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φ-FEM: A FINITE ELEMENT METHOD ON DOMAINS DEFINED

BY LEVEL-SETS

MICHEL DUPREZ∗ AND ALEXEI LOZINSKI†

Abstract. We propose a new fictitious domain finite element method, well suited for elliptic
problems posed in a domain given by a level-set function without requiring a mesh fitting the bound-
ary. To impose the Dirichlet boundary conditions, we search the approximation to the solution as
a product of a finite element function with the given level-set function, which also approximated
by finite elements. Unlike other recent fictitious domain-type methods (XFEM, CutFEM), our ap-
proach does not need any non-standard numerical integration (on cut mesh elements or on the actual
boundary). We consider the Poisson equation discretized with piecewise polynomial Lagrange finite
elements of any order and prove the optimal convergence of our method in the H1-norm. Moreover,
the discrete problem is proven to be well conditioned, i.e. the condition number of the associated fi-
nite element matrix is of the same order as that of a standard finite element method on a comparable
conforming mesh. Numerical results confirm the optimal convergence in both H1 and L2 norms.
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1. Introduction. We consider the Poisson-Dirichlet problem

(1.1)

{
−∆u = f on Ω,
u = 0 on Γ,

in a bounded domain Ω ⊂ R
d (d = 2, 3) with smooth boundary Γ assuming that Ω

and Γ are given by a level-set function φ:

(1.2) Ω := {φ < 0} and Γ := {φ = 0}.

Such a representation is a popular and useful tool to deal with problems with evolving
surfaces or interfaces [15]. In the present article, the level-set function is supposed
known on R

d, smooth, and to behave near Γ as the signed distance to Γ. We propose
a finite element method for the problem above which is easy to implement, does not
require a mesh fitted to Γ, and is guaranteed to converge optimally. Our basic idea
is very simple: one cannot impose the Dirichlet boundary conditions in the usual
manner since the boundary Γ is not resolved by the mesh, but one can search the
approximation to u as a product of a finite element function wh with the level-set φ
itself: such a product obviously vanishes on Γ. In order to make this idea work, some
stabilization should be added to the scheme as outlined below and explained in detail
in the next section. We coin our method φ-FEM in accordance with the tradition of
denoting the level-sets by φ.

More specifically, let us assume that Ω lies inside a simply shaped domain O
(typically a box in R

d) and introduce a quasi-uniform simplicial mesh T O
h on O

(the background mesh). Let Th be a submesh of T O
h obtained by getting rid of

mesh elements lying entirely outside Ω (the definition of Th will be slightly changed
afterwords). Denote by Ωh the domain covered by the mesh Th (so that typically Ωh

is only slightly larger than Ω). Our starting point is the following formal observation:
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2 M. DUPREZ AND A. LOZINSKI

assuming that the right-hand side f is actually well defined on Ωh, and the solution u
can be extended to Ωh so that −∆u = f on Ωh, we can introduce the new unknown
w ∈ H1(Ωh) such that u = φw and the boundary condition on Γ is automatically
satisfied. An integration by parts yields then

(1.3)

∫

Ωh

∇(φw) · ∇(φv) −
∫

∂Ωh

∂

∂n
(φw)φv =

∫

Ωh

fφv, ∀v ∈ H1(Ωh).

Given a finite element approximation φh to φ on the mesh Th and a finite element
space Vh on Th, one can then try to search for wh ∈ Vh such that the equality in (1.3)
with the subscripts h everywhere is satisfied for all the test functions vh ∈ Vh and to
reconstruct an approximate solution uh to (1.1) as φhwh. These considerations are
very formal and, not surprisingly, such a method does not work as is. We shall show
however that it becomes a valid scheme once a proper stabilization in the vein of the
Ghost penalty [3] is added. The details on the stabilization and on the resulting finite
element scheme are given in the next section.

Our method shares many features with other finite elements methods on non-
matching meshes, such as XFEM [13, 12, 16, 10] or CutFEM [5, 6, 7, 4]. Unlike
the present work, the integrals over Ω are kept in XFEM or CutFEM discretizations,
which is cumbersome in practice since one needs to implement the integration on the
boundary Γ and on parts of mesh elements cut by the boundary. The first attempt to
alleviate this practical difficulty was done in [11] with method that does not require
to perform the integration on the cut elements, but needs still the integration on Γ.
In the present article, we fully avoid any non trivial numerical integration: all the
integration in φ-FEM is performed on the whole mesh elements, and there are no
integrals on Γ. We also note that an easily implementable version of φ-FEM is here
developed for Pk finite elements of any order k ≥ 1. This should be contrasted with
the situation in CutFEM where some additional terms should be added in order to
achieve the optimal Pk accuracy if k > 1, cf. [8].

The article is structured as follows: our φ-FEM method is presented in the next
section. We also give there the assumptions on the level-set φ and on the mesh, and
announce our main result: the a priori error estimate for φ-FEM. We work with
standard continuous Pk finite elements on a simplicial mesh and prove the optimal
order hk for the error in the H1 norm and the (slightly) suboptimal order hk+1/2 for
the error in the L2 norm. The proofs of these estimates are the subject of Section
3. Moreover, we prove in Section 4 that the associated finite element matrix has the
condition number of order 1/h2, the same as that of a standard finite element method.
Some numerical illustrations are given in Section 5.

2. Definitions, assumptions, description of φ-FEM, and the main re-

sult. We recall that we work with a bounded domain Ω ⊂ O ⊂ R
d (d = 2, 3) with

boundary Γ given by a level-set φ as in (1.2). We assume that φ is sufficiently smooth
and behaves near Γ as the signed distance to Γ after an appropriate change of local
coordinates. More specifically, we fix an integer k ≥ 1 and introduce the following

Assumption 2.1. The boundary Γ can be covered by open sets Oi, i = 1, . . . , I
and one can introduce on every Oi local coordinates ξ1, . . . , ξd with ξd = φ such that
all the partial derivatives ∂αξ/∂xα and ∂αx/∂ξα up to order k + 1 are bounded by
some C0 > 0. Morover, |φ| ≥ m on O \ ∪i=1,...,IOi with some m > 0.

Let T O
h be a quasi-uniform simplicial mesh on O of mesh size h, meaning that

diam(T ) ≤ h and ρ(T ) ≥ βh for all simplexes T ∈ T O
h with some mesh regularity
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parameter β > 0 (ρ(T ) stands for the radius of the largest ball inscribed in T ).
Consider, for an integer l ≥ 1, the finite element space

V
(l)
h,O = {vh ∈ H1(O) : vh|T ∈ Pl(T ) ∀ T ∈ T O

h }.

Introduce an approximate level-set φh ∈ V
(l)
h,O by

(2.1) φh := I
(l)
h,O(φ)

where I
(l)
h,O is the standard Lagrange interpolation operator on V

(l)
h,O. We shall use this

to approximate the physical domain Ω = {φ < 0} with smooth boundary Γ = {φ =
0} by the domain {φh < 0} with the piecewise polynomial boundary Γh = {φh =
0}. We employ φh rather than φ in our numerical method in order to simplify its
implementation (all the integrals in the forthcoming finite element formulation will
involve only the piecewise polynomials). This feature will also turn out crucial in our
theoretical analysis.

We now introduce the computational mesh Th as the subset of T O
h composed

of the triangles/tetrahedrons having a non-empty intersection with the approximate
domain {φh < 0}. We denote the domain occupied by Th by Ωh, i.e.

Th := {T ∈ T O
h : T ∩ {φh < 0} 6= ∅} and Ωh = (∪T∈Th

T )o.

Remark 2.2. Note that we do not necessarily have Ω ⊂ Ωh. Indeed some mesh
elements can be cut by the exact boundary {φ = 0} but not with the approximate
one {φh = 0}. Such a mesh element will not be part of Th although it contains a
small portion of Ω.

Fix an integer k ≥ 1 (the same k as in Assumption 2.1) and consider the finite
element space

V
(k)
h = {vh ∈ H1(Ωh) : vh|T ∈ Pk(T ) ∀ T ∈ Th}.

The φ-FEM approximation to (1.1) is introduced as follows: find wh ∈ V
(k)
h such that:

(2.2) ah(wh, vh) = lh(vh) for all vh ∈ V
(k)
h ,

where the bilinear form ah and the linear form lh are defined by

(2.3) ah(w, v) :=

∫

Ωh

∇(φhw) · ∇(φhv)−
∫

∂Ωh

∂

∂n
(φhw)φhv +Gh(w, v)

and

lh(v) :=

∫

Ωh

fφhv +Grhs
h (v),

with Gh and Grhs
h standing for

Gh(w, v) := σh
∑

E∈FΓ
h

∫

E

[
∂

∂n
(φhw)

] [
∂

∂n
(φhv)

]

+ σh2
∑

T∈T Γ
h

∫

T

∆(φhw)∆(φhv)
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and

Grhs
h (v) := −σh2

∑

T∈T Γ
h

∫

T

f∆(φhv)

where σ > 0 is an h-independent stabilization parameter, T Γ
h ⊂ Th contains the mesh

elements cut by the approximate boundary Γh = {φh = 0}, i.e.

(2.4) T Γ
h = {T ∈ Th : T ∩ Γh 6= ∅}, ΩΓ

h :=
(

∪T∈T Γ
h
T
)o

.

and FΓ
h collects the interior facets of the mesh Th either cut by Γh or belonging to a

cut mesh element

FΓ
h = {E (an internal facet of Th) such that ∃T ∈ Th : T ∩ Γh 6= ∅ and E ∈ ∂T }.

The brackets inside the integral over E ∈ FΓ
h in the formula for Gh stand for the

jump over the facet E.

Remark 2.3. The termGh in ah is the stabilization which differentiate the method
introduced here from its naive version (1.3) from the Introduction. The first part in
Gh actually coincides with the ghost penalty as introduced in [3] for P1 finite elements.
We add here another term involving the laplacian of φhwh. To make the stabilization
consistent, this term is compensated by yet another term on the right-hand side –
Grhs

h . Indeed, φhwh should approximate the exact solution u and −∆u = f . We
shall show that such a stabilization makes the bilinear form ah coercive on Pk finite
elements of any order k ≥ 1. Note that the usual choice for the ghost stabilization in
the CutFEM literature is more complicated in the case of Pk elements, k > 1, cf [7]:
it involves the jumps of higher order normal derivatives up to the order k. We believe
that our additional stabilization with the laplacians could be used in the CutFEM
context as well. In this way, one would avoid the derivatives of order > 2 even on
polynomials of degree k > 2 making the implementation somewhat simpler.

We shall also need the following assumptions on the mesh Th, more specifically
on the intersection of elements of Th with the approximate boundary Γh = {φh = 0}.
This assumption is normally satisfied for h small enough, cf. the discussion in [11].

Assumption 2.4. The approximate boundary Γh can be covered by element patch-
es {Πi}i=1,...,NΠ

having the following properties:
• Each patch Πi is a connected set composed of a mesh element Ti ∈ Th\T Γ

h and
some mesh elements cut by Γh. More precisely, Πi = Ti ∪ ΠΓ

i with ΠΓ
i ⊂ T Γ

h

containing at most M mesh elements;
• T Γ

h = ∪NΠ

i=1Π
Γ
i ;

• Πi and Πj are disjoint if i 6= j.

In what follows, ‖ · ‖k,D (resp. | · |k,D) denote the norm (resp. the semi-norm) in
the Sobolev space Hk(D) with an integer k ≥ 0 where D can be a domain in R

d or a
(d− 1)-dimensional manifold.

Theorem 2.5. Suppose that Assumptions 2.1 and 2.4 hold true, l ≥ k, the mesh
Th is quasi-uniform, and f ∈ Hk(Ωh ∪ Ω). Let u ∈ Hk+2(Ω) be the solution to (1.1)

and wh ∈ V
(k)
h be the solution to (2.2). Denoting uh := φhwh, it holds

(2.5) |u− uh|1,Ω∩Ωh
≤ Chk‖f‖k,Ω∪Ωh
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with a constant C > 0 depending on the constants in Assumptions 2.1, 2.4 (and thus
depending on the regularity of φ), and on the mesh regularity, but independent of h,
f , and u. Moreover, supposing Ω ⊂ Ωh

(2.6) ‖u− uh‖0,Ω ≤ Chk+1/2‖f‖k,Ωh

with a constant C > 0 of the same type.

3. Proof of the a priori error estimate. This section is devoted to the proof
of Theorem 2.5. We first give some preliminary results, starting with a Hardy-type
inequality which will allow us to properly introduce the new unknown w = u/φ. This
will be followed by some technical lemmas, mostly about the properties of functions

of the form φhvh with vh ∈ V
(k)
h .

3.1. A Hardy-type inequality.

Lemma 3.1. We assume that the domain Ω is given by the level-set φ, cf. (1.2),
and satisfies Assumption 2.1. Then, for any u ∈ Hk+1(O) vanishing on Γ,

∥
∥
∥
∥

u

φ

∥
∥
∥
∥
k,O

≤ C‖u‖k+1,O

with C > 0 depending only on the constants in Assumption 2.1.

Proof. The proof is decomposed into three steps:
Step 1. We start in the one dimensional setting and adapt the proof oF Hardy’s

inequality from [14]. Let u : R → R be a C∞ function with compact support such
that u(0) = 0. Set w(x) = u(x)/x for x 6= 0. We shall prove that w can be extended
to a C∞ function on R and, for any integer s ≥ 0,

(3.1)

(∫ ∞

−∞

|w(s)(x)|2 dx
)1/2

≤ C

(∫ ∞

−∞

|u(s+1)(x)|2 dx
)1/2

with C depending only on s.
Observe, for any x > 0,

w(x) =
u(x)

x
=

1

x

∫ x

0

u′(t)dt =

∫ 1

0

u′(xt)dt.

Hence

(3.2) w(s)(x) =

∫ 1

0

u(s+1)(xt)tsdt.

We have now by the integral version of Minkowski’s inequality

(∫ ∞

0

|w(s)(x)|2 dx
)1/2

=

(
∫ ∞

0

∣
∣
∣
∣

∫ 1

0

u(s+1)(xt)tsdt

∣
∣
∣
∣

2

dx

)1/2

≤
∫ 1

0

(∫ ∞

0

|u(s+1)(xt)|2 dx
)1/2

tsdt = C

(∫ ∞

0

|u(s+1)(x)|2 dx
)1/2

with C =
∫ 1

0 ts−1/2dt = 1/(s+ 1/2). Applying the same argument to negative x we
also have

(∫ 0

−∞

|w(s)(x)|2 dx
)1/2

≤ C

(∫ 0

−∞

|u(s+1)(x)|2 dx
)1/2

.
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Adding this to the preceding bound on (0,+∞) we get (3.1) assuming that w(s) is
continuous at x = 0. To prove this last point, we pass to the limit x → 0+ in (3.2) to
see that limx→0+ w(s)(x) = u(s+1)(0)/(s + 1). The same formula holds for the limit
as x → 0−. This means that w is continuous if we define w(0) = u′(0) and w(s)(0)
exists for all s.

Step 2. Let now u : Rd → R be a compactly supported C∞ function vanishing
at xd = 0 and set w = u/xd. We shall prove

(3.3) |w|k,Rd ≤ C|u|k+1,Rd

with C depending only on k.
To keep things simple, we give here the proof for the case d = 2 only (the case

d = 3 is similar but would involve more complicated notations). Take any integers

t, s ≥ 0 with t+ s = k, apply (3.1) to ∂tw
∂xt

1

= 1
x2

∂tu
∂xt

1

treated as a function of x2 (note

that ∂tu
∂xt

1

vanishes at x2 = 0) and then integrate with respect to x1. This gives

∥
∥
∥
∥

∂kw

∂xt
1∂x

s
2

∥
∥
∥
∥
0,Rd

≤ C

∥
∥
∥
∥

∂k+1u

∂xt
1∂x

s+1
2

∥
∥
∥
∥
0,Rd

.

Thus,

|w|2k,Rd =

k∑

s=0

∥
∥
∥
∥

∂kw

∂xk−s
1 ∂xs

2

∥
∥
∥
∥

2

0,Rd

≤ C2
k∑

s=0

∥
∥
∥
∥

∂k+1u

∂xk−s
1 ∂xs+1

2

∥
∥
∥
∥

2

0,Rd

≤ C2|u|2k+1,Rd

so that (3.3) is proved.
Step 3. Consider finally the domains Ω ⊂ O as announced in the statement of

this Lemma, let u be a C∞ function on O vanishing on Γ, and set w = u/φ. Assume
first that u is compactly supported in Ol, one of the sets forming the cover of Γ as
announced in Assumption 2.1. Recall the local coordinated ξ1, . . . , ξd on Ol with
ξd = φ and denote by û (resp. ŵ) the function u (resp. w) treated as a function of
ξ1, . . . , ξd. Since ŵ = û/ξd, (3.3) implies ‖ŵ‖k,Rd ≤ C‖û‖k+1,Rd . Passing from the
coordinates x1, . . . , xd to ξ1, . . . , ξd and backwards we conclude ‖w‖k,Ol

≤ C‖u‖k+1,Ol

with a constant C that depends on the maximum of partial derivatives ∂αx/∂ξα up
to order k and that of ∂αξ/∂xα up to order k + 1. Introducing a partition of unity
subject to the cover {Ol} we can now easily prove ‖w‖k,O ≤ C‖u‖k+1,O noting that
1/φ is bounded outside ∪l{Ol}. This estimate holds also true for u ∈ Hk+1(O) by
density of C∞ in Hk+1.

Remark 3.2. Assumption 2.1 used in the lemma above implies in particular that φ
is of class Ck+1, and the constant C0 form this Assumption serves as an upper bound
for the norm of φ in Ck+1. Note that, this can be relaxed. For example, in the case
k = 0, it suffices to require that φ is in W 1,∞. In particular, φ can be a continuous
piecewise polynomial function with its gradient bounded almost everywhere by C0.

3.2. Some technical lemmas.

Lemma 3.3. Let T be a triangle/tetrahedron, E one of its sides and p a polynomial
on T of degree l ≥ 0 such that p = ∂p

∂n = 0 on E and ∆p = 0 on T . Then p = 0 on T .

Proof. Let us consider only the 2D case (3D is similar). Without loss of generality,
we can assume that E lies on on the x-axis in (x, y) coordinates. Let p =

∑
pijx

iyj

with i, j ≥ 0, i + j ≤ l as above. We shall prove by induction on m = 0, 1, . . . , l
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that pim = 0, ∀i. Indeed, this is valid for m = 0, 1 since p(x, 0) =
∑

i pi0x
i = 0 and

∂p
∂y (x, 0) =

∑

i pi1x
i = 0. Now, ∆p = 0 implies for all indices i, j ≥ 0

(i+ 2)(i+ 1)pi+2,j + (j + 2)(j + 1)pi,j+2 = 0

so that pim = 0, ∀i implies pi,m+2 = 0, ∀i.
Recall the definition of the submesh T Γ

h and introduce the correspoinding domain
ΩΓ

h (2.4). The following lemma extends a similar result from [11] where it was proved
for piecewise linear finite elements.

Lemma 3.4. Under Assumption 2.4, for any β > 0 and s ∈ N
∗ one can choose

0 < α < 1 depending only on the mesh regularity and s such that, for each vh ∈ V
(s)
h ,

(3.4) |vh|21,ΩΓ
h

≤ α|vh|21,Ωh
+ βh

∑

E∈FΓ
h

∥
∥
∥
∥

[
∂vh
∂n

]∥
∥
∥
∥

2

0,E

+ βh2
∑

T∈T Γ
h

‖∆vh‖20,T .

Proof. Choose any β > 0, consider the decomposition of ΩΓ
h in element patches

{Πk} as in Assumption 2.4, and introduce

(3.5) α := max
Πk,vh 6=0

|vh|21,ΠΓ
k

− βh
∑

E∈Fk

∥
∥
[
∂vh
∂n

]∥
∥
2

0,E
− βh2

∑

T⊂Πk
‖∆vh‖20,T

|vh|21,Πk

,

where the maximum is taken over all the possible configurations of a patch Πk al-
lowed by the mesh regularity and over all the piecewise polynomial functions on Πk

(polynomials of degree ≤ s). The subset Fk ⊂ FΓ
h gathers the edges internal to Πk.

Note that the quantity under the max sign in (3.5) is invariant under the scaling
transformation x 7→ hx and is homogeneous with respect to vh. Recall also that the
patch Πk contains a most M elements. Thus, the maximum is indeed attained since
it is taken over a bounded set in a finite dimensional space.

Clearly, α ≤ 1. Supposing α = 1 would lead to a contradiction. Indeed, if α = 1
then we can take Πk, vh yielding this maximum and suppose without loss of generality
|vh|1,Πk

= 1. We observe then

|vh|21,Tk
+ βh

∑

E∈Fk

∥
∥
∥
∥

[
∂vh
∂n

]∥
∥
∥
∥

2

0,E

+ βh2
∑

T⊂Πk

‖∆vh‖20,T = 0

since |vh|21,Πk
= |vh|21,Tk

+ |vh|21,ΠΓ
k

. This implies vh = c = const on Tk,
[
∂vh
∂n

]
= 0 on

all E ∈ Fk, and ∆vh = 0 on all T ⊂ Πk. Thus applying Lemma 3.3 to vh − c, we
deduce that vh = c on Πk, which contradicts |vh|1,Πk

= 1.
This proves α < 1. We have thus

|vh|21,ΠΓ
k

≤ α|vh|21,Πk
+ βh

∑

E∈Fk

∥
∥
∥
∥

[
∂vh
∂n

]∥
∥
∥
∥

2

0,E

+ βh2
∑

T⊂Πk

‖∆vh‖20,T

for all vh ∈ Vh and all the admissible patches Πk. Summing this over Πk, k =
1, . . . , NΠ yields (3.4).

Lemma 3.5. For all vh ∈ V
(k)
h

(3.6) ‖φhvh‖0,ΩΓ
h
≤ Ch |φhvh|1,ΩΓ

h

with a constant C > 0 depending only on the regularity of Th.
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Proof. Take any T ∈ T Γ
h and let ph = φhvh on T . This is a polynomial in Pk+l

vanishing at at least one point of T . We want to prove

(3.7) ‖ph‖0,T ≤ ChT |ph|1,T

with hT = diam(T ), which would entail (3.6) by summing over all T ∈ T Γ
h . To prove

(3.7), we consider the following supremum

(3.8) C = sup
ph 6=0,T

‖ph‖0,T
hT |ph|1,T

taking over all the polynomials in Pk+l vanishing at a point of T and all the simplexes
T satisfying the regularity assumption hT /ρ(T ) ≥ β. Note that the denominator in
(3.8) never vanishes if ph 6= 0. Indeed, |ph|1,T = 0 would imply ph = 0 since ph
vanishes at a point. By homogeneity, the supremum in (3.8) can be restricted to ph
with ‖ph‖0,T = 1 and to simplexes T with hT = 1. This supremum is thus taken over
a closed bounded set in a finite dimensional space so that it is attained. This means
that C is finite which entails (3.7) and (3.6).

Remark 3.6. Inequality (3.6) is also valid on Ωh \Ω instead of ΩΓ
h . Typically, we

have any way Ωh \Ω ⊂ ΩΓ
h. But it can happen that the real boundary Γ goes slightly

outside of ΩΓ
h , which is defined by intersections with Γh. To deal with this situations,

we can add more neighbor mesh elements into ΩΓ
h and prove

(3.9) ‖φhvh‖0,Ωh\Ω
≤ Ch |φhvh|1,Ωh

Lemma 3.7. For all vh ∈ V
(k)
h

(3.10)
∑

E∈FΓ
h

‖φhvh‖20,E ≤ Ch|φhvh|21,Ωh

and

(3.11) ‖φhvh‖20,∂Ωh
≤ Ch|φhvh|21,Ωh

with a constant C > 0 depending only on the regularity of Th.
Proof. Let E ∈ FΓ

h . Recall the well-known trace inequality

(3.12) ‖v‖20,E ≤ C

(
1

h
‖v‖20,T + h|v|21,T

)

for each v ∈ H1(E). Summing this over all E ∈ FΓ
h gives

∑

E∈FΓ
h

‖φhvh‖20,E ≤ C

(
1

h
‖φhvh‖20,ΩΓ

h

+ h|φhvh|21,ΩΓ
h

)

leading, in combination with (3.6), to (3.10). The proof of (3.11) is similar.

Lemma 3.8. Under Assumption 2.1, it holds for all v ∈ Hs(Ωh) with integer
1 ≤ s ≤ k + 1, v vanishing on Ω,

(3.13) ‖v‖0,Ωh\Ω
≤ Chs ‖v‖s,Ωh\Ω

.
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Proof. Consider the 2D case (d = 2). For simplicity, we can assume that v is
C∞ regular and pass to v ∈ Hs(Ωh) by density. By Assumption 2.1, we can pass
to the local coordinates ξ1, ξ2 on every set Ok covering Γ assuming that ξ1 varies
between 0 and L and, for any ξ1 fixed, ξ2 varies on Ωh \Ω from 0 to some b(ξ1) with
0 ≤ b(ξ1) ≤ Ch. We observe using the bounds on the mapping (x1, x2) 7→ (ξ1, ξ2)

‖v‖20,(Ωh\Ω)∩Ok
≤ C

∫ L

0

∫ b(ξ1)

0

v2(ξ1, ξ2)dξ2dξ1

(recall that
∂αv

∂ξα2
(ξ1, 0) = 0 for α = 0, . . . , s-1 and b ≤ Ch)

= C

∫ L

0

∫ b(ξ1)

0

(
∫ ξ2

0

(ξ2 − t)s−1

(s− 1)!

∂sv

∂ξs2
(ξ1, t)dt

)2

dξ2dξ1

≤ C

∫ L

0

h2s

∫ b(ξ1)

0

∣
∣
∣
∣

∂sv

∂ξs2
(ξ1, t)

∣
∣
∣
∣

2

dtdξ1

≤ Ch2s|v|2s,(Ωh\Ω)∩Ok
.

Summing over all neighbourhoods Ok gives (3.13). The proof in the 3D case is the
same up to the change of notations.

3.3. Coercivity of the bilinear form ah.

Lemma 3.9. Under Assumption 2.4, the bilinear form ah is coercive on V
(k)
h with

respect to the norm

9vh9h :=
√

|φhvh|21,Ωh
+Gh(vh, vh)

i.e. ah(vh, vh) ≥ c 9 vh92
h for all vh ∈ V

(k)
h with c > 0 depending only on the mesh

regularity and on the constants in Assumption 2.4.

Proof. Let vh ∈ V
(k)
h and Bh be the strip between Γh and ∂Ωh, i.e. Bh = {φh >

0} ∩ Ωh. Since φhvh = 0 on Γh,

∫

∂Ωh

∂(φhvh)

∂n
φhvh =

∫

∂Bh

∂(φhvh)

∂n
φhvh

=
∑

T∈T Γ
h

∫

∂(Bh∩T )

∂(φhvh)

∂n
φhvh −

∑

T∈T Γ
h

∑

E∈Fcut
h

(T )

∫

Bh∩E

∂(φhvh)

∂n
φhvh,

where T Γ
h is defined in (2.4) and Fcut

h (T ) regroups the facets of a mesh element T cut
by Γh. By divergence theorem,

∫

∂Ωh

∂(φhvh)

∂n
φhvh =

∑

T∈T Γ
h

∫

Bh∩T

|∇(φhvh)|2 +
∑

T∈T Γ
h

∫

Bh∩T

∆(φhvh)φhvh

−
∑

E∈FΓ
h

∫

E∩Bh

φhvh

[
∂φhvh
∂n

]

.
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Substituting this into the definition of ah yields

(3.14)

ah(vh, vh) =

∫

Ωh

|∇(φhvh)|2−
∑

T∈T Γ
h

∫

∂Bh∩T

|∇(φhvh)|2−
∑

T∈T Γ
h

∫

Bh∩T

∆(φhvh)φhvh

+
∑

F∈FΓ
h

∫

F∩Bh

φhvh

[
∂(φhvh)

∂n

]

+σh2
∑

T∈T Γ
h

∫

T

|∆(φvh)|2+σh
∑

E∈FΓ
h

∫

E

[
∂(φhvh)

∂n

]2

.

Since Bh ⊂ ΩΓ
h (cf. (2.4)), applying Lemma 3.4 to φhvh ∈ V

(k+l)
h gives

∑

T∈T Γ
h

∫

∂Bh∩T

|∇(φhvh)|2 ≤ α

∫

Ωh

|∇(φhvh)|2 + βh
∑

E∈FΓ
h

∫

E

[
∂(φhvh)

∂n

]2

+ βh2
∑

T∈T Γ
h

∫

T

|∆(φhvh)|2.

Moreover, by Young inequality, (3.6) and (3.10), we obtain for any ε > 0

∑

T∈T Γ
h

∫

Bh∩T

∆(φhvh)φhvh ≤ h2

2ε

∑

T∈T Γ
h

∫

T

|∆(φhvh)|2 + Cε

∫

Ωh

|∇(φhvh)|2

and

∑

F∈FΓ
h

∫

F∩Bh

φhvh

[
∂(φhvh)

∂n

]

≤ h

2ε

∑

E∈FΓ
h

∫

E

[
∂(φhvh)

∂n

]2

+ Cε|∇(φvh)|2.

Thus, putting the last 3 bounds into (3.14) we arrive at

a(vh, vh) ≥ (1− α− Cε) |φhvh|21,Ωh

+

(

σ − β − 1

2ε

)

h
∑

E∈FΓ
h

∥
∥
∥
∥

[
∂(φhvh)

∂n

]∥
∥
∥
∥

2

0,E

+

(

σ − β − 1

2ε

)

h2
∑

T∈T Γ
h

∫

T

|∆(φvh)|2.

This leads to the conclusion taking ε sufficiently small and σ sufficiently big.

3.4. Proof of the H1 error estimate in Theorem 2.5. Since f ∈ Hk(Ω),
the solution u of (1.1) belongs to Hk+2(Ω) (see [9, p. 323]) and can be extended by
a function ũ in Hk+2(O), cf. [9, p. 257], such that ũ = u on Ω and

(3.15) ‖ũ‖k+2,Ωh
≤ ‖ũ‖k+2,O ≤ C‖u‖k+2,Ω ≤ C‖f‖k,Ω.

Let w = ũ/φ. By Lemma 3.1,

(3.16) |w|k+1,Ωh
≤ C‖u‖k+2,O ≤ C‖f‖k,Ω.



φ-FEM 11

Introduce the bilinear form āh, similar to ah as defined in (2.3) but with φ instead of
φh multiplying the trial function:

āh(w, v) =

∫

Ωh

∇(φw) · ∇(φhv)−
∫

∂Ωh

∂

∂n
(φw)φhv

+ σh
∑

E∈FΓ
h

∫ [
∂

∂n
(φw)

] [
∂

∂n
(φhv)

]

+ σh2
∑

T∈Th

∫

T

∆(φw)∆(φhv).

Since φw = ũ ∈ H2(Ωh), an integration by parts yields

āh(w, vh) =

∫

Ωh

f̃φhvh − σh2
∑

T∈T Γ
h

∫

T

f̃∆(φhvh), ∀vh ∈ Vh

with f̃ = −∆ũ on Ωh. Hence,

(3.17) ah(wh, vh)− āh(w, vh) =

∫

Ωh

(f − f̃)φhvh − σh2
∑

T∈T Γ
h

∫

T

(f − f̃)∆(φhvh).

Put vh = wh − Ihw. The last equality can be rewritten as

ah(vh, vh) = āh(w, vh)− ah(Ihw, vh)

+

∫

Ωh

(f − f̃)φhvh − σh2
∑

T∈T Γ
h

∫

T

(f − f̃)∆(φhvh)

=

∫

Ωh

∇(φw − φhIhw) · ∇(φhvh)−
∫

∂Ωh

∂

∂n
(φhw − φIhw)φhvh

+ σh
∑

E∈FΓ
h

∫ [
∂

∂n
(φw − φhIhw)

] [
∂

∂n
(φhvh)

]

+ σh2
∑

T∈T Γ
h

∫

T

∆(φw − φhIhw)∆(φhvh)

+

∫

Ωh

(f − f̃)φhvh − σh2
∑

T∈Th

∫

T

(f − f̃)∆(φhvh).

By Lemma 3.9, Young inequality, and recalling f = f̃ on Ω, we now get

c 9 vh92
h ≤ 1

2ε
|φw − φhIhw|21,Ωh

+
h

2ε

∥
∥
∥
∥

∂

∂n
(φw − φhIhw)

∥
∥
∥
∥

2

0,∂Ωh

+
σ2h

2ε

∑

E∈FΓ
h

∥
∥
∥
∥

[
∂

∂n
(φhw − φIhw)

]∥
∥
∥
∥

2

0,E

+
σ2h2

2ε

∑

T∈T Γ
h

‖∆(φhw − φIhw)‖20,T

+
(1 + σ2)h2

2ε
‖f − f̃‖20,Ωh\Ω

+
ε

2



|φhvh|21,Ωh
+

1

h
‖φhvh‖20,∂Ωh

+ h
∑

E∈FΓ
h

∥
∥
∥
∥

[
∂

∂n
(φhvh)

]∥
∥
∥
∥

2

0,E

+2h2
∑

T∈T Γ
h

‖∆(φhvh)‖20,T +
1

h2
‖φhvh‖20,Ωh\Ω



 .
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We now show how to absorb the term with a coefficient ε by the left-hand side. The
first contribution |φhvh|1,Ωh

and the sums over FΓ
h and T Γ

h are evidently controlled
by 9vh9h. Remark 3.6 and Lemma 3.7 give

‖φhvh‖0,Ωh\Ω ≤ Ch|φhvh|1,Ωh

and
‖φhvh‖0,∂Ωh

≤ C
√
h|φhvh|1,Ωh

so that these terms are also controlled by 9vh9h. Taking ε small enough, we conclude

(3.18)

9 vh9h ≤ C

(

|φw − φhIhw|21,Ωh
+ h

∥
∥
∥
∥

∂

∂n
(φw − φhIhw)

∥
∥
∥
∥

2

0,∂Ωh

+h2
∑

T∈T Γ
h

‖∆(φhw − φIhw)‖20,T + h
∑

E∈FΓ
h

∥
∥
∥
∥

∂

∂n
(φhw − φIhw)

∥
∥
∥
∥

2

0,E

+h2‖f − f̃‖20,Ωh\Ω

) 1
2

.

We now estimate each term in the right-hand side of (3.18). By triangular inequality,

|φw − φhIhw|1,Ωh
≤ |(φ − φh)w|1,Ωh

+ |φh(w − Ihw)|1,Ωh

≤ ‖∇(φ− φh)‖L∞(Ωh)‖w‖0,Ωh
+ ‖φ− φh‖L∞(Ωh)|w|1,Ωh

+ ‖∇φh‖L∞(Ωh)‖w − Ihw‖0,Ωh
+ ‖φh‖L∞(Ωh)|w − Ihw|1,Ωh

.

We continue using the classical interpolation bounds (see for instance [2])

|φw − φhIhw|1,Ωh
≤ Chk(|φ|Wk+1,∞(Ωh)‖w‖0,Ωh

+ |φ|Wk,∞(Ωh)|w|1,Ωh

+ |φ|W 1,∞(Ωh)|w|k,Ωh
+ ‖φ‖L∞(Ωh)|w|k+1,Ωh

)

≤ Chk‖φ‖Wk+1,∞(Ωh)‖w‖k+1,Ωh
.

Similarly,

(
∑

T∈Th

|φw − φhIhw|22,T

) 1
2

≤ Chk−1‖φ‖Wk+1,∞(Ωh)‖w‖k+1,Ωh
.

Combining this with the trace inequality (3.12), we conclude

∥
∥
∥
∥

∂

∂n
(φhw − φIhw)

∥
∥
∥
∥

2

0,∂Ωh

+
∑

E∈FΓ
h

∥
∥
∥
∥

[
∂

∂n
(φhw − φIhw)

]∥
∥
∥
∥

2

0,E

≤ C




1

h

∑

T∈T Γ
h

|φhw − φIhw|21,T + h
∑

T∈T Γ
h

|φhw − φIhw|22,T





≤ Ch2k−1‖φ‖2Wk+1,∞(Ωh)
‖w‖2k+1,Ωh

.
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Finally, we get by Lemma 3.8 applied to f − f̃ which vanishes on Ω,

(3.19) ‖f − f̃‖0,Ωh\Ω ≤ Chk−1‖f − f̃‖k−1,Ωh\Ω ≤ Chk−1(‖f‖k−1,Ωh
+ ‖ũ‖k+1,Ωh

)

since f̃ = −∆ũ.
Putting all these bounds into (3.18), we get

(3.20) |φh(wh − Ihw)|1,Ωh
≤ 9vh9h ≤ Chk(‖w‖k+1,Ωh

+ ‖f‖k−1,Ωh
+ ‖ũ‖k+1,Ωh

).

We have absorbed ‖φ‖Wk+1,∞(Ωh) into the constant C in the bound above. Indeed,
the constants denoted by C in this proof are allowed to depend on the constants from
Assumption 2.1, which bound in particular ‖φ‖Wk+1,∞(Ωh). We shall follow the same
convention on constants C until the end of this proof.

By triangle inequality and interpolation bounds,

|u− φhwh|1,Ω∩Ωh
≤ |ũ− φhwh|1,Ωh

≤ |(φ − φh)w|1,Ωh
+ |φh(w − Ihw)|1,Ωh

+ |φh(Ihw − wh)|1,Ωh

≤ Chk(‖w‖k+1,Ωh
+ ‖f‖k−1,Ωh

+ ‖ũ‖k+1,Ωh
).

We have thus proven (2.5) taking into account the bounds (3.15) and (3.16).

3.5. Proof of the L2 error estimate in Theorem 2.5. Let z ∈ H3(Ω) be
solution to {

−∆z = u− uh in Ω,
z = 0 on Γ.

Extend it to Ωh by z̃ ∈ H3(Ωh) using an extension operator bounded in the H3 norm.
Set y = z̃/φ. Then

(3.21) |y|2,Ωh
≤ C|z̃|3,Ωh

≤ C‖u− uh‖1,Ω

thanks to Lemma 3.1 and to the elliptic regularity estimate. We also have

(3.22) ‖y‖1,Ωh
≤ C‖z̃‖2,Ωh

≤ C‖u− uh‖0,Ω.

By Lemma 3.1 from [11], we have for any v ∈ H1(ΩΓ
h)

(3.23) ‖v‖0,ΩΓ
h
≤ C

(√
h‖v‖0,Γ + h|v|1,ΩΓ

h

)

.

This is valid since ΩΓ
h is a band of thickness ∼ h around Γ. Note that the same

estimate also holds for ‖v‖Ωh\Ω (typically Ωh \Ω ⊂ ΩΓ
h, but even if it is not the case,

Ωh \ Ω is still a band of thickness ∼ h). In the case v = z̃, (3.23) gives

(3.24) ‖z̃‖0,ΩΓ
h
≤ Ch|z̃|1,ΩΓ

h
≤ Ch‖u− uh‖0,Ω

and, in the case v = ∇z̃,

(3.25) |z̃|1,ΩΓ
h
≤ C

(√
h‖∇z̃‖0,Γ + h|z̃|2,ΩΓ

h

)

≤ C
√
h‖z̃‖2,Ωh

≤ C
√
h‖u− uh‖0,Ω.

By integration by parts,

(3.26) ‖u− uh‖20,Ω =

∫

Ω

(u− uh)(−∆z) = −
∫

Γ

(u− uh)
∂z

∂n
+

∫

Ω

∇(u− uh) · ∇z.
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To treat the first term in (3.26), we remark first

∫

Γ

(u− uh)
∂z

∂n
≤ ‖u− uh‖0,Γ

∥
∥
∥
∥

∂z

∂n

∥
∥
∥
∥
0,Γ

≤ C‖u− uh‖0,Γ‖u− uh‖0,Ω.

Furthermore, since the distance between Γ and Γh is of order at least hk+1, we have

‖u− uh‖0,Γ ≤ C(‖ũ− uh‖0,Γh
+ h(k+1)/2|ũ− uh|1,Ωh

)

(recalling ũ = φw and φh = uh = 0 on Γh)

= C(‖(φ− φh)w‖0,Γh
+ h(k+1)/2|ũ− uh|1,Ωh

)

≤ C(hk+1‖w‖0,Γh
+ h(k+1)/2+k‖f‖k,Ωh

).

We have used here the already proven bound on |ũ − uh|1,Ωh
and the interpolation

error bound for φ− φh. We have thus thanks to Lemma 3.1,

‖u− uh‖0,Γ ≤ Chk+1(‖w‖1,Ωh
+ ‖f‖k,Ωh

) ≤ Chk+1(‖z̃‖2,Ωh
+ ‖f‖k,Ωh

)

≤ Chk+1(‖u− uh‖0,Ω + ‖f‖k,Ωh
).

Hence,

(3.27)

∫

Γ

(u − uh)
∂z

∂n
≤ Chk+1(‖u− uh‖20,Ω + ‖f‖k,Ωh

‖u− uh‖0,Ω).

The second term in (3.26) is treated by Galerkin orthogonality (3.17): for any

yh ∈ V
(k)
h

(3.28)

∫

Ω

∇(u− uh) · ∇z =

∫

Ωh

∇(φw − φhwh) · ∇(φy − φhyh)

︸ ︷︷ ︸

I

−
∫

Ωh\Ω

∇(φw − φhwh) · ∇(φy)

︸ ︷︷ ︸

II

+

∫

∂Ωh

∂

∂n
(φw − φhwh)(φhyh)

︸ ︷︷ ︸

III

− σh
∑

E∈FΓ
h

∫

E

[
∂

∂n
(φw − φhwh)

] [
∂

∂n
(φhyh)

]

− σh2
∑

T∈T Γ
h

∫

T

∆(φw − φhwh)∆(φhyh)

︸ ︷︷ ︸

IV

+

∫

Ωh

(f − f̃)φhyh − σh2
∑

T∈T Γ
h

∫

T

(f − f̃)∆(φhyh)

︸ ︷︷ ︸

V

.

We now estimate term by term the right-hand side of the above inequality taking
yh = Ĩhy with Ĩh the Clément interpolation operator on Th. We shall skip some
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tedious technical details as they are similar to thouse in the proof of the H1 error
estimate above. We recall that we do not track explicitly the dependence of constants
on the norms of φ.
Term I: by Cauchy-Schwartz, the already proven bound on |ũ− uh|1,Ωh

, and (3.21)

|I| ≤ C|ũ− uh|1,Ωh
|φy − φhyh|1,Ωh

≤ Chk+1‖f‖k,Ωh
‖y‖2,Ωh

≤ Chk+1‖f‖k,Ωh
‖ũ− uh‖1,Ω.

Term II: using (3.24) for z̃ = φy,

|II| ≤ |ũ− uh|1,Ωh
|z̃|1,Ωh\Ω ≤ Chk+1/2‖f‖k,Ωh

‖u− uh‖0,Ω.

Term III: applying the trace inequality on the mesh elements adjacent to ∂Ωh yields

|III| ≤




∑

T∈T Γ
h







1

h
|ũ− uh|21,T +

∑

T∈T Γ
h

h|ũ− uh|22,T











1/2

‖φhyh‖0,∂Ωh
.

The term with the sum over T ∈ T Γ
h can be further bounded using the triangle

inequality, interpolation estimates, and the bound (3.20) on vh = φh(wh − Ihw) as

(· · · )1/2 ≤
(
1

h
|ũ− φhIhw|21,ΩΓ

h

+ h|ũ− φhIhw|22,T
)1/2

+
1√
h

9 vh9h

≤ Chk−1/2‖f‖k,Ωh
.

Moreover, since the distance between Γh and ∂Ωh is of order h, we have

‖φh‖L∞(∂Ωh) ≤ Ch‖∇φh‖L∞(∂Ωh) ≤ Ch

and, by (3.22),
‖φhyh‖0,∂Ωh

≤ Ch‖y‖1,Ωh
≤ Ch‖u− uh‖0,Ω

so that
|III| ≤ Chk+1/2‖f‖k,Ωh

‖u− uh‖0,Ω.
Term IV: applying the trace inequality on the mesh elements adjacent to ∂Ωh yields

|IV | ≤ (Chk‖f‖k,Ωh
+ 9vh9h)Gh(yh, yh)

1/2 ≤ Chk‖f‖k,Ωh
Gh(yh, yh)

1/2

and by (3.25)

(3.29) Gh(yh, yh)
1/2 ≤ C

h
‖φhyh‖0,ΩΓ

h
≤ C‖yh‖0,ΩΓ

h

≤ C‖y‖0,ΩΓ
h
≤ C|z̃|1,ΩΓ

h
≤ C

√
h‖u− uh‖0,Ω.

Hence,
|IV | ≤ Chk+1/2‖f‖k,Ωh

‖u− uh‖0,Ω.
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Term V: by an inverse inequality and (3.19)

|V | ≤ ‖f − f̃‖0,Ωh\Ω‖φhyh‖0,Ωh\Ω ≤ Chk−1‖f‖k,Ωh
‖φhyh‖0,Ωh\Ω.

As we have already proved in (3.29)

‖φhyh‖0,ΩΓ
h
≤ Ch3/2‖u− uh‖0,Ω

we conclude
|V | ≤ Chk+1/2‖f‖k,Ωh

‖u− uh‖0,Ω.
Combining the bounds for the terms I–V in (3.28) with (3.27) and putting all this

into (3.26), we obtain by Young inequality

‖u− uh‖20,Ω ≤ C(hk+1‖u− uh‖20,Ω + hk+1/2‖f‖k,Ωh
‖u− uh‖0,Ω

+ hk+1‖f‖k,Ωh
‖u− uh‖1,Ω)

≤ Chk+1‖u− uh‖20,Ω +
C

ε
h2k+1‖f‖2k,Ωh

+ ε‖u− uh‖20,Ω + εh‖u− uh‖21,Ω.

By the already established estimate for |u− uh|1,Ω,

‖u− uh‖20,Ω ≤ C

(
1

ε
+ ε

)

h2k+1‖f‖2k,Ωh
+ (Chk+1 + ε+ εh)‖u− uh‖20,Ω

which proves (2.6) taking sufficiently small ε and supposing h small enough.

4. Conditioning of the system matrix. We are now going to prove that the
condition number of the finite element matrix associated to the bilinear form ah of
φ-FEM does not suffer from the introduction of the multiplication by φh: it is of
order 1/h2 on a quasi-uniform mesh of step h, similar to the standard FEM on a
fitted mesh.

Theorem 4.1 (Conditioning). Under Assumptions 2.1 and 2.4 and recalling
that the mesh Th is supposed to be quasi-uniform, the condition number κ(A) :=

‖A‖2‖A−1‖2 of the matrix A associated to the bilinear form ah on V
(k)
h , as in (2.3),

satisfies
κ(A) ≤ Ch−2.

Here, ‖ · ‖2 stands for the matrix norm associated to the vector 2-norm | · |2.
Before proving Theorem 4.1, we introduce some auxiliary results:

Lemma 4.2. Under the assumptions of Theorem 4.1, it holds for all wh ∈ V
(k)
h

ah(wh, wh) ≥ C‖wh‖20,Ωh
.

Proof. By Lemma 3.9, it holds for each wh ∈ V
(k)
h

ah(wh, wh) ≥ c 9 wh92
h ≥ c|φhwh|21,Ωh

.

We now denote uh = φhwh and apply Lemma 3.1 with k = 0 and φh instead of φ to
wh = uh/φh:

(4.1) ‖wh‖0,Ωh
≤ C‖uh‖1,Ωh

.
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This is justified by a possible relaxation of the hypotheses of Lemma 3.1 as outlined
in Remark 3.2. The constant in (4.1) will depend on ‖φh‖W 1,∞(Ωh) which is bounded
uniformly in h. Moreover, the local coordinates around Γ evoked in Assumption 2.1
can be reused to build the same around Γh.

Applying Poincaré inequality on the domain Ωin
h := {φh < 0} yields, as uh = 0

on Γh = ∂Ωin
h ,

‖uh‖0,Ωin
h

≤ C|uh|1,Ωin
h

with a constant that depends only on the diameter of Ωin
h and can be thus assumed

h-independent. Moreover, invoking Lemma 3.5 and observing Ωh \ Ωin
h ⊂ ΩΓ

h we
conclude that

(4.2) ‖uh‖0,Ωh
≤ C|uh|1,Ωh

.

Combining this with (4.1) we finish the proof as follows:

ah(wh, wh) ≥ c|uh|21,Ωh
≥ C‖uh‖21,Ωh

≥ C‖wh‖20,Ωh
.

Lemma 4.3. Under the assumptions of Theorem 4.1, it holds for all uh, wh ∈ V
(k)
h

ah(wh, vh) ≤
C

h2
‖wh‖0,Ω‖vh‖0,Ω.

Proof. It is sufficient to prove this statement for the case wh = vh. Let wh ∈
V

(k)
h . By definition of ah and Lemma 3.7,

ah(wh, wh) ≤ C|φhwh|21,Ωh
+C

√
h

∥
∥
∥
∥

∂(φhwh)

∂n

∥
∥
∥
∥
0,∂Ωh

|φhwh|1,Ωh
+Ch2

∑

T∈T Γ
h

|φhwh|22,T .

Using the inverse inequalities on V
(k+l)
h

∥
∥
∥
∥

∂(φhwh)

∂n

∥
∥
∥
∥
0,∂Ωh

≤ C√
h
‖φhwh‖0,Ωh

, |φhwh|1,Ωh
≤ C

h
‖φhwh‖0,Ωh

,

and |φhwh|2,T ≤ C
h2 ‖φhwh‖0,T yields

ah(wh, wh) ≤ C‖φhwh‖20,Ωh
≤ C‖wh‖20,Ωh

since φh is bounded uniformly in h.

Proof of Theorem 4.1. Denote the dimension of V
(k)
h by N and let us associate

any vh ∈ V
(k)
h with the vector v ∈ R

N contaning the expansion coefficients of vh in
the standard finite element basis. Recalling that the mesh is quasi-uniform and using
the equivalence of norms on the reference element, we can easily prove that

(4.3) C1h
d/2|v|2 ≤ ‖vh‖0,Ωh

≤ C2h
d/2|v|2.

Inequality (4.3) with Lemma 4.3 imply

‖A‖2 = sup
v∈RN

(Av,v)

|v|22
= sup

v∈RN

a(vh, vh)

|v|22
≤ Chd sup

vh∈Vh

a(vh, vh)

‖vh‖20
≤ Chd−2.

Similarly, (4.3) with Lemma 4.2 imply

‖A−1‖2 = sup
v∈RN

|v|22
(Av,v)

= sup
v∈RN

|v|22
a(vh, vh)

≤ C

hd
sup

vh∈Vh

‖vh‖20
a(vh, vh)

≤ C

hd
.

These estimates lead to the desired result.
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5. Numerical results. We have implemented φ-FEM in FEniCS Project [1]
and report here some results using uniform Cartesian meshes on a rectangle O as the
backgound mesh T O

h .

1st test case. Let Ω be the circle of radius
√
2/4 centered at the point (0.5, 0.5)

and the surrounding domain O = (0, 1)2. The level-set function φ giving this domain
Ω is taken as

(5.1) φ(x, y) = 1/8− (x− 1/2)2 − (y − 1/2)2.

We use φ-FEM to solve numerically Poisson-Dirichlet problem (1.1) with the exact
solution given by

(5.2) u(x, y) = φ(x, y) × exp(x)× sin(2πy).

The results with P1 finite elements are reported in Fig. 1. We give there the
evolution of the errors in L2 and H1 norms under the mesh refinement for φ-FEM
with stabilization parameter σ = 20 and for φ-FEM without stabilization, σ = 0. The
numerical results confirm the theoretically predicted optimal convergence orders (in
fact, the convergence order in the L2 norm is 2 and is thus better than in theory). We
also observe that the ghost stabilization is indeed crucial to ensure the convergence
of the method. The level-set φ is approximated here by a P1 finite element function
φh, i.e. we take l = k in (2.1). Note that the choice l = 2 is also possible and would
result in φh reproducing φ exactly. In practice, it produces an approximation uh of
nearly the same accuracy as those with l = 1. We choose thus not to report these
results here.

The condition number of the matrix produced by φ-FEM is numerically investi-
gated at Fig. 2. In accordance with Theorem 4.1, the condition number is of order
1/h2 at worst. We observe that the ghost stabilization (σ = 20) is necessary to obtain
this nice conditioning: the condition numbers produced by the naive method with
σ = 0 become much higher as h → 0. The influence of the stabilization parameter σ
on the accuracy of φ-FEM is investigated at Fig. 3. We observe that the accuracy
of the method is only slightly affected by the value of σ provided it is not taken too
small: σ in the range [0.1, 20] produce very similar errors, especially when measured
in the H1 semi-norm.

We finally describe the results obtained with higher order Pk finite elements,
k = 2, 3. The errors are reported in Fig. 4. The optimal convergence orders under
the mesh refinement are again observed (with the order (k+1) in the L2 norm, which
is thus better than in theory). The influence of the stabilization parameter σ on the
accuracy of φ-FEM with P2 finite elements is investigated at Fig. 5. We observe that
the method works fine and is robust with respect to the value of σ at least in the
range [0.1, 20] (the same as for the P1 elements).

2nd test case. We now choose domain Ω given by the level-set

(5.3) φ(x, y) = −(y − πx− π)× (y + x/pi− π)× (y − πx+ π)× (y + x/pi+ π).

It is thus the rectangle with corners
(

2π2

π2+1 ,
π3−π
π2+1

)

, (0, π),
(

− 2π2

π2+1 ,−π3−π
π2+1

)

, (0,−π).

We use φ-FEM to solve numerically Poisson-Dirichlet problem (1.1) in Ω with the
right-hand side given by

(5.4) f(x, y) = 1.
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Fig. 1. Relative errors of φ-FEM for the test case (5.1)–(5.2) and k = 1. Left: φ-FEM with
ghost penalty σ = 20; Right: φ-FEM without ghost penalty (σ = 0).
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Fig. 2. Condition numbers for φ-FEM in the test case (5.1) and k = 1. Left: φ-FEM with
ghost penalty σ = 20; Right: φ-FEM without ghost penalty (σ = 0).

This test case is not consistent with Assumption 2.1. We want here to test φ-FEM
outside of the setting where it is theoretically justified.

The results with P1 and P2 finite elements are reported in Fig. 6. Notwithstanding
the lack of theoretical justification, we observe the optimal convergence in the case
k = 1 and somewhat close to optimal convergence in the case k = 2. Note that φh is
approximated in both cases with Pk finite elements, i.e. l = k in (2.1). We do not
have the exact solution in this test case. We compare thus the φ-FEM solution uh

against a reference solution given by standard FEM on a sufficiently fine mesh fitted
to the rectangle Ω.

6. Conclusions. The numerical results from the last section confirm the theo-
retically predicted optimal convergence of φ-FEM in the H1 semi-norm. The conver-
gence in the L2 norm turns out to be also optimal, which is better than the theoretical
prediction. We have thus an easily implementable optimally convergent finite element
method suitable for non-fitted meshes and robust with respect to the cuts of the mesh
with the domain boundary.
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Fig. 4. Relative errors of φ-FEM for the test case (5.1)–(5.2). Left: k = 2; Right: k = 3.
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Fig. 5. Influence of the ghost penalty parameter σ on the relative errors for φ-FEM in the test
case (5.1)–(5.2) and k = 2. Left: ‖u− uh‖0,Ω/‖u‖0,Ω; Right: |u− uh|1,Ω/|u|1,Ω.
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Fig. 6. Relative errors of φ-FEM for the test case (5.3)–(5.4). Left: k = 1; Right: k = 2. The
reference solution uref is computed by a standard FEM on a sufficiently fine fitted mesh on Ω.

Of course, the scope of the present article is very limited and academic: we
only consider here the Poisson equation with homogeneous boundary conditions. An
extension to non-homogeneous Dirichlet u = g on Γ is straightforward if g is given in a
vicinity of Γ: one can the put uh = gh+φhwh with gh a finite element approximation
to g extended by 0 far from Γ. On the other hand, treating Neumann or Robin
boundary conditions would be a completely different matter. We hope that the ideas
from [11] could be reused under a φ-FEM flavor in this case as well. Future endeavors
should then be devoted to more complcated governing equations.
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