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Bayesian Inference and Uncertainty Quantification for Medical Image
Reconstruction with Poisson Data\ast 

Qingping Zhou\dagger , Tengchao Yu\dagger , Xiaoqun Zhang\ddagger , and Jinglai Li\S 

Abstract. We provide a complete framework for performing infinite dimensional Bayesian inference and
uncertainty quantification for image reconstruction with Poisson data. In particular, we address
the following issues to make the Bayesian framework applicable in practice. We first introduce a
positivity-preserving reparametrization, and we prove that under the reparametrization and a hy-
brid prior, the posterior distribution is well-posed in the infinite dimensional setting. Second, we
provide a dimension-independent Markov chain Monte Carlo algorithm, based on the preconditioned
Crank--Nicolson Langevin method, in which we use a primal-dual scheme to compute the offset di-
rection. Third, we give a method combining the model discrepancy method and maximum likelihood
estimation to determine the regularization parameter in the hybrid prior. Finally we propose to use
the obtained posterior distribution to detect artifacts in a recovered image. We provide an example
to demonstrate the effectiveness of the proposed method.

Key words. Poisson distribution, Bayesian inference, image reconstruction, uncertainty quantification, Markov
chain Monte Carlo, positron emission tomography
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1. Introduction. Image reconstruction involves constructing interpretable images of ob-
jects of interest from the data recorded by an imaging device [18]. Image reconstruction is
usually cast as an inverse problem as one wants to determine the input to a system from
the output of it. In most practical image reconstruction problems, the measurement and
recording process is inevitably corrupted by noise, which renders the obtained data random.
The statistical properties of the data have significant impact to the reconstruction results. In
this work we shall focus on a special type of medical image reconstruction problems where the
recorded data follows a Poisson distribution. The Poisson data usually arises in imaging prob-
lems where the unknown quantity of interest is an object which interacts with some known
incident beam of photons or electrons [25]. A very important example of such problems is
positron emission tomography (PET) [31, 4], a nuclear medicine imaging technique that is
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30 Q. ZHOU, T. YU, X. ZHANG, AND J. LI

widely used in early detection and treatment follow-up of many diseases, including cancer.
In PET, the detection of signal is essentially a photon counting process, and as a result the
data is well modeled by a Poisson distribution [4, 25]. The problem has attracted considerable
research interest, and a number of methods have been developed to recover the image, e.g.,
[39, 42, 17], just to name a few.

On the other hand, the stochastic nature of the data also introduces uncertainty into
the image reconstruction process, and as a result the image obtained is unavoidably subject
to uncertainty. In practice, many important decisions such as diagnostics have to be made
based on the images obtained. It is thus highly desirable to have methods that can not only
compute the image but also quantify the uncertainty in the image obtained. To this end, the
Bayesian inference method has become a popular tool for image reconstruction [27], largely
thanks to its ability to quantify uncertainty in the obtained image. The Bayesian formulation
has long been used to solve image reconstruction problems with Poisson data, e.g., [24, 29, 21].
We note, however, that most of the works in the early years focused on computing a point
estimate, which is usually the maximum a posteriori estimate in the Bayesian setting, because
of the limited computational power available then. More recently, mounting interest has
been directed to the computation of the complete posterior distribution, rather than a point
estimate, of the image, because it can provide the important uncertainty information of the
reconstruction results. For example, a Markov chain Monte Carlo (MCMC) algorithm is
developed to sample the posterior distribution of the image in [6], and a variational Gaussian
approximation of the posterior is proposed in [3].

A serious challenge in the numerical implementation of the Bayesian image reconstruc-
tion is that in certain circumstances the inference results diverge with respect to resolu-
tion/discretization refinement, which is known as discretization variant or dimension depen-
dent. To address the issue, Stuart [40] proposes an infinite dimensional framework, formulating
the Bayesian inference problem in function spaces. Under the infinite dimensional framework,
the inference results will converge with respect to discretization dimensionality, which is an
important property for the numerical implementation. For example, it allows one to use multi-
grid strategy, e.g. [44, 32], to accelerate the sampling of the posterior. Building on several
existing works, we aim to provide in this work a complete framework for performing infinite
dimensional Bayesian inference and uncertainty quantification for medical image reconstruc-
tion with Poisson data, while providing treatments of several issues surrounding the problem.
Specifically we summarize the key ingredients of our Bayesian framework as the following.
First, in the usual setup, the function of interest can be both positive and negative valued.
However, in the Poisson problem, when the function is negative valued, it may cause the
Poisson likelihood function to be undefined (see section 2.3 for more details), which renders
the posterior distribution ill-posed in the infinite dimensional setting. To tackle the issue,
we introduce a reparametrization of the unknown image which ensures that the function of
interest is always positive valued. Moreover, medical images are often subject to sharp jumps,
and here we use the total variation Gaussian (TG) hybrid prior distribution proposed in [43]
to model the jumps in the function/image. Using the positivity-preserving reparametrization
and the TG prior, we are able to show that the resulting posterior distribution is well-posed
in the infinite dimensional setting, which, to the best of our knowledge, has not yet been
done for the Poisson data model. Second, we consider the numerical implementation of the
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BAYESIAN IMAGE RECONSTRUCTION WITH POISSON DATA 31

Bayesian inference. A main difficulty here is that many standard MCMC algorithms, such as
the well-known Metropolis--Hastings [37, 9], degenerate with respect to resolution refinement.
In [14] the authors introduce a MCMC algorithm termed the preconditioned Crank--Nicolson
(pCN) method, the performance of which is independent of discretization dimensionality. The
authors also provide a Langevin variant of the pCN algorithm in [14] which accelerates the
sampling procedure by incorporating the local gradient information of the likelihood function.
In our problem, the pCN--Langevin (pCNL) algorithm cannot be used directly because the
prior used here has the total variation (TV) term which can be nondifferentiable. To over-
come this difficulty we modify the pCNL method by replacing the gradient direction with
one computed by the primal-dual algorithm. We note that a similar problem is considered in
[34, 15] where a proximal method is used to approximate the gradient direction. Other than
that the directions are computed with different approaches; another main difference between
the aforementioned works and the present one is that we use the pCN framework here so
the algorithm is dimension independent, while the works [34, 15] concern finite dimensional
problems where discretization refinement is not an issue. Third, an important issue in the TG
hybrid prior is to determine the value of the regularization parameter of the TV term. In the
Bayesian framework, such parameters are often determined with the hierarchical Bayes or the
empirical Bayes method [20]. As discussed in section 4, these methods, however, are compu-
tationally intractable in our problem as we do not know the normalization constant of the TG
prior. Thus, in this work we provide a method to determine the value of the TV regularization
parameter by combining the realized discrepancy model fit assessment approach developed in
[19] and the stochastic proximal gradient method developed in [16]. Finally, we provide an
application of the uncertainty information obtained in the Bayesian framework, where we use
the posterior distribution to detect possible artifacts in any reconstructed image.

The rest of the paper is organized as follows. In section 2, we present the infinite di-
mensional Bayesian formulation of the image reconstruction problem with Poisson data, and
we prove that under the reparametrization the resulting posterior is well-posed in the func-
tion space. In section 3, we describe the primal-dual pCN algorithm to sample the posterior
distribution of the present problem. Section 4 provides a method to determine the value of
the regularization parameter in the TG prior. Section 5 discusses how to use the posterior
distribution to detect artifacts in a reconstructed image. Finally numerical experiments of the
proposed Bayesian framework are performed in section 6.

2. Infinite dimensional Bayesian image reconstruction with Poisson data. In this sec-
tion, we formulate the image reconstruction with Poisson data in an infinite dimensional
Bayesian framework.

2.1. The Bayesian inference formulation for functions. We start by presenting a generic
Bayesian inference problem for functions. Let X be a separable Hilbert space of functions
with inner product \langle \cdot , \cdot \rangle X . Our goal is to infer u \in X from data y \in Y \subset Rd and y related to
u via the likelihood function \pi (y| u), i.e., the distribution of y is conditional on the value of
u. In the Bayesian setting, we first assume a prior distribution \mu \mathrm{p}\mathrm{r} of the unknown u, which
represents one's prior knowledge on the unknown. In principle \mu \mathrm{p}\mathrm{r} can be any probabilistic
measure defined on the space X. The posterior measure \mu y of u conditional on data y is
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32 Q. ZHOU, T. YU, X. ZHANG, AND J. LI

provided by the Radon--Nikodym (R-N) derivative:

(2.1)
d\mu y

d\mu \mathrm{p}\mathrm{r}
(u) = \pi (y| u),

which can be interpreted as Bayes' rule in the infinite dimensional setting. The posterior
distribution \mu y thus can be computed from (2.1) with, for example, an MCMC simulation.

2.2. Poisson data model and the positivity-preserving reparametrization. To perform
the Bayesian inference, we first need to specify the likelihood function, which can be derived
from the underlying mathematical model relating the data and to the unknown image. We
assume that the image is first projected to the noise-free observable via a mapping A : X \rightarrow Y ,

(2.2a) \bfittheta = Au.

While noting that the proposed framework is rather general, here for simplicity we restrict
ourselves in the cases where A is a bounded linear transform. For example, in the PET
imaging problems, the mapping A is approximately the Radon transform, where each \theta i is
computed by integrating u(x) along a line Li:

(2.2b) \theta i = (Au)i = K

\int 
Li

u(x)| dx| 

for i = 1 . . . d, where K is a positive constant describing the noise level. Poisson noise is then
applied to the projected observable \bfittheta , yielding the likelihood function \pi (y| u) = \pi \mathrm{P}(y| \bfittheta = Au),
where \pi \mathrm{P}(y| \bfittheta ) is the d-dimensional Poisson distribution:

(2.3) \pi \mathrm{P}(y| \bfittheta ) =
d\prod 

i=1

(\theta i)
yi exp( - \theta i)

yi!
.

In the PET problem, there is an additional restriction: the unknown function u must be
positive. The reason is twofold: first, from the physical point of view, the unknown u represents
the density of the medium, which is positive; from a technical point of view, if u is not
constrained to be positive, it may yield some negative components of the predicted data
\bfittheta , which renders the Poisson likelihood undefined. To this end, we need to introduce a
transformation to preserve positivity of the unknown u. To impose the positivity constraint,
we reparameterize the unknown u as

u(x) = f(z(x)) =
a

2
(erf(z(x)) + b),

where a and b are two constants satisfying a > 0 and b > 1, and erf(\cdot ) is the error function
defined as

u(x) = f(z(x)) =
a

2
(erf(z(x)/c) + b),

where a b and c are constants satisfying a > 0, b > 1, and c > 0, and erf(\cdot ) is the error
function defined as

erf(z) =
2\surd 
\pi 

\int z

0
e - t2dt.
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BAYESIAN IMAGE RECONSTRUCTION WITH POISSON DATA 33

With the new parametrization, it is easy to see that for any x \in \Omega , we have

(2.4) a(b - 1) \leq u(x) \leq a(b+ 1).

Moreover, as the behavior of the error function is well understood (for example, its derivative
is simply the Gaussian distribution), which allows us determine the parameters conveniently.
That said, it is worth noting here that the methods presented here do not rely on this specific
reparametrization formulation. Now we can infer the new unknown z, and once z is known u
can be computed accordingly. In this setup, the likelihood function for z becomes

\pi (y| z) = \pi P (y| \bfittheta = Af(z)),

where \pi P (y| \bfittheta ) is the d-dimensional Poisson distribution given by (2.3). Following [40], we
can write the likelihood function \pi (y| z) in the form of

(2.5a) \pi (y| z) \propto exp( - \Phi (z,y)),

where

(2.5b) \Phi (z;y) =
d\sum 

i=1

(Af(z))i  - yi ln(Af(z))i.

For simplicity we can rewrite (2.5b) as

(2.6) \Phi (z;y) = \langle Af(z),1\rangle  - \langle y, ln(Af(z))\rangle = \langle \bfittheta ,1\rangle  - \langle y, ln\bfittheta \rangle ,

where 1 is a d-dimensional vector whose components are all one, \bfittheta = Af(z) is the predicted
observable, and \langle \cdot , \cdot \rangle denotes the Euclidean inner product. In what follows we often omit the
argument y and simply use \Phi (z), when this does not cause ambiguity. This notation will be
used often later.

2.3. Bayesian framework with the hybrid prior for PET imaging. We now describe how
the infinite dimensional Bayesian inference framework is applied to the PET problem. First
we assume that the unknown function z is a function defined on \Omega , a bounded open subset of
R2. In particular, we set the state space X to be the Sobolev space H1(\Omega ):

X = H1(\Omega ) = \{ z(x) \in L2(\Omega ) | \partial x1z, \partial x2z \in L2(\Omega ) for allx = (x1, x2) \in \Omega \} .

The associated norm \| \cdot \| X = \| \cdot \| H1 is

\| z\| 2H1 = \| z\| 2L2(\Omega ) + \| \partial x1z\| 2L2(\Omega ) + \| \partial x2z\| 2L2(\Omega ).

Choosing a good prior distribution is one of the most important issues in Bayesian inference.
Conventionally one often assumes that the prior on z is a Gaussian measure defined on X
with mean \xi covariance operator C0, i.e., \mu \mathrm{p}\mathrm{r} = N(\xi , C0). Note that C0 is symmetric positive
and of trace class. The Gaussian prior has many theoretical and practical advantages, but
a major limitation of the Gaussian prior is that it cannot model functions with sharp jumps
well.

D
ow

nl
oa

de
d 

01
/3

1/
20

 to
 1

47
.1

88
.1

08
.1

68
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

34 Q. ZHOU, T. YU, X. ZHANG, AND J. LI

To address the issue, here we use the TG prior proposed in [43]:

(2.7)
d\mu \mathrm{p}\mathrm{r}

d\mu 0
(z) \propto exp( - R(z)), R(z) = \lambda \| z\| tv,

where \mu 0 = N(\xi , C0) is the Gaussian reference prior defined on X with mean \xi and covariance
C0 and \| \cdot \| \mathrm{T}\mathrm{V} is the TV seminorm,

(2.8) \| z\| \mathrm{T}\mathrm{V} =

\int 
\Omega 
\| \nabla u\| 2dx,

and \lambda is a positive constant. It follows immediately that the R-N derivative of \mu y with respect
to \mu 0 is

(2.9)
d\mu y

d\mu 0
(z) \propto exp( - \Phi (z) - R(z)),

which returns to the conventional formulation of inference with a Gaussian prior. Thus all
the methods developed for inference problems with Gaussian priors can be directly applied
to our formulation. We note that it is natural to directly apply the TV seminorm to the
original image u; if we do so, however, Proposition 2.1 may no longer hold. For this technical
reason we here choose to impose the TV seminorm on the new variable z. Nonetheless, it can
be shown that

\| z\| \mathrm{T}\mathrm{V} \geq a

c
\| u\| \mathrm{T}\mathrm{V}.

Next we shall show that the formulated Bayesian inference problem is well defined in the
infinite dimensional setting. We first show that \Phi (z) given by (2.6) satisfies certain important
conditions, as stated by Proposition 2.1.

Proposition 2.1. The functional \Phi given in (2.6) has the following properties:
1. For every r > 0, there are constants M(r) \in \BbbR and N(r) > 0 such that, for all z \in X

and y \in Y with \| y\| 2 < r,
M \leq \Phi (z) \leq N.

2. For every r > 0 there is a constant M(r) > 0 such that, for all z, v \in X with
max\{ \| z\| X , \| v\| X\} < r,

| \Phi (z) - \Phi (v)| \leq M\| z  - v\| X .

3. There exists a constant M > 0 such that for any y, y\prime \in Y , we have

| \Phi (z; y) - \Phi (z; y\prime )| \leq M\| y  - y\prime \| 2.

A detailed proof of the proposition is provided in Appendix A. Following Proposition 2.1,
we can conclude that the hybrid prior (2.7) and the log-likelihood function (2.6) yield a well-
behaved posterior measure given by (2.9) in the infinite dimensional setting, as is summarized
in the following theorem.

Theorem 2.2. For \Phi (z) given by (2.6) and prior measure \mu \mathrm{p}\mathrm{r} given by (2.7), we have the
following results:
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BAYESIAN IMAGE RECONSTRUCTION WITH POISSON DATA 35

1. \mu y given by (2.9) is a well-defined probability measure on X.
2. \mu y given by (2.9) is Lipschitz in the data y, with respect to the Hellinger distance: if

\mu y and \mu y\prime are two measures corresponding to data y and y\prime then there exists C = C(r)
such that, for all y, y\prime with max\{ \| y\| 2, \| y\prime \| 2\} < r,

d\mathrm{H}\mathrm{e}\mathrm{l}\mathrm{l}(\mu 
y, \mu y\prime ) \leq C\| y  - y\prime \| 2.

3. Let

(2.10)
d\mu y

N1,N2

d\mu 0
= exp( - \Phi N1(z) - RN2(z)),

where \Phi N1(z) is a N1 \in \BbbN dimensional approximation of \Phi (z) and RN2(z) is a N2 \in \BbbN 
dimensional approximation of R(z). Assume that \Phi N1 satisfies the three properties of
Proposition 2.1 with constants uniform in N1, and RN2 satisfies Assumption A.2(i) and
(ii) in [43] with constants uniform in N2. Assume also that for any \epsilon > 0, there exist
two positive sequences \{ aN1(\epsilon )\} and \{ bN2(\epsilon )\} converging to zero such that \mu 0(X\epsilon ) \geq 
1 - \epsilon for any N1, N2 \in \BbbN , where

X\epsilon = \{ z \in X | | \Phi (z) - \Phi N1(z)| \leq aN1(\epsilon ), | R(z) - RN2(z)| \leq bN2(\epsilon )\} .

Then we have

d\mathrm{H}\mathrm{e}\mathrm{l}\mathrm{l}(\mu 
y, \mu y

N1,N2
) \rightarrow 0 as N1, N2 \rightarrow +\infty .

Theorem 2.2 is a direct consequence of Proposition 2.1, and the proof of the theorem can
be found in [43] and is omitted here.

Finally, we note that, in the numerical implementations, we use the truncated Karhunen--
Lo\`eve (KL) expansion [28] to represent the unknown z. Namely, we write z as

(2.11) z(x) =
N\sum 
i=1

zi
\surd 
\eta iei(x),

where \{ \eta i, ei(x)\} are the eigenvalue-eigenfunction pair of the covariance operator C0, and
(z1, . . . , zN ) are independent with each following a standard normal distribution. In the KL
representation, the number of KL modes (eigenfunctions) N corresponds to the discretization
dimensionality.

3. The primal-dual pCN MCMC algorithm. In most practical image reconstruction prob-
lems, the posterior distribution cannot be analytically calculated. Instead, one usually rep-
resent the posterior by samples drawn from it using MCMC algorithms. It is demonstrated
in [14] that standard MCMC algorithms may become problematic in the infinite dimensional
setting: its acceptance probability will generate to zero as the discretization dimensionality
increases. Here we adopt the pCN MCMC algorithm particularly developed for the infinite
dimensional problems [14]. An important feature of the pCN MCMC algorithm is that its
sampling efficiency is independent of discretization dimensionality up to the numerical er-
rors in the evaluation of the functionals R(\cdot ) and \Phi (\cdot ), which makes it particularly useful for
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sampling the posterior distribution defined in function spaces. We start with a brief intro-
duction of the pCN algorithm following the presentation of [14]. We denote \Phi (z) + R(z) of
(2.9) as \Psi (z). Simply speaking the algorithms are derived by applying the Crank--Nicolson
discretization to a stochastic partial differential equation whose invariant distribution is the
posterior. We here omit the derivation details while referring interested readers to [14], and
jump directly to the pCN proposal:

(3.1) v = (1 - \beta 2)
1
2 z + \beta w,

where z and v are the present and the proposed positions, respectively, w \sim N(\xi , C0), and
\beta \in [0, 1] is the parameter controlling the step size of the algorithm. The proposed sample v
is then accepted or rejected according to the acceptance probability:

(3.2) a(v, z) = min\{ 1, exp [\Psi (z) - \Psi (v)]\} ,

which is independent of discretization dimensionality up to numerical errors.
The pCN proposal in (3.1) can be improved by incorporating the data information in the

proposal, and following the idea of Langevin MCMC for the finite dimensional problems, one
can derive the pCNL proposal:

(3.3) (2 + \delta )v = (2 - \delta )z  - 2\delta C0D\Psi (z) +
\surd 
8\delta w,

where \delta \in [0, 2], w \sim N(\xi ,C0), and D is the gradient operator with respect to z. If we define
\rho (z, v) as

(3.4) \rho (z, v) = \Psi (z) +
1

2
\langle v  - z,D\Psi (z)\rangle + \delta 

4
\langle z + v,D\Psi (z)\rangle + \delta 

4
\| C1/2

0 D\Psi (z)\| 2,

then the acceptance probability is given by

(3.5) a(z, v) = min\{ 1, exp (\rho (z, v) - \rho (v, z))\} .

The pCNL algorithm is usually more efficient than the standard pCN algorithm as it takes
advantage of the gradient information of the \Psi (z). However, the pCNL algorithm cannot be
used directly in our problem as \Psi (z) includes the TV term which is not differentiable. It is
important to note that  - 2\delta C0D\Psi (z) is the offset term only affecting the mean of the proposal,
and we can replace D\Psi (z) with an alternative direction g(z), yielding the proposal

(3.6) (2 + \delta )v = (2 - \delta )z  - 2\delta C0g +
\surd 
8\delta w,

where \delta \in [0, 2] and w \sim N(\xi ,C0). Regarding the proposal given by (3.6), we have the
following theorem.

Theorem 3.1. Assume that \Psi satisfies Assumption 6.1 in [14], and g(z) is in the Cameron--
Martin space associated with the Gaussian measure \mu 0. Let q(z, dv) be the conditional distri-
bution defined by (3.6), and define

\eta (dz, dv) = q(z, dv)\mu y(dz), \eta \bot (dz, dv) = q(v, dz)\mu (dv)
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BAYESIAN IMAGE RECONSTRUCTION WITH POISSON DATA 37

on X \times X. We have that \eta \bot is equivalent to \eta and

(3.7)
d\eta \bot 

d\eta 
(z, v) = exp(\rho (z, v) - \rho (v, z)),

where

(3.8) \rho (z, v) = \Psi (z) +
1

2
\langle v  - z, g\rangle + \delta 

4
\langle z + v, g\rangle + \delta 

4
\| C1/2

0 g\| 2.

The proof of the theorem is provided in Appendix B. It should be clear that Theorem 3.1
implies that the MCMC algorithm with proposal (3.6) yields a well-defined acceptance prob-
ability in the function space, and as a result the chain satisfies the detailed balance condition
in the function space and thus is ergodic. Another very important theoretical issue here is to
estimate the spectral gaps and prove the geometric ergodicity of the algorithms in the infinite
dimensional setting. We note that there are some results on the spectral gaps of the standard
pCN [22] and the generalized pCN [38]. It is an interesting problem to analyze if similar
results can also be obtained for the present algorithm.

Now we need to find a good direction g(z). In [34] the authors use Moreau approximation
to approximate the TV term in the Langevin MCMC algorithm. Here we shall provide
an alternative approach, determining the offset direction in the MCMC iteration using the
primal-dual algorithm. The primal-dual algorithms are known to be very effective in solving
optimization problems involving TV regularization [12, 13, 11], and we hereby give a brief
description of the primal-dual method applied to our problem. Suppose that we want to solve

(3.9) min
z\in X

\Psi (z) = \Phi (z) + \lambda \| z\| \mathrm{T}\mathrm{V}.

Introducing a new variable \bfitphi (x) = [\phi 1(x), \phi 2(x)] with \phi 1(x), \phi 2(x) \in L2(\Omega ) (we denote this
as \bfitphi \in L2

2(\Omega )), then we rewrite the optimization problem (3.9) as

min
z\in X,\phi \in L2

2(\Omega )
\Psi (z, \phi ) = \Phi (z) + \lambda \| \phi \| 2,1(3.10)

such that \nabla z = \phi ,

where \| \phi \| 2,1 = (\| \phi 1(x)\| 2L2(\Omega ) + \| \phi 2(x)\| 2L2(\Omega ))
1/2. The augmented Lagrangian for (3.10) is

(3.11) max
\eta \in Lq

2(\Omega )
min

z\in X,\phi \in Lq
2(\Omega )

L\rho (z, \phi , \eta ) = \Phi (z) + \lambda \| \phi \| 2,1 + \langle \eta ,\nabla z  - \phi \rangle + \rho 

2
\| \nabla z  - \phi \| 22,

where \eta \in Lq
2(\Omega ) is the dual variable or Lagrange multiplier and \rho > 0 is a constant called the

penalty parameter. The resulting dual problem is then solved with the alternating direction
method of multipliers (ADMM) [8]:

zk+1 = argmin
z\in X

L\rho (z, \phi 
k, \eta k),(3.12a)

\phi k+1 = arg min
\phi \in Lq

2(\Omega )
L\rho (z

k+1, \phi , \eta k),(3.12b)

\eta k+1 = \eta k + \rho (\phi k+1  - \nabla zk+1).(3.12c)
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38 Q. ZHOU, T. YU, X. ZHANG, AND J. LI

Algorithm 3.1 The primal-dual pCN (PD-pCN) algorithm.

1: Solve (3.11) and denote the solution as (z \star , \phi  \star , \eta  \star )
2: Let z0 = z \star 

3: for k = 0, 1, 2, \cdot \cdot \cdot do

4: Propose v using (3.6) and (3.13)
5: Draw \theta \sim U [0, 1];
6: Compute a(z, v) with (3.5) and (3.8);
7: if \theta \leq a then
8: zk+1 = v;
9: else

10: zk+1 = zk;
11: end if
12: end for

The algorithm consists of a z-minimization step (3.12a), a \phi -minimization step (3.12b), and
a dual ascent step (3.12c).

Our primal-dual pCN (PD-pCN) algorithm is designed as follows. First we solve (3.11)
with the ADMM algorithm 3.1 obtaining the solution (z \star , \phi  \star , \eta  \star ), and then we define

(3.13) g(z) = TKDL\rho (z, \phi 
 \star , \eta  \star ),

where operator TK is the projection of its input function onto the space spanned by the KL
models \{ e1, . . . cK\} for a prescribed positive integer K. K should be no greater than the dis-
cretization dimensionality N . It should be clear that the function g(z) computed with (3.13)
is in the the Cameron--Martin space of \mu 0. The complete algorithm is given in Algorithm 3.1.
We note here that the proposed MCMC algorithm involves an optimization problem at the
beginning, and the computational cost for solving this optimization is usually an order of
magnitude lower that of the MCMC iterations. A main limitation of this algorithm is that,
when some hyperparameters change, the optimization problem needs to be solved again, which
makes it incompatible with the Metropolis within Gibbs [2] type of methods. It is also worth
noting here that the main purpose of the proposed algorithm is to improve the sampling effi-
ciency of the standard pCN algorithm while maintaining its dimension independence property.
To this end a very interesting problem here is to incorporate the pCN framework with the
aforementioned proximity based algorithm and compare the performance with the primal-dual
based one.

4. Determining the hyperparameters. Just like the deterministic inverse problems, it is
an important issue to determine the TV regularization parameter \lambda in the hybrid prior. In
the Bayesian setting, the regularization parametter can be determined by the empirical Bayes
(EB) approach [20]. Namely, the EB method seeks to maximize

\pi (y| \lambda ) =
\int 

\pi (y| u)\mu \mathrm{p}\mathrm{r}(du) =

\int 
\pi (y| u) 1

Z(\lambda )
exp( - \lambda \| u\| \mathrm{T}\mathrm{V})\mu 0(du),
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BAYESIAN IMAGE RECONSTRUCTION WITH POISSON DATA 39

where Z(\lambda ) is the normalization constant. A difficulty here is that Z(\lambda ) is usually not known
in advance and needs to be evaluated with another Monte Carlo integration. To address
this issue, a stochastic proximal gradient method was proposed in [36, 16]. The method can
efficiently estimate the regularization parameter \lambda without the knowledge of Z. On the other
hand, the method does require a suitable admissible set for \lambda . Here we provide a statistical
approach to determine the admissible set of \lambda , which is derived from the realized discrepancy
method for model assessment proposed in [19].

The basic idea of the method is to choose a functionD(y,\bfittheta ) that measures the discrepancy
between the measured data y and the projected observable \bfittheta , and for the present problem we
use the \chi 2 discrepancy,

(4.1) D(y,\bfittheta ) =

d\sum 
i=1

(yi  - \theta i)
2

\theta 2i
.

Now knowing that \theta = Au, we can use this discrepancy to assess how well a specific choice of
u fits the data. The classical p-value based on the discrepancy D(y,\bfittheta ) is

(4.2) pc(y,\bfittheta ) = \BbbP [D(y,\bfittheta ) > D(\~y,\bfittheta )],

where \~y is the simulated data from model (2.3). In particular, for the discrepancy function
given in (4.1), the p-value is simply

(4.3) pc(y,\bfittheta ) = 1 - F\chi 2
d
(D(y,\bfittheta )),

where F\chi 2
d
(\cdot ) is the cumulative distribution function of the \chi 2 distribution with the degree

of freedom d. The classic p-value computed this way provides an assessment of how well a
single estimate of u fits the data y. The method can be extended to the Bayesian setting to
assess the fitness of the posterior distribution to data. First recall that our prior distribution
given by (2.7) is specified by the parameter \lambda , and as a result the posterior also depends on \lambda ,
and here we write the posterior as \mu y

\lambda (du) to emphasize its dependence on \lambda . In the Bayesian
setting, one can compute the posterior predictive p-value:

(4.4) pb(y, \lambda ) =

\int 
pc(y,\bfittheta )p(\bfittheta | y, \lambda )d\bfittheta =

\int 
pc(y,Au)\mu y

\lambda (du),

which is essentially the classical p-value averaged over the posterior distribution. The posterior
predictive p-value assesses the fitness of the posterior distribution to the data: intuitively
speaking, larger value of pb indicates better fitness of the posterior to the data y. However,
one cannot simply choose the value of \lambda that yields the largest value of pb or, equivalently,
the best fitness to the data, as that may cause overfitting. In other words, if the posterior fits
the data ``too well,"" it often implies that the effect of the prior distribution is so weak that
the posterior is dominated by the data. In the image reconstruction problem, this situation
is greatly undesirable, as the problem is highly ill-posed and we need significant contribution
from the prior distribution to obtain good estimates of the unknown u. In this respect, we
should choose \lambda in a way that the effects of the prior and data are well balanced, which should
be indicated by an appropriate value of pb. The suitable values of pb are certainly problem
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40 Q. ZHOU, T. YU, X. ZHANG, AND J. LI

dependent, and in the present problem we suggest to choose \lambda so that the resulting value of
pb is approximately in the range of 0.1 \sim 0.7. Based on this, we choose the admissible set for
\lambda to be

\Lambda = \{ \lambda \geq 0| 0.1 \leq pb(y, \lambda ) \leq 0.7\} .

The optimal value of \lambda is then determined by using the method in [16] within \Lambda . It is worth
mentioning that methods using the data discrepancy to determine regularization parameters
for Poisson data model have also been developed in the deterministic setting, and we refer to
[5, 7] for further details. It is important to note that the discrepancy principle may lead to
oversmoothing in certain problems [23], which, however, may not cause issues in the proposed
method as it just uses the discrepancy method to identify the admissible set of the regular-
ization parameter while the actual value of it is determined with EB. Finally we also note
that, in addition to \lambda , the Gaussian distribution may also be subject to hyperparameters,
and in principle these hyperparameters can be determined along with \lambda using the proposed
approach. However, here we choose not to do so for two reasons: first, determining multiple
parameters may significantly increase the computational cost; second, as the Gaussian distri-
bution is merely used as a reference measure in our hybrid prior, the posterior distribution is
not sensitive to it, and it usually suffices to choose these hyperparameters based upon certain
prior information (for example, historical data).

5. Artifact detection using the posterior distribution. In practical image reconstruction
problems, due to the imperfection of methods or devices, a reconstructed image may contain
what are not present in the original imaged object. In this section we describe an application
of the posterior distribution to detect artifacts in a reconstructed image.

Specifically, we consider the posterior distribution of the image at any given point x, which
is denoted as u\bfx . Consequently we can write the posterior distribution of u\bfx as \pi \bfx (u\bfx | y). Next
we consider the highest posterior density interval (HPDI) which is essentially the narrowest
interval corresponding to a given confidence level. More precisely, for an \alpha \in [0, 1], the
100(1 - \alpha )\% HPDI is defined as [35]

C\alpha = \{ u(x)| \pi \bfx (u(x)| y) > \pi \alpha \} ,

where \pi \alpha is the largest constant satisfying \BbbP [u\bfx | \pi \bfx (u\bfx | y) > \pi \alpha ] = 1  - \alpha . Now suppose that
we have a reconstruct image \^u, and we also write its value at x as \^u\bfx . Next we shall estimate
how large the credible level (1  - \alpha ) must be so that the associated HPDI may contain \^u\bfx .
That is, we compute the smallest value of (1 - \alpha ) such that

\^u\bfx \in C\alpha .

Intuitively speaking, the larger the computed credible level (1  - \alpha ) is, the more likely the
considered \^u\bfx is an artifact. And we thus use the credible level (1 - \alpha ) to measure how likely
a point is an artifact, and we can do this test for any point x \in \Omega . Alternatively, the problem
can also be formulated as a Bayesian hypothesis test with a fixed \alpha (e.g., \alpha = 5\%) [33]: that
is, \^u(x) is regarded as an artifact if it is not contained in the (1 - \alpha ) HPDI for the prescribed
value of \alpha . However, it has been pointed out in [41] that performing hypothesis test with
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BAYESIAN IMAGE RECONSTRUCTION WITH POISSON DATA 41

HPDI may cause certain theoretical issues, and so here we choose not to use the hypothesis
test formulation.

It should be noted here that, in [35, 15], the authors utilize the highest posterior density
region to test if a candidate image is likely to be a solution to the reconstruction problem. The
purpose of the present work differs from the aforementioned ones in that we want to identify
regions or pixels which are unlikely to be present in the original image, rather than to assess
the entire image.

6. Numerical results. In this section we demonstrate the performance of the proposed
Bayesian framework by applying it to a PET image reconstruction problem with synthetic
data. In particular the ground truth image (Figure 1, left) is chosen from the Harvard Whole
Brain Atlas [1]. We let \Omega = (0, 1)2 and set the image size to be 128\times 128. In the Radon trans-
form we use 60 projections equilaterally sampled from 0 to \pi . In the numerical experiments,
we consider two different noise levels: K = 0.5 corresponding to a higher noise level and K = 1
corresponding to a lower noise level. The test data, shown in Figure 1, are randomly simulated
by plugging the true image into the Radon transform and the Poisson distribution (2.3) with
the two aforementioned noise levels K. In the Bayesian inference, we use the hybrid prior
distribution where the Gaussian part is taken to be zero mean and covariance

(6.1) K(x,x\prime ) = \gamma exp

\biggl[ 
 - \| x - x\prime \| 1

d

\biggr] 
,

where d is taken to be 10 - 3 and \gamma is 2. The regularization parameter \lambda is determined by using
the method presented in section 4, and details will be discussed in next section.

6.1. Determining parameter \bfitlambda . As is discussed at the beginning of the section, the prior
parameter \lambda is determined with the realized discrepancy method discussed in section 4. We
here provide some details on the issue. Specifically we test five different values of \lambda for
K = 0.5: \lambda = 0, 1, 2, 3, 4, 5, and using the method discussed in section 4 we compute the
corresponding posterior predictive p-value for each value of \lambda , shown in Table 1. Similarly we
also test 5 values of \lambda for K = 1, and the results are shown in Table 2. We can see from
the table that, as \lambda increases, the resulting p-value decays. These results agree well with our
expectation that as \lambda becomes larger, the prior distribution becomes stronger, and as a result
the p-value which assesses the fitness of the posterior to the data becomes smaller. We also
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Figure 1. Left: the true image. Middle: the simulated data for K = 0.5. Right: the simulated data for K = 1.
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Table 1
(K = 0.5) The posterior predictive p-value (pb) and the PSNR of the resulting posterior mean for different

values of \lambda .

\lambda 0 1 2 3 4 5

pb 0.99 0.74 0.32 0.08 0.0074 0.0004

PSNR 15.69 18.85 20.31 20.04 18.79 18.58

Table 2
(K = 1) The posterior predictive p-value (pb) and the PSNR of the resulting posterior mean for different

values of \lambda .

\lambda 0 0.5 1 2 3 4

pb 0.99 0.82 0.28 0.04 0.0034 0.0005

PSNR 18.21 21.90 21.99 20.66 19.76 19.27

compute the peak signal-to-noise ratio (PSNR) of the posterior distribution computed with
all these \lambda values, and the results are also given in the table. We can see here that, for both
very large and very small p-values, the associated posterior means are of rather poor quality
in terms of PSNR. That is, when the p-value is too large, the posterior distribution overfits
the data, and when it is too small, the posterior underfits the data; both cases lead to a poor
performance of the inference, and so we must choose a proper p-value that represents a good
balance of the prior and the data. Bases on the test results, for K = 0.5 we choose \Lambda = [1, 3]
and for K = 1 we choose \Lambda = [0.5, 2]. By optimizing \lambda within the identified intervals we
obtain \lambda = 2.4 for K = 0.5 and \lambda = 1.2 for K = 1.

6.2. Convergence with respect to discretization dimensionality. In the numerical imple-
mentation we represent the unknown z using the truncated KL expansion with N KL-modes.
First we shall demonstrate that the posterior distributions converges with respect to the dis-
cretization dimensionality N . We here use the case K = 1 as an example. We perform the
proposed PD-pCN MCMC simulation and compute the posterior means with six different
values of N : Ni = i \times 103 for i = 1 . . . 6. We note here that, in all the MCMC simulations
performed in this section, we fix the number of samples to be 5\times 105 with additional 0.5\times 105

samples used in the burn-in step, and also, in all the simulations the step size \beta has been cho-
sen in a way that the resulting acceptance probability is around 25\%. We then compute the
L2 norm of the difference between the posterior mean with N = Ni and that with N = Ni+1

for each i = 1 . . . 6:

(6.2) Diff =

\int 
\Omega 
(\^uNi(x) - \^uNi+1(x))

2dx,

where \^uNi is the posterior mean of u computed with Ni KL modes. We plot the L2 difference
against the discretization dimensionality N in Figure 2. One can see from the figure that
the difference decreases as N increases and the difference becomes approximately zero for
N = 5000 and N = 6000, indicating the convergence of the posterior mean with respect to N .
For each posterior mean \^uNi , we also compute its PSNR [26], a commonly used metric of the
quality of a reconstructed image. We show the PSNR results in Figure 2 (right), and the figure
shows that the PSNR increases as N increases from 1000 to 4000 and remains approximately
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Figure 2. Left: the convergence of the posterior mean. Right: the PSNR of the posterior mean as a function
of N .

constant from 4000 to 6000, suggesting that increasing the discretization dimensionality can
improve the inference accuracy until the posterior converges, and so it is important to use
sufficiently large discretization dimensionality in such problems. Next, to further demonstrate
that the proposed PD-pCN MCMC algorithm is independent of discretization dimensionality,
we perform the MCMC simulation with different values of \delta which is the parameter controlling
the step size of the algorithm. In Figure 3 we plot the average acceptance probability as a
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Figure 3. The average acceptance probability plotted against \delta for N = 4000, 5000, 6000.
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function of \delta for three different values of N , and one can see that the acceptance probabilities
under different discretization dimensionality agree well with either other, indicating that the
acceptance probability of the algorithm is independent of the discretization dimensionality N .
In the rest of the work, we fix N = 6000.

6.3. Sampling efficiency of the PD-pCN algorithm. Next, we shall compare the perfor-
mance of the proposed PD-pCN algorithm and the standard pCN. We draw 5\times 105 samples
from the posterior distribution using both the standard pCN and the proposed PD-pCN algo-
rithms. We reinstate that in both algorithms we have chosen the step size so that the resulting
acceptance probability is around 25\%. In particular, to achieve the sought acceptance proba-
bility, the values of the step size parameter \beta in pCN are taken to be 0.04 (for K = 1) and 0.09
(for K = 0.5); the values of the step size parameter \delta in PD-pCN are 0.18 (for K = 1) and
0.23 (for K = 0.5). The total computational time is around 12 hours in a workstation with a
6-core 2.50 GHZ processor. We compute the autocorrelation function (ACF) of the samples
generated by the two methods at all the grid points, and we show the ACF at the points with
the fastest and the slowest convergence rates in Figure 4 (K = 0.5) and Figure 5 (K = 1).
One can see from the figures that at both points the ACF of the proposed PD-pCN method
decays much faster than that of the standard pCN. To further compare the performance, we
compute the effective sample size (ESS), which is defined as

ESS =
N

1 + 2\tau 
,

where \tau is the integrated autocorrelation time and N is total sample size. In Figure 6, we
compare the ESS at three chosen rows from left to right in the image, namely, rows 1, 64, and
128, for K = 1. Just as the ACF, the results show that the PD-pCN algorithm achieves much
higher ESS than the standard pCN. We have also examined the ESS for K = 0.5, where the
results are qualitatively similar to those three shown in Figure 6, and so we omit those results.
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Figure 4. (K = 0.5) The ACF of the fastest (left) and the slowest (right) components of the samples drawn
by the pCN and the PD-pCN methods.
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Figure 5. (K = 1) The ACF of the fastest (left) and the slowest (right) components of the samples drawn
by the pCN and the PD-pCN methods.
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Figure 6. ESS of the pCN and the PD-pCN algorithms.

6.4. The inference results. To illustrate the inference results, we compute the posterior
mean of the TG prior, which is regarded as a point estimate of the image. As is mentioned
earlier, a main advantage of the Bayesian method is its ability to quantify the uncertainty
in the reconstruction, and to this end, we use the width of the (pointwise) 95\% HPDI as
a metric of the posterior uncertainty (intuitively speaking the wider the HPDI is, the more
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Figure 7. The posterior results of the TG prior and the Gaussian prior. The top figures show the posterior
mean and the bottom ones shows the corresponding interval width of 95\% HPDI.

uncertainty there is). We plot these posterior results in Figure 7: the posterior mean and the
95\% HPDI for K = 0.5 and K = 1 are shown in Figure 7(a) and Figure 7(c), respectively.
As a comparison, we also compute the posterior mean as well as the 95\% HPDI width for the
Gaussian prior corresponding to setting \lambda = 0 in the TG prior, and the results are also shown
in Figure 7(b) and Figure 7(d). The figures show that the posterior mean obtained with the
TG prior is clearly of better quality than that of the Gaussian prior, suggesting that including
the edge-preserving TV term significantly improves the performance of the prior. It is worth
noting here that the Gaussian prior used here is not optimized for the best performance,
and the performance can be potentially improved by using some carefully designed Gaussian
priors, for example, [10].

6.5. Identifying artifacts using HPDI. As is discussed in section 5, an important appli-
cation of the proposed Bayesian framework is that the resulting posterior distribution can be
used to detect artifacts in a reconstructed image. We now demonstrate this application with
three surrogate test images which are generated by making certain modifications of the ground
truth. Figure 8 summarizes the results for K = 1. Specifically the first image shown in Figure
8(a) is generated by adding some random noise to the ground truth without any structural
changes, the second one shown in Figure 8(c) is generated by adding some artificial compo-
nents to the ground truth, and the third one shown in Figure 8(e) is the result of removing
some components from the ground truth. Thus both the last two test images have structural
changes from the ground truth, and in both figures, the regions in which components are
altered from the ground truth are highlighted with red boxes. We compute the credible level
(1  - \alpha ) for all three images and show the results in Figure 8(b) (for test image 1), 8(d) (for
test image 2), and 8(f) (for test image 3). It can be seen here that, though the first test image
is visibly perturbed by random noise, it does not have structural difference from the ground
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(a) Surrogate test image one.
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test image three.

Figure 8. (K = 1) The credible level for three surrogate test images.
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test image three.

Figure 9. (K = 0.5) The credible level for three surrogate test images.
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truth, and so the credible level result in Figure 8(b) does not suggest any region has high
likelihood to contain artifacts. On the other hand, in the other two test images, at the loca-
tions where the original image is altered (i.e., artifacts introduced), the resulting credible level
(1 - \alpha ) is significantly higher than other regions, suggesting that these locations may contain
artifacts. Figure 9 shows the same test results but for K = 0.5, and one can see that the
figure exhibits qualitatively the same behaviors as those of K = 1. The results demonstrate
that the proposed method can rather effectively detect the artifacts in a test image.

7. Conclusions. In this work, we have presented a complete treatment for performing
Bayesian inference and uncertainty quantification for medical image reconstruction problems
with Poisson data. In particular, we formulate the problem in an infinite dimensional setting,
and we prove that the resulting posterior distribution is well-posed in this setting. Second,
to sample the unknown function/image, we provide a modified pCNL MCMC algorithm, the
efficiency of which is independent of discretization dimensionality. Specifically the modified
algorithm calculates the offset direction in the original pCNL algorithm by using a primal-
dual method to avoid computing the gradient of the TV term in our formulation. Third,
we also give a method to determine the TV regularization parameter \lambda which is critical for
the prior distribution. The method is based on the realized discrepancy method for assessing
model fitness. Finally we provide an application of the uncertainty information obtained by
the Bayesian framework, using the posterior distribution to identify possible artifacts in a
reconstructed image. We believe the proposed Bayesian framework can be used to reconstruct
images and evaluate the uncertainty associated to reconstruction in many practical medical
imaging problems with Poisson data.

There are several problems related to this work that we plan to investigate in the future. In
the future, we plan to apply the methods developed in this work to those real-world problems,
especially the PET image reconstruction.

Appendix A. Proof of Proposition 2.1. We provide a proof of Proposition 2.1 here.

Proof. (1) From (2.2) and (2.4), we obtain directly that

0 < \bfittheta \leq \bfittheta \leq \bfittheta 

for two constant vectors \bfittheta and \bfittheta . It follows directly that \| ln\bfittheta \| 2 \leq l\mathrm{m}\mathrm{a}\mathrm{x} for a positive constant
l\mathrm{m}\mathrm{a}\mathrm{x}.

For every r > 0, we have \| y\| 2 < r. By the Cauchy--Schwarz inequality, we obtain the
lower bound:

\Phi (z) = \langle \bfittheta ,1\rangle  - \langle y, ln\bfittheta \rangle 
\geq \langle \bfittheta ,1\rangle  - \| ln\bfittheta \| 2\| y\| 2
\geq \langle \bfittheta ,1\rangle  - l\mathrm{m}\mathrm{a}\mathrm{x}\| y\| 2
\geq \langle \bfittheta ,1\rangle  - l\mathrm{m}\mathrm{a}\mathrm{x}r.

For the upper bound, once again we apply the Cauchy--Schwarz inequality to the functional
\Phi , obtaining

\Phi (z) = \langle \bfittheta ,1\rangle  - \langle y, ln\bfittheta \rangle 
\leq \langle \bfittheta ,1\rangle + \| ln\bfittheta \| 2\| y\| 2
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\leq \langle \bfittheta ,1\rangle + l\mathrm{m}\mathrm{a}\mathrm{x}\| y\| 2
\leq \langle \bfittheta ,1\rangle + l\mathrm{m}\mathrm{a}\mathrm{x}r.

(2) In this proof, we use M for positive constants. Let z and v be any two elements in X,
and we have

| \Phi (z) - \Phi (v)| = | \langle Af(z) - Af(v),1\rangle  - \langle y, ln(Af(z)) - ln(Af(v))\rangle | 
\leq | \langle Af(z) - Af(v),1\rangle | + | \langle y, ln(Af(z)) - ln(Af(v))\rangle | 
\leq \| 1\| 2\| Af(z) - Af(v)\| 2 + \| y\| 2\| ln(Af(z)) - ln(Af(v))\| 2
\leq \| 

\surd 
d\| Af(z) - Af(v)\| 2 + \| y\| 2M\| Af(z) - Af(v)\| 2

= (
\surd 
d+ \| y\| 2M)\| Af(z) - Af(v)\| 2.(A.1)

Since the Radon transform A is a bounded linear operator from the L2 space to Rd [30], we
have

\| Af(z) - Af(v)\| 2 \leq \| A\| \| f(z) - f(v)\| L2

= \| A\| \| 
\int z

v
e - t2dt\| L2 \leq \| A\| \| 

\int z

v
dt\| L2 = \| A\| \| z  - v\| L2 ,

which completes the proof.
(3) For any y, y\prime \in Y , it is easy to show that

| \Phi (z, y) - \Phi (z, y\prime )| = | \langle y  - y\prime , ln\bfittheta \rangle | \leq \| y  - y\prime \| 2\| ln\bfittheta \| 2 \leq l\mathrm{m}\mathrm{a}\mathrm{x}\| y  - y\prime \| 2.

Appendix B. Proof of Theorem 3.1. We define \eta 0(z, v) to be the measure \eta (z, v) on
X\times X with \Psi \equiv 0, and it is obvious that the measure \eta 0(z, v) is Gaussian. Moreover we have

(B.1) \eta (dz, dv) = q(z, dv)\mu (dz), \eta 0(dz, dv) = q(z, dv)\mu 0(dz)

and that the measures \mu and \mu 0 are equivalent. It follows that \eta and \eta 0 are equivalent and

(B.2)
d\eta 

d\eta 0
(z, v) =

d\mu 

d\mu 0
(z) = Z exp( - \Psi (z)),

d\eta 

d\eta 0
(v, z) = Z exp( - \Psi (v)).

Now we define
\eta \bot 0 (dz, dv) = q(v, dz)\mu 0(dv),

and by some elementary calculations we can derive

(B.3)

d\eta \bot 0
d\eta 0

(z, v) = exp

\left(   - 1

2

| | 2C
 - 1

2
0 (z  - v) + \delta C

 - 1
2

0 (v + z) + 2\delta C
1
2
0 g(v)| | 2

8\delta 
 - 1

2

| | v| | 2

C

+
1

2

| | 2C
 - 1

2
0 (v  - z) + \delta C

 - 1
2

0 (z + v) + 2\delta C
1
2
0 g(z)| | 2

8\delta 
+

1

2

| | z| | 2

C

\right)  
=exp

\biggl( 
 - 1

2
\langle z  - v, g(v)\rangle  - \delta 

4
\langle (z + v), g(v)\rangle  - \delta 

4
\langle C

1
2
0 g(v), C

1
2
0 g(v)\rangle 

+
1

2
\langle v  - z, g(z)\rangle + \delta 

4
\langle (v + z), g(z)\rangle + \delta 

4
\langle C

1
2
0 g(z), C

1
2
0 g(z)\rangle 

\biggr) 
.
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As z, v \in X and g(z) is in the Cameron--Martin space of \mu 0, \langle z  - v, g(z)\rangle , \langle v + z, g(z)\rangle , and
| | C

1
2
0 g(z)| | 2 are finite, and

d\eta \bot 0
d\eta 0

is well defined. Now recall that

(B.4)
d\eta \bot 

d\eta 
(z, v) =

d\eta 

d\eta 0
(v, z)

d\eta \bot 0
d\eta 0

(z, v)
d\eta 0
d\eta 

(z, v).

Substituting (B.2) and (B.3) into (B.4) yields

(B.5)
d\eta \bot 

d\eta 
(z, v) = exp(\rho (z, v) - \rho (v, z)),

where

(B.6) \rho (z, v) = \Phi (z) +
1

2
\langle v  - z, g(z)\rangle + \delta 

4
\langle z + v, g(z)\rangle + \delta 

4
| | C

1
2
0 g(z)| | 

2.
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