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A FULLY DISCRETE NUMERICAL CONTROL METHOD FOR THE

WAVE EQUATION

ERIK BURMAN, ALI FEIZMOHAMMADI, AND LAURI OKSANEN

Abstract. We present a fully discrete finite element method for the interior null control-
lability problem subject to the wave equation. For the numerical scheme, piece-wise affine
continuous elements in space and finite differences in time are considered. We show that if
the sharp geometric control condition holds, our numerical scheme yields the optimal rate
of convergence with respect to the space-time mesh parameter h. The approach is based
on the design of stabilization terms for the discrete scheme with the goal of minimizing the
computational error.

1. Introduction

We consider the now classical interior null controllability problem for the wave equation
formulated as follows. Let T > 0, Ω ⊂ R

n with n ∈ {2, 3} be a connected bounded open set
with smooth boundary and finally let ω ⊂ Ω be an open set. We define M = (0, T )×Ω and
O = (0, T )× ω and for each

(g0, g1, U) ∈ H1
0 (Ω)× L2(Ω)× L2(M),

consider the unique weak solution

u ∈ C(0, T ;H1
0(Ω)) ∩ C1(0, T ;L2(Ω))

of the following initial boundary value problem (IBVP):

(1.1)







�u = ∂2t u−∆u = χωU, ∀(t, x) ∈ M,

u(t, x) = 0, ∀(t, x) ∈ (0, T )× ∂Ω,

u(0, x) = g0, ∂tu(0, x) = g1, ∀x ∈ Ω.

Here χω is a suitable non-negative smooth function that is localized in ω and is independent
of the time parameter t.

The null controllability problem consists of determining a control function U∗, such that
the solution u to equation (1.1) with U = U∗ satisfies

(1.2) (u(T, x), ∂tu(T, x)) = (0, 0) ∀x ∈ Ω.

This paper is concerned with a numerical scheme for solving the null controllability prob-
lem (1.1)−(1.2), based on the Finite Element Method (FEM). In particular, we will prove
optimal rate of convergence of the error in the H1-norm of the state variable u, with respect
to the space-time mesh parameter, assuming only the geometric control condition by Bardos,
Lebeau and Rauch [4, 5]. To our knowledge, the present result is first one giving optimal
convergence rate in general geometries in dimensions two and three.
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1.1. The geometric control condition and observability estimates. We begin with
recalling the geometric control condition by Bardos, Lebeau and Rauch:

Definition 1.1 (See [5, 25]). We say that Õ = (0, T ) × ω̃ satisfies the geometric control
condition, if every compressed generalized bicharacteristic intersects the set Õ.

This roughly states that all geometric optic rays propgating inMmust intersect the region
Õ, taking into account possible reflections of the rays at the boundary. Next, we recall the
following observability estimate originating from [4, 5]. The formulation here is based on
[25, Proposition 1.2] and is stated as it appears in [7, Theorem 2.2]:

Theorem 1.2. (Interior observability estimate) Let T > 0, ω̃ ⊂ Ω. Suppose that the set
Õ = [0, T ] × ω̃ satisfies the geometric control condition. Let U ∈ L2(M) with U |(0,T )×∂Ω ∈
L2((0, T )×∂Ω) and �U ∈ H−1(M), where H−1(M) denotes the topological dual of H1

0 (M).
Then,

U ∈ C1(0, T ;H−1(Ω)) ∩ C(0, T ;L2(Ω).

Moreover, there exists C0 > 0 such that the following estimate holds:

sup
t∈[0,T ]

(‖U(t, ·)‖L2(Ω) + ‖∂tU(t, ·)‖H−1(Ω)) 6 C0(‖U‖L2(Õ) + ‖�U‖H−1(M) + ‖U‖L2((0,T )×∂Ω)).

Observability estimates are one of the key tools in the study of the null controllability
problem for the wave equation [32]. Although alternative geometric conditions are also
available for obtaining such an estimate (see for example [15, 28]), it is important to note
that the geometric control condition is sharp in the sense that it is both necessary and
sufficient for obtaining an observability estimate.

1.2. Continuum null controllability problem. We recall the classical approach in show-
ing the existence of a control function U that originates from [27]. Although in general the
problem of determining a control function U solving (1.1)−(1.2) is non-unique, we may look
for controls with additional constraints. The standard approach is to choose a control that
additionally satisfies the (backward) wave equation as well, that is:

(1.3)







�U = 0, ∀(t, x) ∈ M,

U(t, x) = 0, ∀(t, x) ∈ (0, T )× ∂Ω,

U(T, x) = U0, ∂tU(T, x) = U1, ∀x ∈ Ω

for some (U0, U1) ∈ L2(Ω)×H−1(Ω).
We recall from [26, Theorem 2.3] that (1.3) has a unique solution U in the energy space

C1(0, T ;H−1(Ω)) ∩ C(0, T ;L2(Ω)).

Observe that given any solution u to equation (1.1), and any solution V to equation (1.3),
we have:

(1.4)

∫ T

0

(χω(·)U(τ, ·), V (τ, ·))L2(Ω) dτ = (∂tu(T, ·), V (T, ·))L2(Ω) − (∂tu(0, ·), V (0, ·))L2(Ω)

− 〈u(T, ·), ∂tV (T, ·)〉H1
0
(Ω)×H−1(Ω) + 〈u(0, ·), ∂tV (0, ·)〉H1

0
(Ω)×H−1(Ω).

We deduce that equations (1.1)−(1.2) hold if and only if the following identity holds for any
solution V to the wave equation (1.3):

(1.5)

∫ T

0

(χω(·)U(τ, ·), V (τ, ·))L2(Ω) dτ = −(g1, V (0, ·))L2(Ω) + 〈g0, ∂tV (0, ·)〉H1
0
(Ω)×H−1(Ω).
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Under the additional assumption that the control function U satisfies the wave equation (1.3),
equation (1.5) is equivalent to the Euler-Lagrange equation for the Lagrangian functional

(1.6) J (U0, U1) =
1

2

∫ T

0

∫

Ω

χω|U |2 dx dt− (g1, U(0, ·))L2(Ω) + 〈g0, ∂tU(0, ·)〉H1
0
(Ω)×H−1(Ω),

where, for each (U0, U1) ∈ L2(Ω)×H−1(Ω), U denotes the unique solution to equation (1.3)
with this final datum.

To summarize thus far, let (U∗,0, U∗,1) be a minimizer (if it exists) for the functional J .
Then, the solution U∗ to (1.3) with this final datum yields a control function that drives the
solution u∗ of (1.1) with source term χωU∗ from (g0, g1) to (0, 0). In fact one can show that
U∗ is the control function solving (1.1)–(1.2) with minimal ‖√χωU‖L2(M) norm.

We will now briefly recall how the observability estimate in Theorem 1.2 proves existence
of a unique minimizer for J . Let us first consider the classical context where O satisfies the
geometric control condition and additionally that χω is simply the characteristic function of
the set ω. In this case, Theorem 1.2 implies that the functional J is coercive and strictly
convex (see for example [32, Theorem 2.4]). Together with the continuity of J it follows
that, in this setting, there exists a unique minimizer (U∗,0, U∗,1) in the space L2(Ω)×H−1(Ω).

It is in fact quite common in the literature to let χω be the characteristic function of ω
as above. In this case, the control function U∗ suffers from low regularity that makes the
task of numerical approximation and derivation of convergence rates challenging. Already
in the seminal work [5], a theory for smoother boundary controls for the wave equation
were studied. In [21, 22], the authors studied interior controls for the wave equation and
in particular it was proved that one can construct smoother control functions by simply
imposing some smoothness conditions on the initial datum (g0, g1) and using a sufficiently
smooth cut-off function χω. Let us recall their approach for the continuum problem. We
need the following definition.

Definition 1.3. For each s ∈ N, we say that (y0, y1) ∈ D((−∆)s), if the following conditions
are satisfied:

(i) (y0, y1) ∈ Hs+1(Ω)×Hs(Ω),
(ii) ((−∆)jy0)|∂Ω = 0, for j = 0, 1, . . . , ⌊ s

2
+ 1

4
⌋,

(iii) ((−∆)jy1)|∂Ω = 0, for j = 0, 1, . . . , ⌊ s
2
− 1

4
⌋.

We now recall [21, Theorem 4] and [22, Theorem 1.6] to state some regularity results for
the controls that are obtained when smoother cut-off functions are used.

Theorem 1.4. Let s ∈ N. Suppose that χω is a non-negative smooth function localized in ω
that maps D((−∆)s) to itself. Assume also that the functional J given by (1.6) is coercive
and strictly convex. Given any initial datum (g0, g1) ∈ D((−∆)s), let (U∗,0, U∗,1) denote the
unique minimizer for J on L2(Ω)×H−1(Ω). Then:

(U∗,0, U∗,1) ∈ D((−∆)s−1).

Moreover, the following estimate holds:

(1.7) ‖U∗‖Xs(M) + ‖u∗‖Xs+1(M) 6 C‖(g0, g1)‖Hs+1(Ω)×Hs(Ω),

where U∗ is the unique solution to (1.3) with final datum (U∗,0, U∗,1) and u∗ is the unique
solution to (1.1) with source χωU∗. Here, C > 0 is a constant depending only on M, ω, χω,
s and Xs(M) denotes the Banach space Xs(M) =

⋂s

k=0 Ck(0, T ;Hs−k(Ω)).
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Note that this theorem gives a continuum solution (u∗, U∗) to the null controllability
problem (1.1)–(1.3), with smoothness properties given by (1.7). In this paper, we will need
to apply Theorem 1.4 with s = 3. We will therefore begin with defining an admissibility
condition for the set O, based on the geometric control condition, followed by the admissible
choices of the cut-off function χω so that the assumptions of Theorem 1.4 are satisfied.

Hypothesis 1.5 (Admissibility condition for O). There exists δ > 0 sufficiently small, such
that the set (0, T )× ωδ satisfies the geometric control condition, where:

ωδ = {x ∈ ω | dist (x, ∂ω \ ∂Ω) > δ}.
Next, assuming that the set O satisfies the admissibility condition above, we require that

our cut-off function χω satisfies the following three properties

(1.8)







(i)χω ∈ C∞(Ω̄; [0,∞)) and χω = 0 on the set Ω \ ω,
(ii)χω = 1 on the set ωδ,

(iii) (∂kνχω)|∂Ω = 0 for k = 1, 2, where ν denotes the unit normal vector to ∂Ω.

We will show in Appendix A that one can always construct such cut-off functions. As
an example, we note that in the special case that ∂ω ∩ ∂Ω = ∅, the cut-off function can be
chosen as any function χω ∈ C∞

c (ω; [0, 1]) that satisfies:

χω(x) =

{

0 if dist (x, ∂ω) < δ
2
,

1 if dist (x, ∂ω) > δ.

In Appendix B we will show that under the Hypothesis 1.5 and given any cut-off function
satisfying (i)–(iii) above, the two main assumptions of Theorem 1.4 are satisfied for s = 3.
Therefore, this theorem applies to solve the null controllability problem (1.1)–(1.3) with the
additional smoothness property that

u∗ ∈ X4(M) and U∗ ∈ X3(M),

if the initial datum (g0, g1) belongs to the space D((−∆)3). This smoothness class for the
continuum solution to (1.1)–(1.3) will be important in our numerical analysis.

Before closing the section, let us emphasize that the results in this paper can also be applied
to the problem of (interior) exact controllability, where the final state (u(T, x), ∂tu(T, x)) can
be any pair of functions (h0, h1) ∈ D((−∆)3). This is a consequence of the equivalence of the
null and exact controllability problems for the wave equation. To illustrate this equivalence,
let u1 denote the unique solution to equation (1.1) with a homogeneous source term U = 0,
but with the difference that the initial conditions are imposed at the final time t = T that
is to say u1(T, ·) = h0 and ∂tu1(T, ·) = h1. This is possible due to the time-reversibility of
the wave equation. Subsequently, let (u1|t=0, ∂tu1|t=0) = (g̃0, g̃1). Finally, let χωU be a null
control that drives the system from initial data (g0 − g̃0, g1 − g̃1) to (0, 0). It is clear that
χωU is a control that drives the solution u to equation (1.1) from (g0, g1) to (h0, h1).

1.3. Previous literature. It is well-known that methods based on minimizing discrete
analogues of the Lagrangian (1.6) may fail to converge. This is the case, for example, when
second-order central finite differences in both time and space are used to discretize (1.3),
and the so obtained discretization of (1.6) is minimized by using the conjugate gradient
algorithm. This was first observed by Glowinski et al. in a series of works in early 1990s.
An excellent summary of these works is provided by Glowinski and Lions in Sections 6.8–9
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of [23]. It was observed that trouble lies with the high-frequency components of the discrete
solution, see e.g. Section 6.8.6 of [23], and different regularization techniques were proposed.
For example, a Tikhonov type regularization procedure based on a use of the biharmonic
operator is discussed in detail in [23], and the efficiency of the regularization is demonstrated
by numerical experiments.

The spurious modes arising at high frequencies from a finite-difference semi-discretization
of the one dimensional wave equation were first rigorously analyzed in [24]. In particular, it
was shown that the analogue of the estimate in Theorem 1.2 fails on the discrete level. Several
numerical methods based on filtering of the spurious high frequency modes were subsequently
proposed. As an early example of a result in this tradition, we mention [31] where weak
convergence of a subsequence of semi-discrete approximations of a control function for the
one dimensional wave equation was proven. For a thorough review of the filtering approach,
we refer to the monograph [21]. There it is also shown that a semi-discrete variant of the
approach has optimal convergence under the assumption that the analogue of the estimate
in Theorem 1.2 is recovered on the discrete level after suitable filtering. However, it is not
known if such filtered estimates hold in general, when only the geometric control condition
is assumed, see the discussion in Section 5.3 of [21].

Instead of considering the control function satisfying (1.3), it is also possible to follow
Russell’s stabilization implies control principle [33]. On the continuum level, this involves
an alternating iteration solving forward and backward wave equations. A suitably semi-
discretized version of this scheme leads to a solution method to the null control problem
with a rate of convergence exhibiting only a logarithmic loss when compared to the optimal
rate [12]. However, the scheme requires that the alternating iteration is stopped after a
specific number of steps, depending for example on the constant C in Theorem 1.2, and this
stopping criterion may not be easy to implement in practice. As demonstrated in Section
1.7.1.2 of [21], the iteration in fact diverges as the number of steps grows too large.

In a recent work [14], Münch et al. formulate the controllability problem so that the wave
equation (1.3) enters into the Lagrangian functional (1.6) via a Lagrange multiplier. The
Lagrangian functional is further augmented with the L2-norm of �U . In a subsequent work
[29], a Lagrange multiplier is used to impose the wave equation as a first order system. The
efficiency of the resulting methods is demonstrated by numerical experiments, however, their
convergence analysis is not complete as it is not known if the discrete inf-sup constants for
the methods, see (39) and (6.9) in [14] and in [29], respectively, are uniformly bounded from
below.

Our approach is based on a Lagrangian functional where the initial conditions in (1.1)
together with the final conditions in (1.2) are imposed via penalty terms, and similarly
to [14], the equations (1.1) and (1.3) are imposed via Lagrange multipliers. Instead of
augmentation, we add Tikhonov type regularization terms that vanish at the correct rate as
the mesh size tends to zero. This allows us to prove a discrete inf-sup property (Proposition
3.1), and subsequently an optimal convergence rate (Theorem 2.1). The present method
can be seen as the continuation of our previous work in [7], where we studied numerical
approximation of the dual problem to the controllability problem discussed here, that is,
the data assimilation problem subject to the wave equation. A detailed comparison between
these two works is given in Section 6.

1.4. Outline of the paper. We start Section 2 with presenting the first order finite element
spaces that are used for the numerical approximation of the null controllability problem. A
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Lagrangian functional is then formulated in the discrete level, and the main theorem is stated
(Theorem 2.1) that gives a numerical method for solving the null controllability problem.
Section 3 is concerned with proving a suitable inf-sup stability estimate (Proposition 3.1)
for the discrete Lagrangian. We also show the existence of a unique critical point for the
discrete Lagrangian. In Section 4, the inf-sup stability estimate is used together with a
continuity estimate for the residual error (Lemma 4.3) to obtain a weak a priori control on
the error function (Proposition 4.2). This proposition is then used to obtain an approximate
version of the observability estimate in Theorem 1.2 at the discrete level (Proposition 4.6).
Section 5 is concerned with the proof of Theorem 2.1. There, the key ingredients are the
coercivity Lemma 5.4, together with the approximate discrete observability estimate (Propo-
sition 4.6). Finally, in Section 6 we give a detailed comparison with our earlier work for the
data assimilation problem together along with some concluding remarks.
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grant EP/P01593X/1 and LO by EPSRC grants EP/L026473/1 and EP/P01593X/1. The
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2. Discretization

Let us now present the discretization approach for (1.1)–(1.3). We will use finite differences
in time and first order finite elements in space. Let N ∈ N and define τ = T

N
to denote the

uniform length of the time-steps in our numerical method. Also, let {tk}Nk=0 be defined
through tk = kτ . We begin by discretizing the boundary ∂Ω and denote the resultant
polyhedral domain by Ωh. This polyhedral approximation is assumed to be sufficiently close
to Ω in the sense that

(2.1) dist (x, ∂Ω) 6 C h2, ∀x ∈ ∂Ωh,

for some constant C > 0 that is independent of h. This is always possible since Ω has a
smooth boundary (see [3] for example). Subsequently, we consider a spatial mesh Th which
is a conforming quasi uniform triangulation of the polyhedral domain Ωh and define hK to
be the local space mesh size. We set h = maxK∈Th hK to be the global mesh parameter in
space and make the standing assumption that the discrete time steps τ and the spatial mesh
parameter h are comparable in size, that is to say τ = O(h).

We now define the spatial finite element space Vh to be the space of piece-wise affine
continuous finite elements satisfying zero boundary condition,

Vh = {v ∈ H1
0 (Ωh) : v|K ∈ P1(K), ∀K ∈ Th}.

For each u, v ∈ Vh, let

(u, v)h =

∫

Ωh

u(x)v(x) dx and ah(u, v) =

∫

Ωh

∇u(x) · ∇v(x) dx,

and

‖u‖h =
√

(u, u)h.
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Next, we define the space-time mesh V
N+1
h = Vh × Vh × . . .× Vh

︸ ︷︷ ︸

N + 1 times

and subsequently for each

u = (u0, u1, . . . , uN) ∈ V
N+1
h ,

we define the backward and forward discrete time differences ∂τ , ∂̃τ as follows:

∂τu
n =

un − un−1

τ
for n = 1, . . . , N,

∂̃τu
n =

un − un+1

τ
for n = 0, . . . , N − 1.

We note in passing that the forward discrete time difference ∂̃τ acting on (un)Nn=0 can be
thought as the backward time difference for the discrete function (uN−n)Nn=0. Note also that
second order time differences can be written through

∂2τu
n =

un − 2un−1 + un−2

τ 2
for n = 2, . . . , N,

∂̃2τu
n =

un − 2un+1 + un+2

τ 2
for n = 0, . . . , N − 2.

Finally, consider any smooth extension of χω to Ω∪Ωh and define a non-negative discrete
approximate χh of the smooth function χω such that χh ∈ Vh and

(2.2) ‖χω − χh‖L∞(Ωh) + h‖χω − χh‖W 1,∞(Ωh) 6 C h2,

where C > 0 is independent of h. Note that this is possible due to the smoothness assumption
on χω along with smoothness of ∂Ω and equation (2.1).

We now return to the null controllability problem (1.1)–(1.3). Given any u = (u0, . . . , uN),
U = (U0, . . . , UN) in V

N+1
h and z = (z2, . . . , zN), Z = (Z0, . . . , ZN−2) in V

N−1
h , we define the

discrete Lagrangian functional

J : VN+1
h × V

N+1
h × V

N−1
h × V

N−1
h → R

through the expression

(2.3)

J (u, U, z, Z) =J0(u, U, z, Z) + J1(U),

J0(u, U, z, Z) =G(u, z)− τ

N∑

n=2

(χhU, z)h + G∗(Z, U) +R(u),

J1(U) =
h2

2
‖∇UN‖2h +

h2

2
‖∂τ∇UN‖2h +

h2

2
‖∂τ∇U1‖2h +

τh2

2

N∑

n=1

‖∂τ∇Un‖2h,

G(u, z) = τ

N∑

n=2

(
(∂2τu

n, zn)h + ah(u
n, zn)

)
,

G∗(Z, U) = τ

N−2∑

n=0

(

(Zn, ∂̃2τU
n)h + ah(Z

n, Un)
)

,

R(u) =
1

2

[
‖∇uN‖2h + ‖∂τuN‖2h + ‖∇(u0 − g0)‖2h + ‖∂τu1 − g1‖2h

]
.
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Let us make some remarks about the discrete Lagrangian J . Here, the variables u and U
should be interpreted as discrete analogoues of the state variable and the control function,
while z and Z are discrete variables. The terms G(u, z) − τ

∑N

n=2(χωU, z)h and G∗(Z, U)
are weak formulations of the first equations in (1.1) and in (1.3), respectively. Although in
continuum, the forward and backward wave equations are completely equivalent, we use a
backward discrete wave equation for the discrete control variable U . This will be important
in the proof of convergence rates for our numerical analysis (see Lemma 5.3). The functional
R imposes the initial conditions in (1.1) as well as the final conditions (1.2). Note that the
initial states z0, z1 for z and final states ZN−1, ZN for Z do not appear in the formulation
and can be taken to be zero. Intuitively, the Lagrange multipliers are solving in-homogeneous
wave equations with zero initial or final data. To summarize, J0 corresponds to equations
(1.1)–(1.3).

We have incorporated the numerical stabilizers (also called regularizers) in the discrete
level through the functional J1(U). The design of these terms is driven with the goal of
minimizing the errors in the numerical approximation of the null controllability problem.
The first two terms in J1 correspond to the energy for the wave equation (1.3) at time
t = T and seem a natural inclusion, while the remaining two terms are in part motivated by
our previous works for data assimilation problems for heat and wave equations [7, 9]. The
regularization term in mixed derivatives also appears in [2].

Heuristically, we expect to have a critical (saddle) point in the sense that the Lagrangian
attains the value

inf
(u,U)∈V2N+2

h

sup
(z,Z)∈V2N−2

h

J (u, U, z, Z).

Moreover, we expect this critical point to converge to the continuum solution of the control
problem (1.1)–(1.3) with the Lagrange multipliers (z, Z) converging to zero as h→ 0.

The Euler-Lagrange equations for the functional J can be written in the form

〈DuJ , v〉+ 〈DUJ , V 〉+ 〈DzJ , w〉+ 〈DZJ ,W 〉 = 0 ∀(v, V, w,W ) ∈ V
4N
h ,

where Ds denotes the Fréchet derivative with respect to s ∈ {u, U, z, Z}. Letting

x = (u, U, z, Z) ∈ V
4N
h and y = (v, V, w,W ) ∈ V

4N
h ,

we see that the Euler-Lagrange equations can be recast in the form

(2.4) A(x; y) = ah(v
0, g0) + (∂τv

1, g1)h for all y ∈ V
4N
h ,

where A : V4N
h × V

4N
h → R is a bi-linear form defined through

A(x; y) = A0(u, z; v) +A1(U, z, Z;V ) +A2(u, U ;w) +A3(U ;W ),



A FULLY DISCRETE NUMERICAL CONTROL METHOD FOR THE WAVE EQUATION 9

with

A0(u, z; v) =G(v, z) + ah(u
0, v0) + ah(u

N , vN) + (∂τu
1, ∂τv

1)h + (∂τu
N , ∂τv

N)h,

A1(U, z, Z;V ) =G∗(Z, V )− τ

N∑

n=2

(χhV, z)h + h2(∇UN ,∇V N )h + h2(∂τ∇UN , ∂τ∇V N)h

+ h2(∂τ∇U1, ∂τ∇V 1)h + τ

N∑

n=1

(h ∂τ∇Un, h ∂τ∇V n)h,

A2(u, U ;w) =G(u, w)− τ

N∑

n=2

(χhU,w)h,

A3(U ;W ) =G∗(W,U).

Observe, in particular that the expressions for A2 and A3 imply that the Euler-Lagrange
equations for u and U enforce discrete versions of (1.1) and (1.3). Indeed, the state variable
u must solve the discrete forward wave equation with source term χhU , while the control
variable U must solve the discrete backward wave equation. We are now ready to state the
main theorem in the paper as follows.

Theorem 2.1. Suppose that Hypothesis 1.5 holds for the set O = (0, T ) × ω. Let χω be
any function that satisfies properties (i)–(iii) in (1.8). Let (g0, g1) ∈ D((−∆)3) and denote
by (u∗, U∗), the unique continuum solution to the interior null controllability problem (1.1)–
(1.3). Then, there exists h0 > 0, such that for all 0 < h < h0, the Euler-Lagrange equation
(2.4) admits a unique solution denoted by (uh, Uh, zh, Zh). Moreover, for n = 1, . . . , N :

(i) ‖Un
∗ − Un

h ‖L2(Ω) + ‖∂tUn
∗ − ∂τU

n
h ‖H−1(Ω) 6 C h‖(g0, g1)‖H4(Ω)×H3(Ω),

(ii) ‖un∗ − unh‖H1(Ω) + ‖∂tun∗ − ∂τu
n
h‖L2(Ω) 6 C h‖(g0, g1)‖H4(Ω)×H3(Ω),

where Un
∗ (·) = U∗(nτ, ·), un∗(·) = u∗(nτ, ·) and C > 0 is a constant independent of the mesh

parameter h 1 and only depends on T , M, ω, δ.2

3. Inf-sup stability estimate

This section is concerned with the study of the Euler-Lagrange equation (2.4). First, we
define κ, κ̃ > 0 to be constants such that for all u ∈ Vh

(3.1) max {h, τ}‖∇u‖h 6 κ‖u‖h and κ̃‖u‖h 6 ‖∇u‖h,

where we recall that h, τ are the mesh parameters. The existence of these constants is
guaranteed by the discrete inverse inequality that follows from the fact that the space-mesh
is quasi-uniform (see for instance [6, Lemma 4.5.3]) together with the Poincaré inequality
and the standing assumption that τ = O(h).

1Recall that h and τ are assumed to be comparable, that is τ = O(h).
2See Proposition 4.2 for the estimates of zh and Zh.
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We introduce the following discrete norms and semi-norms:

|‖(u, U)|‖2R = ‖∇uN‖2h + ‖∂τuN‖2h + ‖∇u0‖2h + ‖∂τu1‖2h + τ

N∑

n=1

‖h ∂τ∇Un‖2h

+ h2‖∇∂τUN‖2h + h2‖∂τ∇U1‖2h + h2‖∇UN‖2h,

|‖u|‖2F = τ

N∑

n=1

(‖∂τun‖2h + ‖∇un‖2h),

|‖U |‖2F ′ = τ

N∑

n=2

(‖∂2τUn‖2h + ‖∂τ∇Un‖2h + ‖∂τUn‖2h + ‖∇Un‖2h) + ‖∂τU1‖2h + ‖∇U1‖2h,

|‖z|‖2D = τ

N∑

n=2

‖zn‖2h + τ

N∑

n=2

‖∇Izn‖2h + ‖∇IzN‖2h + ‖zN‖2h

|‖Z|‖2D′ = τ

N−2∑

n=0

‖Zn‖2h + τ

N−2∑

n=0

‖∇ĨZn‖2h + ‖∇ĨZ0‖2h + ‖Z0‖2h

|‖(u, U, z, Z)|‖2C = |‖(u, U)|‖2R + τ

N∑

n=2

‖zn‖2h + τ

N−2∑

n=0

‖Zn‖2h.

Here,

Izn = τ

n∑

m=0

(1 +mτ)zm and ĨZn = τ

N∑

m=n

(1 + (N −m)τ)Zm

where we have defined z0 = z1 = 0 and ZN−1 = ZN = 0. Note that using the Poincaré
inequality we have the following:

‖∇Izn‖h > C ‖Izn‖h n = 2, ..., N,

for some C > 0 independent of h, with an analogous estimate holding for ĨZ as well.
The above norms and semi-norms have the following interpretations. The |‖(·, ·)|‖R semi-

norm captures the stability properties of the bi-linear form A due to the regularization terms
in J1 and the data fitting terms in R. The norms |‖ · |‖F , |‖ · |‖F ′, |‖ · |‖D and |‖ · |‖D′ quantify
stability properties of the discrete wave equations for u, U , z and Z given by G(u, z) and
G∗(Z, U). There is a delicate counter balance in the strength of the norms |‖ · |‖F , |‖ · |‖F ′ (in
terms of the Sobolev scales) for the functions u, U compared to that of |‖ · |‖D, |‖ · |‖D′ for the
Lagrange multipliers z, Z. For instance, in the continuum limit τ, h→ 0, the |‖ · |‖F norm is
reminiscent to ‖ · ‖H1(M), while the |‖ · |‖D norm is analogous to ‖ · ‖H−1(0,T ;H1(Ω))+‖ · ‖L2(M).
The |‖(·, ·)|‖C semi-norm quantifies continuity of A in the dual variables from above and
below, see Proposition 3.1 below and Lemma 4.3.

The rest of this section is concerned with the following proposition.

Proposition 3.1. There exists h0, C > 0 such that for all h ∈ (0, h0) and all x = (u, U, z, Z) ∈
V

4N
h there exists y = (v, V, w,W ) ∈ V

4N
h satisfying:

A(x; y) & |‖(u, U)|‖2R + h2|‖u|‖2F + h2|‖U |‖2F ′ + |‖z|‖2D + |‖Z|‖2D′ & |‖y|‖2C.
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Remark 1. Throughout the remainder of the paper we use the notation A & B, to imply
the existence of a positive constant C > 0 independent of the mesh parameter h, such that
A > CB.

We can use Proposition 3.1 to show that the Euler-Lagrange equation (2.4) admits a unique
solution xh = (uh, Uh, zh, Zh) ∈ V

4N
h . Indeed, let Nh denote the dimension of Vh. Equation

(2.4) is a linear system governed by a 4NhN × 4NhN matrix. Existence and uniqueness of a
discrete solution xh will follow, if we can show that the kernel of this matrix is trivial. But
this follows immediately from Proposition 3.1.

Before presenting the proof of Proposition 3.1, we state a few lemmas, the first of which
is trivial.

Lemma 3.2. Let x = (u, U, z, Z) ∈ V
4N
h . If y = (u, U,−z,−Z), then

A(x; y) = |‖(u, U)|‖2R.
The estimates in the next lemma are discrete analogues of energy estimates for the wave

equation corresponding to various Sobolev norms. The energy estimates for u and U will
be stronger in the Sobolev scale but eventually rescaled by h2 and this will be balanced by
weaker Sobolev spaces with no scaling on the dual variables z, Z. For the proof, we refer the
reader to [7, Remark 1, Lemma 3.4, Lemma 3.5].

Lemma 3.3. Let (u, U, z, Z) ∈ V
4N
h . We define z0 = z1 = ZN−1 = ZN = 0. Define the test

function y = (v, V, w,W ) through

vn = Izn for n = 0, . . . , N,

V n = ĨZn for n = 0, . . . , N,

wn = (2T − nτ)∂τu
n for n = 2, . . . , N,

W n = ∂̃2τU
n + (2T − (N − n)τ)∂̃τU

n for n = 0, . . . , N − 2.

The following estimates hold:

(3.2)
G(u, w) & |‖u|‖2F − |‖(u, 0)|‖2R, G(v, z) & |‖z|‖2D,
G∗(h2W,U) & h2|‖U |‖2F ′ − |‖(0, U)|‖2R, G∗(Z, V ) & |‖Z|‖2D′,

where the constants in the inequalities only depend on T,Ω.

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let x = (u, U, z, Z) and define y = (v̂, V̂ , ŵ, Ŵ ) ∈ V
4N through

(3.3)
v̂n = un + γvn, V̂ n = Un + αV n,

ŵn = −zn + αh2wn, Ŵ n = −Zn + γh2W n,

where γ > α > 0 and v, V, w,W are chosen as in Lemma 3.3. Recalling the definition of the
linear form A(x; y) together with Lemma 3.2, we write

A(x; y) = |‖(u, U)|‖2R + γA0(u, z; v) + αA1(U, z, Z;V ) + αh2A2(u, U ;w) + γh2A3(U ;W ).

By Lemma 3.3, there exists C1, C2 > 0 only depending on T,Ω such that

(3.4)
αh2G(u, w) + γG(v, z) + αG(Z, V ) + γh2G(W,U) >
C1(h

2γ|‖U |‖2F ′ + αh2|‖u|‖2F + γ|‖z|‖2D + α|‖Z|‖2D′)− C2γ|‖(u, U)|‖2R.
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We now set α = α0γ for a fixed 0 < α0 < min {1, 3
4
κ̃2C2

1 ,
C2

1

4T 2} and show that the proposition
holds for this choice of y ∈ V

4N
h when γ is sufficiently small independent of h. First, note

that

ah(u
0, v0) = ah(∂τu

1, ∂τv
1) = ah(U

N , V N) = ah(∂τU
N , ∂τV

N ) = 0.

We use the Cauchy-Schwarz inequality to obtain the following bounds for the remaining
(possibly) negative terms in A(x; y)

|ah(uN , vN)| 6
1

C1

‖∇uN‖2h +
C1

4
‖∇IzN‖2h,

|(∂τuN , ∂τvN)h| 6
(1 + T )2

C1

‖∂τuN‖2h +
C1

4
‖zN‖2h,

h2|(∂τ∇U1, ∂τ∇V 1)h| 6 h2
κ2(1 + T )2

C1

‖∂τ∇U1‖2h +
C1

4
‖Z0‖2h,

τ

N∑

n=1

|(τ∂τ∇Un, τ∂τ∇V n)h| 6
κ2(1 + T )2

C1
τ

N∑

n=1

‖τ∂τ∇Un‖2h +
C1

4
τ

N−2∑

n=0

‖Zn‖2h,

h2|τ
N∑

n=2

(χhU
n, wn)h| 6

4T 2

C1
τ

N∑

n=2

h2‖Un‖2h +
C1

4
τ

N∑

n=2

h2‖∂τun‖2h,

|τ
N∑

n=2

(χhV, z)h| 6
1

κ̃2C1
τ

N∑

n=2

‖zn‖2h +
C1

4
τ

N−2∑

n=0

‖∇ĨZn‖2h.

Combining these bounds we deduce that

A(x; y) > |‖(u, U)|‖2R − C3γ|‖(u, U)|‖2R + α
3C1

4
|‖Z|‖2D′ + α

3C1

4
h2|‖u|‖2F

+ (
3C1γ

4
− α

κ̃2C1

)|‖z|‖2D + (C1γ −
4T 2α

C1

)h2|‖U |‖2F ′,

where C3 = C2 + 2(1 + κ2)(1 + T )2 1
C1
. The first claimed inequality then follows for γ

sufficiently small. To prove the second inequality in the proposition, we use the Cauchy-
Schwarz inequality to obtain the following bounds for y ∈ V

4N
h :

(3.5)

|‖(v̂, 0)|‖2R . |‖(u, 0)|‖2R + |‖z|‖2D, |‖(0, V̂ )|‖2R . |‖(0, U)|‖2R + |‖Z|‖2D′,

τ

N∑

n=2

‖ŵn‖2h . τ

N∑

n=2

‖zn‖2h + h2|‖u|‖2F , τ

N−2∑

n=0

‖Ŵ n‖2h . τ

N∑

n=2

‖Zn‖2h + h2|‖U |‖2F ′.

�

4. A weak a priori error estimate and an approximate discrete

observability estimate for the error

Throughout this section, we will let (uh, Uh, zh, Zh) denote the unique solution to equation
(2.4). The main goal here is to prove an approximate discrete analogue of the continuum
observability estimate3. This will be done in several steps. We start by proving a weak

3Not to be confused with discrete observability estimates in the literature.
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preliminary error estimate (Proposition 4.2), and then use this estimate to prove Proposi-
tion 4.6 that we call an approximate discrete observability estimate for the error function.
This proposition will subsequently be used as a key ingredient to prove the main theorem.

In what follows, we will let (u∗, U∗) denote the continuum solution to equations (1.1)−(1.3).
Let us observe that since (g0, g1) ∈ D((−∆)3), it follows from Theorem 1.4 that

‖u∗‖X4(M) + ‖U∗‖X3(M) 6 C‖(g0, g1)‖H4(Ω)×H3(Ω)

where C > 0 only depends on M, ω, δ and X3(M) =
⋂3

k=0 Ck(0, T ;H3−k(Ω)).
Due to the mismatch between Ω and Ωh, we extend the functions in Vh to all of Ωh ∪ Ω

by setting them to zero on the set Ω \ Ωh. We will also utilize the extension operator (see
[34]) E : Hs(Ω) → Hs(Ω∪Ωh), s > 0 to define the extended functions ue∗ and U

e
∗ on the set

(0, T )× (Ω ∪ Ωh) through

ue∗(t, ·) = Eu∗(t, ·) and Ue
∗ (t, ·) = EU∗(t, ·) t ∈ [0, T ].

We will slightly abuse the notation by dropping the superscript e when there is no confusion.
Let us recall the definition of the H1 projection interpolator πh : H1

0 (Ω) → Vh defined
through

(4.1) ah(πhu, v) = ah(u, v) ∀ v ∈ Vh.

We have the following lemma. For the proof, we refer the reader to [7, Lemma 4.2].

Lemma 4.1. Let u ∈ H1
0 (Ω). Then

‖Eu− πhu‖L2(Ωh) . h‖u‖H1
0
(Ω),

and if additionally u ∈ H2(Ω), then

‖Eu− πhu‖H1(Ωh) . h‖u‖H2(Ω).

We define

(4.2) ũh = uh − πhu∗, Ũh = Uh − πhU∗, and xh = (ũh, Ũh, zh, Zh).

We have the following proposition.

Proposition 4.2. There exists h0 > 0 such that for all 0 < h < h0, the following estimate
holds

|‖zh|‖D + |‖Zh|‖D′ + h|‖ũh|‖F + h|‖Ũh|‖F ′ + |‖(ũh, Ũh)|‖R . h‖(g0, g1)‖H4(Ω)×H3(Ω).

Let us remark that as an immediate consequence of this proposition, the Lagrange mul-
tipliers (zh, Zh) converge to zero with a rate that is proportional to the space-time mesh
parameter h. Moreover, we have

R(uh) . h‖(g0, g1)‖H4(Ω)×H3(Ω),

implying that the initial and final states of the discrete solution uh converge to the desired
values at the optimal rate. In order to prove this proposition, we need the following lemma.

Lemma 4.3. Let xh ∈ V
4N
h be as in (4.2). Then:

A(xh; y) . h‖(g0, g1)‖H4(Ω)×H3(Ω)|‖y|‖C ∀ y ∈ V
4N
h .
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Proof. Let y = (v, V, w,W ). We can use the Euler-Lagrange equation (2.4) to write

A(xh; y) = ah(v
0, g0) + (∂τv

1, g1)h −A((πhu∗, πhU∗, 0, 0); y) = S1 + S2 + S3 + S4 + S5,

where

S1 = −G(πhu∗, w) + τ

N∑

n=2

(χωU
n
∗ , w

n)h,

S2 = −G∗(W,πhU∗),

S3 = τ

N∑

n=2

(χhπhU
n
∗ − χωU

n
∗ , w

n)h,

S4 = −ah(πhuN∗ , vN) + ah(g0 − πhu
0
∗, v

0)− (∂τπhu
N
∗ , ∂τv

N)h + (g1 − ∂τπhu
1
∗, ∂τv

1)h,

S5 = −A1((πhU∗, 0, 0);V ).

For the term S1, we first observe that u∗ satisfies the equation

τ

N∑

n=2

∫

Ω

(
∂2t u

n
∗ · wn +∇un∗ · ∇wn

)
dx = τ

N∑

n=2

∫

Ω

χωU
n
∗ · wn dx,

where un∗ = u∗(nτ, ·) and Un
∗ = U∗(nτ, ·) and we are identifying u∗, U∗ with their extensions

ue∗, U
e
∗ . The test function wn is extended to Ω ∪ Ωh by setting it equal to zero outside Ωh.

Note that since w ∈ H1
0 (Ωh) the extended function wn belongs to H1

0(Ωh ∪ Ω). Together
with the definition of the interpolator πh, we can write

S1 = τ

N∑

n=2

((1− πh)∂
2
τu

n
∗ , w

n)h

︸ ︷︷ ︸

I1

+ τ

N∑

n=2

(∂2t u
n
∗ − ∂2τu

n
∗ , w

n)h

︸ ︷︷ ︸

I2

+τ

N∑

n=2

(ςnE , w
n)Ωh\Ω,

where ςEu
n
∗ = E (χωU

n
∗ )−�E un∗ . We utilize [7, Lemma 3.1] to write

|(ςnE , wn)| 6 ‖ςnE‖Ωh\Ω‖wn‖Ωh\Ω . (‖χωU
n
∗ ‖L2(Ω) + ‖∂2t un∗‖L2(Ω) + ‖un∗‖H2(Ω))h

2‖∇wn‖h.
Thus using Theorem 1.4 for u∗, U∗ and the inverse discrete inequality in (3.1) for wn, we can
write

|τ
N∑

n=2

(ςnE, w
n)Ωh\Ω|2 . h2(‖U∗‖2C(0,T ;L2(Ω)) + ‖u∗‖2C2(0,T ;L2(Ω)) + ‖u∗‖2C(0,T ;H2(Ω)))(τ

N∑

n=2

‖wn‖2h)

. h2‖(g0, g1)‖2H4(Ω)×H3(Ω)|‖(0, 0, w, 0)|‖2C.
Using the same analysis as that of the terms I1, I2 in [7, Proposition 4.3] we obtain

|I1|2 . h2(

∫ T

0

‖∇∂2t u∗‖2L2(Ω) dt)(τ

N∑

n=2

‖wn‖2h),

|I2|2 . τ 2(

∫ T

0

‖∂3τu∗‖2L2(Ω) dt)(τ
N∑

n=2

‖wn‖2h).

We can therefore use Theorem 1.4 to conclude that

|S1| . h‖(g0, g1)‖H4(Ω)×H3(Ω)|‖(0, 0, w, 0)|‖C.
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For the term S2, we first note that

τ

N−2∑

n=0

∫

Ω

(
W n · ∂2t Un

∗ +∇W n · ∇Un
∗

)
dx = 0,

where we recall the notation Un
∗ (·) = U∗(nτ, ·). Therefore, using the definition of the inter-

polator πh we can write

S2 = τ

N−2∑

n=0

(W n, (1− πh)∂̃
2
τU

n
∗ )h + τ

N−2∑

n=0

(W n, ∂2tU
n
∗ − ∂̃2τU

n
∗ )h + τ

N−2∑

n=0

(ς̃nE,W
n),

where ς̃nE = −�E Un
∗ . Analogous to the term S1 we obtain the bound

|S2| . h‖(g0, g1)‖H4(Ω)×H3(Ω)|‖(0, 0, 0,W )|‖C,
where we have used Theorem 1.4 again. For the term S3, we write

|S3| = |τ
N∑

n=2

((χh − χω)πhU
n
∗ , w

n)h + τ

N∑

n=2

(χω(πhU
n
∗ − Un

∗ ), w
n)h|

. h‖(g0, g1)‖H4(Ω)×H3(Ω)|‖(0, 0, w, 0)|‖C,
where we have used the bound (2.2) together with Lemma 4.1 for the first term and
Lemma 4.1 for the second term. For S4, we use the the fact that u∗(0, ·) = g0, ∂tu(0, ·) = g1,
and equation (1.2) with the approximation properties of πh to deduce that

|S4| 6 2
√

R(πhu∗)R(v) . h‖(g0, g1)‖H4(Ω)×H3(Ω)|‖(v, 0)|‖R,
where we have used the fact that πhu

N
∗ = 0 and Theorem 1.4 to obtain the following bounds:

‖∂τπhuN∗ ‖h = ‖(πh − 1)∂τu
N
∗ + ∂τu

N
∗ − ∂tu

N
∗ ‖h . h‖(g0, g1)‖H4(Ω)×H3(Ω),

‖∂τπhu1∗ − g1‖h = ‖(πh − 1)∂τu
1
∗ + ∂τu

1
∗ − g1‖h . h‖(g0, g1)‖H4(Ω)×H3(Ω),

‖∇(πhu
0
∗ − g0)‖h = ‖∇(πh − 1)u0∗‖h . h‖(g0, g1)‖H4(Ω)×H3(Ω).

Finally, for the term S5, we write

|S5| 6 2
√

J1(πhU∗)J1(V ) . h‖(g0, g1)‖H4(Ω)×H3(Ω)|‖(0, V )|‖R,
where we have used the following bounds for J1(πhU∗):

τ

N∑

n=1

‖τ∇∂τπhU∗‖2h . τ 2‖U∗‖2H1(0,T ;H1(Ω)) . h2‖(g0, g1)‖2H4(Ω)×H3(Ω),

‖h∇∂τπhUN
∗ ‖2h . h2‖U∗‖2H2(0,T ;H1(Ω)) . h2‖(g0, g1)‖2H4(Ω)×H3(Ω),

‖h∇∂τπhU1
∗‖2h . h2‖U∗‖2H2(0,T ;H1(Ω)) . h2‖(g0, g1)‖2H4(Ω)×H3(Ω),

‖h∇πhUN
∗ ‖2h . h2‖U∗‖H1(0,T ;H1(Ω)) . h2‖(g0, g1)‖2H4(Ω)×H3(Ω).

Combining the estimates yields the claim. �

Proof of Proposition 4.2. Let xh be as in equation (4.2). Using Proposition 3.1, there exists
y ∈ V

4N
h such that

A(xh; y) & (|‖(ũh, Ũh)|‖R + h|‖ũh|‖F + h|‖Ũh|‖F ′ + |‖zh|‖D + |‖Zh|‖D′)|‖y|‖C.
Combining this estimate with Lemma 4.3 yields the claim. �
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Lemma 4.1 can be used together with Theorem 1.4 to obtain the following corollary.

Corollary 4.4.

|‖uh|‖F + |‖Uh|‖F ′ . ‖(g0, g1)‖H4(Ω)×H3(Ω).

We are now ready to state two key ingredients of the proof of Theorem 2.1. The first
estimate is regarding the error function ũh. We recall that for each n, ũnh is extended to
Ω ∪ Ωh by setting it to be zero outside Ωh.

Lemma 4.5. Let ũh be as defined in equation (4.2). For n = 1, . . . , N , the following estimate
holds:

‖ũnh‖2H1(Ω) + ‖∂τ ũnh‖2L2(Ω) . h2‖(g0, g1)‖2H4(Ω)×H3(Ω) + τ

N∑

n=2

‖√χhŨ
n
h ‖2h.

Proof. Note that Proposition 4.2 implies that ‖ũ0h‖H1(Ω)+‖∂τ ũ1h‖L2(Ω) . h‖(g0, g1)‖H4(Ω)×H3(Ω).
Recall that uh satisfies the discrete wave equation

τ

N∑

n=2

(
(∂2τu

n
h, w

n)h + ah(u
n
h, w

n)
)
= τ

N∑

n=2

(χhU
n
h , w

n)h,

and that u∗ solves the wave equation (1.1). Thus standard discrete energy estimates for the
wave equation apply to derive the claimed inequality (see for example [16, Lemma 6]). �

Next, we state the following approximate observability estimate for the error function Ũh

defined in (4.2). We remind the reader that for each n, Un
h is extended to Ω∪Ωh by setting

it to zero outside Ωh.

Proposition 4.6. Let Ũh be as defined in equation (4.2). For n = 1, . . . , N , the following
estimate holds:

‖Ũn
h ‖2L2(Ω) + ‖∂τ Ũn

h ‖2H−1(Ω) . h2‖(g0, g1)‖2H4(Ω)×H3(Ω) + τ

N∑

n=2

‖√χhŨ
n
h ‖2h.

Proof. We begin by defining the continuous piece-wise affine function

Ûh(t, ·) = Un−1
h (·) + (t− tn−1)∂τU

n
h (·) for t ∈ [tn−1, tn],

for n = 1, . . . , N . Let E = Ûh − U∗ and define the bounded linear functional R through

(4.3) 〈R,W 〉 =
∫ T

0

∫

Ω

(−∂tE · ∂tW +∇E · ∇W ) dx dt ∀W ∈ H1
0 (M).

For the remainder of this proof, we will identify U∗ with its E-extension to (0, T )× (Ω∪Ωh).
Applying Theorem 1.2 with Õ = (0, T )×ωδ and using the fact that χω = 1 on ωδ, we obtain

(4.4) sup
t∈[0,T ]

(‖E(t, ·)‖2L2(Ω)+‖∂tE(t, ·)‖2H−1(Ω)) . ‖√χωE‖2L2(M)+‖R‖2H−1(M)+‖E‖2L2((0,T )×∂Ω).

We proceed to prove the following bounds:

(4.5) ‖E‖L2((0,T )×∂Ω) . h‖(g0, g1)‖H4(Ω)×H3(Ω),

(4.6) |〈R,W 〉| . h‖(g0, g1)‖∗‖W‖H1(M) ∀W ∈ H1
0 (M),
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(4.7) ‖√χωE‖2L2(M) . h2‖(g0, g1)‖2H4(Ω)×H3(Ω) + τ

N∑

n=2

‖√χhŨ
n
h ‖2h.

The proposition then follows by writing Ũn
h (·) = E(nτ, ·)+E∗(nτ, ·) with E∗(nτ, ·) = U∗(nτ, ·)−

πhU
n
∗ (·). The term E∗(nτ, ·) may then be bounded by h‖(g0, g1)‖H4(Ω)×H3(Ω) using Lemma 4.1

and Taylor development in time followed by Theorem 1.4.
First we prove the estimate (4.5). Recalling that U∗|(0,T )×∂Ω = 0, we write

‖E‖2L2((0,T )×∂Ω) = ‖Ûh‖2L2((0,T )×∂Ω) . τ

N∑

n=0

‖Un
h ‖2L2((0,T )×∂Ω).

Applying [7, Lemma 4.1] and Corollary 4.4, we deduce that

τ

N∑

n=0

‖Un
h ‖2L2((0,T )×∂Ω) . τ

N∑

n=0

h2‖∇Un
h ‖2h . h2|‖Uh|‖2F ′ . h2‖(g0, g1)‖2H4(Ω)×H3(Ω).

Let us now consider the estimate (4.6). We introduce the notation W̄ n through

(4.8) W̄ n(·) = 1

τ

∫ tn

tn−1

W (t, ·) dt for n = 1, . . . , N.

Note that using the Poincaré and Cauchy-Schwarz inequalities, we have:

(4.9)

τ

N−1∑

n=1

‖W n − W̄ n‖2L2(Ω) . τ 2‖W‖2H1(0,T ;L2(Ω)),

‖∇W̄ n‖2L2(Ω) . τ−1‖W‖2L2(0,T ;H1(Ω)) for n = 1, . . . , N,

‖W̄N‖2L2(Ω) . τ‖W‖2H1(0,T ;L2(Ω)).

Since �U∗ = 0 on M and Uh = 0 on (0, T )× (Ω \ Ωh), we have:

〈R,W 〉 =
∫ T

0

(−∂tÛh, ∂tW )h + ah(Ûh,W )

=

N∑

n=1

∫ tn

tn−1

[
−(∂τU

n
h , ∂tW )h + ah(U

n−1
h ,W ) + (t− tn−1)ah(∂τU

n
h ,W )

]
dt

= τ

N−1∑

n=1

(∂2τU
n+1
h ,W n)h + τ

N∑

n=1

ah(U
n−1
h , W̄ n) +

N∑

n=1

∫ tn

tn−1

(t− tn−1)ah(∂τU
n
h ,W ) dt

= τ

N−1∑

n=1

(∂2τU
n+1
h ,W n − W̄ n)h

︸ ︷︷ ︸

I

+ τah(U
N−1
h , W̄N)

︸ ︷︷ ︸

II

+ τ

N−2∑

n=0

(

(∂̃2τU
n
h , W̄

n+1)h + ah(U
n
h , W̄

n+1)
)

︸ ︷︷ ︸

III

+

N∑

n=1

∫ tn

tn−1

(t− tn−1)ah(∂τU
n
h ,W ) dt

︸ ︷︷ ︸

IV

.
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We will first proceed to bound each of the terms I, III and IV and then treat the term II.
For the term I, we use the Cauchy-Schwarz inequality to write

|I|2 6 (τ

N∑

n=2

‖∂2τUn
h ‖2h)(τ

N−1∑

n=1

‖W n − W̄ n‖2L2(Ω)) . τ 2‖(g0, g1)‖2H4(Ω)×H3(Ω)‖W‖2H1(M),

where we have used the first bound in (4.9) followed by Corollary 4.4. For the term III, we
first note that Uh satisfies the equation

τ

N−2∑

n=0

(

(∂̃2τU
n
h , πhW̄

n+1)h + ah(U
n
h , πhW̄

n+1)
)

= 0,

which together with the definition of the interpolator πh and Corollary 4.4, implies that

|III|2 = |τ
N−2∑

n=0

(∂̃2τU
n
h , (πh − 1)W̄ n+1)h|2 6 (τ

N∑

n=2

‖∂2τUn
h ‖2h)(τ

N−2∑

n=0

‖(πh − 1)W̄ n+1‖2)

. τ 2‖(g0, g1)‖2H4(Ω)×H3(Ω)‖W‖2H1(M).

For the term IV , we use the Cauchy-Schwarz inequality to write

|IV |2 . τ 2

(

τ

N∑

n=1

‖∂τ∇Un
h ‖2h

)

‖W‖2H1(M) . τ 2‖(g0, g1)‖2H4(Ω)×H3(Ω)‖W‖2H1(M).

where we have used Corollary 4.4 again. It remains to bound the term II. Here, we use the
fact that Uh is solving the Euler-Lagrange equation (2.4) again to write

τah(U
N−1
h , W̄N) = τah(U

N−2
h , W̄N) + τ 2ah(∂τU

N−1
h , W̄N).

But using Corollary 4.4 we have the bound ‖∇∂τUN−1‖h . τ−
1

2‖(g0, g1)‖H4(Ω)×H3(Ω), which
together with the bound (4.9) implies that

τah(τ∂τU
N−1
h , W̄N) . τ‖(g0, g1)‖H4(Ω)×H3(Ω)‖W‖H1(M).

For the remaining term, we observe that

τah(U
N−2
h , W̄N) = τah(U

N−2
h , πhW̄

N) = −τ(∂̃2τUN−2
h , (πh − 1)W̄N)h

︸ ︷︷ ︸

S1

−τ(∂̃2τUN−2
h , W̄N)h

︸ ︷︷ ︸

S2

.

To bound the term S1, we use Lemma 4.1 and the second bound in (4.9) to obtain

|S1| . τ‖∂2τUN
h ‖hτ

1

2‖W‖H1(M) . τ‖(g0, g1)‖H4(Ω)×H3(Ω)‖W‖H1(M),

where we have used Corollary 4.4 to write the bound ‖∂2τUN
h ‖h . τ−

1

2‖(g0, g1)‖H4(Ω)×H3(Ω).
Finally for the term S2, we write

|S2| . τ‖∂2τUN
h ‖h‖W̄N‖h . τ‖(g0, g1)‖H4(Ω)×H3(Ω)‖W‖H1(M),

where we have used the third bound in (4.9) together with Corollary 4.4 in the last step.
This completes the proof of bound (4.6).

To prove (4.7), we first define the piece-wise constant time interpolant π0 as follows:

π0v
n = v(tn) for t ∈ (tn−1, tn] and n = 1, . . . , N.

This interpolant satisfies the bound

‖π0v − v‖L2(0,T ) . τ‖v‖H1(0,T ).
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Note that by adding and subtracting χh and using (2.2) we have

‖√χωE‖2L2(M) 6 ‖χω − χh‖2L∞(Ω)‖E‖2L2(M) + ‖√χhE‖2L2(M)

. h2
∫ T

0

(‖U∗‖2L2(Ω) + ‖Ûh‖2L2(Ω)) dt+ ‖√χhE‖2L2(M).

Observe that

h2
∫ T

0

‖Ûh‖2L2(Ω) dt . h2|‖Ũh|‖2F ′.

Using Corollary 4.4 and Theorem 1.4 it follows that

‖√χωE‖2L2(M) . h2‖(g0, g1)‖2H4(Ω)×H3(Ω) + ‖√χhE‖2L2(M).

Furthermore,

‖√χhE‖2L2(M) 6 C(h2 + τ 2)‖U∗‖2H1(M) +

∫ T

0

‖√χhπ0πhU∗ −
√
χhÛh‖2h dt.

To bound the second term we write
∫ T

0

‖√χhπ0πhU∗ −
√
χhÛh‖2h dt .

∫ T

0

‖√χhπ0πhU∗ − π0
√
χhÛh‖2h dt+

∫ T

0

‖π0Ûh − Ûh‖2h dt

= τ

N∑

n=1

‖√χhŨ
n
h ‖2h +

N∑

n=1

∫ tn

tn−1

‖π0Ûh − Ûh‖2h dt.

It suffices to bound the second term of the right hand side. Using the piece-wise linearity of
Ûh we observe that

N∑

n=1

∫ tn

tn−1

‖π0Ûh − Ûh‖2h dt =
N∑

n=1

∫ tn

tn−1

‖(t− tn)∂τU
n
h ‖2h dt 6 τ

N∑

n=1

‖τ∂τUn
h ‖2h

. h2‖(g0, g1)‖2H4(Ω)×H3(Ω),

where we have used Corollary 4.4 in the last step. This completes the proof of the bound
(4.7). �

5. A strong a priori error estimate and proof of the main theorem

This section is concerned with the proof of the main theorem. The idea is to use the
approximate discrete observability estimate together with an improved coercivity estimate
to produce a stronger error estimate, stated as follows:

Proposition 5.1. Let Ũh be as defined in (4.2). The following residual estimate holds:

τ

N∑

n=2

‖√χhŨ
n
h ‖2h . h2‖(g0, g1)‖2H4(Ω)×H3(Ω).

The proof of the main theorem follows from Proposition 5.1. Indeed, note that the first
claimed inequality in Theorem 2.1 follows from combining Propositions 4.6 and 5.1, while
the second claimed inequality follows from combining Lemma 4.5 and Proposition 5.1. We
proceed to prove Proposition 5.1. This will be divided into parts. We define the refined test
function

(5.1) ŷ = (v̂, V̂ , ŵ, Ŵ )
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through the expressions

v̂ = ũh + γv, V̂ = Ũh + αV,

ŵ = −zh − γŨh + αh2w, Ŵ = −Zh + γh2W,

where γ > α > 0 and v, V, w,W are chosen as in Lemma 3.3 in terms of the discrete functions
zh, Zh, ũh and Ũh respectively. Let us also define a norm on V

4N
h through the expression

(5.2)
|‖(u, U, z, Z)|‖2S = τ

N∑

n=2

‖√χhU
n‖2h + |‖(u, U)|‖2R + h2|‖u|‖2F

+ h2|‖U |‖2F ′ + |‖z|‖2D + |‖Z|‖2D′

We have the following three lemmas. These will be subsequently used to prove Proposi-
tion 5.1.

Lemma 5.2. Let xh, ŷ be defined as in equations (4.2) and (5.1) respectively. The following
estimate holds:

|‖ŷ|‖C . h‖(g0, g1)‖H4(Ω)×H3(Ω) + |‖xh|‖S.

Proof. Recall that

|‖ŷ|‖2C = |‖(v̂, 0)|‖2R + |‖(0, V̂ )|‖2R + τ

N∑

n=2

‖ŵn‖2h + τ

N−2∑

n=0

‖Ŵ n‖2h.

We proceed to bound each of the four terms appearing on the right hand side. Indeed, using
equation (5.1) and the Cauchy-Schwarz inequality we have the bounds

|‖(v̂, 0)|‖2R . |‖(ũh, 0)|‖2R + ‖∇vN‖2h + ‖∂τvN‖2h + ‖∇v1‖2h + ‖∂τv1‖2h
. |‖(ũh, 0)|‖2R + ‖∇vN‖2h + ‖∂τvN‖2h . |‖(ũh, 0)|‖2R + |‖zh|‖2D,

|‖(0, V̂ )|‖2R . |‖(0, Ũh)|‖2R + h2τ

N∑

n=1

‖∂τ∇V n‖2h + h2‖∂τ∇V 1‖2h

. |‖(0, Ũh)|‖2R + τ

N−2∑

n=0

‖Zh‖2h + ‖Z0
h‖2h . |‖(0, Ũh)|‖2R + |‖Zh|‖2D′,

τ

N−2∑

n=0

‖Ŵ n‖2h . τ

N−2∑

n=0

‖Zn
h‖2h + h2|‖Ũh|‖2F ′,

τ

N∑

n=2

‖ŵn‖2h . τ

N∑

n=2

‖znh‖2h + h2|‖ũh|‖2F + τ

N∑

n=2

‖Ũh‖2h,

Applying Proposition 4.6 in the last bound and using the definition of the |‖ · |‖S norm yields
the claim. �

Lemma 5.3. The following estimate holds:

|G(ũh, Ũh)| . h‖(g0, g1)‖H4(Ω)×H3(Ω)

(
h‖(g0, g1)‖H4(Ω)×H3(Ω) + |‖xh|‖S

)
.
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Proof. We begin by using the discrete version of Leibniz rule to write

G(ũh, Ũh) = G∗(ũh, Ũh)−(ũN−1
h , ∂τ Ũ

N
h )h + (∂τ ũ

N
h , Ũ

N
h )h + (ũ0h, ∂τ Ũ

1
h)h − (∂τ ũ

1
h, Ũ

1
h)h

︸ ︷︷ ︸

I

−τah(ũ0h, Ũ0
h)− τah(ũ

1
h, Ũ

1
h) + τah(ũ

N−1
h , ŨN−1

h ) + τah(ũ
N
h , Ũ

N
h )

︸ ︷︷ ︸

II

.

Now using the fact that G∗(W,Uh) = 0 for all W (see (2.4)), we obtain

G∗(ũh, Ũh) = −G∗(ũh, πhU∗),

which is identical to the term S2 in Lemma 4.3. Therefore we have the bound

(5.3)

|G∗(ũh, πhU∗)|2 . h2‖(g0, g1)‖2H4(Ω)×H3(Ω)(τ

N∑

n=0

‖ũnh‖2h)

. h2‖(g0, g1)‖2H4(Ω)×H3(Ω)(h
2‖(g0, g1)‖2H4(Ω)×H3(Ω) + τ

N∑

n=2

‖√χhŨ
n
h ‖2h),

where we have used Lemma 4.5 in the last step. To analyze the terms I and II, we first
observe that:

‖∇ũ1h‖h = ‖∇ũ0h + τ∇∂τ ũ1h‖ 6 ‖∇ũ0h‖h + κ‖∂τ ũ1h‖h.
‖∇ũN−1

h ‖h = ‖∇ũNh − τ∇∂τ ũNh ‖ 6 ‖∇ũNh ‖h + κ‖∂τ ũNh ‖h.
Now, for the term I, we can use Proposition 4.2 with Proposition 4.6 to deduce that

(5.4) |I|2 . h2‖(g0, g1)‖2H4(Ω)×H3(Ω)(h
2‖(g0, g1)‖2H4(Ω)×H3(Ω) + τ

N∑

n=2

‖√χhŨ
n
h ‖2h).

For the term II, we use the bounds

τ‖∇Ũk
h‖h 6 κ‖Ũk

h‖h for k = 0, 1, . . . , N,

and write

|II|2 . |‖(ũh, 0)|‖2R(‖Ũ0
h‖2h + ‖Ũ1

h‖2h + ‖ŨN−1
h ‖2h + ‖ŨN

h ‖2h).
We can apply Proposition 4.2 together with Proposition 4.6 again to obtain

|II|2 . h2‖(g0, g1)‖2H4(Ω)×H3(Ω)(h
2‖(g0, g1)‖2H4(Ω)×H3(Ω) + τ

N∑

n=2

‖√χhŨ
n
h ‖2h).

Combining this with inequalities (5.3) and (5.4) completes the proof. �

Lemma 5.4. Let xh, ŷ be defined as in equations (4.2), (5.1) respectively. The following
estimate holds:

A(xh; ŷ) > C|‖xh|‖2S − C ′h‖(g0, g1)‖H4(Ω)×H3(Ω)

(
h‖(g0, g1)‖H4(Ω)×H3(Ω) + |‖xh|‖S

)
,

where C,C ′ > 0 are constants independent of the parameter h.

Proof. This proof mirrors the proof of Proposition 3.1. We start by writing

(5.5) A(xh; ŷ) = |‖(ũh, Ũh)|‖2R + τγ

N∑

n=2

‖√χhŨh‖2h − γG(ũh, Ũh) +A(xh; ỹ),
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where ỹ = (γv, αV, αh2w, γh2W ) with v, V , w and W defined as in (5.1). The analysis of
the last term on the right is exactly as in the proof of Proposition 3.1 and therefore using
the same bounds as in that proof, we deduce that

(5.6) A(xh; ỹ) > −C1γ|‖(ũh, Ũh)|‖2R + C2α(h
2|‖ũh|‖2F + h2|‖Ũh|‖2F ′ + |‖zh|‖2D + |‖Zh|‖2D′)

for some C1, C2 > 0. Finally, combining equations (5.5)–(5.6) and applying Lemma 5.3 yields
the claim. �

Proof of Proposition 5.1. We choose ŷ as in equation (5.1). Lemma 5.4 applies and we have

A(xh; ŷ) > C|‖xh|‖2S − C ′h‖(g0, g1)‖H4(Ω)×H3(Ω)(h‖(g0, g1)‖H4(Ω)×H3(Ω) + |‖xh|‖S).
On the other hand, Lemma 4.3 applies and together with Lemma 5.2, we write

A(xh, ŷ) . h‖(g0, g1)‖H4(Ω)×H3(Ω)|‖ŷ|‖C
. h‖(g0, g1)‖H4(Ω)×H3(Ω)

(
|‖xh|‖S + h‖(g0, g1)‖H4(Ω)×H3(Ω)

)
.

Combining these bounds, we note that the following inequality holds:

|‖xh|‖2S . h‖(g0, g1)‖H4(Ω)×H3(Ω)

(
h‖(g0, g1)‖H4(Ω)×H3(Ω) + |‖xh|‖S

)
.

This implies that

|‖xh|‖S . h‖(g0, g1)‖H4(Ω)×H3(Ω).

�

6. Further remarks

6.1. A comparison with the data assimilation problem. We start this section with a
comparison with our earlier work for the dual problem to null controllability for the wave
equation, that is the data assimilation (DA) problem.

Let us briefly recall the (DA) problem as follows. Let ω ⊂ Ω and consider a solution u

to the wave equation (1.1) without the a priori knowledge of the initial data (g0, g1). The
(DA) problem reads as follows: determine the solution u, given the additional piece of data
q = u|(0,T )×ω.

To solve (DA), one can study the critical points for the Lagrangian

L(u, z) = 1

2
‖u− q‖2L2(O) +

∫ T

0

∫

Ω

(∂2t u · z +∇u · ∇z) dx dt

where the wave equation is imposed on u through the Lagrange multiplier z. Similar to the
theory of controllability, existence of a unique minimizer for this functional is guaranteed by
an observability estimate on the set O = (0, T )× ω.

In [7], we considered an approach based on finite element method for numerically solving
the (DA) problem, using first order finite elements in space and finite differences in time.
Analogously to the current work, this method was based on defining a discrete analogue
for the Lagrangian L that additionally incorporates numerical stabilizers in u. Optimal
convergence rates were proven under the assumption that the geometric control condition is
satisfied on the set O (see [7, Theorem 4.6]).

Although our approach in solving the null controllability problem here draws similarities
to that in [7], in the sense that similar numerical stabilization terms are used, we outline
three of the key differences that makes the control problem more challenging.
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Firstly, for the (DA) problem, the data fitting term ‖u− q‖L2(O), incorporated in the La-
grangian functional on the discrete level, gives optimal error bounds on the set O. Then the
error bound on O, combined with the stability properties for the wave equation (obtained
through discrete energy estimates) and the continuum observability estimate (Theorem 1.2)
gives optimal error bounds for the (DA) problem. Notice however that for the null control-
lability problem, proving error bounds in the set O is much harder as the control function
U is a priori unknown. In fact error bounds for the control function U in the set O are
obtained in the final section of the paper (see Proposition 5.1). In the case of the null
controllability problem, it is not a priori clear how the observability estimate appears in
the convergence rates. To retrace the steps of the proof, we recall that we first derived a
weak a priori error estimate (Proposition 4.2). We then used this estimate combined with
the observability estimate to obtain an approximate version of the observability estimate at
the discrete level (Proposition 4.6). Finally, using a key hidden coercivity estimate in the
Lagrangian J (see Lemma 5.4) combined with Proposition 4.6, we were able to obtain the
optimal error estimates.

Second key difference is the fact that both the state variable u and the control function
U are unknowns in the controllability problem whereas in the data assimilation problem the
only unknown is the state variable. A closer inspection of our work in [7], together with the
previous literature on the Lagrangian formulations of the control problem, suggests that a
discrete version of the more commonly studied continuum Lagrangian

L(u, U) = 1

2

∫ T

0

∫

Ω

χω|U |2 dt dx− (g1, U(0, ·))L2(Ω) + 〈g0, ∂tU(0, ·)〉H1
0
(Ω)×H−1(Ω)

−
∫ T

0

∫

Ω

∂2t u · U dt dx−
∫ T

0

∫

Ω

∇u · ∇U dt dx
may yield a numerical method, as long as the correct stabilization terms are incorporated.
However, we were unable to derive optimal error estimates for this formulation, mainly
due to the inconvenient feature that the critical point for the Lagrange multiplier U in this
formulation represents the control function and will not be zero. The Lagrangian formulation
employed in this paper introduces two Lagrange multipliers (z, Z), which makes the analysis
complete.

Finally, let us emphasize that the data assimilation problem has nice features on the
continuum level that the controllability problem is lacking. The former problem has a unique
solution whereas for the latter the solution is unique only under additional constraints such
as equation (1.3). The question of existence and smoothness for the latter problem are
quite trivial. Indeed, existence is guaranteed as long as the data q comes from an actual
solution to the wave equation, while smoothness follows by requiring that the data q comes
from a smooth solution. However, for the control problem, existence is a consequence of
the deep result by Bardos, Lebeau and Rauch [5] while smoothness also requires additional
assumptions (see Theorem 1.4)

6.2. Concluding remarks. We have designed a fully discrete finite element method for the
numerical approximation of the interior null controllability problem subject to the wave equa-
tion. The first order case was considered, using piecewise affine finite element approximation
in space and a first order finite difference formula in time. A Tikhonov type regularization
was applied to the control function at initial and final times, but the regularization param-
eter was chosen to scale with h in such a way that the perturbation due to regularization
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vanishes at a suitable rate. This allowed us to prove error estimates that are optimal com-
pared to interpolation error, for the state variable and suboptimal with one order in h for
the control variable. Observe however that the convergence rate of the latter is determined
by the norms in the left hand side of the observability estimate of Theorem 1.2 and the
convergence rate of the residual quantities of the scheme evaluated in the norms of the right
hand side (4.5)–(4.7). The former can not be improved. Since also the bound (4.6) is optimal
for piecewise affine approximation it appears that the error in the control variable is optimal
if the continuum stability properties and the numerical approximation properties are both
taken into account.

Let us also remark that no regularization was applied to the Lagrange multiplier variables
z and Z, leading to a system where (u, U) and (z, Z) are only weakly coupled allowing
for solution algorithms using the classical forward-backward solving approach. Finally, it
bears pointing out, that the approach using weakly consistent regularization, discrete inf-
sup stability and observability estimate is not limited to the first order case, but can be
extended to high order methods, using the modus operandi designed herein. This requires
the introduction of suitable residual based regularization terms that are weakly consistent
to the right order, which appears to be most feasible in the space-time framework. This is a
topic for future work.

Appendix A.

In this section, we proceed to construct an example of a smooth non-negative cut-off
function that satisfies properties (i)–(iii) in (1.8).

Let us first recall the boundary normal coordinates near ∂Ω in Ω, that are given by the
locally smooth diffeomorphism F : R× ∂Ω → Ω defined through

F (x′, xn) = γx′(xn).

Here, x′ is a point on ∂Ω given in local coordinates by (x1, . . . , xn−1), and γx′(·) denotes the
normal line to the boundary ∂Ω with γx′(0) = x′, parametrized in terms of its arc-length.
This map gives a local coordinate system such that the points (x1, ..., xn−1, 0) are on the
boundary.

Let ωδ be defined as in Hypothesis 1.5 and define Γ = ∂ω∩∂Ω and Γδ = ∂ωδ ∩∂Ω. Let Γ′
δ

be a small open neighborhood of Γδ and let Γ′′
δ be a small open neighborhood of Γ′

δ such that

Γ′′
δ ⊂ Γ. Let ε > 0 and choose a smooth ψ(x′) on ∂Ω such that ψ = 1 on Γ′

δ and such that
suppψ ⊂ Γ′′

δ . Subsequently, define a smooth function Ψ in the boundary normal coordinates
by Ψ(x′, xn) = ψ(x′). Next, choose η ∈ C∞(Ω; [0, 1]) such that

(A.1) η(x) =

{

1 if dist (x, ∂Ω) < ε
2
,

0 if dist (x, ∂Ω) > ε.

Finally, let Φ ∈ C∞(Ω; [0, 1]) be such that Φ = 1 on ωδ and Φ = 0 on Ω \ ω. We now define

χω = ηΨ+ (1− η) Φ.

Note that the above function is a globally well defined smooth non-negative function on Ω.
Indeed, the first term in this expression is supported in an ε neighborhood of the boundary
∂Ω where the boundary normal coordinates are well-defined (if ε > 0 is sufficiently small).

Let us now prove that (i)–(iii) hold. Given that Γ′′
δ is contained in Γ, it follows that for

ε small, the first term in the definition of χω vanishes on Ω \ ω. The second term also
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vanishes on Ω \ ω, since Φ vanishes there. Hence, (i) is satisfied. To show (ii), we note
that for ε sufficiently small, ηΨ = η on the set ωδ and that Φ = 1 on ωδ. It follows that
χω = η + (1 − η) = 1 on ωδ. Finally, to show (iii), we note that in an ε

2
neighborhood of

the boundary, only the first term in definition of χω is non-zero. Since η = 1 there, we have
χω = Ψ and it follows that ∂kνχω|∂Ω = 0 since ∂kxn

Ψ(x′, xn) = 0 for all k = 1, . . ..

Appendix B.

This section is concerned with verifying the main assumptions in Theorem 1.4 for s = 3,
given that Hypothesis 1.5 holds and that χω satisfies properties (i)–(iii) in (1.8).

We start by proving the mapping property χω : D((−∆)3) → D((−∆)3) holds. To this
end, we recall that the Laplace operator ∆ has the following (well-known) expression in
boundary normal coordinates near ∂Ω:

(B.1) ∆ = ∂2xn
− a(x′, xn)∂xn

+ b(x′, xn)

n−1∑

i,j=1

∂xi
(cij(x′, xn)∂xj

),

for some smooth functions a(x′, xn), b(x
′, xn) and c

ij(x′, xn) near ∂Ω.
Let (y0, y1) ∈ D((−∆)3). We need to show that (χω y0, χω y1) ∈ D((−∆)3). Since χω ∈

C∞(Ω), it follows that (χω y0, χω y1) ∈ H4(Ω)×H3(Ω) and the first property in Definition 1.3
is satisfied. Let us now show that χω y0 satisfies (ii). First observe that since y0 = 0 on ∂Ω, we
have χωy0 = 0 on ∂Ω. Next, using equation (B.1), together with the fact that y0(x

′, 0) = 0,
we obtain

∆(χωy0)(x
′, 0) = (∂2xn

(χωy0))(x
′, 0)− a(x′, 0)(∂xn

(χωy0))(xn, 0).

Since ∂kxn
χω(x

′, 0) = 0 for k = 1, 2, this reduces to

∆(χωy0)(x
′, 0) = χω(x

′, 0)((∂2xn
y0)(x

′, 0)− a(x′, 0)(∂xn
y0)(x

′, 0)).

Using again the fact that y0(x
′, 0) = 0, this can be recast as

∆(χωy0)(x
′, 0) = χω(x

′, 0)(∆y0)(x
′, 0) = 0,

where the last step uses the fact that ∆y0|∂Ω = 0. This shows that property (ii) in Defini-
tion 1.3 also holds for χωy0. Analogously, we can show that property (iii) in Definition 1.3
holds for χωy1. Thus χω maps D((−∆)3) and subsequently the first assumption in Theo-
rem 1.4 is verified.

Let us now show that J is coercive and strictly convex (following [32, Theorem 2.4]).
Indeed, since (0, T ) × ωδ satisfies the geometric control condition, Theorem 1.2 applies to
obtain the bound

(B.2) ‖U‖C([0,T ];L2(Ω)) + ‖∂tU‖C([0,T ];H−1(Ω)) 6 C0‖U‖(0,T )×ωδ
6 C0‖

√
χωU‖L2(M)

for all U that solve the wave equation (1.3), where C0 > 0 is a constant depending on
T,Ω, ω, δ. In the last inequality above, we have used the facts that χω is non-negative and
that χω = 1 on ωδ.

Applying the Cauchy-Schwarz inequality we write

J (U0, U1) >
1

2
‖√χωU‖2L2(M) − ‖(g0, g1)‖H1

0
(Ω)×L2(Ω)‖(U0, U1)‖L2(Ω)×H−1(Ω).

Now applying the estimate (B.2), it follows that

J (U0, U1) → ∞ as ‖(U0, U1)‖L2(Ω)×H−1(Ω) → ∞
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and therefore, by definition, J is coercive.
To show strict convexity, note that given any pair (U0, U1) and (V0, V1) in L

2(Ω)×H−1(Ω)
and any λ ∈ [0, 1] we have

J (λ(U0, U1) + (1− λ)(V0, V1)) =λJ (U0, U1) + (1− λ)J (V0, V1)

− 1

2
λ(1− λ)

∫ T

0

∫

Ω

χω|U − V |2 dt dx,

where U, V solve equation (1.3) with final data (U0, U1) and (V0, V1) respectively. Now, using
(B.2) again, we deduce that for (U0, U1) 6= (V0, V1), there holds:

J (λ(U0, U1) + (1− λ)(V0, V1)) < λJ (U0, U1) + (1− λ)J (V0, V1)

and therefore the functional J is strictly convex on L2(Ω)×H−1(Ω).
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