as R+
r (R) ⊂ R+

r (C), satisfying P (µ) ⊇
T (λ) is sufficient to apply Lemma 1.1 for R+

r (R).

4.3. Approximating Necessary Conditions. Unfortunately the construction
of projector P (µ) precludes exactly satisfying the containment RangeP (µ) ⊇ T (λ);
T (λ) contains not only v[−λk], but v[−λk]

′ which is not in the range of P (µ). However
if the range of P (µ) approximates T (λ) as measured by the subspace angle we are
able to approximately satisfy the necessary conditions for the original problem.

4.3.1. Defining Subspace Angles. Subspace angles on H2 are analogously
defined to the finite dimensional case. Given two finite-dimensional subspaces X ⊂ H2

and Y ⊂ H2 of dimensionm and n, the kth subspace angle φk between these subspaces
X and Y is (cf. [12, eq. (2)]):

(4.12) cosφk(X ,Y) := max
X∈X

‖X‖H2
=1

〈Xj ,X〉H2
=0

j<k

max
Y ∈Y

‖Y ‖H2
=1

〈Yj ,Y 〉H2
=0

j<k

〈X,Y 〉H2
, φ1 ≤ φ2 ≤ · · · ≤ φmin(m,n),
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where Xk ∈ X and Yk ∈ Y are the arguments that yield φk. Given unitary basis
operators BX : Cm → X and BY : Cn → Y, we can compute the subspace angles via
the singular values of a finite dimensional matrix

(4.13) cosφk(X ,Y) = σk(B
∗
XBY); B∗

XBY ∈ Cm×n

where σk denotes the kth singular value in descending order; cf. [12, Thm. 1].

4.3.2. Computing Subspace Angles. To compute the subspace angle between
T (λ) and V(µ) (the range of P (µ)) we introduce the orthogonal projector Q(λ) onto
T (λ). Defining V ′(µ) : Cn → H2 analogously to V (µ) with v[µ]′ in place of v[µ],

(4.14) V ′(µ)c :=

n∑

k=1

ckv[µk]
′, V ′(µ)∗H :=



〈v[µ1]

′, H〉H2

...
〈v[µn]

′, H〉H2


 =



−H ′(µ1)

...
−H ′(µn)


 ,

where the last equality follows from integration by parts. Then we define the projector
Q(λ) : H2 → T (λ) as

(4.15) Q(λ) :=
[
V (−λ) V ′(−λ)

] [V (−λ)∗V (−λ) V (−λ)∗V ′(−λ)

V ′(−λ)∗V (−λ) V ′(−λ)∗V ′(−λ)

]−1[
V (−λ)∗

V ′(−λ)∗

]
.

We denote this interior matrix as M̂(λ):

M̂(λ) :=

[
V (−λ)∗V (−λ) V (−λ)∗V ′(−λ)

V ′(−λ)∗V (−λ) V ′(−λ)∗V ′(−λ)

]
∈ C(2r)×(2r),(4.16)

whose blocks are

[V (−λ)∗V (−λ)]j,k = 〈v[−λj ] , v[−λk] 〉H2
= −(λj + λk)

−1;(4.17)

[V (−λ)∗V ′(−λ)]j,k = 〈v[−λj ] , v[−λk]
′〉H2

= −(λj + λk)
−2;(4.18)

[V ′(−λ)∗V ′(−λ)]j,k = 〈v[−λj ]
′, v[−λk]

′〉H2
= −2(λj + λk)

−3.(4.19)

Then to compute the subspace angle, we define the unitary basis operators for V(µ) =
RangeP (µ) and T (λ) = RangeQ(λ)

BV(µ) : C
n → V(µ) BV(µ) := V (µ)M(µ)−

1
2 ,(4.20)

BT (λ) : C
2r → M(λ) BT (λ) :=

[
V (−λ) V ′(−λ)

]
M̂(λ)−

1
2 .(4.21)

Then the largest subspace angle between V(µ) and T (λ) is

(4.22) cosφmax(T (λ),V(µ)) = σmin(B
∗
V(µ)BT (λ))

where σmin denotes the smallest singular value and

(4.23) B∗
V(µ)BT (λ)= M(µ)−

1
2

[
V (µ)∗V (−λ) V (µ)∗V ′(−λ)

]
M̂(λ)−

1
2 ∈ Cn×(2r).

4.3.3. Necessary Conditions. We can use the projector Q(λ) to provide an
alternative interpretation of the optimality conditions (1.8) and (1.6). We first re-
write (1.8) in terms of the projector Q(λ):

〈H −Hr, T 〉H2
= 0 ∀T ∈ T (λ) ⇔ 〈H −Hr, Q(λ)F 〉H2

= 0 ∀F ∈ H2(4.24)

⇔ 〈Q(λ)[H −Hr], F 〉H2
= 0 ∀F ∈ H2,(4.25)
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where the second equivalence follows as Q(λ) is an orthogonal projector. The choice
of F that maximizes this second equivalence is F = Q(λ)[H − Hr] upto a scalar
multiple. Hence,

(4.26) 〈H −Hr, T 〉H2
= 0 ∀T ∈ T (λ) ⇔ ‖Q(λ)[H −Hr]‖H2

= 0.

Applying the same argument to the projected problem, the local optimality conditions
in (1.8) and (1.6) are equivalently

‖Q(λ̂)[H −Hr(·; λ̂, ρ̂)]‖H2
= 0 (original),(4.27)

‖Q(λ̂)P (µ)[H −Hr(·; λ̂, ρ̂)]‖H2
= 0 (projected).(4.28)

The following theorem generalizes Lemma 1.1 when RangeP (µ) + T (λ).

Theorem 4.1. Suppose Hr(·; λ̂, ρ̂) is a local minimizer of the projected problem

with ‖Q(λ̂)P (µ)[H − Hr(·; λ̂, ρ̂)]‖H2
= 0. Then Hr(·; λ̂, ρ̂) satisfies the first order

optimality conditions for the original problem (4.9) with error

(4.29) ‖Q(λ̂)[H −Hr(·; λ̂, ρ̂)]‖H2
≤ ‖H −Hr(·; λ̂, ρ̂)‖H2

sinφmax(V(µ), T (λ̂)).

Proof. Inserting the identity I = I −P (µ)+P (µ) into the left hand side we have

(4.30) ‖Q(λ̂)[H −Hr(·; λ̂, ρ̂)]‖H2
≤

‖Q(λ̂)(I − P (µ))[H −Hr(·; λ̂, ρ̂)]‖H2
+ ‖Q(λ̂)P (µ)[H −Hr(·; λ̂, ρ̂)]‖H2

.

The second term is zero since Hr(·; λ̂, ρ̂) satisfies the local optimality conditions of
the projected problem in (4.28). Bounding this quantity using the induced H2-norm
yields

‖Q(λ̂)[H −Hr(·; λ̂, ρ̂)]‖H2
≤ ‖Q(λ̂)(I − P (µ))‖H2

‖H −Hr(·; λ̂, ρ̂)‖H2
.(4.31)

By definition, the first term on the right is the largest subspace angle between V(µ)
and T (λ̂) [12, eq. (13)]

(4.32) ‖Q(λ̂)(I − P (µ))‖H2
= sinφmax(V(µ), T (λ̂)).

4.4. Finite-Difference Subspace. Although we cannot have exact contain-
ment of T (λ) inside V(µ), we can get arbitrarily close. To provide an intuition of
how this can happen, note that as a derivative, v[µ]′ can be approximated by a finite-
difference for some small complex δ:

(4.33) v[µ]′ ≈ v[µ+ δ]− v[µ− δ]

2|δ| ∈ V([µ− δ, µ+ δ]).

In the same spirit, the following theorem shows that the subspace V(µ) with µj

clustering near −λ can approximate T (λ) to arbitrary accuracy. Combined with
Theorem 4.1, this theorem shows that local optimizers of the projected H2 problem
can satisfy the optimality conditions of the original H2 problem to arbitrary accuracy.

Theorem 4.2. Let V(µ) be a n-dimensional subspace of H2 with µ ∈ Cn
+ as

defined in (4.4) where µ are distinct and let T (λ) be a 2r-dimensional subspace of

H2 with λ ∈ Cr
− as defined in (4.11) where λ are distinct. If for each λk, there exist

entires of µ denoted µk,1, µk,2, and µk,3 where |µk,t + λk| ≤ ǫ for t = 1, 2, 3 and no

entry µk,t is repeated, then there exists a constant C independent of ǫ such that

(4.34) sinφmax(T (λ),V(µ)) ≤ Cǫ.

A proof is provided in the appendix.



12 JEFFREY M. HOKANSON AND CALEB C. MAGRUDER

5. Outer Loop: Sampling the Full Order Model. Having shown in the
previous section that the local optimality conditions can be satisfied to arbitrary
accuracy using the projected nonlinear least squares framework, we now design an
efficient algorithm constructing a sequence of projectors {P (µℓ)}∞ℓ=0 to solve the H2-
optimal model reduction problem. As we assume the dominant cost is evaluating the
full order model—namely evaluating H(z)—we choose a nested sequence of projectors

(5.1) RangeP (µℓ) ⊂ RangeP (µℓ+1) µℓ+1 :=
[
µℓ µℓ

⋆

]

to reuse previous evaluations of H(µj). In this section we provide an effective algo-
rithm for choosing these new interpolation points µℓ

⋆. However there are many choices
for µℓ

⋆ that will yield locally optimal models upon convergence as illustrated by the
following theorem.

Theorem 5.1. Let H ∈ H2 and n0, r be a positive integers where n0 ≥ 2r. Given

an initial µ0 ∈ Cn0

+ , let µℓ+1 :=
[
µℓ µℓ

⋆

]
where µℓ

⋆ ∈ Cnℓ

+ and the entries of µℓ are

distinct for all ℓ. Let Ĥℓ
r be a locally optimal solution to the projected problem

Ĥℓ
r := argmin

Hr∈R+
r (C)

‖P (µℓ)[H −Hr]‖H2
with ‖Q(λℓ))P (µℓ)[H − Ĥℓ

r ]‖H2
=0(5.2)

and λℓ are the poles of Ĥℓ
r . If Ĥℓ

r → Ĥr ∈ H2 where Ĥr has r distinct poles λ ∈
Cr

− and the sequence {µℓ
⋆}∞ℓ=0 has limit points −λ then Ĥr satisfies the first order

necessary conditions of the H2 problem (4.27); i.e., Ĥr satisfies the Meier-Luenberger

conditions.

Inspired by IRKA, we could satisfy the conditions of this theorem using the poles
of the current iterate flipped across the imaginary axis. If Ĥℓ

r has poles λℓ then the

choice µℓ
⋆ = −λ

ℓ
has the desired limit points as λℓ → λ if Ĥℓ

r → Ĥr (Lemma A.5).
In practice, we desire to use fewer evaluations of the full order model. Hence at each
step we add a single new interpolation point; e.g., µℓ

⋆ ∈ C+. Here we describe one
effective choice and its practical modifications.

5.1. Selecting Interpolation Points. As with the IRKA-inspired update, we
choose new interpolation points µℓ

⋆ from the poles of Ĥℓ
r flipped across the imaginary

axis. Specifically we will choose µℓ
⋆ to be the flipped pole of Ĥℓ

r that is furthest away
from V(µ) in terms of the subspace angle

(5.3) µℓ
⋆ := −λ

ℓ

⋆ where λℓ
⋆ := argmax

λ∈λℓ

sinφmax(V(µℓ), T (λ)),

where λℓ are the poles of Ĥℓ
r . Provided these choices of λℓ

⋆ do not avoid a particular

pole of Ĥℓ
r asymptotically, then {µℓ

⋆}∞ℓ=0 has limit points −λ and this choice satisfies
the assumptions of Theorem 5.1. These subspace angles can be computed via (4.22):

(5.4) cosφmax(V(µ), T (λ)) = σmin


M(µ)−

1
2




1
µ1−λ

1
(µ1−λ)2

...
...

1
µn−λ

1
(µn−λ)2



[

−1
λ+λ

1
(λ+λ)2

1
(λ+λ)2

−2
(λ+λ)3

]− 1
2


.

Evaluating this subspace angle is inexpensive, taking only O(n2) operations, and can
reuse the factorization ofM(µ) computed as part of solving the nonlinear least squares
problem as discussed in subsection 6.5.
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Algorithm 5.1 Projected Nonlinear Least Squares for Real H2 Model Reduction

Input : Real FOM H∈H2, order r > 0, initial samples µ0∈Cn0

+ , tolerance τ >0
Output : Real ROM Hr∈H2

1 for ℓ = 0, 1, 2, . . . do

2 Set n to be the length of µℓ;
3 if n < 2r then Set r ← 2⌊n/4⌋ for only the next iteration ;

4 Solve projected problem: Ĥℓ
r ← argmin

Hr∈R
+
r (R)
‖P (µℓ)[H −Hr]‖H2

;

5 if ‖Ĥℓ
r − Ĥℓ−1

r ‖H2
< τ then break ;

6 Compute poles of Ĥℓ
r: λ← λ(Ĥℓ

r) ⊂ Cr
− ;

7 Using AAA, construct a degree-(r̂, r̂) rational approximation G of µ,H(µ);
8 Compute poles of G: ν ← λ(G); flip into Cr

− by νj ← −|Re νj |+ i Im νj ;
9 Order ν to minimize |νj − λj | using the Kuhn-Munkres algorithm;

10 if λj /∈ F(µ) then set λj ← νj ;
11 Compute furthest pole: λ⋆ ← argmaxλ∈λ

φmax(M(λ),V(µ)) ;

12 if Imλ⋆ 6= 0 then Update samples: µℓ+1 ←
[
µℓ −λ⋆ −λ⋆

]
;

13 else Update samples: µℓ+1 ←
[
µℓ −λ⋆

]
;

5.1.1. When Theorem 5.1 Does Not Hold. A notable case that does not
satisfy the assumptions of this theorem occurs when H ∈ R+

r (R). For this case, given
any set of distinct samples µ ∈ Cn

+ where n ≥ 2r we recover H exactly, namely

Ĥr = H . Thus the poles of Ĥℓ
r are always the same and the sequence {µℓ

⋆}∞ℓ=0

violates the assumption of being distinct. However in this case, we still obtain an
optimal reduced order model.

5.1.2. Improved Updates. Before continuing, we note there may be better
updates than (5.3). For example, we could choose µ to minimize the subspace angle
between the tangent subspace associated with the current iterate and the projection
subspace,

(5.5) min
µ∈C+

sinφmax(T (λ(Ĥℓ
r)),V(µℓ) ∪ V(µ)).

However, unlike the update rule we propose, this is a nonconvex optimization problem
and evaluating these subspace angles is both expensive and ill-conditioned.

5.2. Practical Algorithm. In numerical practice, we modify the iteration given
in (5.3) as described in Algorithm 5.1.

5.2.1. Conjugate Samples. Since we assume that the full order model H ∈ H2

is real, we can evaluate H(µ) and H(µ) through only one evaluation of H as H(µ) =
H(µ). Thus if µℓ

⋆ is not on the real line, we automatically include its conjugate in
line 12 which incurs no additional evaluation of H .

5.2.2. Intermediate Dimension. If the rational approximation problem is un-
derdetermined, we choose an intermediate dimension for the reduced order model
r̂ < r such that the rational approximation problem on line 4 exactly determined or
overdetermined. We always pick an even order (cf. line 3) as odd real rational models

must have a pole on the real line, but Ĥr may not.

5.2.3. Spurious Poles. The least squares rational approximation step on line 4
may yield a solution whose poles are spurious for our purposes. For example, a
pole may be far away from existing samples; e.g., with Imµj ∈ [−1, 1], there could
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be a pole λk with Imλk ≈ 107. In this case as (µj − λk)
−1 is small leading to

inaccurate estimation of λk. Similarly, a pole λk may appear on the imaginary axis
with Reλk = 0, an artifact of the box constraints introduced to ensure Hr ∈ H2 (see
subsection 6.1). Without modification, a spurious pole can trigger a cascade leading
the algorithm to fail: the subspace angle criteria on line 11 ensures these spurious
poles are selected, causingM(µ) to be ill-conditioned, and leading subsequent rational
approximation steps to fail. To mitigate this failure mode we introduce a heuristic
to identify and replace these spurious poles. We label poles as spurious if they fall
outside of box containing µ that has been enlarged by a factor of ten

(5.6) F(µ) := [−10max
µ∈µ

Reµ,−0.1min
µ∈µ

Reµ]× i[10min
µ∈µ

Imµ, 10max
µ∈µ

Imµ] ⊂ C−.

Scaling by a factor of ten balances the need allow new interpolation points µ to
extend beyond existing µ while still identifying likely spurious poles. When a pole has
been labeled spurious, we replace this pole with the corresponding pole from a AAA
rational approximation as shown on line 10; note this AAA rational approximation
was already constructed during the initialization of the rational approximation step
(see subsection 6.4). Although the AAA poles are not optimal, in practice they are
not spurious and provide relevant information about H . Although this alters the
iteration presented in Theorem 5.1, this result still applies as if Ĥℓ

r → Ĥr, eventually
all poles lie in F(µ) and this modification is inactive.

5.2.4. Termination Criteria. Here we terminate the algorithm when the dif-
ference between subsequent iterates measured in the H2 norm is small (line 5), choos-
ing this norm to remove the effects of parameterization of Hr. Computing this quan-
tity only requires O(r3) operations using (2.4), Ideally based on Theorem 4.1, we

would prefer to terminate when the subspace angle between V(µℓ) and T (λ(Ĥℓ
r)) is

sufficiently small; unfortunately this quantity proves difficult to compute accurately.

6. Inner Loop: Constructing a Reduced Order Model. A critical com-
ponent of our Projected H2 approach is the construction of a weighted least squares

rational approximant on line 4 of Algorithm 5.1

(6.1) Ĥℓ
r := argmin

Hr∈R+
r (R)

‖P (µℓ)[H−Hr]‖H2
= argmin

Hr∈R+
r (R)

‖M(µℓ)−
1
2 [H(µℓ)−Hr(µ

ℓ)]‖2.

In Theorem 4.2, an important assumption required for the outer loop to yield local
optimizers was that these iterates Ĥℓ

r are local optimizers of (6.1). Unfortunately,
many popular rational fitting algorithms do not yield local optimizers for this problem.
For example, Adaptive Anderson-Antoulas (AAA) [37] exactly interpolates at some
µj and suboptimally approximates on the remainder. Both the Sanathanan-Koerner
iteration [39] and Vector Fitting [29] have been shown, in general, to converge to
rational approximants that do not satisfy the necessary conditions [41]. This lack of
existing results motivates our development of a nonlinear least squares approach to
solve this weighted rational approximation problem. Here we introduce a two-term
partial fraction expansion ofHr to implicitly enforce the constraint that Hr is real and
apply variable projection [26] to reduce the dimension of the optimization problem.
Additional information about this approach appears in a companion manuscript [31].

6.1. Parameterization. To construct a rational approximation, we must first
choose a parameterization of the space of real rational functions of degree (r − 1, r):
R+

r (R). As discussed in [31, sec. 3.4], naive approaches have significant drawbacks:
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parametrizing R+
r (R) as a ratio of monomials rapidly leads to ill-conditioning and a

pole-residue parameterization requires additional nonlinear constraints to ensure the
rational function has a real representation. Instead, we use a two-term partial fraction
expansion following [31, subsec. 4.2]:

(6.2) HPF
r (z; a,b) :=





⌊r/2⌋∑

k=1

a2kz + a2k−1

z2 + b2kz + b2k−1
, r even;

ar
z + br

+

⌊r/2⌋∑

k=1

a2kz + a2k−1

z2 + b2kz + b2k−1
, r odd;

a,b ∈ Rr.

This parameterization has several advantages: it is (comparably) numerically stable,
requires only 2r real parameters, and allows us to enforce HPF

r ∈ R+
r (R) through a

box constraint. Recall HPF
r ∈ R+

r (R) ⊂ H2 if its poles are in the left half plane.
As the poles of HPF

r are −b2k/2 ±
√
b22k/4− b2k+1 (and −br if r is odd) it is both

necessary and sufficient to require bk > 0 for HPF
r to be in R+

r (R).

6.2. Variable Projection. Using this parameterization, we construct the ra-
tional approximant by solving the rational approximation problem (6.1)

(6.3) min
a,b∈R

r

bk>0

∥∥∥M(µ)−
1
2 [H(µ)−HPF

r (µ; a,b)]
∥∥∥
2
.

We write HPF
r (µ; a,b) as the matrix-vector product HPF

r (µ; a,b) = Θ(b)a where

Θ(b) :=





[
Ω([b]1:2) · · · Ω([b]r−1:r)

]
, r even;[

Ω([b]1:2) · · · Ω([b]r−2:r−1) (µ+ br)
−1

]
, r odd;

(6.4)

Ω

([
b1
b2

])
:=




µ1

µ2
1
+b2µ1+b1

1
µ2
1
+b2µ1+b1

...
...

µn

µ2
n+b2µn+b1

1
µ2
n+b2µn+b1


 ∈ Cn×2.(6.5)

This exposes the separable structure of (6.3), which for fixed b yields a linear least
squares problem in a:

(6.6) min
a,b∈R

r

bk>0

‖M(µ)−
1
2 [H(µ)−Θ(b)a]‖2.

As the objective function involves the complex 2-norm, we recast this as an optimiza-
tion problem over the real 2-norm by splitting into real and imaginary components

min
a,b∈R

r

bk>0

∥∥∥∥
[
ReM(µ)−

1
2H(µ)

ImM(µ)−
1
2H(µ)

]
−
[
ReM(µ)−

1
2Θ(b)

ImM(µ)−
1
2Θ(b)

]
a

∥∥∥∥
2

.(6.7)

Applying variable projection yields an equivalent optimization problem over b alone

min
b∈R

r

bk>0

∥∥∥∥∥

[
I−

[
ReM(µ)−

1
2Θ(b)

ImM(µ)−
1
2Θ(b)

] [
ReM(µ)−

1
2Θ(b)

ImM(µ)−
1
2Θ(b)

]+][
ReM(µ)−

1
2H(µ)

ImM(µ)−
1
2H(µ)

]∥∥∥∥∥
2

,(6.8)

where + denotes the pseudoinverse. Computationally we replace M(µ)−
1
2 with a

high accuracy pivoted Cholesky factor described in subsection 6.5. Algorithm 6.1
shows how to construct the residual and Jacobian of (6.8). Note on line 2 we use a
column-pivoted and row sorted QR to improve conditioning; see [?, sec. 19.4].
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Algorithm 6.1 Residual and Jacobian for Real Partial Fraction Parameterization

Input : Parameters b ∈ Rr, factorization M(µ) = PLDL∗P∗ (6.9)
Output : Residual r ∈ R2n and Jacobian J ∈ R(2n)×r

1 Form Θ← Θ(b) as given in (6.4);

2 Compute the short form QR decomposition QR←

[
ReD−1/2L−∗PΘ

ImD−1/2L−∗PΘ

]
;

3 Define h←

[
ReD−1/2L−∗PH(µ)

ImD−1/2L−∗PH(µ)

]
;

4 Compute (real) residual r← h−QQ⊤h ;

5 Form complex residual r← [r]1:n + i[r]n+1:2n;

6 Compute linear coefficients a← R+Q⊤h;

7 for k = 1, . . . , ⌊r/2⌋ do
8 d← µ2 + b2kµ+ b2k−1;

9 [K]·,2k−1 ← [I−QQ⊤]

[
ReD−1/2L−∗Pdiag(d)−2(a2kµ+ a2k−1)

ImD−1/2L−∗Pdiag(d)−2(a2kµ+ a2k−1)

]
;

10 [K]·,2k ← [I−QQ⊤]

[
ReD−1/2L−∗Pdiag(µ) diag(d)−2(a2kµ+ a2k−1)

ImD−1/2L−∗Pdiag(µ) diag(d)−2(a2kµ+ a2k−1)

]
;

11 [L]·,2k−1 ← QR+⊤

[
Rediag(d)−2∗P∗L−1D−1/2r

Imdiag(d)−2∗P∗L−1D−1/2r

]
;

12 [L]·,2k ← QR+⊤

[
Rediag(µ) diag(d)−2∗P∗L−1D−1/2r

Imdiag(µ) diag(d)−2∗P∗L−1D−1/2r

]
;

13 if r is odd then

14 [K]·,r ← [I−QQ⊤]

[
ReD−1/2L−∗Pdiag(µ+ br)

−2ar

ImD−1/2L−∗Pdiag(µ+ br)
−2ar

]
;

15 [L]·,r ← QR+⊤

[
Rediag(µ+ br)

−2∗P∗L−1D−1/2r

Imdiag(µ+ br)
−2∗P∗L−1D−1/2r

]
;

16 J← K+ L;

6.3. Optimization. There are many algorithms for nonlinear least squares prob-
lems. Here we use Branch, Coleman, and Li’s trust region algorithm [15] as imple-
mented in SciPy’s least_squares [32] due to its ability to enforce box constraints.
This requires the residual and Jacobian of (6.3), which we compute using Algo-
rithm 6.1. When R is not invertible, we terminate the optimization as the rational
approximation has degree less than r.

6.4. Initialization. The rational approximation problem often has many local
minimizers with large mismatch. To ensure that we find a good local minimizer with
small mismatch, at each step we try two initializations of the optimization algorithm
to solve projected problem (6.8), keeping the one with smaller mismatch. One initial-
ization uses the poles of the previous iterate when both are of the same dimension.
The other initialization uses the AAA algorithm to construct a degree (r, r) rational
approximant ignoring the weighting. As these poles will not in general appear in
conjugate pairs—a requirement of R+

r (R)—we use the Kuhn-Munkres algorithm to
pair these poles with their nearest conjugate-pair, average them, and flip into the left
half plane if necessary to find poles of an element of R+

r (R).

6.5. Evaluating the Gram Matrix. Cauchy matrices—such as M(µ) appear-
ing in (6.1)—have a well-deserved reputation for being ill-conditioned. Our applica-
tion is no exception. As the outer loop converges the entries of µ become increasingly
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Algorithm 6.2 Pivoted LDL∗ factorization of M(µ)

Input : µ ∈ Cn determining [M(µ)]j,k = (µj + µk)
−1

Output : Permutation matrix P ∈ Rn×n, lower triangular matrix L ∈ Cn×n, and
diagonal matrix D ∈ Rn×n such that M(µ) = PLDL∗P∗

1 P = I ∈ Rn×n;
2 s← (µ+ µ)−1;
3 for k = 1, . . . , n do

4 j ← argmaxj=k,...n sj ;

5 Permute P·,k,P·,j ← P·,j ,P·,k;
6 Permute µj , µk ← µk, µj ;
7 Permute sj , sk ← sk, sj ;
8 [s]k+1:n ← |[µ]k+1:n − µk|

2 ⊙ |[µ]k+1:n + µk|
−2

9 g← 1 ∈ Cn;
10 for k = 1, . . . , n− 1 do

11 [D]k,k ← µk + µk;
12 [L]k:n,k ← [g]k:n ⊙ ([µ]k:n + µk)

−1;
13 [g]k+1:n ← [g]k+1:n ⊙ ([µ]k+1:n − µk)⊙ ([µ]k+1:n + µk)

−1;

14 [D]n,n ← (µn + µn)
−1;

15 [L]n,n ← gn;

close and consequently M(µ) becomes increasingly ill-conditioned. Fortunately the
Cauchy matrix structure enables factorizations with high relative accuracy [13, 20]

which we can use to accurately compute ‖M(µ)−
1
2 z‖2 for any z ∈ Cn. Following

Demmel [20, Alg. 3], we compute the Cholesky factorization of M(µ) using Gaussian
elimination with complete pivoting

(6.9) M(µ) = PLDL∗P∗

where D is a diagonal matrix, L is lower triangular, and P is a permutation matrix.
As M(µ) is Hermitian, we can perform the necessary pivoting a priori reducing the
computational complexity of this decomposition from O(n3) to O(n2) operations [20,
Alg. 4]. Then we evaluate this norm as

(6.10) ‖P (µ)F‖H2
= ‖M(µ)−

1
2F (µ)‖2 = ‖D− 1

2L−∗PF (µ)‖2 ∀F ∈ H2.

For completeness, Algorithm 6.2 describes how to compute this high relative accuracy
Cholesky factorization where ⊙ denotes the Hadamard (entry-wise) product.

7. Numerical Experiments. Here we present numerical experiments compar-
ing our Projected H2 approach to IRKA, TF-IRKA, and QuadVF. Following the
principles of reproducible science, our code implementing these algorithms and gen-
erating the figures is available at https://github.com/jeffrey-hokanson/SYSMOR.

7.1. Test Problems. Systems with oscillatory behavior prove challenging for
model reduction. Our two test problems have significant oscillatory behavior as illus-
trated by the large number of peaks in their Bode plots in Figures 7.1 and 7.2.

7.1.1. ISS 1R Component. The 1R component of the International Space
Station is a standard test problem for model reduction [18, subsec. 2.11] with a sparse
state-space representation of dimension 270 with 405 nonzeros. Here we consider the
(1, 1) block of this transfer function.

https://github.com/jeffrey-hokanson/SYSMOR
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7.1.2. Delay System. Here we slightly modify the delay system from [5, sec. 5]:

H(z) = c⊤(zE−A0 − e−τzA1)
−1b where

E :=
2√
ǫ
I+T, A0 :=

2 + 2ρ

τρ

(
T− 2√

ǫ
I

)
, A1 :=

2− 2ρ

τρ

(
T− 2√

ǫ
I

)
,

(7.1)

I ∈ Rn×n is the identity matrix and T ∈ Rn×n has ones on the first superdiagonal,
first subdiagonal, and the (1, 1) and (n, n) entries, and is zero otherwise. Here we
choose n = 1000, τ = 1, ρ = 0.1, ǫ = 0.01, pick b such that its first two entries are
one and the remainder zero, and set c = b.

7.2. Setup. The performance of each algorithm strongly depends on both the
choice of the initialization and the termination conditions. Here we describe how we
construct comparable conditions for each algorithm.

7.2.1. Initialization. For Projected H2, IRKA, and TF-IRKA each requires an
initial set of interpolation points. Following standard practice for IRKA, we choose
these interpolation points to be the rightmost r poles of H . For state-space systems,
such as the ISS 1R example, these are easily computed from the eigenvalues ofA using
an iterative Krylov solver like ARPACK [34]. For the delay example, we computed
the poles of H by maximizing |H(z)| starting from pole estimates.

For IRKA and TF-IRKA these r poles provide sufficient data to construct rational
interpolants using both transfer function evaluations H(µj) and derivatives H ′(µj).
However this same initialization yields an underdetermined rational approximation
problem in Projected H2 as our approach only uses evaluations. Hence, our Projected
H2 approach constructs lower dimensional reduced order models until sufficient data
has been accumulated to yield an overdetermined problem. Note that for the r = 2,
we do not have sufficient data for an even reduced order model and hence use the four
rightmost poles of H in this case only.

QuadVF does not need initial shifts, instead taking fixed samples of H along the
imaginary axis. However an initialization is still needed for the vector fitting iteration;
here we use the poles from AAA as in our Projected H2 approach. We choose scaling
parameter L = 10 and set the number of quadrature points to approximately equal
the number of evaluations of H used by our Projected H2 approach at r = 50. With
L = 10 and N = 100 the quadrature nodes with positive imaginary part are in
[7.8× 10−2, 6.4× 102]i which covers the active region of the Bode plot.

7.2.2. Termination Condition. As each algorithm is derived from different
principles, each has different natural termination conditions. To provide the same
termination condition for each algorithm, we terminate when the difference between
successive iterates Hℓ

r and Hℓ+1
r is sufficiently small; namely,

(7.2) ‖Hℓ
r −Hℓ+1

r ‖H2
≤ 10−9.

This small tolerance is necessary to avoid premature termination and is easily com-
puted in O(r3) operations via (2.4).

7.3. Discussion. Figures 7.1 and 7.2 illustrate the performance of several model
reduction algorithms on the space station and delay models.

7.3.1. PH2 Performance. As these experiments illustrate, our Projected H2

algorithm (PH2) often converges to the similar or a better local minimizer when
compared to IRKA, TF-IRKA, and QuadVF. Moreover, our algorithm always uses
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Fig. 7.1. A comparison of model reduction techniques applied the 1R component of the In-
ternational Space Station described in [18, subsec. 2.11]. The top plot shows the modulus of the
transfer function along the imaginary axis, with the broken lines showing the value of the error
system H −Hr for different techniques at r = 28. The second plot shows the relative H2 error for
each method for a variety of reduced order model dimensions and the table below shows the number
of linear solves, or equivalently, evaluations of H(z) and H′(z) required. The bottom plot shows the
convergence history of each of these methods along with a comparison to QuadVF.



20 JEFFREY M. HOKANSON AND CALEB C. MAGRUDER

H

TF-IRKA

Projected H2

10−1 100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

frequency, ω

|H
(i
ω
)|

Delay System (7.1)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
10−3

10−2

10−1

100

ROM dimension r

re
la
ti
v
e
H

2
er
ro
r

Reduced Order Model Error at Termination

Projected H2

TF-IRKA

QuadVF

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
100

101

102

103

104

ROM dimension r

ev
a
lu
a
ti
o
n
s
o
f
H
(z
)
o
r
H

′ (
z
) Cost to Satisfy Termination Criteria

QuadVF L = 10

•
TF-IRKA

•
Projected H2

0 20 40 60 80 100 120 140 160 180 200 220 240

10−2

10−1

100

101

evaluations of H(z) and H′(z)

re
la
ti
v
e
H

2
er
ro
r

Convergence History r = 28

Fig. 7.2. A comparison of model reduction techniques applied the delay system given in (7.1).
The top plot shows the modulus of the transfer function along the imaginary axis, with the broken
lines showing the value of the error system H−Hr for different techniques at r = 6. The second plot
shows the relative H2 error for each method for a variety of reduced order model dimensions and the
table below shows the number of evaluations of H(z) and H′(z) required. The bottom plot shows the
convergence history of each of these methods. Here we approximate H2-norm approximately using
a Boyd/Clenshaw-Curtis quadrature rule (3.6) with 104 quadrature points.
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fewer evaluations of the transfer function than IRKA and TF-IRKA, often by an
order of magnitude. This is not an artifact of the tight termination criteria. As the
convergence histories in both examples indicate, the PH2 converges before both IRKA
and TF-IRKA have taken their third step. This improved performance is the result of
PH2 recycling evaluations of the transfer function between steps whereas IRKA and
TF-IRKA must discard previous transfer function evaluations.

7.3.2. Non-monotonicity in Degree. We expect that ‖H − Hr‖H2
should

decrease monotonically with increasing degree r as R+
r (R) ⊂ R+

r+1(R). This is not
necessarily true in our experiments as we can only recover local minimizers—not the
global minimizer—since the H2-model reduction problem is nonconvex.

7.3.3. Non-monotonicity of Iterates. These examples also illustrate that the
error ‖H−Ĥℓ

r‖H2
does not monotonically decrease with iteration ℓ (note evaluations of

H effectively count iterations). In PH2 this is unsurprising. Each Ĥℓ
r is locally optimal

with respect to the projection P (µℓ) of the H2-norm, not the full H2-norm. In early
iterations, the projected norm is a poor approximation of the full norm, leading to
inaccurate approximations. This is particularly evident in the delay example.

7.3.4. Oscillation in QuadVF. Both examples show oscillation in the QuadVF
H2 error as we increase the number of quadrature points for a fixed degree as seen
in the bottom plot. This is a result of the quadrature rule used to approximate the
H2 norm. When these quadrature nodes are nearby the peaks in the Bode plot we
obtain a better fit than when they are far away. Consequently with a large number of
quadrature points we are able to find a good approximation; however, prior to that
the approximation quality will depend on the location of the quadrature nodes (3.6).

7.3.5. Spurious Poles. Finally, we note that PH2 sometimes fails to eliminate
spurious poles leading to a larger mismatch than expected. This occurs in the delay
example at r = 20 and r = 30 and illustrates that while the heuristic for removing
spurious poles described in subsection 5.2.3 often succeeds, it is not foolproof.

8. Conclusion. We have developed the Projected H2 approach for H2-optimal
model reduction problem by applying the projected nonlinear least squares frame-
work to this problem. This allows the H2 problem to be converted into a sequence
of finite-dimensional rational approximation problems. Although solving these ratio-
nal approximation problems is more challenging and computationally expensive than
constructing rational interpolants as in IRKA and TF-IRKA, this cost is justified by
requiring far fewer expensive evaluations of the full order model.

Appendix A. We now provide the proofs for Theorem 4.2 and Theorem 5.1. A
key component in both proofs is the following lemma.

Lemma A.1. Let f : Cm × Cn → R be defined as

(A.1) f(x,y) :=

[
x

y

]∗ [
A B

B∗ C

] [
x

y

]
where A = A∗,C = C∗,

and A is positive definite, then

(A.2) min
x∈Cm

f(x,y) = y∗[C−B∗A−1B]y.
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Proof. We use Wirtinger calculus (see, e.g., [40, App. A]) that treats x ∈ Cm and
its conjugate x as independent variables whose partial derivatives are

∂x

∂x
= I,

∂x

∂x
= 0,

∂x

∂x
= 0,

∂x

∂x
= I.(A.3)

Hence the first derivatives of f with respect to x and x are :

∂f

∂x
= x∗A+ y∗B∗ ∂f

∂x
= x⊤A∗ + y⊤B⊤.(A.4)

Setting x to be x̂ = −A−1By makes both derivatives zero; hence x̂ satisfies the first
order necessary conditions. As f is convex in x as A is positive definite, the local
minimizer x̂ is the global minimizer.

A.1. Proof of Theorem 4.2. We split this proof into two lemmas that bound
terms that later appear in the proof of Theorem 4.2.

Lemma A.2. Suppose λ ∈ C− and µ1 ∈ C+ where |λ+µ1| ≤ ǫ. Then there exists

a constant C1 > 0 independent of ǫ such that

(A.5) min
x1∈C

‖v[−λ]z1 + v[µ1]x1‖H2
≤ |z1|C1ǫ.

Proof. Examining the squared objective

(A.6) ‖v[−λ]z1 + v[µ1]x1‖2H2
=

[
x1

z1

]∗ [
(µ1 + µ1)

−1 (µ1 − λ)−1

(−λ+ µ1)
−1 (−λ− λ)−1

] [
x1

z1

]
,

we note that we can apply Lemma A.1 as (µ1+µ1)
−1 is positive. After simplification,

min
x1∈C

‖v[−λ]z1 + v[µ1]x1‖2H2
= |z1|2

|µ1 + λ|2
2|µ1 − λ|2 Re[−λ]

.(A.7)

Setting µ1 = −λ+ δ where |δ| ≤ ǫ and as Reµ1 > 0, Re δ > Reλ, then

(A.8) |µ1 − λ| = | − λ+ δ − λ| = | − 2Reλ+ δ| ≥ |Reλ|.

Using this bound in the numerator yields the result:

(A.9) min
x1∈C

‖v[−λ]z1 + v[µ1]x1‖2H2
≤ |z1|2

|µ1 + λ|2
2|Reλ|3 ≤ |z1|2C2

1 ǫ
2.

Lemma A.3. Suppose λ ∈ C− and µ2, µ3 ∈ C+ where |λ+ µ2| ≤ ǫ, |λ + µ3| ≤ ǫ,
and µ2 6= µ3. Then there exists a constant C2 > 0 independent of ǫ such that

(A.10) min
x2,x3∈C

‖v[−λ]′z2 + v[µ2]x2 + v[µ3]x3‖H2
≤ |z2|C2ǫ.

Proof. Inserting the additive identity 0 = v[µ2]
′ − v[µ2]

′ into the objective and
applying the triangle inequality

(A.11) ‖v[−λ]′z2 + v[µ2]x2 + v[µ3]x3‖H2

= |z2|‖v[−λ]′ − v[µ2]
′‖H2

+ ‖v[µ2]
′z2 + v[µ2]x2 + v[µ3]x3‖H2

.
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The first term above is

(A.12) ‖v[−λ]′ − v[µ2]
′‖2H2

=
2

(−λ− λ)3
− 2

(−λ+ µ2)
3
− 2

(µ2 − λ)3
+

2

(µ2 + µ2)
3
.

After some simplification and noting |λ− µ2| ≥ |Reλ| following (A.8),
(A.13)

‖v[−λ]′−v[µ2]
′‖2H2

= 2
|µ2 + λ|2 p(µ2, λ, µ2, λ)

|λ− µ2|6 Re[2µ2]3 Re[−2λ]3
≤ |µ2 + λ|2 p(µ2, λ, µ2, λ)

25|Reλ|9 Re[µ2]3
≤ C2

3ǫ
2

where p(µ2, λ, µ2, λ) is a degree-7 polynomial and C3 > 0 captures the terms inde-
pendent of ǫ. Next, we bound the second term of (A.11); expanding this term

(A.14) ‖v[µ2]x2 + v[µ3]x3 + v[µ2]
′z2‖2H2

=



x2

x3

z2



∗


(µ2 + µ2)
−1 (µ2 + µ3)

−1 −(µ2 + µ2)
−2

(µ3 + µ2)
−1 (µ3 + µ3)

−1 −(µ3 + µ2)
−2

−(µ2 + µ2)
−2 −(µ2 + µ3)

−2 2(µ2 + µ2)
−3





x2

x3

z2


 .

As µ2 and µ3 are distinct, the upper left 2× 2 block is positive definite and we may
apply Lemma A.1 which yields, after some simplification,

(A.15) min
x2,x3∈C

‖v[−λ]′z2+v[µ2]x2+v[µ3]x3‖2H2
=

|z2|2|µ2 − µ3|2
Re[2µ2]3|µ2 + µ3|2

≤ C2
4 |z2|2ǫ2,

where C2
4 captures the terms that are independent of ǫ.

Combining (A.13) and (A.15), we obtain the bound

(A.16) min
x2,x3∈C

‖v[−λ]′z2 + v[µ2]x2 + v[µ3]x3‖H2
≤ |z2|ǫ

√
C2

3 + C2
4 .

Proof of Theorem 4.2. We begin by rewriting the sine of the subspace angle in
terms of the unitary basis operator BT (µ) using [12, eq. (13)]

sinφmax(T (λ),V(µ)) = ‖(I − P (µ))BT (λ)B
∗
T (λ)‖H2

= max
y∈C2r,‖y‖2=1

‖(I − P (µ))BT (λ)y‖H2
.

(A.17)

As I − P (µ) is an orthogonal projector onto the complement of V(µ), its projection
satisfies the closest point property. This permits an equivalent restatement as

sinφmax(T (λ),V(µ)) = max
y∈C2r,‖y‖2=1

min
x∈Cn

‖BT (λ)y + V (µ)x‖H2
.(A.18)

Writing this in terms of the non-orthogonal basis vectors for T (λ) and V(µ),

sinφmax(T (λ),V(µ))=max
z∈C

2r

z6=0

min
x∈Cn

∥∥[V (−λ) V ′(−λ)
]
z+ V (µ)x

∥∥
H2

‖M̂(λ)z‖2
.(A.19)

We now bound the numerator by making a non-optimal choice of x. Denoting the
entires of x associated with µk,t as xk,t and setting the remainder to zero, we have

(A.20) min
x∈Cn

∥∥[V (−λ) V ′(−λ)
]
z− V (µ)x

∥∥
H2

≤ min
{xk,1}

m
k=1⊂C

{xk,2}
m
k=1⊂C

{xk,3}
m
k=1⊂C

∥∥∥∥∥
m∑

k=1

v[−λk]zk,1+v[−λk]
′zk,2+v[µk,1]xk,1+v[µk,2]xk,2+v[µk,3]xk,3

∥∥∥∥∥
H2

.
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Applying the triangle inequality by grouping v[−λk] with v[µk,1] and v′[−λk] with
v[µk,2] and v[µk,3] yields the upper bound

(A.21) min
x∈Cn

∥∥[V (−λ) V ′(−λ)
]
z− V (µ)x

∥∥
H2

≤
m∑

k=1

min
xk,1∈C

‖v[−λk]zk,1 + v[µk,1]xk,1‖H2

+
m∑

k=1

min
xk,2∈C

xk,3∈C

‖v[−λk]
′zk,2 + v[µk,2]xk,2 + v[µk,3]xk,3‖H2

.

In each term, the minimization has been pulled inside the sum as each of xk,1 and
xk,2, xk,3 appear in only one term. Invoking Lemma A.2 and Lemma A.3 we have

(A.22) min
x∈Cn

∥∥[V (−λ) V ′(−λ)
]
z− V (µ)x

∥∥
H2

≤ ǫ

m∑

k=1

Ck,1|zk,1|+ Ck,2|zk,2|.

The matrix M̂(λ) is invertible as the entries of λ are distinct which provides the lower

bound ‖M̂(λ)z‖2 ≥ σmin(M̂(λ))‖z‖∞. Returning to (A.19) with this lower bound
and the upper bound in (A.22),

(A.23) sinφmax(T (λ),V(µ)) ≤ ǫ
∑m

k=1 Ck,1|zk,1|+Ck,2|zk,2|
σmin(M̂(λ))‖z‖∞

≤ ǫ

∑m
k=1 Ck,1+Ck,2

σmin(M(λ̂))
,

where the last step follows from |zk,1|/‖z‖∞ ≤ 1.

A.2. Proof of Theorem 5.1. We begin by establishing a subspace angle result
analogous to those in Lemma A.2 and Lemma A.3.

Lemma A.4. Suppose λ, ξ ∈ Cr where |λj − ξj| ≤ ǫ. Then there exists a constant

C > 0 independent of ǫ such that

(A.24) sinφmax(T (λ), T (ξ)) ≤ Cǫ.

Proof. As in (A.19), this subspace angle is
(A.25)

sinφmax(T (λ), T (ξ)) = max
z∈C

2r

z6=0

min
x∈C2r

‖
[
V (−λ) V ′(−λ)

]
z+

[
V (−ξ) V ′(−ξ)

]
x‖H2

‖M̂(λ)z‖2
.

Following (A.21), we make a suboptimal choice of x, pairing those associated with
each λj and ξj and indexing the corresponding entries of x and z by xj,1, xj,2 and
zj,1, zj,2:

(A.26) min
x∈C2r

‖
[
V (−λ) V ′(−λ)

]
z+

[
V (−ξ) V ′(−ξ)

]
x‖H2

≤
r∑

j=1

min
xj,1,xj,2∈C

‖v[−λj ]zj,1 + v[−λj ]
′zj,2 + v[−ξj ]xj,1 + v[−ξj ]

′xj,2‖H2
.
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Examining the objective function

(A.27) ‖v[−λj ]zj,1 + v[−λj ]
′zj,2 + v[−ξj ]xj,1 + v[−ξj ]

′xj,2‖2H2

=




zj,1
zj,2
xj,1

xj,2




∗


(−λj − λj)
−1 −(−λj − λj)

−2 (−λj − ξj)
−1 −(−λj − ξj)

−2

−(−λj − λj)
−2 2(−λj − λj)

−3 −(λj − ξj)
−2 2(−λj − ξj)

−3

(−ξj − λj)
−1 −(−ξj − λj)

−2 (−ξj − ξj)
−1 −(−ξj − ξj)

−2

−(−ξj − λj)
−2 2(−ξj − λj)

−3 −(ξj − ξj)
−2 2(−ξj − ξj)

−3







zj,1
zj,2
xj,1

xj,2




=

[
zj
xj

]∗ [
M̂j Bj

B∗
j Cj

] [
zj
xj

]
.

As M̂j is positive definite, we may invoke Lemma A.1 to show

(A.28) min
xj∈C2

‖v[−λj ]zj,1 + v[−λj ]
′zj,2 + v[−ξj ]xj,1 + v[−ξj ]

′xj,2‖2H2

= z∗j [M̂j −B∗
jC

−1
j Bj]zj .

With this minimizer we bound the squared subspace angle using the singular values

(A.29) sin2 φmax(T (λ), T (ξ)) ≤ max
z∈C

2r

z6=0

∑r
j=1 z

∗
j [M̂j −B∗

jC
−1
j Bj ]zj

z∗M̂(λ)z

≤
∑r

j=1 σ
2
max(M̂j −B∗

jC
−1
j Bj)

σ2
min(M̂(λ))

.

The note the entries of the numerator are all O(ǫ2):

[M̂j −B∗
jC

−1
j Bj ]1,1 =

|λj − ξj |2p1(λj , ξj , λj , ξj)

3(λj + λj)2|λj + ξj |4
;(A.30)

[M̂j −B∗
jC

−1
j Bj ]1,2 =

|λj − ξj |2p2(λj , ξj , λj , ξj)

(λj + λj)2(λj + ξj)
3(λj + ξj)2

;(A.31)

[M̂j −B∗
jC

−1
j Bj ]2,2 =

|λj − ξj |2p3(λj , ξj , λj , ξj)

3(λj + λj)3|λj + ξj |6
;(A.32)

where p1, p2, and p3 are all polynomials. As the denominator of (A.29) is independent
of ǫ, we obtain the desired bound.

Lemma A.5. Suppose {Ĥℓ
r}∞ℓ=0 ⊂ R+

r (C) has a limit Ĥℓ
r → Ĥr ∈ R+

r (C). If Ĥr

has r distinct poles, then the poles λℓ of Ĥℓ
r converge to the poles of λ of Ĥr.

Proof. By assumption, we can write Ĥr in pole-residue form

(A.33) Ĥr(z) =

r∑

j=1

ρj(z − λj)
−1 where |ρj| > 0

as otherwise Ĥr would have fewer than r poles. As rational functions with higher
order poles are nowhere dense in R+

r (C) [22, p. 2739] and Ĥℓ
r → Ĥr there is some

N > 0 for which all Ĥℓ
r with ℓ > N has no higher order poles and thus

(A.34) Ĥℓ
r(z) =

r∑

j=1

ρ ℓ
j (z − λℓ

j)
−1 ∀ℓ > N1.
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As the pole-residue form is unique up to permutations, then as Ĥℓ
r → Ĥr, λ

ℓ
j → λj

using an appropriate ordering of λℓ
j .

Proof of Theorem 5.1. We will show that the limit Ĥr satisfies the first order
optimality conditions (4.27): namely ‖Q(λ)[H − Ĥr]‖H2

= 0 where λ denotes the

poles of Ĥr.
Beginning by inserting an additive identity 0 = Ĥℓ

r−Ĥℓ
r and applying the triangle

inequality:

‖Q(λ̂)[H − Ĥr]‖H2
≤ ‖Q(λ̂)[H − Ĥℓ

r ]‖H2
+ ‖Q(λ̂)[Ĥr − Ĥℓ

r ]‖H2
.(A.35)

Inserting a multiplicative identity I = P (µℓ) + [I − P (µℓ)] into the first term and
again applying the triangle inequality,

(A.36) ‖Q(λ)[H−Ĥℓ
r ]‖H2

≤ ‖Q(λ)P (µℓ)[H−Ĥℓ
r ]‖H2

+‖Q(λ)[I−P (µℓ)][H−Ĥℓ
r ]‖H2

Once again we insert a multiplicative identity, this time I = Q(λℓ)+[I−Q(λℓ)] where

λℓ denotes the poles of Ĥℓ
r into the first term above yielding

(A.37) ‖Q(λ)P (µℓ)[H − Ĥℓ
r ]‖H2

≤ ‖Q(λ)Q(λℓ)P (µℓ)[H − Ĥℓ
r ]‖H2

+ ‖Q(λ)[I −Q(λℓ)]P (µℓ)[H − Ĥℓ
r ]‖H2

.

Since Ĥℓ
r satisfies the first order optimality conditions, Q(λℓ)P (µℓ)[H − Ĥℓ

r ] = 0 and
the first term vanishes. Combining the bounds in (A.35), (A.36), and (A.37)

(A.38) ‖Q(λ)[H − Ĥr]‖H2
≤ ‖Q(λ)[I −Q(λℓ)]P (µℓ)[H − Ĥℓ

r ]‖H2
+

‖Q(λ)[I − P (µℓ)][H − Ĥℓ
r ]‖H2

+ ‖Q(λ)[Ĥr − Ĥℓ
r ]‖H2

.

Then as the induced H2 norm is submultiplicative and ‖Q(λ)‖H2
= 1,

(A.39) ‖Q(λ)[H − Ĥr]‖H2
≤ ‖Q(λ)[I −Q(λℓ)]‖H2

‖H − Ĥℓ
r‖H2

+ ‖Q(λ)[I − P (µℓ)]‖H2
‖H − Ĥℓ

r‖H2
+ ‖Ĥr − Ĥℓ

r‖H2
.

We now show the each of the terms terms of (A.39) vanish as ℓ → ∞. The first

term is multiplied by the subspace angle between the tangent space of Ĥr and the
current iterate Ĥℓ

r :

(A.40) sinφmax(T (λ), T (λℓ)) = ‖Q(λ)[I −Q(λℓ)]‖H2
.

By Lemma A.5 we know λℓ → λ and hence for any ǫ > 0 there is an N1 such that
|λj − λℓ

j | ≤ ǫ for all ℓ > N1. Then using Lemma A.4 we can show

(A.41) ‖Q(λ)[I −Q(λℓ)]‖H2
≤ C1ǫ ∀ℓ > N1.

The second term in (A.39) is multiplied by the subspace angle between the pro-
jection subspace and the tangent subspace

(A.42) sinφmax(T (λ),V(µℓ)) = ‖Q(λ)[I − P (µℓ)]‖H2
.

By assumption {µℓ
⋆}∞ℓ=0 has limit points −λ. Thus for any ǫ > 0, there exists N2 such

that |λℓ

j + µj,t| ≤ ǫ for t = 1, 2, 3 where µj,t is in µℓ. Then invoking Theorem 4.2,
there is a constant C2 > 0 such that

(A.43) ‖Q(λ)[I − P (µℓ)]‖H2
≤ C2ǫ ∀ℓ > N2.



H2-OPTIMAL MODEL REDUCTION 27

The third term in (A.39) vanishes as by assumption Ĥℓ
r → Ĥr. Hence there exists

N3 > 0 such that

(A.44) ‖Ĥℓ
r − Ĥr‖H2

≤ ǫ ∀ℓ > N3.

Finally, we bound (A.39). Using (A.41), (A.43), and (A.44) in (A.39)
(A.45)

‖Q(λ)[H− Ĥr]‖H2
≤ ‖H− Ĥℓ

r‖H2
C1ǫ+ ‖H− Ĥℓ

r‖H2
C2ǫ+ ǫ ∀ℓ > max{N1, N2, N3}.

Further as Ĥℓ
r → Ĥr, there is some C4 such that

(A.46) ‖H − Ĥℓ
r‖ ≤ C4 ∀ℓ > N4

Finally, combining these results

(A.47) ‖Q(λ)[H − Ĥr]‖H2
≤ [(C1 + C2)C4 + 1]ǫ.

As the choice of ǫ was arbitrary, ‖Q(λ)[H − Ĥr]‖H2
= 0.
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