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A MASS CONSERVING MIXED STRESS FORMULATION FOR

STOKES FLOW WITH WEAKLY IMPOSED STRESS SYMMETRY

JAY GOPALAKRISHNAN, PHILIP L. LEDERER, AND JOACHIM SCHÖBERL

Abstract. We introduce a new discretization of a mixed formulation of the incom-
pressible Stokes equations that includes symmetric viscous stresses. The method is built
upon a mass conserving mixed formulation that we recently studied. The improvement
in this work is a new method that directly approximates the viscous fluid stress σ,
enforcing its symmetry weakly. The finite element space in which the stress is ap-
proximated consists of matrix-valued functions having continuous “normal-tangential”
components across element interfaces. Stability is achieved by adding certain matrix
bubbles that were introduced earlier in the literature on finite elements for linear elas-
ticity. Like the earlier work, the new method here approximates the fluid velocity u

using H(div)-conforming finite elements, thus providing exact mass conservation. Our
error analysis shows optimal convergence rates for the pressure and the stress variables.
An additional post processing yields an optimally convergent velocity satisfying exact
mass conservation. The method is also pressure robust.

1. Introduction

In this work we introduce a new method for the discretization of steady incompressible
Stokes system that includes symmetric viscous stresses. Let Ω ⊂ R

d be a bounded
domain with d = 2 or 3 having a Lipschitz boundary Γ := ∂Ω. Let u and p be the
velocity and the pressure, respectively. Given an external body force f : Ω → R

d and
kinematic viscosity ν̃ : Ω → R, the velocity-pressure formulation of the Stokes system is
given by











− div(2ν̃ε(u)) +∇p = f in Ω,

div(u) = 0 in Ω,

u = 0 on Γ,

(1)

where ε(u) = (∇u+(∇u)T)/2. By introducing a new variable σ = νε(u) where ν := 2ν̃,
equation (1) can be reformulated to

1

ν
dev(σ)− ε(u) = 0 in Ω,(2a)

div(σ)−∇p = −f in Ω,(2b)

div(u) = 0 in Ω,(2c)

u = 0 on Γ.(2d)

Key words and phrases. mixed finite element methods; incompressible flows; Stokes equations; weak
symmetry.
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We shall call formulation (2) the mass conserving mixed formulation with symmetric
stresses, or simply the MCS formulation. Although formulations (1) and (2) are formally
equivalent, the MCS formulation (2) demands less regularity of the velocity field u.
Many authors have studied this formulation previously [15, 14, 13, 12], including us [18].
In [18], following the others, we introduced a new variable σ = ν∇u, which is in general
nonsymmetric, and considered an analogous formulation (which was also called an MCS
formulation). The main novelty in [18] was that σ = ν∇u was set in a new function
spaceH(curl div,Ω) of matrix-valued functions whose divergence can continuously act on
elements ofH0(div,Ω). Accordingly, the appropriate velocity space there wasH0(div,Ω),
not H1

0 (Ω,R
2) as in the classical velocity-pressure formulation.

In contrast to [18], in this work we set σ = νε(u), not ν∇u. Our goal is to apply
what we learnt in [18] to produce a new method that provides a direct approximation
to the symmetric matrix function σ = νε(u). Being the viscous stress, this σ is of more
direct practical importance (than ν∇u). We shall seek σ in the same function space
H(curl div,Ω) that we considered in [18]. We have shown in [18] that matrix-valued
finite element functions with “normal-tangential” continuity across element interfaces
are natural for approximationg solutions in H(curl div,Ω). We shall continue to use
such finite elements here. It is interesting to note that in the HDG (hybrid discontin-
uous Galerkin) literature [11, 16] the potential importance of such normal-tangential
continuity was noted and arrived at through a completely different approach.

The main point of departure in this work, stemming from that fact that H(curl div,Ω)
contains non-symmetric matrix-valued functions, is that we impose the symmetry of
stress approximations weakly using Lagrange multipliers. This technique of imposing
symmetry weakly is widely used in finite elements for linear elasticity [1, 2, 3, 14]. In
particular, our analysis is inspired by the early work of Stenberg [30], who enriched the
stress space by curls of local element bubbles. (In fact, this idea was even used in a
Stokes mixed method [15], but their resulting method is not pressure robust.) These
enrichment curls lie in the kernel of the divergence operator and are only “seen” by the
weak-symmetry constraint allowing them to be used to prove discrete inf-sup stability.
While in two dimensions – assuming a triangulation into simplices – this technique only
increases the local polynomial order by 1, this is not the case in three dimensions. Years
later [8, 17], it was realized that it is possible to retain the good convergence properties
of Stenberg’s construction and yet reduce the enrichment space. Introducing a “matrix
bubble,” these works added just enough extra curls needed to prove stability.

We shall see in later sections that the matrix bubble can also be used to enrich our
discrete fluid stress space. This might seem astonishing at first. Indeed, an enrichment
space for fluid stresses must map well when using a specific map that is natural to ensure
normal-tangential continuity of the discrete stress space. Moreover, the enrichment
functions must lie in the kernel of a realization of the distributional row-wise divergence
used in MCS formulations (displayed in (11) below). It turns out that these properties
are all fulfilled by an enrichment using a double curl involving matrix bubbles. Hence
we are able to prove the discrete inf-sup condition. Stability then follows in the same
type of norms used in [30] and is a key result of this work.

Some comments on the choice of the discrete velocity space and its implications are
also in order here. As mentioned above, the velocity space within the MCS formulation
is V = H0(div,Ω). One of the main features of the first MCS method [18], as well
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the new version with weakly imposed symmetry of this paper, is that we can choose a
discrete velocity space Vh ⊂ V using H(div)-conforming finite elements. Therefore, our
method is tailored to approximate the incompressibility constraint exactly, leading to
pointwise and exactly divergence-free discrete velocity fields. The use of such H(div)-
conforming velocities in Stokes flow is by no means new: for the standard velocity-
pressure formulation, once can find it in [9, 10], and for the Brinkman Problem in [20].
Therein, and also in the more recent works of [25, 24], the H1-conformity is treated
in a weak sense and a (hybrid) discontinuous Galerkin method is constructed. When
employing H(div)-conforming finite elements, one has the luxury of choice. In [18], we
used the BDMk+1 space [6] and added several local stress bubbles in order to guarantee
stability. In contrast, in this paper, we have chosen to take the smaller Raviart-Thomas
space [26] of order k, denoted byRT k. A similar choice was made also in the work of [16],
where they presented a hybrid method for solving the Brinkman problem based off the
work of [11]. Our current choice of the smaller spaceRT k leads to a less accurate velocity
approximation (compared to BDMk+1), so in order to retain the optimal convergence
order of the velocity (measured in a discrete H1-norm), we introduce a local element-
wise post processing. Using the reconstruction operator of [21, 22] this post processing
can be done retaining the exact divergence-free property.

The remainder of this paper is organized as follows. In Section 2, we define notation for
common spaces used throughout this work and introduce an undiscretized formulation.
Section 3 presents the MCS method for Stokes flow including symmetric viscous stresses.
In Section 4, we present the new discrete method including the introduction of the matrix
bubble. Section 5 proves a discrete inf-sup condition and develops a complete a priori
error analysis of the discrete MCS system. In Section 6, we introduce a postprocessing
for the discrete velocity. The concluding section (Section 7) reports various numerical
experiments we performed to illustrate the theory.

2. Preliminaries

In this section, we introduce notation and present a weak formulation for Stokes flow
that includes symmetric viscous stresses.

Let D(Ω) or D(Ω,R) denote the set of infinitely differentiable compactly supported
real-valued functions on Ω and let D∗(Ω) denote the space of distributions. To differenti-
ate between scalar, vector and matrix-valued functions on Ω, we include the co-domain in
the notation, e.g., D(Ω,Rd) = {u : Ω → R

d| ui ∈ D(Ω)}. Let M denote the vector space
of real d×dmatrices. This notation scheme is similarly extended to other function spaces
as needed. Thus, L2(Ω) = L2(Ω,R) denotes the space of square integrable R-valued
functions on Ω, while analogous vector and matrix-valued function spaces are defined by
L2(Ω,Rd) :=

{

u : Ω → R
d
∣

∣ ui ∈ L2(Ω)
}

and L2(Ω,M) :=
{

σ : Ω → M
∣

∣ σij ∈ L2(Ω)
}

,
respectively. Let K denote the vector space of d × d skew symmetric matrices, i.e.,
K = skw(M), and let L2(Ω,K) :=

{

σ : Ω → K
∣

∣ σij ∈ L2(Ω)
}

.
Recall that the dimension d in this work is either 2 or 3. Accordingly, depending on

the context, certain differential operators have different meanings. The “curl” operator,
depending on the context, denotes one of the differential operators below.

curl(φ) = (−∂2φ, ∂1φ)T, for φ ∈ D∗(Ω,R), d = 2,

curl(φ) = (∂2φ3 − ∂3φ2, ∂3φ1 − ∂1φ3, ∂1φ2 − ∂2φ1)
T for φ ∈ D∗(Ω,R3), d = 3,
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where (·)T denotes the transpose and ∂i abbreviates ∂/∂xi. For matrix-valued functions
in both d = 2 and 3 cases, i.e., φ ∈ D∗(Ω,M), by curl(φ) we mean the matrix obtained
by taking curl row wise. Unfortunately, this still does not exhaust all the curl cases. In
the d = 2 case, there are two possible definitions of curl(φ) for φ ∈ D∗(Ω,R2),

curl(φ) = −∂2φ1 + ∂1φ2, or(3)

curl(φ) =

(

∂2φ1 −∂1φ1

∂2φ2 −∂1φ2

)

,(4)

and we shall have occasion to use both. The latter will not be used until (14) below, so
until then, the reader may continue assuming we mean (3) whenever we consider curl of
vector functions in R

2. The operator ∇ is to be understood from context as an operator
that results in either a vector whose components are [∇φ]i = ∂iφ for φ ∈ D∗(Ω,R), or a
matrix whose entries are [∇φ]ij = ∂jφi for φ ∈ D∗(Ω,Rd), or a third-order tensor whose
entries are [∇φ]ijk = ∂kφij for φ ∈ D∗(Ω,K). Finally, in a similar manner, we understand

div(φ) as either
∑d

i=1 ∂iφi for vector-valued φ ∈ D∗(Ω,Rd), or the row-wise divergence
∑d

j=1 ∂jφij for matrix-valued φ ∈ D(Ω,M)∗.

Let d̃ = d(d− 1)/2 (so that d̃ = 1 and 3 for d = 2 and 3, respectively). In addition to
the standard Sobolev space Hm(Ω) for any m ∈ R, we shall use the well-known space
H(div,Ω) = {u ∈ L2(Ω,Rd) : div(u) ∈ L2(Ω)}. By its trace theorem, H0(div,Ω) = {u ∈
H(div,Ω) : u · n|Γ = 0} is a well-defined closed subspace, where n denotes the outward
unit normal on Γ. Its dual space [H0(div,Ω)]

∗, as proved in [18, Theorem 2.1], satisfies

[H0(div,Ω)]
∗ = H−1(curl,Ω) = {φ ∈ H−1(Ω,Rd) : curl(φ) ∈ H−1(Ω,Rd̃)}.(5)

In this work, the following space is important:

H(curl div,Ω) := {σ ∈ L2(Ω,M) : div(σ) ∈ [H0(div,Ω)]
∗},

where the name results from (5): indeed a function σ ∈ H(curl div,Ω) fulfills curl div(σ) ∈
H−1(Ω,Rd̃).

Next, let us derive a variational formulation of the system (2), which is based on
the mixed stress formulation (MCS) introduced in chapter 3 in the work [18]. The
method is based on a weaker regularity assumption of the velocity as compared to
the standard velocity-pressure formulation (1). The velocity u and the pressure p now
belong, respectively, to the spaces

V := H0(div,Ω), Q := L2
0(Ω) := {q ∈ L2(Ω) :

∫

Ω

q dx = 0}.

Multiplying (2c) with a pressure test function q ∈ Q and integrating over the domain Ω
ends up in the familiar equation (div(u), q)L2(Ω) = 0, which we write as the last equation
of the final Stokes system (7) written below. Here and throughout, the inner product
of a space X is denoted by (·, ·)X. When X is the space of functions whose components
are square integrable functions on Ω, we abbreviate (·, ·)X to simply (·, ·), as done in (7)
below. Similarly, while we generally denote the norm and seminorm on a Sobolev space
X by ‖ · ‖X and | · |X , respectively, to simplify notation, we set ‖f‖2D := (f, f)D, where
(f, g)D denotes L2(D,V) inner product for any V ∈ {R,Rd,K,M} and any subsetD ⊆ Ω.
Moreover, when D = Ω, we omit the subscript and simply write ‖f‖ for ‖f‖.
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To motivate the remaining equations of (7), let the deviatoric part of a matrix σ be
defined by dev(σ) := σ− d−1tr(σ) Id, where Id denotes the identity matrix and tr(σ) :=
∑d

i=1 σii denotes the matrix trace. Since ν−1σ = ε(u), due to the incompressibility
constraint div(u) = 0, we have the identity

dev(ν−1σ) = dev(ε(u)) = ε(u)− ν

d
tr(ε(u)) Id = ε(u)− 1

d
div(u) Id = ε(u).(6)

Since tr(σ) = 0 and σ = σT, we define the stress space as the following closed subspace
of H(curl div,Ω):

Σsym := {τ ∈ H(curl div,Ω) : tr(τ) = 0, τ = τT}.
Testing equations (2a) with a test functions τ ∈ Σsym and integrating over the domain,
we have for the term including ε(u) the identity

∫

Ω

ε(u) : τ dx =
1

2

∫

Ω

∇u : τ dx+
1

2

∫

Ω

(∇u)T : τ dx

=
1

2

∫

Ω

∇u : τ dx+
1

2

∫

Ω

∇u : τ dx =

∫

Ω

∇u : τ dx .

Using the knowledge that the velocity u should be in H1
0(Ω), we obtain

(ν−1 dev(σ), dev(τ)) + 〈div(τ), u〉H0(div,Ω) = 0,

which is the first equation in the system (7) below. Here and throughout, when working
with elements f of the dual space X∗ of a topological space X , we denote the action of
f on an element x ∈ X by 〈f, x〉X , where we may omit the subscript X when its obvious
from context. Finally we also test (2b) with v ∈ V and integrate the pressure term by
parts. This results in the remaining equation of (7).

Summarizing, the weak problem is to find (σ, u, p) ∈ Σsym × V ×Q such that










(ν−1 dev(σ), dev(τ)) + 〈div(τ), u〉H0(div,Ω) = 0 for all τ ∈ Σsym,

〈div(σ), v〉H0(div,Ω) + (div(v), p) = −(f, v) for all v ∈ V,

(div(u), q) = 0 for all p ∈ Q.

(7)

In the ensuing section, we shall focus on a discrete analysis of a nonconforming scheme
based on (7). Although wellposedness of (7) is an interesting question, we shall not
comment further on it here since it is of no direct use in a nonconforming analysis.

3. The new method

In [18], we introduced an MCS method where σ was an approximation to (the generally
non-symmetric) ν∇u instead of (the symmetric) νε(u) considered above. Since there
was no symmetry requirement in [18], there we worked with the space Σ := {τ ∈
H(curl div,Ω) : tr(τ) = 0} instead of Σsym. The finite element space for Σ designed
there can be reutilized in the current symmetric case (with some modifications), once
we reformulate the symmetry requirement as a constraint in a weak form.

To do so, we need further notation. Let κ : Rd̃ → K be defined by

(8) κ(v) =
1

2

(

0 −v
v 0

)

if d = 2, κ(v) =
1

2





0 −v3 v2
v3 0 −v1
−v2 v1 0



 if d = 3.
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When u represents the Stokes velocity, ω = κ(curl(u)) represents the vorticity. Since
∇u = ε(u)+ω, introducing ω as a new variable, and the symmetry condition σ−σT = 0
as a new constraint, we obtain the boundary value problem

1

ν
dev(σ)−∇u+ ω = 0 in Ω,(9a)

div(σ)−∇p = −f in Ω,(9b)

σ − σT = 0 in Ω,(9c)

div(u) = 0 in Ω,(9d)

u = 0 on Γ.(9e)

In the remainder of this section, we introduce a discrete formulation approximating (9).
The method will be described on a subdivision (triangulation) Th of Ω consisting of

triangles in two dimensions and tetrahedra in three dimensions. For the analysis later, we
shall assume that the Th is quasiuniform. By h we denote the maximum of the diameters
of all elements T ∈ Th. Quasiuniformity implies that h ∼ diam(T ) for all mesh elements
T . Here and throughout, by A ∼ B we indicate that there exist two constants c, C > 0
independent of the mesh size h as well as the viscosity ν such cA ≤ B ≤ cA. Similarly,
we use the notation A . B if there exists a constant C 6= C(h, ν) such that A ≤ CB.
All element interfaces and element boundaries on Γ are called facets and are collected
into a set Fh. This set is partitioned into facets on the boundary F ext

h and interior
facets F int

h . On each facet we denote by [[·]] the standard jump operator. On a boundary
facet the jump operator is just the identity. On all facets we denote by n a unit normal
vector. When integrating over boundaries of d-dimensional domains, the orientation of n
is assumed to be outward. On a facet with normal n adjacent to an mesh element T , the
normal and tangential traces of a smooth function φ : T → R

d are defined by φn := φ ·n
and φt = φ − φnn, respectively. Similarly, for a smooth ψ : T → M, the (scalar-valued)
“normal-normal” and the (vector-valued) “normal-tangential” components are defined
by ψnn = ψ : (n⊗ n) = nTψn and ψnt = ψn− ψnnn, respectively.

For any integers m, k ≥ 0, the following “broken spaces” are viewed as consisting of
functions on Ω without any continuity constraints across element interfaces:

Hm(Th) :=
∏

T∈Th

Hm(T ), P
k(Th) :=

∏

T∈Th

P
k(T ).

For D ⊂ Ω we use the notation (·, ·)D for the inner product of L2(D) or its vector and
tensor analogues such as L2(D,Rd), L2(D,M), L2(D,K). Also let ‖ · ‖2D = (·, ·)D. Next
for each element T ∈ Th let Pk(T ) ≡ P

k(T,R) denote the set of polynomials of degree at
most k on T . The vector and tensor analogues such as Pk(T,Rd),Pk(T,M),Pk(T,K) have
their components in P

k(T ). The broken spaces Pk(Th,R
d),Pk(Th,M), and P

k(Th,K) are
defined similarly. We shall also use the conforming Raviart-Thomas space (see [4, 27]),
RT k := {uh ∈ H(div,Ω) : uh|T ∈ P

k(T,Rd) + xPk(T,R) for all T ∈ Th}.

3.1. Velocity, pressure, and vorticity spaces. For any k ≥ 1, our method uses

Vh := V ∩ RT k, Qh := Q ∩ P
k(Th), Wh := P

k(Th,K),

for approximating the velocity, pressure, and vorticity, respectively.
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Standard finite element mappings apply for these spaces. Let T̂ be the unit simplex
(for d = 2 and 3), which we shall refer to as the reference element, and let T ∈ Th.

Let φ : T̂ → T be an affine homeomorphism and set F := φ′. By quasiuniformity,
‖F‖ℓ∞ ∼ h, ‖F−1‖ℓ∞ ∼ h−1, and | det (F )| ∼ hd, estimates that we shall use tacitly

in our scaling arguments later. Such arguments proceed by mapping functions on T̂
to and from T̂ . Given a scalar-valued q̂h, a vector-valued v̂h, and a skew-symmetric
matrix-valued η̂h on the reference element T̂ , we map them to T using

(10) Q(qh) = q̂h ◦φ−1, P(v̂h) := det(F )−1F (v̂h ◦φ−1), W(η̂h) := F−T(η̂h ◦φ−1)F−1,

respectively, i.e., these are our mappings for functions in the pressure, velocity, and
vorticity spaces, respectively. The first is the inverse of the standard pullback, the
second is the standard Piola map, and the third is designed to preserve skew symmetry.

3.2. Stress space. The definition of our stress space is motivated by the following
result, proved in [18, Section 4].

Theorem 1. Suppose σ is in H1(Th,M) and σnn|∂T ∈ H1/2(∂T ) for all elements T ∈ Th.
Assume that the normal-tangential trace σnt is continuous across element interfaces.
Then σ is in H(curl div,Ω) and moreover

(11) 〈div(σ), v〉H0(div,Ω) =
∑

T∈Th

[

(div(σ), v)T − 〈vn, σnn〉H1/2(∂T )

]

for all v ∈ H0(div,Ω).

Clearly, matrix finite element subspaces having normal-tangential continuity are sug-
gested by Theorem 1. Technically, the theorem’s sufficient conditions for full conformity
also include the condition σnn|∂T ∈ H1/2(∂T ). This condition is very restrictive as it
would enforce continuity at vertices and edges in two and three dimensions respectively.
If this constraint is relaxed, much simpler, albeit nonconforming, elements can be con-
structed. This was the approach we adopted in [18]. We continue in the same vein here
and define the nonconforming stress space

Σh := {τh ∈ P
k(Th,M) : tr(τh) = 0, [[(τh)nt]] = 0 for all F ∈ F int

h }.(12)

As mentioned in the introduction, we must enrich the above stress space Σh to guarantee
solvability of the resulting discrete system due to the additional weak symmetry con-
straints. We follow the approach of [30] and its later improvements [8, 17] to construct
the needed enrichment space.

Define a cubic matrix-valued “bubble” function as follows. On a d-simplex T with
vertices a0, . . . , ad, let Fi denote the face opposite to ai, and let λi denote the unique lin-
ear function that vanishes on Fi and equals one on ai, i.e., the ith barycentric coordinate
of T . Following [8, 17], we define B ∈ P

3(T,M) by

B =

3
∑

i=0

λi−3λi−2λi−1 ∇λi ⊗∇λi if d = 3,(13a)

B = λ0λ1λ2 if d = 2,(13b)

where the indices on the barycentric coordinates are calculated mod 4 in (13a). Let
P
k
⊥(T,V) denote the L

2-orthogonal complement of Pk−1(T,V) in P
k(T,V) forV ∈ {R,K},



8 J. GOPALAKRISHNAN, P. L. LEDERER, AND J. SCHÖBERL

and let Pk
⊥(Th,V) =

∏

T∈Th
P
k
⊥(T,V). For any k ≥ 1, define

δΣh :=
{

dev(curl(curl(rh)B)) : rh ∈ P
k
⊥(Th,K)

}

,(14)

for d = 2 and 3, with the understanding that in d = 2 case, the outer curl is defined
by (4), not (3). The total stress space is given by

Σ+
h := Σh ⊕ δΣh, k ≥ 1.

That functions in this space have normal-tangential continuity is a consequence of the
following property proved in [8, Lemma 2.3].

Lemma 2. Let q ∈ M and T ∈ Th. The products qB and Bq have vanishing tangential
trace on ∂T , so the function curl(qB) has vanishing normal trace on ∂T .

Lemma 3. Any σ ∈ δΣh has vanishing σnt and [[σnt]] on all facets F ∈ Fh.

Proof. Since (dev(σ))nt = σnt, this is a direct consequence of Lemma 2. �

We also need a proper mapping for functions in Σ+
h that preserves normal-tangential

continuity. We shall continue to use the following map, first introduced in [18]:

M(σ̂h) :=
1

det(F )
F−T(σ̂h ◦ φ−1)FT.(15)

As shown in [18, Lemma 5.3], on each facet, (M(σ̂h))nt is a scalar multiple of (σ̂h)nt and
tr(σ̂h) = 0 if and only if tr(M(σ̂h)) = 0. Degrees of freedom are discussed in §3.4.
Remark 4. Note that in (13), B was given using barycentric coordinates as an expression

that holds on any simplex. Let B̂ denote the function on the reference element T̂
obtained by replacing λi by reference element barycentric coordinates λ̂i. Considering
the obvious map that transforms ∇̂λ̂i ⊗ ∇̂λ̂i to ∇λi ⊗ ∇λi, we find that the matrix
bubble B on any simplex is given by

B := F−T(B̂ ◦ φ−1)F−1.(16)

3.3. Equations of the method. For the derivation of the discrete variational formu-
lation we turn our attention back to the weak formulation (7) and identify these forms:

a : L2(Ω,M)× L2(Ω,M) → R, b1 : V ×Q→ R,

a(σ, τ) := (ν−1 dev(σ), dev(τ)), b1(u, p) := (div(u), p).

The definition of the remaining bilinear form is motivated by the definition of the “distri-
butional divergence” given by (11). To this end we define b2 : {τ ∈ H1(Th,M) : [[τnt]] =
0} ×

(

{v ∈ H1(Th,R
d) : [[vn]] = 0} × L2(Ω,M)

)

→ R by

b2(τ, (v, η)) :=
∑

T∈Th

∫

T

div(τ) · v dx+
∑

T∈Th

∫

T

τ : η dx−
∑

F∈Fh

∫

F

[[τnn]]vn ds .(17)

Integrating the first integral by parts, we find the equivalent representation

b2(τ, (v, η)) = −
∑

T∈Th

∫

T

τ : (∇v − η) dx+
∑

F∈Fh

∫

F

τnt · [[vt]] ds .(18)
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Using these forms, we state the method. For any k ≥ 1, the discrete MCS method
with weakly imposed symmetry finds σh, uh, ωh, ph ∈ Σ+

h × Vh ×Wh ×Qh such that










a(σh, τh) + b2(τh, (uh, ωh)) = 0 for all τh ∈ Σ+
h ,

b2(σh, (vh, ηh)) + b1(vh, ph) = (−f, vh) for all (vh, ηh) ∈ Uh := Vh ×Wh,

b1(uh, qh) = 0 for all qh ∈ Qh.

(19)

Since Vh and Qh fulfills div(Vh) = Qh, the discrete velocity solution component uh
satisfies div(uh) = 0 point wise, providing exact mass conservation.

3.4. Degrees of freedom of the new stress space. We need degrees of freedom
(d.o.f.s) for the stress space that are well-suited for imposing normal-tangential conti-
nuity across element interfaces. Since the bubbles in δΣh have zero normal-tangential
continuity, we ignore them for this discussion and focus on d.o.f.s that control Σh.

Consider ΣT = {τ |T : τ ∈ Σh} on any mesh element T . Letting D denote the subspace
of matrices M ∈ M satisfying M : Id = 0, we may identify ΣT with P

k(T,D). Let us
recall a basis for D that was given in [18]. Define the following two sets of constant
matrix functions, for d = 2 and d = 3 cases, respectively, by

Si := dev
(

∇λi+1 ⊗ curl(λi+2)
)

,(20a)

Si
0 := dev

(

∇λi+1 ⊗ (∇λi+2 ×∇λi+3)
)

, Si
1 := dev

(

∇λi+2 ⊗ (∇λi+3 ×∇λi+1)
)

,(20b)

taking the indices mod 3 and mod 4, respectively. We proved in [18, Lemma 5.1] that
the sets {Si : i = 0, 1, 2} and {Si

q : i = 0, 1, 2, 3, q = 0, 1} form a basis of D when d = 2
and 3, respectively.

Our d.o.fs for ΣT ≡ P
k(T,D) are grouped into two. The first group is associated to

the set of element facets (d − 1 subsimplices of T ), namely, for each facet F ∈ ∂T , we
define the set of d.o.f.s

ΦF (τ) :=

∫

F

τnt · r ds

for each r in any fixed basis for Pk(F,Rd−1). The next group is the set of interior d.o.f.s,
defined by

Φ0(τ) :=

∫

T

τ : ς dx

for all ς in any basis of Pk−1(T,D). We proceed to prove that the set of these d.o.f.s,
Φ(T ) := Φ0(τ) ∪ {ΦF : F ⊂ ∂T}, is unisolvent.

Theorem 5. The set Φ(T ) is a set of unisolvent d.o.f.s for ΣT ≡ P
k(T,D).

Proof. Suppose τ ∈ ΣT satisfies φ(τ) = 0 for all d.o.f.s φ ∈ Φ(T ). We need to show that
τ = 0. From the facet d.o.f.s we conclude that τnt vanishes on ∂T . By [18, Lemma 5.2],
τ may be expressed as

τ =
2

∑

i=0

µiλiS
i or τ =

1
∑

q=0

3
∑

i=0

µq
iλiS

i
q,(21)
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when d = 2 or 3, respectively, where µi, µ
0
i , µ

1
i ∈ P

k−1(T ). The interior d.o.f.s imply that
∫

T
τ : s dx = 0 for any s ∈ P

k−1(T̂ ,D). Choosing for s the expression on the right hand
side in (21) omitting the λi, say for the d = 2 case, we obtain

∫

T

2
∑

i=0

µiλiS
i :

2
∑

i=0

µiS
i dx =

∫

T

λi

∣

∣

∣

∣

2
∑

i=0

µiS
i

∣

∣

∣

∣

2

dx = 0,

yielding µi = 0, and thus τ = 0. A similar argument in d = 3 case yields the same
conclusion that τ = 0.

To complete the proof, it now suffices to prove that dim(ΣT ) equals the number
of d.o.f.s, i.e., #Φ(T ). Obviously, dim(ΣT ) = dimP

k(T,D) = (d2 − 1) dimP
k(T ).

The cardinality of Φ(T ) equals the sum of the number of facet d.o.f.s (d + 1)(d −
1) dimP

k(T ) and the number of interior d.o.f.s (d2 − 1) dimP
k−1(T ), which simplifies

to (d2 − 1)
(

dimP
k−1(T ) + dimP

k(F )
)

, equalling dim(ΣT ). �

Using these d.o.f.s, a canonical local interpolant IT (τ) in ΣT can be defined as usual,
by requiring that ψ(τ − IT τ) = 0, for all ψ ∈ Φ(T ).

Lemma 6. For any τ ∈ H1(T,D), we have M−1(IT τ) = IT̂ (M−1(τ)).

Proof. This proceeds along the same lines as the proof of [18, Lemma 5.4]. �

The global interpolant IΣh
is also defined as usual. On each element T ∈ Th the global

interpolant (IΣh
τ)|T coincides with the local interpolant IT (τ |T ).

Theorem 7. For any m ≥ 1 and any σ ∈ {τ ∈ Hm(Th,D) : [[τnt]] = 0}, the global
interpolation operator IΣh

satisfies

‖σ − IΣh
σ‖2 +

∑

F∈Fh

h‖(σ − IΣh
σ)nt‖2F . h2s‖σ‖2Hs(Th)

,

for all s ≤ min(k + 1, m).

Proof. This follows from a standard Bramble-Hilbert argument using Lemma 6. �

4. A priori error analysis

In this section we first show the stability of the MCS method with weakly imposed
symmetry by proving a discrete inf-sup condition (Theorem 21). We then prove con-
sistency (Theorem 25), optimal error estimates (Theorem 26), and pressure robustness
(Theorem 28). For simplicity, the analysis from now on assumes that ν is a constant.

4.1. Norms. In addition to the previous notation for norms (established in Section 2),
hereon we also use ‖ · ‖2h to abbreviate

∑

T∈Th
‖ · ‖2T , a notation that also serves to

indicate that certain seminorms are defined using differential operators applied element
by element, not globally, e.g.,

‖ε(v)‖2h :=
∑

T∈Th

‖ε(v)‖2T , ‖ curl(γ)‖2h :=
∑

T∈Th

‖ curl(γ)‖2T ,

‖v‖21,h,ε := ‖ε(v)‖2h +
∑

F∈Fh

1

h

∥

∥[[vt]]
∥

∥

2

F
,
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for v ∈ H1(Th,R
d) and γ ∈ H1(Th,M). Recall that Uh = Vh×Wh. Our analysis is based

on norms of the type used in [30]. Accordingly, we will need to use the following norms
for vh ∈ Vh and ηh ∈ Wh:

‖vh‖2Vh
= ‖vh‖21,h,ε, ‖(vh, ηh)‖2Uh

:= ‖vh‖21,h,ε + ‖κ(curl vh)− ηh‖2h.

Lemma 15 below will show that the latter is indeed a norm.
On the discrete space Uh, we will also need another norm defined using the following

projections. On any mesh element T , let Πk−1
T denote the L2(T,V) orthogonal projection

onto P
k(T,V) where V is determined from context to be an appropriate vector space

such as Rd, or M. When the element T is clear from context, we shall drop the subscript
T in Πk−1

T and simply write Πk−1. Also, on each facet F ∈ Fh, we introduce a projection
onto the tangent plane n⊥

F : for any v ∈ L2(F, n⊥
F ), the projection Π1

F v ∈ P
1(F, n⊥

F ) is
defined by (Π1

F v, r)F = (v, r)F for all r ∈ P
1(F, n⊥

F ). Using these, define

‖(vh, ηh)‖2Uh,∗
:=

∑

T∈Th

‖Πk−1
T dev(∇vh − ηh)‖2T +

∑

F∈Fh

1

h
‖Π1

F [[(vh)t]]‖2F .(22)

Lemma 14 below will help us go between this norm and ‖(vh, ηh)‖Uh
.

The remaining spaces Σ+
h and Qh are simply normed by the L2 norm ‖ · ‖. The full

discrete space is normed by

(23) ‖(vh, ηh, τh, qh)‖∗ :=
√
ν||(vh, ηh)||Uh

+
1√
ν
(‖τh‖+ ||qh||)

for any (vh, ηh, τh, qh) ∈ Vh ×Wh × Σ+
h ×Qh.

4.2. Norm equivalences. Next, we use the finite element mappings introduced earlier
–see (10) and (15)– to show several norm equivalences.

Lemma 8. Let τh ∈ Σ+
h . Then

hd‖τh‖2T ∼ ‖τ̂h‖2T̂ for all T ∈ Th(24)

hd+1‖(τh)nt‖2F ∼ ‖(τ̂h)n̂t̂‖2F̂ for all F ∈ Fh.(25)

‖τh‖2 ∼
∑

T∈Th

‖τh‖2T +
∑

F∈Fh

h
∥

∥[[(τh)nt]]
∥

∥

2

F
.(26)

Proof. The first two follow by a simple scaling argument. For the third, see the proof of
[18, Lemma 6.1]. �

In the proof of the next lemma, we use the space of rigid displacements E = P
0(T,Rd)+

P
0(T,K) x. For each element T ∈ Th, let Π

E : H1(T ) → E denote the projector defined
in [5]. Then, for any vh ∈ Vh, the projection ΠEvh ∈ E fulfills the properties (see [5,
eq. (3.3), (3.11)])

‖∇(vh −ΠEvh)‖T ∼ ‖ε(vh)‖T for all T ∈ Th,(27)
∥

∥[[vh − ΠEvh]]
∥

∥

2

F
.

∑

T :T∩F 6=∅

h‖ε(vh)‖2T for all F ∈ Fh.(28)
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We shall also use a global discrete Korn inequality, implied by [5, Theorem 3.1]. Namely,
there is an h-independent constant cK such that

(29) c2K‖∇v‖2h ≤ ‖ε(v)‖2h +
∑

F∈Fh

h−1
∥

∥Π1
F [[v]]

∥

∥

2

F
, for all v ∈ H1(Th,R

d).

Lemma 9. For all (vh, ηh) ∈ Uh,

‖(vh, ηh)‖2Uh
∼ ‖ε(vh)‖2h + ‖κ(curl vh)− ηh‖2h +

∑

F∈Fh

1

h

∥

∥Π1
F [[(vh)t]]

∥

∥

2

F

Proof. One side of the equivalence is obvious by the continuity of the Π1
F . For the other

direction first note that h−1‖[[(vh)t]]‖2F ≤ 2h−1‖Π1
F [[(vh)t]]‖2F +2h−1‖[[(vh − Π1

F vh)t]]‖2F . As
ΠEvh ∈ P

1(T,Rd) we have again by the continuity of Π1
F ,

‖[[(vh − Π1
Fvh)t]]‖2F = ‖(Id−Π1

F )[[(vh −ΠEvh)t]]‖2F ≤ ‖[[(vh −ΠEvh)t]]‖2F .

We conclude the proof using (28). �

The following well-known property of Raviart-Thomas spaces (see, e.g., [7, Lemma 3.1])
is needed at several points.

Lemma 10. Let v ∈ P
k(T,Rd) + xPk(T,R) and div(v) = 0. Then v is in P

k(T,Rd).

Lemma 11. For all T ∈ Th and vh ∈ Vh,

‖ε(vh)‖2T ∼ ‖Πk−1 dev(ε(vh))‖2T + ‖ div(vh)‖2T(30)

‖(Id−Πk−1)κ(curl vh)‖2T . ‖ div(vh)‖2T ,(31)

‖(Id−Πk−1)∇vh‖2T . ‖ div(vh)‖2T .(32)

Proof. One side of the equivalence of (30) is obvious by the continuity of the Πk−1. For

the other direction, we use the following equivalence on the reference element T̂ :

(33) ‖∇̂(q̂x̂)‖T̂ ∼ ‖d̂iv(q̂x̂)‖T̂ , for all q̂ ∈ P
k(T̂ ,R).

This follows by finite dimensionality, because by the Euler identity if any one of the
above two terms is zero, then q̂ = 0 (see e.g., [23]). Consequently, given any vh ∈ Vh,

setting v̂h = P−1(vh|T ), the following problem is uniquely solvable: find b̂ ∈ P
k(T̂ ,R)

such that
∫

T̂

d̂iv(x̂b̂) d̂iv(x̂q̂) dx =

∫

T̂

d̂iv(v̂h) d̂iv(x̂q̂) dx, for all q̂ ∈ P
k(T̂ ,R).(34)

Since d̂iv(x̂Pk(T̂ ,R)) = P
k(T̂ ,R), (34) implies that d̂iv(x̂b̂) = d̂iv(v̂h). Put r = P−1(x̂b̂).

Then, due to the properties of the Piola map P, r is a function in P
k(T,Rd)+xPk(T,R)

satisfying div(r) = div(vh) in T , and a scaling argument using (33) implies

(35) ‖∇r‖T ∼ ‖div(r)‖T .
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Let a = vh − r ∈ P
k(T,Rd) + xPk(T,R). Then div(a) = 0 and vh = a + r in T . In

particular, the former implies, by Lemma 10, that a ∈ P
k(T,Rd). Then we have

‖ε(vh)‖T = ‖ε(a+ r)‖T . ‖ dev(ε(a+ r))‖T + ‖ div(vh)‖T
≤ ‖ dev(ε(a))‖T + ‖∇r‖T + ‖ div(vh)‖T
. ‖ dev(ε(a))‖T + ‖ div(vh)‖T by (35),

= ‖Πk−1 dev(ε(a))‖T + ‖ div(vh)‖T since a ∈ P
k(T,Rd),

≤ ‖Πk−1 dev(ε(vh))‖T + ‖Πk−1 dev(ε(r))‖T + ‖ div(vh)‖T
. ‖Πk−1 dev(ε(vh))‖T + ‖ div(vh)‖T , again, by (35).

This proves (30).
To prove (31), first note that due to the definition of κ(·), we have ‖κ(curl vh)‖T ∼

‖ curl(vh)‖T . Thus, using the same decomposition as above, namely, vh|T = a+ r,

‖(Id−Πk−1)κ(curl(vh))‖T ≤ ‖(Id−Πk−1)κ(curl(a))‖T + ‖(Id−Πk−1)κ(curl(r))‖T .

As curl(a) ∈ P
k−1(T,Rd̃), the first term on the right vanishes. The last term satisfies

‖(Id−Πk−1)κ(curl(r))‖T . ‖ curl(r)‖T ≤ ‖∇r‖T . ‖ div(r)‖T = ‖ div(vh)‖T ,
due to (35). Hence (31) is proved.

The proof of (32) uses the same technique:

‖(Id−Πk−1)∇vh‖T ≤ ‖(Id−Πk−1)∇a‖T + ‖(Id−Πk−1)∇r‖T ≤ ‖∇r‖T . ‖ div(vh)‖T ,
where we have used that a ∈ P

k(T,Rd) and (35). �

Remark 12. The same technique shows that ‖∇vh‖2T ∼ ‖Πk−1[dev(∇vh)]‖2T +‖ div(vh)‖2T
for all Raviart-Thomas functions vh ∈ Vh. The technique allows one to control the
gradient of the highest order terms of a velocity vh in the Raviart-Thomas space by
div(vh). A similar estimate does not hold for vh in BDMk+1 := H0(div,Ω)∩Pk+1(Th,R

d).

Lemma 13. For all T ∈ Th and ηh ∈ Wh,

‖∇ηh‖T ∼ ‖ curl ηh‖T .
Proof. The proof is based on a scaling argument and equivalence of norms on finite
dimensional spaces on the reference element. Recall the map φ and F = φ′. Calculations
using the chain rule yield

ˆcurl
[

FT(ηh ◦ φ)F
]

= FT
[

curl(ηh) ◦ φ
]

F−T detF, if d = 3,(36a)

ˆcurl
[

FT(ηh ◦ φ)F
]

= FT
[

curl(ηh) ◦ φ
]

detF, if d = 2.(36b)

We continue with the d = 3 case only (since d = 2 case proceeds using (36b) analogously).
With η̂h = FT(ηh ◦ φ)F , standard estimates for F yield

‖ curl(ηh)‖2T ∼ h−3‖ ˆcurl(η̂h)‖2T̂ .(37)

Let v̂ ∈ P
k(T̂ ,Rd) and v ∈ P

k(T,Rd) be such that η̂h = κ(v̂) and ηh = κ(v), where κ is
as defined in (8). Then,

‖∇ηh‖2T ∼ ‖∇v‖2T ∼ h−3‖∇̂v̂‖2
T̂
∼ h−3‖∇̂η̂h‖2T̂(38)
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In view of (37) and (38), to complete the proof, it suffices to establish the reference
element estimate

(39) ‖ ˆcurl(κ(v̂))‖T̂ ∼ ‖∇̂v̂‖T̂
by proving that one side is zero if and only if the other side is zero. Note these two
identities: ˆcurl κ(v̂) = (∇̂v̂)T− d̂iv(v̂) Id, and ˆcurlκ(v̂) : Id = −2 div(v̂). If ˆcurl κ(v̂) = 0,

then the latter identity implies d̂iv(v̂) = 0, which when used in the former identity,

yields ∇̂v̂ = 0. Combined with the obvious converse, we have established (39). �

Lemma 14. For all T ∈ Th and (vh, ηh) ∈ Uh,

‖ε(vh)‖2T + ‖κ(curl vh)− ηh‖2T ∼ ‖Πk−1 dev(∇vh − ηh)‖2T + h2‖ curl(ηh)‖2T + ‖ div(vh)‖2T .

Proof. Since the decomposition ∇vh = ε(vh)+κ(curl(vh)) is orthogonal in the Frobenius
inner product, so is ∇vh − ηh = ε(vh) + [κ(curl(vh)− ηh]. Application of the deviatoric
and Πk−1 preserves this orthogonality. Hence, by Pythagoras theorem,

∥

∥Πk−1 dev(∇vh − ηh)
∥

∥

2

T
=

∥

∥Πk−1 dev(ε(vh))
∥

∥

2

T
+
∥

∥Πk−1[κ(curl(vh))− ηh]
∥

∥

2

T
.(40)

We shall now prove the result using (40) and Lemma 11.
Proof of “.”: Since

‖ε(vh)‖2T . ‖Πk−1 dev(ε(vh))‖2T + ‖ div(vh)‖2T by Lemma 11,

≤
∥

∥Πk−1 dev(∇vh − ηh)
∥

∥

2

T
+ ‖ div(vh)‖2T by (40),

it suffices to prove that

(41) ‖κ(curl(vh))− ηh‖2T .
∥

∥Πk−1 dev(∇vh − ηh) + h2‖ curl(ηh)‖2T + ‖ div(vh)‖2T ,

which we do next. Since the projection r1 = Πk−1(κ(curl(vh)) − ηh) can be bounded
using (40), we focus on the remainder r2 = (Id−Πk−1)(κ(curl(vh))− ηh).

‖r2‖2T ≤ ‖(Id−Πk−1)κ(curl(vh))‖2T + ‖(Id−Πk−1)ηh‖2T
≤ ‖ div(vh)‖2T + h2‖∇ηh‖2T by (31), Lemma 11,

. ‖ div(vh)‖2T + h2‖ curl(ηh)‖2T by Lemma 13.

When this estimate for r2 is used in ‖κ(curl(vh)) − ηh‖2T = ‖r1‖2T + ‖r2‖2T and r1 is
bounded using (40), we obtain (41).

Proof of “&”: The last term of the lemma obviously satisfies ‖ div(vh)‖2T . ‖ε(vh)‖2T ,
while the first term satisfies ‖Πk−1 dev(∇vh − ηh)‖2T ≤ ‖ε(vh)‖2T +‖κ(curl(vh))−ηh‖2T by
(40). It remains to bound h2‖ curl(ηh)‖2T . As curl[κ(curl(ΠEvh))] = 0, we obtain using
an inverse inequality for polynomials

h2‖ curl ηh‖2T = h2‖ curl(ηh − κ(curl(ΠEvh)))‖2T . ‖ηh − κ(curl ΠEvh)‖2T
≤ ‖ηh − κ(curl(vh))‖2T + ‖κ(curl(vh))− κ(curl ΠEvh)‖2T
∼ ‖ηh − κ(curl(vh))‖2T + ‖ curl(vh − ΠEvh)‖2T
. ‖ηh − κ(curl(vh))‖2T + ‖ε(vh)‖2T ,

where we used (27) in the last step. �
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Lemma 15. For any vh ∈ Vh and γh ∈ Wh,

h‖∇γh‖2h . inf
vh∈Vh

‖(vh, γh)‖Uh
≤ ‖γh‖2, ‖vh‖1,h,ε = inf

ηh∈Wh

‖(vh, ηh)‖Uh
.(42)

While the first estimate in (42) involves only the local constants from Lemmas 13 and 14,
using the global constant cK , we also have

(1 + cK)
−1‖γh‖h ≤ inf

vh∈Vh

‖(vh, γh)‖Uh
.(43)

Proof. To prove the first estimate of (42),

‖(vh, γh)‖ ≥ ‖ε(vh)‖2h + ‖κ(curl vh)− γh‖2h & h2‖ curl γh‖2h by Lemma 14

& h2‖∇γh‖2h by Lemma 13.

Taking infimum over vh ∈ Vh, we obtain the lower estimate of (42). The upper bound
of the first infimum obviously follows by choosing vh = 0.

To prove the equality in (42), observe that the infimum over ηh ∈ Wh cannot be larger
than ‖vh‖1,h,ε because we may choose ηh = κ(curl vh). The reverse inequality also holds
since ‖(vh, ηh)‖Uh

≥ ‖vh‖1,h,ε for any ηh ∈ Wh, so the equality must hold.
Finally, to prove (43), we use triangle inequality to get

‖ηh‖ ≤ ‖κ(curl vh)− ηh‖h + ‖ curl vh‖h ≤ ‖(vh, ηh)‖Uh
+ ‖∇vh‖h.

Applying the Korn inequality (29) and noting that the jump of the normal components
are zero for functions in vh ∈ H0(div,Ω), the proof is complete. �

4.3. Stability analysis. The next three lemmas lead us to a discrete inf-sup condition.

Lemma 16. Let µ ∈ P
k(T,M) for some T ∈ Th and τ = (detF ) dev(curl(curl(µ)B)).

Then for d = 3, 2,

‖τ‖T ∼ h3−d‖ curl(µ)‖T .
Proof. If curlµ = 0, then obviously τ = 0. We claim that the converse is also true.
Indeed, if τ = 0, then putting s = d−1tr(curl(curl(µ)B)), we have

(44) curl(curl(µ)B) = s Id .

Taking divergence on both sides, we find that ∇s = 0, so s must be a constant on T .
Then, taking normal components of both sides of (44) on each facet, we find that sn = 0,
so s = 0. Hence curl(curl(µ)B) = 0, which in turn implies that 0 = (curl(curl(µ)B, µ)T =
(curl(µ)B, curl(µ))T = 0. Therefore, by [8, Lemma 2.2], curl(µ) = 0.

Applying this on the reference element T̂ for µ̂ = FT(µ ◦ φ)F ∈ P
k(T,M) and τ̂ =

dev( ˆcurl( ˆcurl(µ̂)B̂)) where B̂ is in Remark 4, by finite dimensionality, we have

(45) ‖τ̂‖T̂ ∼ ‖ ˆcurl(µ̂)‖T̂ .
We will now show that τ = (detF ) dev(curl(curl(µ)B)) is related to τ̂ by

(46) τ = M(τ̂).

By the definition of M,

(detF )M(τ̂) ◦ φ = F−T dev( ˆcurl( ˆcurl(µ̂)B̂))FT = dev(F−T ˆcurl( ˆcurl(µ̂)B̂)FT)
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as trace is preserved under similarity transformations. Focusing on the part of the last
term inside the deviatoric, in the d = 3 case,

F−T ˆcurl( ˆcurl(µ̂)B̂)FT = F−T ˆcurl
[

ˆcurl(FT(µ ◦ φ)F )FT(B ◦ φ)F
]

FT by (16),

= F−T ˆcurl
[

FT[curl(µ) ◦ φ]F−T(detF )FT(B ◦ φ)F
]

FT by (36),

= (detF )F−T ˆcurl
[

FT[curl(µ)B] ◦ φF
]

FT

= (detF )2F−TFT
[

curl(curl(µ)B) ◦ φ
]

F−TFT by (36).

This proves that

F−T ˆcurl( ˆcurl(µ̂)B̂)FT = (detF )2 curl(curl(µ)B) ◦ φ
when d = 3. The same identity holds in the d = 2 case: the argument is similar
after changing the definitions of the curls and the mapping of B appropriately. Thus,
M(τ̂) ◦ φ = (detF ) dev(curl(curl(µ)B)) ◦ φ and (46) is proved.

Finally, the result follows from (46) by scaling arguments: indeed (45) implies, by (24)
and (36) that

h3‖τ‖2T ∼ h3‖ curlµ‖2T if d = 3,

h2‖τ‖2T ∼ h4‖ curlµ‖2T if d = 2,

from which the result follows. �

Lemma 17. For any γh ∈ Wh, there is a τh ∈ Σ+
h such that

(τh, γh)Ω & h‖ curl γh‖h ‖τh‖.(47)

Furthermore, for any vh ∈ Vh, the same γh, τh pair satisfies

b2(τh, (vh, γh)) &

[

h‖ curl(γh)‖h − ‖ div(vh)‖h
]

‖τh‖.(48)

Proof. Given a γh ∈ Wh, set τh element by element by

τh|T = (detF ) dev(curl(curl(γh|T )B)).

Clearly, dev(curl(curl(Πk−1γh)B)) is in Σh. Since dev(curl(curl(γh − Πk−1γh)B)) is in
δΣh, we conclude that τh ∈ Σ+

h . Since γh is trace-free, (τh, γh)T = (curl(curl(γh|T )B), γh)T
detF, which in turn implies, after integrating by parts and applying Lemma 2, (τh, γh)T =
(curl(γh)B, curl γh)T detF .

In the d = 3 case, this yields

(49) (τh, γh)T = detF

∫

T

3
∑

i=0

λi−3λi−2λi−1| curl(γh)∇λi|2 dx

Noting that ∇λi = −ni/hi, where hi is the distance from the ith vertex to the facet of
the simplex opposite to it, and that the ℓ2-norm of any matrix m ∈ M is equivalent to
the sum of ℓ2-norms of mni, a local scaling argument with m = curl(γh) and (49) imply

(τh, γh)T & (detF )h−2‖ curl(γh)‖2T .
Therefore, (τh, γh)Ω & h‖ curl(γh)‖2h & h‖ curl(γh)‖h ‖τh‖, by Lemma 16. This proves (47)
in the d = 3 case. In the d = 2 case, the analogue of (49) gives (τh, γh)T & (detF )
‖ curl(γh)‖2T & h2‖ curl(γh)‖2T ≥ h‖ curl(γh)‖T ‖τh‖, where we have used Lemma 16
again. This completes the proof of (47).
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To prove (48), we use (18). The last sum in

b2(τh, (vh, γh)) = −
∑

T∈Th

∫

T

τh : (∇vh − γh) dx+
∑

F∈Fh

∫

F

(τh)nt · [[(vh)t]] ds

vanishes due to Lemma 3. Hence by (47),

b2(τh, (vh, γh)) & h‖ curl γh‖h ‖τh‖ −
∑

T∈Th

(τh,∇vh)T .(50)

To handle the last term, note that

1

detF
(τh,∇vh)T = (curl(curl(γh)B),∇vh)T − (d−1tr(curl(curl(γh)B)) Id,∇vh)T

= −(d−1tr(curl(curl(γh)B)), div(vh))T

because (curl(curl(γh)B),∇vh)T = 0. This follows by integrating one of the curls by
parts, observing that the resulting volume term is zero (since curl(∇vh) = 0) and so is
the resulting boundary term (due to Lemma 2). Continuing, we apply Cauchy-Schwarz
inequality and an inverse inequality to get

|(τh,∇vh)T | . | detF |h−1‖B‖L∞(T )‖ curl(γh)‖T‖ div(vh)‖T
. ‖τh‖T‖ div(vh)‖T

by Lemma 16. Returning to (50) and using this estimate, the proof is complete. �

Remark 18. The message of Lemmas 16 and 17 is that it is possible to choose a τh in
the form of a deviatoric of a curl of a bubble to bound (from below) the term arising
from the weak symmetry constraint. If τh was just a curl, it would not be seen by the
equilibrium equation and the bound in (48) would not have the ‖ div(vh)‖-term, but our
τh is a deviatoric (of a curl), thus necessitating this term.

Lemma 19. For any (vh, γh) ∈ Uh, there is a τh ∈ Σh such that

b2(τh, (vh, γh)) & ‖(vh, γh)‖Uh,∗‖τh‖.
Proof. We only present the proof in two dimensions, as the three dimensional case is
similar. From the local element basis exhibited in (20) (see also [18, §5.5] for a more
detailed discussion), its clear that on any facet F ∈ Fh, there exists a constant trace-free
function SF with the property that SF

nt ∈ P
0(F, n⊥

F ), ‖SF
nt‖2 = 1 on the facet F, and SF

nt

equals (0, 0) on all other facets in Fh. Given any (vh, γh) ∈ Uh, define

τ 0h :=
∑

T∈Th

∑

F∈Fh

−(SF : Πk−1 dev(∇vh − γh)) λ
F
T S

F , τ 1h :=
∑

F∈Fh

1√
h
Π1([[(vh)t]]) S

F ,

where λFT is the unique barycentric coordinate function on the element T opposite to
the facet F (so that λFTS

F is an nt-bubble). Clearly, τ 0h and τ 1h are in Σh. Using the
norm equivalences stated in (26) and the mappings for vh and γh given in (10), a scaling
argument yields

‖τ 0h‖2 .
∑

T∈Th

‖Πk−1 dev(∇vh − γh))‖2T and ‖τ 1h‖2 .
∑

F∈Fh

1

h
‖Π1[[(vh)t]]‖2F .

Setting τh = α0τ
0
h + α1τ

1
h and selecting the constants α0, α1 appropriately, the rest of

the proof proceeds along the same lines as the proof of [18, Lemma 6.5]. �
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Remark 20. It is interesting to contrast Lemma 19 with [18, Lemma 6.5]. The latter gives
a similar LBB-condition. The differences are (i) the velocity space in [18] is BDMk+1

(defined in Remark 12), (ii) the velocity norm is a discrete H1-norm defined using ∇
in place of ε(·), (iii) there is no weak symmetry constraint and no associated space Wh,
and (iv) the stress space in [18] equals the Σh in (12) plus certain nt-bubbles of degree
k + 1 (different from our δΣh here). Lemma 19 shows that the inf-sup condition in [18,
Lemma 6.5] continues to hold even if the nt-bubbles there are removed and BDMk+1 is
replaced by our Raviart-Thomas velocity space Vh. This observation can be extended
to prove the convergence of the MCS formulation in [18] with so modified spaces.

Theorem 21 (Discrete LBB-condition). Let vh ∈ Vh and γh ∈ Wh. Then,

sup
(τh,qh)∈Σ

+

h ×Qh

b1(vh, qh) + b2(τh, (vh, γh))

‖τh‖+ ‖qh‖
& ‖(vh, γh)‖Uh

.(51)

If vh is in the divergence-free subspace V 0
h := {zh ∈ Vh : div(zh) = 0}, then

sup
τh∈Σ

+

h

b2(τh, (vh, γh))

‖τh‖
& ‖(vh, γh)‖Uh

.(52)

Proof. By Lemmas 17 and 19, for any given (vh, γh) ∈ Uh, there are τ
1
h , τ

2
h ∈ Σ+

h satisfying

b2(τ
1
h , (vh, γh)) &

[

h‖ curl(γh)‖h − ‖ div(vh)‖
]

‖τ 1h‖,(53)

b2(τ
2
h , (vh, γh)) & ‖(vh, γh)‖Uh,∗‖τ 2h‖,(54)

Clearly, the same inequalities hold when τ 1h and τ 2h are scaled by any nonzero factor, so
we may assume without loss of generality, that they have been scaled so that ‖τ 1h‖ =
h‖ curl γh‖h and ‖τ 2h‖ = ‖(vh, γh)‖Uh,∗. Set τh = ατ 1h + τ 2h , where α ∈ R is to be chosen
shortly. It follows from (53) and (54) that

(55) b2(τh, (vh, γh)) & αh2‖ curl γh‖2h − αh‖ div(vh)‖h‖ curl γh‖h + ‖(vh, γh)‖2Uh,∗
.

Next, we choose qh ∈ Qh so that qh = β div(vh), where β ∈ R is another constant to
be chosen shortly. Then (55) implies

b1(vh, qh) + b2(τh, (vh, γh)) = β‖ div(vh)‖2h + αh2‖ curl γh‖2h + ‖(vh, γh)‖2Uh,∗

− αh‖ div(vh)‖h‖ curl γh‖h.

Choose any α > 1 and β > α2/2. Then, using Young’s inequality for the last term,

b1(vh, qh) + b2(τh, (vh, γh)) & ‖ div(vh)‖2h + h2‖ curl γh‖2h + ‖(vh, γh)‖2Uh,∗
.

Recalling that we also have

‖τh‖2Σ+

h
+ ‖qh‖2 . ‖ div(vh)‖2h + h2‖ curl γh‖2h + ‖(vh, γh)‖2Uh,∗

,

we can now conclude the proof of (51) using the norm equivalence of Lemma 14. The
proof of (52) is similar (and in fact simpler since all terms involving div(vh) vanish). �
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4.4. Error estimates. In this subsection we show that the error in the discrete MCS
solution converges at optimal order. As we have chosen polynomials of degree k for the
stress space Σh, the optimal rate of convergence for ‖σ − σh‖ is O(hk+1). However, the
optimal rate for the velocity error in our discrete H1-like norm, namely, ‖u− uh‖1,h,ε is
only O(hk) (since the Raviart-Thomas velocity space Vh only contains Pk(T,Rd) within
each mesh element T ). Nevertheless, we are still able to prove optimal convergence rate
of the stress error by using an appropriate interpolation operator and deducing that the
stress error is independent of the velocity error. Another important property we shall
conclude in this subsection is the pressure-robustness of the method.

Lemma 22 (Continuity). The bilinear forms a, b1 and b2 are continuous:

a(ςh, τh) .
(

ν−1/2‖ςh‖
)(

ν−1/2‖τh‖
)

, for all ςh, τh ∈ Σ+
h ,

b1(vh, qh) . ‖(vh, 0)‖Uh
‖qh‖, for all vh ∈ Vh, qh ∈ Qh,

b2(τh, (vh, ηh)) . ‖τh‖ ‖(vh, ηh)‖Uh
, for all τh ∈ Σ+

h , (vh, ηh) ∈ Uh.

Proof. The continuity of a and b1 follow by the Cauchy Schwarz inequality. For b2, we
use (18) and ∇vh = ε(vh) + κ(curl vh) to get

b2(τh, (vh, ηh)) = −
∑

T∈Th

∫

T

τ :
[

ε(vh) + (κ(curl vh)− ηh)
]

dx+
∑

F∈Fh

∫

F

τnt · [[(vh)t]] ds .

Now, Cauchy-Schwarz inequality and (26) of Lemma 8 finishes the proof. �

Lemma 23 (Coercivity in the kernel). For all (τh, qh) in the kernel

Kh := {(τh, qh) ∈ Σh ×Qh : b1(vh, qh) + b2(τh, (vh, ηh)) = 0 for all (vh, ηh) ∈ Uh},

we have ν−1
(

‖τh‖+ ‖qh‖
)2

. a(τh, τh).

Proof. By [24, Theorem 2.2], for any qh ∈ Qh, there is a vh ∈ Vh such that ‖qh‖2 .
(div(vh), qh) and a discrete H1-norm of vh is bounded by ‖qh‖. The latter bound implies,
in particular, that ‖vh‖1,h,ε . ‖qh‖, and also that ηh = κ(curl vh) satisfies ‖(vh, ηh)‖Uh

.
‖qh‖. This together with Lemma 22 implies

‖qh‖2 . b1(vh, qh) = −b2(τh, (vh, ηh)) . ‖τh‖ ‖(vh, ηh)‖Uh
. ‖τh‖ ‖qh‖

yielding the needed bound for ‖qh‖. �

We are now ready to conclude an inf-sup condition for B(vh, ηh, τh, qh; ṽh, η̃h, τ̃h, q̃h) :=
a(τh, τ̃h) + b1(vh, q̃h) + b1(ṽh, qh) + b2(τh, (ṽh, η̃h)) + b2(τ̃h, (vh, ηh)).

Corollary 24. Let τh ∈ Σ+
h , vh ∈ Vh, ηh ∈ Wh, and qh ∈ Qh. There holds

‖(vh, ηh, τh, qh)‖∗ . sup
ṽh∈Vh, η̃h∈Wh

τ̃h∈Σ
+

h , q̃h∈Qh

B(vh, ηh, τh, qh; ṽh, η̃h, τ̃h, q̃h)

‖(ṽh, η̃h, τ̃h, q̃h)‖∗
,(56)

so, in particular, there is a unique solution for the discrete MCS system (19). Moreover,
if vh is restricted to V 0

h , we also have

‖(vh, ηh, τh, 0)‖∗ . sup
ṽh∈V

0
h , η̃h∈Wh, τ̃h∈Σ

+

h

B(vh, ηh, τh, 0; ṽh, η̃h, τ̃h, 0)

‖(ṽh, η̃h, τ̃h, 0)‖∗
.(57)
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Proof. The first inf-sup condition follows from the standard theory of mixed methods [4],
using Theorem 21 (the inf-sup condition for b1 and b2 given by (51)), Lemma 22 (conti-
nuity of forms), and Lemma 23 (coercivity in the kernel).

The second inf-sup condition also follows in a similar fashion, but now using the other
inequality (52) of Theorem 21. �

Theorem 25 (Consistency). The MCS method with weakly imposed symmetry (19) is
consistent in the following sense. If the exact solution of the Stokes problem (9) is such
that u ∈ H1(Ω,Rd), ω ∈ L2(Ω,M), σ ∈ H1(Ω,D) and p ∈ L2

0(Ω,R), then

B(u, ω, σ, p; vh, ηh, τh, qh) = (−f, vh)Ω
for all vh ∈ Vh, ηh ∈ Wh, qh ∈ Qh, and τh ∈ Σh.

The proof of Theorem 25 is easy (see, e.g., the similar proof of [18, Theorem 6.2]),
so we omit it. We now have all the ingredients to prove the following convergence
result. Let IVh

denote the standard Raviart-Thomas interpolator (see, e.g., [4]) and let
‖(u, ω, σ, p)‖ν,s = ν−1‖σ‖Hs(Th,D) + ν−1‖p‖Hs(Th,R) + ‖ω‖Hs(Th,K) + ‖u‖Hs+1(Th,Rd).

Theorem 26 (Optimal convergence). Let u ∈ H1(Ω,Rd)∩Hm(Th,R
d), σ ∈ H1(Ω,D)∩

Hm−1(Th,D), p ∈ L2
0(Ω,R) ∩ Hm−1(Th,R) and ω ∈ L2(Ω,K) ∩ Hm−1(Th,K) be the

exact solution of the mixed Stokes problem (9), let uh,σh, ωh and ph solve (19) and let
s = min(m− 1, k + 1). Then,

(58)
1

ν
(‖σ − σh‖+ ‖p− ph‖) + ‖(ωh −Πkω, uh − IVh

u)‖Uh
. hs‖(0, ω, σ, p)‖ν,s.

Proof. Let eσh = IΣh
σ − σh, e

u
h = IVh

u − uh, e
ω
h = Πkω − ωh, e

p
h = Πkp − ph (where

the two occurrences of Πk represent projections onto two different discrete spaces per
our prior notation). Denoting the analogous approximation errors by aσ = IΣh

σ − σ,
au = IVh

u− u, aω = Πkω − ω, and ap = Πkp− p, observe that Theorem 25 implies

B(euh,e
ω
h , e

σ
h, e

p
h; vh, ηh, τh, qh) = B(au, aω, aσ, ap; vh, ηh, τh, qh)(59)

for any vh ∈ Vh, ηh ∈ Wh, τh ∈ Σ+
h , and qh ∈ Qh. The right hand side above is a sum

of five terms (ν−1aσ, τh) + b1(a
u, qh) + b1(vh, a

p) + b2(τh, (a
u, aω)) + b2(a

σ, (vh, ηh)). The
second term vanishes: b1(a

u, qh) = (div(IVh
u − u), qh) = (Πk div(u) − div(u), qh) = 0

as div(u) = 0. The third term also vanishes: b1(vh, a
p) = (div(vh),Π

kp − p) = 0 since
div(vh) ∈ P

k(Th). The fourth term, due to (17), is

b2(τh, (a
u, aω)) = (τ, aω) +

∑

T∈Th

(div(τh), IVh
u− u)T −

∑

E∈Fh

([[(τh)nn]], (IVh
u− u) · n)E

where the last two terms vanish by the properties of the Raviart-Thomas d.o.f.s that
define IVh

, i.e., b2(τh, (a
u, aω)) = (τh, a

ω). The fifth term, due to (18), is

b2(a
σ, (vh, ηh)) = (aσ, ηh −∇vh) +

∑

E∈Fh

(aσnt, [[(vh)t]])E

Writing (aσ, ηh −∇vh) = (aσ, ηh) + (aσ, (Πk−1 − Id)∇vh)− (aσ,Πk−1∇vh), note that by
the d.o.f.s of Theorem 5, the last term (aσ,Πk−1∇vh) is zero, and moreover, (aσ, ηh) =
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(aσ, ηh −Π0ηh). Incorporating these observations on each term into (59), we obtain

(60)
B(euh, e

ω
h , e

σ
h, e

p
h; vh, ηh, τh, qh) = (ν−1aσ, τh) + (τh, a

ω) +
∑

F∈Fh

(aσnt, [[(vh)t]])F

+ (aσ, ηh − Π0ηh) + (aσ, (Πk−1 − Id)∇vh)

We now proceed to estimate the right hand side of (60). By (42) and Lemma 11,

‖ηh −Π0ηh‖ . h‖∇ηh‖h . inf
ṽh∈Vh

‖(ṽh, ηh)‖Uh
≤ ‖(vh, ηh)‖Uh

,

‖(Πk−1 − Id)∇vh‖h . ‖ div(vh)‖2 . ‖ε(vh)‖2h ≤ ‖(vh, ηh)‖Uh
.

Using these after an application of the Cauchy-Schwarz inequality, (60) yields

B(euh,e
ω
h , e

σ
h, e

p
h; vh, ηh, τh, qh)

.

[

1

ν

(

‖aσ‖2 +
∑

F∈Fh

h‖aσnt‖2F
)

+ ν‖aω‖2
]1/2 (

1

ν
‖τh‖2 + ν‖(vh, ηh)‖2Uh

)1/2

.

(

1√
ν
hs‖σ‖Hs(Th) +

√
νhs‖ω‖Hs(Th)

)

‖(vh, ηh, τh, qh)‖∗,(61)

where we have used Theorem 7 and the approximation property of Πk in the last step.
To complete the proof, we apply triangle inequality starting from the left hand side

of (58), to get

1

ν
‖σ − σh‖+

1

ν
‖p− ph‖+ ‖(euh, eωh)‖Uh

≤ 1

ν

(

‖aσ‖+ ‖ap‖+ ‖eσh‖+ ‖eph‖
)

+ ‖(euh, eωh)‖Uh

.
hs

ν

(

‖σ‖Hs(Th) + ‖p‖Hs(Th)

)

+
1√
ν
‖(euh, eωh , eσh, eph)‖∗(62)

again using Theorem 7. Bounding the last term above using (56) and (61),

1√
ν
‖(euh, eωh , eσh, eph)‖∗ . sup

ṽh∈Vh, η̃h∈Wh

τ̃h∈Σ
+

h , q̃h∈Qh

B(euh, e
ω
h , e

σ
h, e

p
h; vh, ηh, τh, qh)√

ν‖(vh, ηh, τh, qh)‖∗
. hs‖(0, ω, σ, p)‖ν,s,

the proof is complete. �

Remark 27 (Convergence in standard norms). Using also Lemma 15’s estimate (43), a
consequence of the global discrete Korn inequality, (58) implies

1

ν
‖σ − σh‖+

1

ν
‖p− ph‖+ ‖ω − ωh‖+ ‖uh − IVh

u‖Vh
. hk+1‖(0, ω, σ, p)‖ν,s(63)

under the assumptions of Theorem 26 for a sufficiently smooth solution. Note that even
though the optimal rate for ‖u−uh‖1,h,ε is only O(hk), (63) gives a superconvergent rate
of O(hk+1) for ‖uh − IVh

u‖1,h,ε.

Theorem 28 (Pressure robustness). Under the same assumptions as Theorem 26,

1

ν
‖σ − σh‖+ ‖ω − ωh‖+ ‖uh − IVh

u‖Vh
. hs‖(0, ω, σ, 0)‖ν,s.
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Proof. Proceeding along the lines of the proof of Theorem 26, omitting the pressure
error, we obtain, instead of (62),

1

ν
‖σ − σh‖+ ‖(euh, eωh)‖Uh

.
hs

ν
‖σ‖Hs(Th) +

1√
ν
‖(euh, eωh , eσh, 0)‖∗.

We may now complete the proof as before by using (57) instead of (56). �

5. Postprocessing

In this section we describe and analyze a postprocessing for the discrete velocity.
While for the raw solution uh, we may only expect ‖u − uh‖1,h,ε to go to zero at the
rate O(hk), we will show that a locally postprocessed velocity u∗h has error ‖u− u∗h‖1,h,ε
that converges to zero at the higher rate O(hk+1) for sufficiently regular solutions. The
key to obtain this enhanced accuracy, as in [30], is the O(hk+1)-superconvergence of
‖uh − IVh

u‖1,h,ε – see Remark 27. Finally, we shall also show that u∗h retains the prized
structure preservation properties of exact mass conservation and pressure robustness.

The crucial ingredient is a reconstruction operator (see [21, 22]) whose properties are
summarized in the next lemma. Let

V ∗
h = H0(div,Ω) ∩ P

k+1(Th,R
d), and

V ∗,−
h = {vh ∈ P

k+1(Th,R
d) : Πk[[(vh)n]] = 0, for all F ∈ Fh}

denote the BDM space (one order higher) and its “relaxed” analogue, respectively. The
next result is a consequence of [21, Lemmas 3.3 and 4.8] and the Korn inequality (29).

Lemma 29. There exists an operator R : V ∗,−
h → V ∗

h , whose application is computable
element-by-element, satisfying

(1) ‖Rvh‖1,h,ε . ‖vh‖1,h,ε, for al vh ∈ V ∗,−
h ,

(2) Rv∗h = v∗h for all v∗h ∈ V ∗
h , and

(3) whenever the local (element-wise) property div(vh|T ) = 0 holds for all T ∈ Th

and all vh ∈ V ∗,−
h , the global property div(Rvh) = 0 holds.

A simple choice of R is given by the classical BDM intepolant. This was used in [19].
Another choice of R, given in [21], based on a simple averaging of coefficients, is signif-
icantly less expensive for high orders.

The postprocessed solution u∗h ∈ V ∗
h is given in two steps as follows. First, using the

computed σh and uh, solve the local (see Remark 31) minimization problem

u∗,−h := argmin
v∗,−h ∈V ∗,−

h

IVh (v
∗,−
h )=uh

‖νε(v∗,−h )− σh‖2T .(64)

Second, apply the reconstruction and set u∗h := R(u∗,−h ).

Theorem 30. Suppose the assumptions of Theorem 26 hold. Then u∗h ∈ V ∗
h , div(u

∗
h) = 0,

and for s = min(m− 1, k + 1) we have the pressure-robust error estimate

‖u− u∗h‖1,h,ε . hs‖(u, ω, σ, 0)‖ν,s.
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Proof. On any T ∈ Th, the condition IVh
(u∗,−h ) = uh implies that the Raviart-Thomas

d.o.f.s applied to u∗,−h and uh coincide. Hence, for all qh ∈ P
k(T,R),

(div(u∗,−h ), qh)T = −(u∗,−h ,∇qh)T + (u∗,−h · n, qh)∂T
= −(uh,∇qh)T + (uh · n, qh)∂T = (div(uh), qh) = 0

as div(uh) = 0. Thus, Lemma 29 implies that uh ∈ V ∗
h and div(u∗h) = 0.

It only remains to prove the error estimate. Let IV ∗

h
be the standard BDMk+1 inter-

polator. Then, u∗h = Ru∗,−h satisfies

‖u− u∗h‖1,h,ε ≤ ‖u− IV ∗

h
u‖1,h,ε + ‖R(IV ∗

h
u− u∗,−h )‖1,h,ε by Lemma 29 (2),

. ‖u− IV ∗

h
u‖1,h,ε + ‖u− u∗,−h ‖1,h,ε by Lemma 29 (1).

Since standard approximation estimates yield ‖u − IV ∗

h
u‖1,h,ε . hs‖(u, 0, 0, 0)‖ν,s, we

focus on the last term. A triangle inequality (where we add and subtract different
functions in the element and facet terms) yields

(65)

‖u− u∗,−h ‖21,h,ε .
∑

T∈Th

1

ν2
‖νε(u)− σh‖2T +

∑

T∈Th

1

ν2
‖σh − νε(u∗,−h )‖2T

+
∑

F∈Fh

1

h
‖[[(u− IV ∗

h
u)t]]‖2F +

∑

F∈Fh

1

h
‖[[(IV ∗

h
u− u∗,−h )t]]‖2F .

Naming the four sums on the right as s1, s2, s3 and s4, respectively, we proceed to
estimate each. Obviously s1 = ν−1‖σ − σh‖ . hs‖(0, ω, σ, 0)‖ν,s by Theorem 28.

To bound s2, note that for any wh in the admissible set of the minimization prob-
lem (64), we have s2 ≤ ν−2‖σh−νε(wh)‖2. We choose wh = IV ∗

h
u+uh−IVh

u ∈ V ∗
h ⊂ V ∗,−

h .
Since IVh

IV ∗

h
u = IVh

u implies IVh
wh = uh, the chosen wh is in the admissible set. Hence,

s2 ≤ ν−2‖σh − νε(wh)‖2 ≤ ν−2
(

‖σh − νε(IV ∗

h
u)‖+ ‖νε(uh)− νε(IVh

u)‖
)2

. ν−2‖σh − νε(u)‖2 + ν−2‖νε(u)− νε(IV ∗

h
u)‖2 + ν−2‖νε(uh)− νε(IVh

u)‖2

= ν−2‖σh − σ‖2 + ‖u− IV ∗

h
u‖21,h,ε + ‖uh − IVh

u‖21,h,ε,
so a standard approximation estimate and Theorem 28 yield s2 . hs‖(u, ω, σ, 0)‖ν,s.

The same standard approximation estimate for IV ∗

h
also gives s3 ≤ ‖u− IV ∗

h
u‖1,h,ε .

hs‖(u, ω, σ, 0)‖ν,s. Hence it only remains to bound s4. Observe that IV ∗

h
u − u∗,−h =

IVh
(IV ∗

h
u−u∗,−h )+(Id−IVh

)(IV ∗

h
u−u∗,−h ) = (IVh

u−uh)+(Id−IVh
)(IV ∗

h
u−u∗,−h ), because

IVh
IV ∗

h
u = IVh

u and IVh
u∗,−h = uh. This implies, letting a = (Id−IVh

)(Id−ΠE)(IV ∗

h
u −

u∗,−h ), the identity IV ∗

h
u−u∗,−h = (IVh

u−uh)+a holds because (Id−IVh
)E = 0 (as k ≥ 1).

Hence

s4 . ‖IVh
u− uh‖21,h,ε +

∑

F∈Fh

h−1
∥

∥[[at]]
∥

∥

2

F
.(66)

Since the first term can be bounded by Theorem 28, let us consider the last term.

On any facet F adjacent to a mesh element T , a trace inequality yields h−1
∥

∥[[at]]
∥

∥

2

F
≤

h−1‖at‖2∂T . ‖∇a‖2T + h−2‖a‖2T . Hence,
h−1

∥

∥[[at]]
∥

∥

2

F
. ‖∇(Id−ΠE)(IV ∗

h
u− u∗,−h )‖2T + h−2‖(Id−ΠE)(IV ∗

h
u− u∗,−h )‖2T

. ‖ε(IV ∗

h
u− u∗,−h )‖2T
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where we have used the continuity properties of IVh
, scaling arguments, (27), and an

estimate analogous to (28). Using triangle inequality and returning to (66),

s4 . ‖IVh
u− uh‖21,h,ε + ‖ε(IV ∗

h
u− u)‖2h + ν−2‖νε(u)− σh‖2h + ν−2‖σh − νε(u∗,−h )‖2h.

The last two terms are s1 and s2, respectively. Hence the prior estimates, the standard
approximation estimate for IV ∗

h
, and Theorem 28 shows s4 . hs‖(u, ω, σ, 0)‖ν,s. �

Remark 31. The restriction of the minimizer of (64) to an element T , namely u∗,−T :=
u∗,−h |T , can be computed using the following Euler-Lagrange equations. Letting Λ∗

h(T ) =
{λ : λ|F ∈ P

k(F,R) on all facets F ⊂ ∂T}, the function u∗,−T is the unique function in
P
k+1(T,Rd), which together with ℓ∗h ∈ P

k−1(T,Rd) and λ∗h ∈ Λ∗
h(T ), satisfies

(νε(u∗T ), ε(v))T + (ℓ∗h, v)T + (λ∗h, v · n)∂T = (σh, ε(v))T ,

(u∗T , ℘)T = (uh, ℘)T ,

(u∗T · n, µ)∂T = (uh · n, µ)∂T ,
for all v ∈ P

k+1(T,Rd), ℘ ∈ P
k−1(T,Rd) and µ ∈ Λ∗

h(T ). The last two equations are
another way to express the constraint IVh

u∗,−h = uh in (64).

6. Numerical exampels

In this last section we present two numerical examples to verify our method. All
examples were implemented within the finite element library NGSolve/Netgen, see [28,
29] and on www.ngsolve.org. The computational domain is given by Ω = [0, 1]d and
the velocity field is driven by the volume force determined by f = − div(σ) +∇p with
the exact solution given by

σ = νε(curl(ψ2)), and p := x5 + y5 − 1

3
for d = 2

σ = νε(curl(ψ3, ψ3, ψ3)), and p := x5 + y5 + z5 − 1

2
for d = 3.

Here ψ2 := x2(x− 1)2y2(y− 1)2 and ψ3 := x2(x− 1)2y2(y− 1)2z2(z− 1)2 defines a given
potential in two and three dimensions respectively and we choose the viscosity ν = 10−3.

In Tables 1a and 1b we report the errors in all the computed solution components
for varying polynomial orders k = 1, 2, 3 in the two and the three dimensional cases,
respectively. As predicted by Theorem 26 and Theorem 30 the corresponding errors
converge at optimal order. Furthermore, the L2-norm of error of the (postprocessed)
velocity error converges at one order higher. Note that in three dimensions the errors
are already quite small already on the coarsest mesh. It appears that to get out of the
preasymptotic regime and see the proper convergence rate, it takes several steps.
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|T | ‖∇u−∇u∗

h
‖h (eoc) ‖u− u∗

h
‖ (eoc) ‖σ − σh‖ (eoc) ‖p− ph‖ (eoc) ‖ω − ωh‖ (eoc)

k = 1
20 9.9· 10−3 ( – ) 8.4· 10−4 ( – ) 1.0· 10−2 ( – ) 3.4· 10−2 ( – ) 8.8· 10−3 ( – )
80 3.5· 10−3 (1.5) 1.7· 10−4 (2.3) 3.6· 10−3 (1.5) 9.4· 10−3 (1.9) 3.2· 10−3 (1.5)

320 9.5· 10−4 (1.9) 2.4· 10−5 (2.8) 9.4· 10−4 (1.9) 2.4· 10−3 (2.0) 9.2· 10−4 (1.8)
1280 2.5· 10−4 (1.9) 3.4· 10−6 (2.8) 2.5· 10−4 (1.9) 6.0· 10−4 (2.0) 2.6· 10−4 (1.8)
5120 6.5· 10−5 (1.9) 4.6· 10−7 (2.9) 6.3· 10−5 (2.0) 1.5· 10−4 (2.0) 6.9· 10−5 (1.9)

k = 2
20 2.2· 10−3 ( – ) 1.0· 10−4 ( – ) 1.8· 10−3 ( – ) 3.7· 10−3 ( – ) 1.5· 10−3 ( – )
80 5.0· 10−4 (2.1) 1.1· 10−5 (3.2) 3.7· 10−4 (2.3) 5.3· 10−4 (2.8) 2.8· 10−4 (2.4)

320 6.7· 10−5 (2.9) 7.7· 10−7 (3.8) 5.1· 10−5 (2.9) 6.7· 10−5 (3.0) 4.1· 10−5 (2.7)
1280 8.4· 10−6 (3.0) 4.9· 10−8 (4.0) 6.4· 10−6 (3.0) 8.5· 10−6 (3.0) 5.2· 10−6 (3.0)
5120 1.0· 10−6 (3.0) 3.1· 10−9 (4.0) 8.0· 10−7 (3.0) 1.1· 10−6 (3.0) 6.4· 10−7 (3.0)

k = 3
20 4.1· 10−4 ( – ) 1.4· 10−5 ( – ) 2.4· 10−4 ( – ) 7.2· 10−5 ( – ) 2.2· 10−4 ( – )
80 4.8· 10−5 (3.1) 8.4· 10−7 (4.1) 2.7· 10−5 (3.1) 5.7· 10−6 (3.7) 2.6· 10−5 (3.1)

320 3.0· 10−6 (4.0) 2.6· 10−8 (5.0) 1.7· 10−6 (4.0) 3.6· 10−7 (4.0) 1.7· 10−6 (3.9)
1280 1.9· 10−7 (4.0) 8.3· 10−10 (5.0) 1.1· 10−7 (4.0) 2.3· 10−8 (4.0) 1.1· 10−7 (3.9)
5120 1.2· 10−8 (4.0) 2.6· 10−11 (5.0) 7.1· 10−9 (4.0) 1.4· 10−9 (4.0) 7.3· 10−9 (4.0)

(a) The d = 2 example.

|T | ‖∇u−∇u∗

h
‖h (eoc) ‖u− u∗

h
‖ (eoc) ‖σ − σh‖ (eoc) ‖p− ph‖ (eoc) ‖ω − ωh‖ (eoc)

k = 1
28 1.5· 10−3 ( – ) 1.4· 10−4 ( – ) 1.5· 10−3 ( – ) 7.5· 10−2 ( – ) 1.1· 10−3 ( – )

224 8.1· 10−4 (0.9) 5.4· 10−5 (1.3) 8.1· 10−4 (0.8) 3.1· 10−2 (1.3) 6.7· 10−4 (0.7)
1792 3.2· 10−4 (1.4) 1.3· 10−5 (2.0) 3.2· 10−4 (1.4) 9.5· 10−3 (1.7) 3.2· 10−4 (1.1)

14336 9.2· 10−5 (1.8) 1.9· 10−6 (2.8) 9.0· 10−5 (1.8) 2.5· 10−3 (1.9) 9.1· 10−5 (1.8)
114688 2.4· 10−5 (1.9) 2.5· 10−7 (3.0) 2.3· 10−5 (2.0) 6.4· 10−4 (2.0) 2.3· 10−5 (1.9)

k = 2
28 5.0· 10−4 ( – ) 4.3· 10−5 ( – ) 5.8· 10−4 ( – ) 6.7· 10−3 ( – ) 4.9· 10−4 ( – )

224 2.1· 10−4 (1.3) 9.7· 10−6 (2.2) 1.6· 10−4 (1.9) 1.6· 10−3 (2.1) 1.4· 10−4 (1.9)
1792 5.7· 10−5 (1.9) 1.5· 10−6 (2.7) 3.9· 10−5 (2.0) 2.6· 10−4 (2.6) 3.6· 10−5 (1.9)

14336 7.9· 10−6 (2.9) 1.1· 10−7 (3.8) 5.4· 10−6 (2.8) 3.5· 10−5 (2.9) 5.2· 10−6 (2.8)
114688 1.0· 10−6 (2.9) 7.0· 10−9 (3.9) 7.1· 10−7 (2.9) 4.5· 10−6 (3.0) 7.0· 10−7 (2.9)

k = 3
28 1.8· 10−4 ( – ) 1.3· 10−5 ( – ) 1.7· 10−4 ( – ) 2.4· 10−3 ( – ) 1.3· 10−4 ( – )

224 5.8· 10−5 (1.6) 2.4· 10−6 (2.4) 4.4· 10−5 (1.9) 2.5· 10−4 (3.2) 3.0· 10−5 (2.1)
1792 6.8· 10−6 (3.1) 1.7· 10−7 (3.8) 5.0· 10−6 (3.2) 3.0· 10−5 (3.1) 3.6· 10−6 (3.0)

14336 5.7· 10−7 (3.6) 7.3· 10−9 (4.5) 4.1· 10−7 (3.6) 2.1· 10−6 (3.9) 3.0· 10−7 (3.6)
114688 4.0· 10−8 (3.9) 2.5· 10−10 (4.9) 2.8· 10−8 (3.9) 1.3· 10−7 (4.0) 2.0· 10−8 (3.9)

(b) The d = 3 example.

Table 1. Convergence rates for the postprocessed velocity and all other
solution components for ν = 10−3
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