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GLOBAL ENTROPY SOLUTIONS TO THE GAS FLOW IN GENERAL

NOZZLE

WENTAO CAO, FEIMIN HUANG, AND DIFAN YUAN

Abstract. We are concerned with the global existence of entropy solutions for the
compressible Euler equations describing the gas flow in a nozzle with general cross-
sectional area, for both isentropic and isothermal fluids. New viscosities are delicately
designed to obtain the uniform bound of approximate solutions. The vanishing viscosity
method and compensated compactness framework are used to prove the convergence of
approximate solutions. Moreover, the entropy solutions for both cases are uniformly
bounded independent of time. No smallness condition is assumed on initial data. The
techniques developed here can be applied to compressible Euler equations with general
source terms.

2010 AMS Classification: 35L45, 35L60, 35Q35.

Key words: isentropic gas flow, isothermal gas flow, compensated compactness, uniform
estimate, independent of time.

1. Introduction

We consider one dimensional gas flow in a general nozzle for the isentropic and isother-
mal flows separately. The nozzle is widely used in some types of steam turbines, rocket
engine nozzles, supersonic jet engines, and jet streams in astrophysics. The motion of the
nozzle flow is governed by the following system of compressible Euler equations:







ρt +mx = a(x)m, x ∈ R, t > 0,

mt +

(

m2

ρ
+ p(ρ)

)

x

= a(x)
m2

ρ
, x ∈ R, t > 0,

(1.1)

where ρ is the density, the momentum m = ρu with u being the velocity, and p(ρ) is the

pressure of the gas. Here the given function a(x) is represented by a(x) = −A′(x)
A(x) with

A(x) ∈ C2(R) being a slowly variable cross-sectional area at x in the nozzle. For γ-law

gas, p(ρ) = p0ρ
γ with γ denoting the adiabatic exponent and p0 = θ2

γ , θ = γ−1
2 . When

γ > 1, (1.1) is called the isentropic gas flow. When γ = 1, (1.1) is called isothermal one.
We consider the Cauchy problem for (1.1) with large initial data

(ρ,m)|t=0 = (ρ0(x),m0(x)) ∈ L∞. (1.2)

The above Cauchy problem (1.1)-(1.2) can be written in compact form as follows:
{

Ut + f(U)x = g(x,U),
U |t=0 = U0(x), x ∈ R,

(1.3)
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where U = (ρ,m)⊤, f(U) = (m, m
2

ρ + p(ρ))⊤, and g(x,U) = (−A′(x)
A(x)m,−

A′(x)
A(x)

m2

ρ )⊤.

There have been extensive studies and applications of homogeneous γ-law gas, i.e.,
g(x,U) = 0. Diperna [9] proved the global existence of entropy solutions with large
initial data by the theory of compensated compactness and vanishing viscosity method
for γ = 1 + 2

2n+1 , where n is a positive integer. Subsequently, Ding, Chen, and Luo [6, 7]

and Chen [1] successfully extended the result to γ ∈ (1, 53 ] by using a Lax-Friedrichs
scheme. Lions, Perthame, and Tadmor [17] and Lions, Perthame, and Souganidis [18]
treated the case γ > 5

3 . The existence of entropy solutions to the isothermal gas, i.e.,
γ = 1, was proved in Huang and Wang [14] by introducing complex entropies and utilizing
the analytic extension method.

For the isentropic Euler equations with source term, Ding, Chen, and Luo [8] established
a general framework to investigate the global existence of entropy solution through the
fractional step Lax-Friedrichs scheme and compensated compactness method. Later on,
there have been extensive studies on the inhomogeneous case (see [2, 3, 16, 23, 24, 30, 31]).
For the nozzle flow problem, see [5, 10–12, 19–21, 33]. For converging-diverging de Laval
nozzles, as flow speed accelerates from the subsonic to the supersonic regime, the physical
properties of nozzle and diffuser flows are altered. This kind of nozzle is particularly
designed to converge to a minimum cross-sectional area and then expand. Liu [19] first
proved the existence of a global solution with initial data of small total variation and
away from sonic state by a Glimm scheme. Tsuge [27–29] first studied the global existence
of solutions for Laval nozzle flow and transonic flow for large initial data by introducing
a modified Godunov scheme. Recently, Chen and Schrecker [4] proved the existence of
globally defined entropy solutions in transonic nozzles in an Lp compactness framework,
whose uniform bound of approximate solutions may depend on time t. In our paper, we
are focusing on the L∞ compactness framework. Moreover, general cross-sectional areas
of nozzles are considered, which include several important physical models, such as the
de Laval nozzles with closed ends, that is, the cross-sectional areas are tending to zero as
x→ ∞.

In our paper, we assume the cross-sectional area function A(x) > 0 satisfies that there
exists a C1,1 function a0(x) ∈ L1(R) such that

∣

∣

∣

∣

A′(x)

A(x)

∣

∣

∣

∣

= |a(x)| ≤ a0(x). (1.4)

Here, A(x) > 0 is a natural assumption. The smallest cross-sectional area of the noz-
zle is the throat of the nozzle. We allow the general varied cross-sectional area and no
assumption is assumed on the sign of a(x).

The main purpose of the present paper is to prove the existence of a global entropy so-
lution with uniform bound independent of time for large initial data in both the isentropic
case 1 < γ < 3 and isothermal one γ = 1. We are interested in solutions that can reach
the vacuum ρ = 0. Near the vacuum, the system (1.1)-(1.2) is degenerate and the velocity
u cannot be defined uniquely. We define the weak entropy solution as follows.

Definition 1.1. A measurable function U(x, t) is called a global weak solution of the
Cauchy problem (1.3) if

∫

t>0

∫

R

Uϕt + f(U)ϕx + g(x,U)ϕdxdt +

∫

R

U0(x)ϕ(x, 0)dx = 0
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holds for any test function ϕ ∈ C1
0 (R×R

+). In addition, for the isentropic flow, if U also
satisfies that for any weak entropy pair (η, q) (see Section 2), the inequality

η(U)t + q(U)x −∇η(U) · g(x,U) ≤ 0 (1.5)

holds in the sense of distributions, then U is called a weak entropy solution to (1.3). For
the isothermal flow, U is called a weak entropy solution if U additionally satisfies (1.5) for
mechanical entropy pair

η∗ =
m2

2ρ
+ ρ ln ρ, q∗ =

m3

2ρ2
+m ln ρ.

Two main results of the present paper are given as follows.

Theorem 1.1. (isentropic case) Let 1 < γ < 3. Assume that there is a positive constant
M such that the initial data satisfies

0 ≤ ρ0(x) ≤M, |m0(x)| ≤Mρ0(x), a.e., x ∈ R,

and a(x) satisfies (1.4) with

‖a0(x)‖L1(R) ≤
1− θ

1 + θ
. (1.6)

Then, there exists a global entropy solution of (1.1)-(1.2) satisfying

0 ≤ ρ(x, t) ≤ C, |m(x, t)| ≤ Cρ(x, t), a.e., (x, t) ∈ R× R
+,

where C depends only on initial data and is independent of time t.

Theorem 1.2. (isothermal case) Let γ = 1. Assume that there is a positive constant M
such that the initial data satisfy

0 ≤ ρ0(x) ≤M, |m0(x)| ≤ ρ0(x)(M + | ln ρ0(x)|), a.e., x ∈ R,

and a(x) satisfies (1.4) with

‖a0(x)‖L1(R) ≤ 1
2 . (1.7)

Then, there exists a global entropy solution of (1.1)-(1.2) satisfying

0 ≤ ρ(x, t) ≤ C, |m(x, t)| ≤ ρ(x, t)(C + | ln ρ(x, t)|), a.e., x ∈ R,

where C depends only on initial data and is independent of time t.

Remark 1.1. Here, the conditions (1.6) (Theorem 1.1) and (1.7) (Theorem 1.2) are assumed
to guarantee a uniform bound of (ρ,m) independent of time. This condition illustrates a
new physical phenomena that is important in engineering. For example, if we consider an

isothermal nozzle with a monotone cross-sectional area, a0(x) =
A′(x)
A(x) ≥ 0, and denote A+

and A− the far field of a variable cross-sectional area, respectively, then the ratio of the

outlet and inlet cross-sectional area can be controlled, i.e., A+

A−
≤ e

1

2 .

Remark 1.2. The condition (1.6) in Theorem 1.1 is different from that in Tsuge [29]. Here,
in our paper, we allow 1 < γ < 3.

The main difficulty we came across is how to construct approximate solutions with
uniform bound independent of time. Another difficulty is the interaction of nonlinear
resonance between the characteristic modes and geometrical source terms. Our strategy
is applying the maximum principle (Lemma 3.1) introduced in [13, 15], which is similar
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to invariant region theory [26], to a viscous equation with novel viscosity. To be more
specific, for the isentropic case, we add −2εb(x)ρx on the momentum equation (c.f (3.1));
for the isothermal case, we raise n := A(x)ρ with δ and also add −4εb(x)nx on the
momentum equation (c.f (5.1)). Two modified Riemann invariants are introduced and a
system of decoupled new parabolic equations along the characteristic are derived. Owing
to the hyperbolicty structure of (1.1), we can transform the integral of source terms
along characteristics with time t into the integral with space x. Finally after establishing
the estimate of H−1

loc compactness, we apply a compensated compactness framework in
[6,7,14,18] to show the convergence of approximate solutions. To the best of our knowledge,
for the isothermal flow, the uniform bound for the approximate solutions depends on time
t in all the previous results. We remark that the method in our paper can be applied to
obtain the existence of weak solutions of related gas dynamic models, such as Euler-Poisson
for a semiconductor model [15] or an Euler equation with geometric source terms [13], and
may also shed light on the large time behavior of entropy solutions. Besides, we avoid a
laborious numerical scheme to construct approximate solutions.

The present paper is organized as follows. In Section 2, we introduce some basic notions
and formulas for the isentropic Euler system. In Section 3, we prove Theorem 1.1 for the
global existence of isentropic gas flow in general nozzle. Subsequently, in Section 4, we
further formulate several preliminaries and formula for the isothermal Euler system. The
proof of Theorem 1.2 for global existence of isothermal gas flow in general nozzle will
be presented in Section 5. In the appendix, we provide the proof of variant version of
invariant region theory for completeness.

2. Preliminary and Formulation for Isentropic Flow

First we list some basic notation for the isentropic system (1.1). The eigenvalues are

λ1 =
m

ρ
− θρθ, λ2 =

m

ρ
+ θρθ,

and the corresponding right eigenvectors are

r1 =

[

1
λ1

]

, r2 =

[

1
λ2

]

.

The Riemann invariants w, z are given by

w =
m

ρ
+ ρθ, z =

m

ρ
− ρθ, (2.1)

satisfying ∇w · r1 = 0 and ∇z · r2 = 0. A pair of functions (η, q) : R+ ×R 7→ R
2 is defined

to be an entropy-entropy flux pair if it satisfies

∇q(U) = ∇η(U)∇
[

m
m2

ρ + p(ρ)

]

.

When

η
∣

∣

∣

m
ρ

fixed → 0, as ρ→ 0,

η(ρ,m) is called weak entropy. In particular, the mechanical entropy pair

η∗(ρ,m) =
m2

2ρ
+
p0ρ

γ

γ − 1
, q∗(ρ,m) =

m3

2ρ2
+
γp0ρ

γ−1m

γ − 1
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is a strictly convex entropy pair. As shown in [17] and [18], any weak entropy for the
system (1.1) is given by

η = ρ

∫ 1

−1
χ(
m

ρ
+ ρθs)(1− s2)λds, q = ρ

∫ 1

−1
(
m

ρ
+ ρθθs)χ(

m

ρ
+ ρθs)(1− s2)λds (2.2)

with λ = 3−γ
2(γ−1) for any function χ(·) ∈ C2(R).

3. Proof of Theorem 1.1

3.1. Construction of approximate solutions. We first construct approximate solu-
tions to (1.1) satisfying the framework in [6,7,18]. Indeed, for any ε ∈ (0, 1) we construct
approximate solutions by adding suitable artificial viscosity as follows:







ρt +mx = a(x)m+ ερxx,

mt +

(

m2

ρ
+ p(ρ)

)

x

= a(x)
m2

ρ
+ εmxx − 2εb(x)ρx

(3.1)

with initial data

(ρ,m)|t=0 = (ρε0(x),m
ε
0(x)) = (ρ0(x) + ε,m0(x)) ∗ jε, (3.2)

where b(x) is a function to be given later, and jε is the standard mollifier.

3.2. Global existence of approximate solutions. For the global existence to Cauchy
problem (3.1)-(3.2), we have the following.

Theorem 3.1. For any time T > 0, there exists a unique global classical bounded solution
to the Cauchy problem (3.1)-(3.2) that has following L∞ estimates

e−C(ε,T ) ≤ ρε(x, t) ≤ C, |mε(x, t)| ≤ Cρε(x, t). (3.3)

We shall show Theorem 3.1 in two steps. In the section, we omit the upper index ε for
simplicity.

Step 1. Uniform upper bound. First, we can rewrite the first equation of (3.1) as

ρt + uρx = ερxx + ρ(a(x)u− ux),

and then applying the maximum principle of parabolic equation yields that

ρ ≥ min ρ0(x)e
−

∫ t

0
‖a(x)u−ux‖L∞ds > 0,

which implies w ≥ z. Second, we recall a revised version of the invariant region theory [26]
introduced in [13,15].

Lemma 3.1. (Maximum principle) Let p(x, t), q(x, t), (x, t) ∈ R × [0, T ] be any bounded
classical solutions of the quasilinear parabolic system

{

pt + µ1px = εpxx + a11p+ a12q +R1,

qt + µ2qx = εqxx + a21p+ a22q +R2
(3.4)

with initial data p(x, 0) ≤ 0, q(x, 0) ≥ 0, where

µi = µi(x, t, p(x, t), q(x, t)), aij = aij(x, t, p(x, t), q(x, t)),

and the source terms

Ri = Ri(x, t, p(x, t), q(x, t), px(x, t), qx(x, t)), i, j = 1, 2,∀(x, t) ∈ R× [0, T ]
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µi, aijare bounded with respect to (x, t, p, q) ∈ R × [0, T ] × K, where K is an arbitrary
compact subset in R

2, a12, a21, R1, R2 are continuously differentiable with respect to p, q.
Assume the following conditions hold:

(C1): When p = 0 and q ≥ 0, there is a12 ≤ 0; when q = 0 and p ≤ 0, there is
a21 ≤ 0.

(C2): When p = 0 and q ≥ 0, there is R1 = R1(x, t, 0, q, ζ, η) ≤ 0; when q = 0 and
p ≤ 0, there is R2 = R2(x, t, p, 0, ζ, η) ≥ 0.

Then for any (x, t) ∈ R× [0, T ], p(x, t) ≤ 0, q(x, t) ≥ 0.

Remark 3.1. The modified version of invariant region theory (Lemma 3.1) is valid not
only for the Cauchy problem with source terms, but also for the initial boundary value
problem with Dirichlet and Neumann boundary conditions.

We shall apply maximum principle Lemma 3.1 to get the uniform bound of ρ,m. By
the formulas of Riemann invariants (2.1), the viscous perturbation system (3.1) can be
transformed as















wt + λ2wx = εwxx + 2ε(wx − b)
ρx
ρ

− εθ(θ + 1)ρθ−2ρ2x + θ
w2 − z2

4
a(x),

zt + λ1zx = εzxx + 2ε(zx − b)
ρx
ρ

+ εθ(θ + 1)ρθ−2ρ2x − θ
w2 − z2

4
a(x).

(3.5)

Set the control functions (φ,ψ) as

φ = C0 + ε‖b′(x)‖L∞t+

∫ x

−∞
b(y)dy,

ψ = C0 + ε‖b′(x)‖L∞t+

∫ ∞

x
b(y)dy.

Then a simple calculation shows that

φt = ε‖b′(x)‖L∞ , φx = b(x), φxx = b′(x);

ψt = ε‖b′(x)‖L∞ , ψx = −b(x), ψxx = −b′(x).

Define the modified Riemann invariants (w̄, z̄) as

w̄ = w − φ, z̄ = z + ψ. (3.6)

Inserting (3.6) into (3.5) yields the decoupled equations for w̄ and z̄ :














































w̄t + λ2w̄x =εw̄xx + εφxx − φt − λ2φx + 2ε
ρx
ρ
w̄x − εθ(θ + 1)ρθ−2ρ2x

+ θ
(w̄ + φ)2 − (z̄ − ψ)2

4
a(x),

z̄t + λ1z̄x =εz̄xx − εψxx + ψt + λ1ψx + 2ε
ρx
ρ
z̄x + εθ(θ + 1)ρθ−2ρ2x

− θ
(w̄ + φ)2 − (z̄ − ψ)2

4
a(x).

(3.7)
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Noting that

λ1 =
w + z

2
− θ

w − z

2
,

λ2 =
w + z

2
+ θ

w − z

2
,

the system (3.7) becomes











w̄t + (λ2 − 2ε
ρx
ρ
)w̄x = εw̄xx + a11w̄ + a12z̄ +R1,

z̄t + (λ1 − 2ε
ρx
ρ
)z̄x = εz̄xx + a21w̄ + a22z̄ +R2,

(3.8)

where

a11 = −
(

1 + θ

2
φx − θ

w̄ + 2φ

4
a(x)

)

, a12 = −
(

1− θ

2
φx + θ

z̄ − 2ψ

4
a(x)

)

,

a21 =

(

1− θ

2
ψx − θ

w̄ + 2φ

4
a(x)

)

, a22 =

(

1 + θ

2
ψx + θ

z̄ − 2ψ

4
a(x)

)

,

and

R1 = εφxx − φt −
1 + θ

2
φφx +

1− θ

2
ψφx − εθ(θ + 1)ρθ−2ρ2x + θ

φ2 − ψ2

4
a(x),

R2 = −εψxx + ψt +
1− θ

2
φψx −

1 + θ

2
ψψx + εθ(θ + 1)ρθ−2ρ2x − θ

φ2 − ψ2

4
a(x).

To apply Lemma 3.1, we need to verify (C1) and (C2). For (C1), when w̄ = 0, z̄ ≥ 0, we
have

0 ≤ z̄ = z + ψ ≤ w + ψ = φ+ ψ,

and then

a12 =− 1− θ

2

(

b(x) +
θ

2(1− θ)
(z̄ − 2ψ)a(x)

)

≤















− 1− θ

2

(

b(x)− θ

2(1− θ)
(φ− ψ)|a(x)|

)

if a(x) < 0,

− 1− θ

2

(

b(x)− θ

2(1− θ)
2ψ|a(x)|

)

if a(x) ≥ 0.

Hence, we take b(x) =M0a0(x) with

M0 ≥
θ

2(1− θ)
max(φ− ψ, 2ψ),

and using (1.4), one has a12 ≤ 0. Moreover, when w̄ ≤ 0, z̄ = 0, we have

0 ≥ w̄ = w − φ ≥ z − φ = −ψ − φ,
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and then

a21 =− 1− θ

2

(

b(x) +
θ

2(1− θ)
(w̄ + 2φ)a(x)

)

≤















− 1− θ

2

(

b(x)− θ

2(1− θ)
2φ|a(x)|

)

if a(x) < 0,

− 1− θ

2

(

b(x)− θ

2(1− θ)
(ψ − φ)|a(x)|

)

if a(x) ≥ 0,

≤ 0,

provided

M0 ≥
θ

2(1− θ)
max(φ− ψ, 2φ).

Thus we require

M0 ≥
θ

2(1 − θ)
max

(
∫ x

−∞
b(y)dy −

∫ ∞

x
b(y)dy, 2C0 + 2ε‖b′(x)‖L∞t+ 2

∫ ∞

−∞
b(y)dy

)

.

Taking ε sufficient small such that ε‖b′(x)‖L∞T ≤ 1, we have

M0 ≥
θ

1− θ
(C0 + 1 +M0‖a0(x)‖L1) ,

that is,

‖a0(x)‖L1 ≤ 1− θ

θ
− C0 + 1

M0
. (3.9)

Hence (C1) is also satisfied by (w̄, z̄). As for (C2), one can derive

R1 ≤ εb′(x)− ε‖b′(x)‖L∞

+ b(x)

(

−1 + θ

2
φ+

1− θ

2
ψ

)

+ θ
(φ+ ψ)(φ− ψ)

4
a(x)

≤ b(x)

(

−θC0 − εθ‖b′(x)‖L∞t− 1 + θ

2

∫ x

−∞
b(y)dy +

1− θ

2

∫ ∞

x
b(y)dy

)

+
θ

4
(2C0 + 2ε‖b′(x)‖L∞ t+ ‖b‖L1)

(
∫ x

−∞
b(y)dy −

∫ ∞

x
b(y)dy

)

a(x)

≤ −
[

M0(θC0 + θε‖b′(x)‖L∞t− 1− θ

2
‖b‖L1)

− θ

4
(2C0 + 2ε‖b′(x)‖L∞ t+ ‖b‖L1)‖b‖L1

]

a0(x)

≤ −M0a0(x)

[

θC0 −
1

2
(θC0 + (1− θ)M0 +

θ

2
M0‖a0‖L1)‖a0‖L1

]

≤ 0.

The last inequality holds on the condition that

‖a0(x)‖L1 ≤ 2θC0

θC0 +M0
and ‖a0(x)‖L1 ≤ 1. (3.10)
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Then we also have

R2 ≥ εb′(x) + ε‖b′(x)‖L∞

+ b(x)

(

−1− θ

2
φ+

1 + θ

2
ψ

)

− θ
(φ+ ψ)(φ− ψ)

4
a(x)

≥ b(x)

(

θC0 + εθ‖b′(x)‖L∞ t− 1− θ

2

∫ x

−∞
b(y)dy +

1 + θ

2

∫ ∞

x
b(y)dy

)

− θ

4
(2C0 + 2ε‖b′(x)‖L∞ t+ ‖b‖L1)

(
∫ x

−∞
b(y)dy −

∫ ∞

x
b(y)dy

)

a(x)

≥
[

M0(θC0 + θε‖b′(x)‖L∞ t− 1− θ

2
‖b‖L1)

− θ

4
(2C0 + 2ε‖b′(x)‖L∞ t+ ‖b‖L1)‖b‖L1

]

a0(x)

≥M0a0(x)

[

θC0 −
1

2
(θC0 + (1− θ)M0 +

θ

2
M0‖a0‖L1)‖a0‖L1

]

≥ 0.

Hence (C2) is verified for (w̄, z̄). From (3.9) and (3.10), a0 must satisfy

‖a0‖L1 ≤ min

{

1,
2θC0

θC0 +M0
,
1− θ

θ
− C0 + 1

M0

}

. (3.11)

Now we turn to chooseM0 and C0. Considering the initial values of approximate solutions,
we shall choose C0 large enough first such that

C0 ≥ max{supw(x, 0),− inf z(x, 0)},
and then we have w(x, 0) ≤ φ(x, 0), z(x, 0) ≥ −ψ(x, 0). One choice of M0 is

M0 = C0
3θ2 + θ

1− θ
,

and then
2θC0

θC0 +M0
=

1− θ

1 + θ
and

1− θ

θ
− C0

M0
− 1

M0
≥ 1− θ

1 + θ

if M0 is large enough. Thus our condition (1.6) on a0 satisfies (3.11), which is the key
reason for (1.6). Therefore, an application of Lemma 3.1 yields

w̄(x, t) ≤ 0, z̄(x, t) ≥ 0,

which implies

w(x, t) ≤ φ(x, t) ≤ C0 + ‖b‖L1 + 1 = C,

z(x, t) ≥ −ψ(x, t) ≥ −C0 − ‖b‖L1 − 1 = −C,
where we can see that C is independent of time. Hence we obtain

0 ≤ ρ(x, t) ≤ C, |m(x, t)| ≤ Cρ(x, t). (3.12)

Step 2. Lower bound of density. By (3.12), we know that the velocity u = m
ρ is

uniformly bounded, i.e., |u| ≤ C. Then the lower bound of density can be derived by the
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method of [13]. Set v = ln ρ, and then we get a scalar equation for v

vt + vxu+ ux = εvxx + εv2x + a(x)u (3.13)

from which we have

v =

∫

R

G(x− y, t)v0(y)dy +

∫ t

0

∫

R

(εv2x − vxu− ux + a(x)u)G(x − y, t− s)dyds,

where G is the heat kernel satisfying
∫

R

G(x− y, t)dy = 1,

∫

R

|Gy(x− y, t)|dy ≤ C√
εt
.

Then it follows that

v =

∫

R

G(x− y, t)v0(y)dy +

∫ t

0

∫

R

(εv2y − vyu− uy + au)G(x− y, t− s)dyds

≥
∫

R

G(x− y, t)v0(y)dy +

∫ t

0

∫

R

uGy(x− y, t− s) + (au− u2

4ε )G(x− y, t− s)dyds

≥ ln ε− Ct

ε
− C

√
t√
ε

:= −C(ε, t).

Thus

ρ ≥ e−C(ε,t). (3.14)

From (3.12) and (3.14), we get (3.3). The lower bound of density guarantees that there
is no singularity in (3.1). Then we can apply classical theory of quasilinear parabolic
systems to complete the proof of Theorem 3.1.

3.3. Convergence of approximate solutions. In this section, we will provide the proof
of Theorem 1.1. Since we are focusing on the uniform bound of ρ and m, in this section
we assume 1 < γ ≤ 2 for simplicity. For the case 2 < γ ≤ 3, one can follow the similar
argument in [18] or [32] to obtain the same conclusions.

Denote ΠT = R× [0, T ] for any T ∈ (0,∞).
Step 1. H−1

loc compactness of the entropy pair. We consider

η(ρε,mε)t + q(ρε,mε)x,

where (η, q) is any weak entropy-entropy flux pair given in (2.2). We will apply the Murat
lemma to achieve the goal.

Lemma 3.2. (Murat [25]) Let Ω ∈ R
n be an open set, then

(compact set of W−1,q
loc (Ω)) ∩ (bounded set of W−1,r

loc (Ω)) ⊂ (compact set of H−1
loc (Ω)),

where 1 < q ≤ 2 < r.

Let K ⊂ ΠT be any compact set, and choose ϕ ∈ C∞
c (ΠT ) such that ϕ|K = 1 and

0 ≤ ϕ ≤ 1. Multiplying (3.1) by ϕ∇η∗ with η∗ the mechanical entropy, we obtain

ε

∫ ∫

ΠT

ϕ(ρx,mx)∇2η∗(ρx,mx)
⊤dxdt

=

∫ ∫

ΠT

(a(x)
m2

ρ
− 2εb(x)ρx)η

∗
mϕ+ a(x)mη∗ρϕ+ η∗ϕt + q∗ϕx + εη∗ϕxxdxdt.

(3.15)
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A direct calculation tells us that

(ρx,mx)∇2η∗(ρx,mx)
⊤ = p0γρ

γ−2ρ2x + ρu2x.

Noting that

|(a(x)m
2

ρ
− 2εb(x)ρx)η

∗
m| ≤ εp0γ

2
ργ−2ρ2x + εCb2m2ρ−γ + a0

m3

ρ2
,

we get

ε

2

∫ ∫

ΠT

ϕ(ρx,mx)∇2η∗(ρx,mx)
⊤dxdt

≤
∫ ∫

ΠT

(Cεb2m2ρ−γ + a0
m3

ρ2
)ϕ+ η∗ϕt + q∗ϕx + εη∗ϕxx

+ (
m3

2ρ2
+

γ

γ − 1
mργ−1p0)a0ϕdxdt

≤ C(ϕ).

Hence

ε(ρx,mx)∇2η∗(ρx,mx)
⊤ ∈ L1

loc(ΠT ), (3.16)

i.e.,

εργ−2ρ2x + ερu2x ∈ L1
loc(ΠT ). (3.17)

For any weak entropy-entropy flux pairs given in (2.2), as in (3.15), we have

ηt + qx = εηxx − ε(ρx,mx)∇2η(ρx,mx)
⊤ + (ηρa(x)m+ ηma(x)

m2

ρ
)− 2εηmρxb(x)

=:
4
∑

i=1

Ii.

(3.18)

Using (3.17), it is straightforward to check that I1 is compact in H−1
loc (ΠT ). Note that for

any weak entropy, the Hessian matrix ∇2η is controlled by ∇2η∗ ( [18]), that is,

(ρx,mx)∇2η(ρx,mx)
⊤ ≤ (ρx,mx)∇2η∗(ρx,mx)

⊤, (3.19)

and thus I2 is bounded in L1
loc(ΠT ) and thus compact in W−1,α

loc (ΠT ) for some 1 < α < 2
by the Sobolev embedding theorem. For I3, we have

|I3| = |ηρa(x)m+ ηma(x)
m2

ρ
| ≤ Ca0,

which implies that I3 is bounded in L1
loc(ΠT ). For the last term I4, we get

|I4| ≤ Cεργ/2−1|ρx|.
It follows from (3.16) that I4 is compact in H−1

loc (ΠT ). Therefore,

ηt + qx is compact in W−1,α
loc (ΠT ) with some 1 < α < 2.

On the other hand, since ρ and m are uniformly bounded, we have

ηt + qx is bounded in W−1,∞
loc (ΠT ).
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We conclude that

ηt + qx is compact in H−1
loc (ΠT ) (3.20)

for all weak entropy-entropy flux pairs with the help of the Murat lemma 3.2.
Step 2. Strong convergence and consistency. By (3.20) and the compactness

framework established in [6, 7, 9, 18], we can prove that there exists a subsequence of
(ρε,mε) (still denoted by (ρε,mε)) such that

(ρε,mε) → (ρ,m) in Lp
loc(ΠT ), p ≥ 1, (3.21)

from which it is easy to show that (ρ,m) is a weak solution to the Cauchy problem (1.1)-
(1.2). We omit the proof for brevity.

Step 3. Entropy inequality. We shall also prove that (ρ,m) satisfies the entropy
inequality in the sense of distributions for all weak convex entropies. Let (η, q) be any
entropy-entropy flux pair with η being convex. Multiplying (3.1) by ϕ∇η with 0 ≤ ϕ ∈
C∞
c (ΠT ), we get
∫ ∫

ΠT

ηtϕ+ qxϕdxdt

=

∫ ∫

ΠT

εηxxϕ− εϕ(ρx,mx)∇2η(ρx,mx)
⊤ + ηρa(x)mϕ+ ηm(a(x)

m2

ρ
− 2εb(x)ρx)ϕdxdt.

As in Step 1, we have
∣

∣

∣

∣

∫ ∫

ΠT

εηxxϕdxdt

∣

∣

∣

∣

→ 0 as ε→ 0.

Moreover,
∣

∣

∣

∣

∫ ∫

ΠT

2ερxb(x)ηmϕdxdt

∣

∣

∣

∣

≤
[
∫ ∫

ΠT

Cερ2−γb2ϕdxdt

]
1

2
[
∫ ∫

ΠT

ϕερ2xρ
γ−2dxdt

]
1

2

≤Cε 1

2 → 0 as ε→ 0.

Noting that

εϕ(ρx,mx)∇2η(ρx,mx)
⊤ ≥ 0,

we conclude that
∫ ∫

ΠT

ηϕt + qϕxdxdt+ (ηm
m2

ρ
+mηρ)a(x)ϕdxdt ≥ 0 as ε→ 0,

that is, (ρ,m) is indeed an entropy solution to the Cauchy problem (1.1)-(1.2). Therefore,
the proof of Theorem 1.1 is completed.

4. Preliminary and Formulation for Isothermal Flow

In this section, we provide some preliminaries and formulation for the isothermal case.
Here, we adopt a similar notion as in Section 2 with no confusion. Letting

n = A(x)ρ, J = A(x)m,
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and using γ = 1, we can rewrite (1.1) as






nt + Jx = 0,

Jt +

(

J2

n
+ n

)

x

= −a(x)n, x ∈ R
(4.1)

with a(x) = −A′(x)
A(x) , J = nu. Then seeking weak entropy solutions of (1.1)-(1.2) is

equivalent to solving (4.1) with the following initial data:

(n, J)|t=0 = (n0(x), J0(x)) = (A(x)ρ0(x), A(x)m0(x)) ∈ L∞(R). (4.2)

The eigenvalues of (4.1) are

λ1 =
J

n
− 1, λ2 =

J

n
+ 1,

and the corresponding right eigenvectors are

r1 =

[

1
λ1

]

, r2 =

[

1
λ2

]

.

The Riemann invariants (w, z) are given by

w =
J

n
+ lnn, z =

J

n
− lnn.

The mechanical energy η∗(n, J) and mechanical energy flux q∗(n, J) have the following
formula

η∗(n, J) =
J2

2n
+ n lnn, q∗(n, J) =

J3

2n2
+ J lnn.

5. Proof of Theorem 1.2

We first recall the compactness framework in Huang and Wang [14].

Theorem 5.1. Let (nε, Jε) be a sequence of bounded approximate solutions of (4.1)-(4.2)
satisfying

0 < δ ≤ nε ≤ C, |Jε| ≤ nε(C + | lnnε|)
with C being independent of ε, T, δ = o(ε). Assume that

∂tη(n
ε, Jε) + ∂xq(n

ε, Jε) is compact in H−1
loc (ΠT ),

where (η, q) is defined as

η = n
1

1−ξ2 e
ξ

1−ξ2
J
n , q =

(

J

n
+ ξ

)

η

for any fixed ξ ∈ (−1, 1). Then there exists a subsequence of (nε, Jε), still denoted by
(nε, Jε), such that

(nε(x, t), Jε(x, t)) → (n(x, t), J(x, t)) in Lp
loc(R × R

+), p ≥ 1,

for some function (n(x, t), J(x, t)) satisfying

0 ≤ n ≤ C, |J | ≤ n(C + | lnn|),
where C is a positive constant independent on T.



14 WENTAO CAO, FEIMIN HUANG, AND DIFAN YUAN

5.1. Construction of approximate solutions. Next we construct approximate solu-
tions satisfying the conditions in Theorem 5.1. Raising density, which is motivated by [22],
we add artificial viscosity as follows:














nt + (J − δ
J

n
)x = εnxx,

Jt +

(

J2

n
− δ

2

J2

n2
+

∫ n

δ

t− δ

t
dt

)

x

= εJxx − a(x)(n − δ) + 2b(x)δ
J

n
− 4εb(x)nx

(5.1)

with initial data

(n, J)|t=0 = (nε0(x), J
ε
0 (x)) = (n0(x) + δ, J0(x)) ∗ jε, (5.2)

where b is a function to be determined later, δ = o(ε), and jε is the standard mollifier and
0 < ε < 1. By a direct computation, the eigenvalues are

λδ1 =
J

n
− n− δ

n
, λδ2 =

J

n
+
n− δ

n
, (5.3)

and the Riemann invariants are

w =
J

n
+ lnn, z =

J

n
− lnn.

5.2. Global existence of approximate solutions. In this section, we show the global
existence of classical solutions to the Cauchy problem of quasilinear parabolic system
(5.1)-(5.2) and obtain the following theorem.

Theorem 5.2. There exists a unique global classical bounded solution (nε, Jε) to the
Cauchy problem (5.1)-(5.2) satisfying

δ ≤ nε ≤ C, |Jε| ≤ nε(C + | lnnε|). (5.4)

We divide the proof of Theorem 5.2 into three steps. In this section, we omit the up
index ε.

Step 1. Local existence and lower bound of density. The local existence of the
solution for (5.1)-(5.2) can be proved by using the heat kernel and the same way in [9].
For the lower bound of density, we denote

v = n− δ,

and then v satisfies

vt + (uv)x = εvxx, v|t=0 = v0(x) (5.5)

with u = J
n . From the definition of n0, we have v0 ≥ 0. Rewrite (5.5) as

vt + uvx = εvxx − uxv,

and then it is easy to obtain from the maximum principle of the parabolic equation that

v(x, t) ≥ min v0(x)e
−‖ux‖L∞ t ≥ 0,

and hence we gain n ≥ δ.
Step 2. Uniform upper bound. We apply Lemma 3.1 to obtain the uniform L∞

estimates. As before, to estimate the uniform bound of the approximate solution, we shall
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investigate a parabolic system derived by Riemann invariants. We transform (5.1) into
the following form:















wt + λδ2wx = εwxx + 2ε(wx − 2b(x))
nx
n

− ε
n2x
n2

− a(x)
n− δ

n
+ 2b(x)δ

J

n2
,

zt + λδ1zx = εzxx + 2ε(zx − 2b(x))
nx
n

+ ε
n2x
n2

− a(x)
n − δ

n
+ 2b(x)δ

J

n2
.

Set the control functions (φ,ψ) as follows:

φ =M + 2

∫ x

−∞
b(y)dy + 2ε‖b′(x)‖L∞t,

ψ =M + 2

∫ ∞

x
b(y)dy + 2ε‖b′(x)‖L∞ t.

We remark that φ,ψ in this Section is different from those in Section 3 for simplicity.
Then we obtain

φt = 2ε‖b′(x)‖L∞ , φx = 2b(x), φxx = 2b′(x);

ψt = 2ε‖b′(x)‖L∞ , ψx = −2b(x), ψxx = −2b′(x).

Let

w̄ = w − φ, z̄ = z + ψ.

A simple calculation yields


















































w̄t +
(

λδ2 − 2ε
nx
n

)

w̄x =εw̄xx + 2εb′(x)− 2ε‖b′(x)‖L∞ − ε
n2x
n2

− 2

(

J

n
+
n− δ

n

)

b(x)− n− δ

n
a(x) + 2b(x)δ

J

n2
,

z̄t +
(

λδ1 − 2ε
nx
n

)

z̄x =εz̄xx + 2εb′(x) + 2ε‖b′(x)‖L∞ + ε
n2x
n2

− 2

(

J

n
− n− δ

n

)

b(x)− n− δ

n
a(x) + 2b(x)δ

J

n2
.

(5.6)

Note that
J

n
=
w + z

2
=
w̄ + φ+ z̄ − ψ

2
,

and then the system (5.6) becomes










w̄t +
(

λδ2 − 2ε
nx
n

)

w̄x = εw̄xx + a11w̄ + a12z̄ +R1,

z̄t +
(

λδ1 − 2ε
nx
n

)

z̄x = εz̄xx + a21w̄ + a22z̄ +R2

with

a11 = −b(x)n− δ

n
, a12 = −b(x)n− δ

n
≤ 0,

a21 = −b(x)n− δ

n
≤ 0, a22 = −b(x)n − δ

n
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and

R1 =2εb′(x)− 2ε‖b′(x)‖L∞ − ε
n2x
n2

+ (−a− b)
n− δ

n

+ b(x)
n− δ

n

(

2

∫ ∞

x
b(y)dy − 2

∫ x

−∞
b(y)dy − 1

)

,

R2 =2εb′(x) + 2ε‖b′(x)‖L∞ + ε
n2x
n2

+ (−a+ b)
n− δ

n

+ b(x)
n− δ

n

(

2

∫ ∞

x
b(y)dy − 2

∫ x

−∞
b(y)dy + 1

)

,

where we have used n ≥ δ. Since

sup

{

x ∈ R

∣

∣

∣
2

∫ ∞

x
b(y)dy − 2

∫ x

−∞
b(y)dy

}

= 2‖b‖L1 ,

we can take b(x) ∈ C1(R) such that

‖b(x)‖L1 ≤ 1

2
, |a(x)| ≤ b(x),

and then we have R1 ≤ 0, R2 ≥ 0. In fact, from our assumption on a(x), we take b(x) =
a0(x), which is our key reason for the condition (1.7). By our conditions on initial data,
we can take M large enough such that

w̄(x, 0) ≤ 0, z̄(x, 0) ≥ 0.

Then, Lemma 3.1 yields

w̄(x, t) ≤ 0, z̄(x, t) ≥ 0,

which implies that

w(x, t) ≤ φ(x, t) ≤M + 2‖b‖L1 + 2ε‖b′‖L∞t ≤ C,

z(x, t) ≥ −ψ(x, t) ≥ −M − 2‖b‖L1 − 2ε‖b′‖L∞t ≥ −C,
where for any fixed time T, we choose ε small such that

ε‖b′‖L∞t ≤ ε‖b′‖L∞T ≤ 1.

Hence we obtain (5.4).
From Steps 1 and 2, using the classical theory of quasilinear parabolic systems, we can

complete the proof of Theorem 5.2.

5.3. Convergence of approximate solutions. As stated in Section 2, (1.1)-(1.2) is
equivalent to (4.1)-(4.2). Thus we only need to show that a subsequence of (nε, Jε) in
Section 5.2 converges to the solutions of (4.1)-(4.2) by verifying the conditions in Theorem
5.1. We also divide the proof into three steps.

Step 1. H−1
loc compactness of the entropy pair. We will verify theH−1

loc compactness
of the entropy pair

η(nε, Jε)t + q(nε, Jε)x

for some weak entropy (η, q) of (4.1) with

η = n
1

1−ξ2 e
ξ

1−ξ2
J
n , q =

(

J

n
+ ξ

)

η



GENERAL NOZZLE FLOW 17

for any fixed ξ ∈ (−1, 1). It is easy to calculate that

ηn =
1

1− ξ2

(

1− ξ
J

n

)

η

n
, ηJ =

ξ

1− ξ2
η

n
,

ηnn =
ξ2

(1− ξ2)2

(

1− 2ξ
J

n
+
J2

n2

)

n
ξ2

1−ξ2
−1
e

ξ

1−ξ2
J
n ,

ηnJ =
ξ2

(1− ξ2)2

(

ξ − J

n

)

n
ξ2

1−ξ2
−1
e

ξ

1−ξ2
J
n ,

ηJJ =
ξ2

(1− ξ2)2
n

ξ2

1−ξ2
−1
e

ξ

1−ξ2
J
n .

Hence

ηnnηJJ − η2nJ =
ξ4

(1− ξ2)3
n

2ξ2

1−ξ2
−2
e

2ξ

1−ξ2
J
n > 0.

It indicates that η is strictly convex for any ξ ∈ (−1, 1). Then

(nx, Jx)∇2η(nx, Jx)
⊤

=
ξ2

(1− ξ2)2
n

1

1−ξ2
−2
e

ξ

1−ξ2
J
n

[

n2x +

(

J

n
nx − Jx

)2

− 2ξnx

(

J

n
nx − Jx

)

]

≥ ξ2

(1− ξ2)2
η

n2

[

(1− |ξ|)n2x + (1− |ξ|)
(

J

n
nx − Jx

)2
]

.

Let K ⊂ ΠT be any compact set, and choose ϕ ∈ C∞
c (ΠT ) such that ϕ|K = 1, and

0 ≤ ϕ ≤ 1. After multiplying (5.1) by ϕ∇η, and integrating over ΠT , we obtain

ε

∫ ∫

ΠT

ϕ(nx, Jx)∇2η(nx, Jx)
⊤dxdt

=

∫ ∫

ΠT

[−4εnxb− a(n− δ) + 2bδ
J

n
+ δ

nx
n

+
δ

2
(
J2

n2
)x]ηJϕ+ ηϕt + εηϕxxdxdt.

Due to
∣

∣

∣

∣

J

n

∣

∣

∣

∣

≤ C + | ln n|, and η ≤ n
1

1−ξ2 e
|ξ|

1−ξ2
(C−lnn) ≤ Cn

1−|ξ|

1−ξ2 ,

it is easy to get

| − a(n− δ) + 2bδ
J

n
ηJ | ≤ Cb. (5.7)

Besides,

|4εnxbηJ | ≤ εb|nx|
4|ξ|

1− ξ2
η

n
≤ εξ2(1− |ξ|)

4(1 − ξ2)2
η

n

n2x
n

+ Cεηb2. (5.8)

Moreover, we have
∣

∣

∣
δ
nx
n
ηJ

∣

∣

∣
≤ |nx|

n

|ξ|
1− ξ2

η

n
≤ εξ2(1− |ξ|)

4(1− ξ2)2
η

n

n2x
n

+ C
δ2

ε

η

n2
,

∣

∣

∣

∣

δ

(

J2

n2

)

x

ηJ

∣

∣

∣

∣

≤
∣

∣

∣

∣

δ
J

n

|ξ|
1− ξ2

η

n

(

J

n

)

x

∣

∣

∣

∣

≤ εξ2(1− |ξ|)
4(1− ξ2)2

η

∣

∣

∣

∣

(

J

n

)

x

∣

∣

∣

∣

2

+C
δ2

ε

η

n2
J2

n2
.

(5.9)
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Taking δ = ε3 such that δ2/ε ≤ δ5/3 ≤ n5/3, and choosing small |ξ| 6= 0 , from the two
facts

η

n2
= n

1

1−ξ2
−2
e

ξ

1−ξ2
J
n ≤ Cn

1

1−ξ2
−2−

|ξ|

1−ξ2 = Cn
− 2|ξ|+1

1+|ξ| ,

η

n2
J2

n2
= n

1

1−ξ2
−2
e

ξ

1−ξ2
J
n
J2

n2
≤ Cn

1

1−ξ2
−2−

|ξ|

1−ξ2 (1 + | lnn|2) ≤ Cn
− 4|ξ|+1

1+|ξ|

we get
ε

4

∫ ∫

ΠT

ϕ(nx, Jx)∇2η(nx, Jx)
⊤dxdt ≤ C(ϕ) (5.10)

with constant C(ϕ) depending on the H2(ΠT ) norm of ϕ. Hence for small |ξ| 6= 0,

ε
η

n2
n2x + ε

η

n2

(

J

n
nx − Jx

)2

= ε
η

n2
n2x + εη

∣

∣

∣

∣

(

J

n

)

x

∣

∣

∣

∣

2

∈ L1
loc(ΠT ). (5.11)

Now we investigate the dissipation of the entropy as follows:

ηt + qx =εηxx − ε(nx, Jx)∇2η(nx, Jx)
⊤ + [−a(n− δ) + 2bδ

J

n
]ηJ

− 4εnxbηJ +

(

δ(
J

n
)xηn + [δ

nx
n

+
δ

2
(
J2

n2
)x]ηJ

)

:=
5
∑

k=1

Ik.

Combining (5.7), (5.8), (5.9), (5.10), we obtain that I2+I3+I4+I5 is bounded in L1
loc(ΠT ),

and then compact inW−1,α
loc (ΠT ) with some 1 < α < 2 by the Sobolev embedding theorem.

For I1, from (5.11), for any ϕ ∈ H1
0 (ΠT ),

∣

∣

∣

∣

∫ ∫

ΠT

εηxxϕdxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∫

ΠT

ε(ηnnx + ηJJx)ϕxdxdt

∣

∣

∣

∣

≤
∫ ∫

ΠT

εη|ϕx|
1− ξ2

∣

∣

∣

∣

nx
n

− ξ

n

(

J

n
nx + Jx

)∣

∣

∣

∣

dxdt

≤
√
ε

(
∫ ∫

ΠT

ηϕ2
x

n(1− ξ2)
dxdt

)

1

2
[(
∫ ∫

ΠT

εηn2x
n2

dxdt

)

1

2

+

(

∫ ∫

ΠT

εη

n2

(

J

n
nx − Jx

)2

dxdt

)
1

2
]

,

and thus we have that I1 is compact in H−1
loc (ΠT ). Finally, we get

ηt + qx is compact in W−1,α
loc (ΠT ) with 1 < α < 2.

Moreover,

q =

(

J

n
+ ξ

)

η ≤ (C − lnn+ |ξ|)η ≤ C + | lnn|n
1

1−ξ2 e
ξ

1−ξ2
J
n ≤ C,

and then

ηt + qx bounded in W−1,∞
loc (ΠT ).
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Therefore, taking |ξ| small, we conclude that

ηt + qx is compact in H−1
loc (ΠT ) for small |ξ| ≤ 1,

by Lemma 3.2.
Step 2. Convergence and consistency. Since our approximate solutions satisfy all

the conditions in Theorem 5.1, applying Theorem 5.1 yields

(nε, Jε) → (n, J) in Lp
loc(ΠT ), p ≥ 1.

This implies that (n, J) is a weak solution to the Cauchy problem (4.1)-(4.2). Similar to
the previous argument, we can show that (n, J) satisfies the energy inequality. Thus (n, J)
is an entropy solution. The proof of Theorem 1.2 is completed.

6. Appendix

Here we provide the proof of Lemma 3.1 for completeness.

Proof. Let

M̄0 = ‖p‖L∞(R×[0,T ]) + ‖q‖L∞(R×[0,T ]).

We define two new variables

p̄ = p− ξ, q̄ = q + ξ,

where

ξ = ξ(x, t) = 2M̄0
cosh x

coshN
eΛt, N > 0,

and Λ > 0 will be determined later. For (i, j) = (1, 2) or (2, 1), we write

aij(x, t, p, q) =aij(x, t, p̄, q̄)

+

(
∫ 1

0

∂aij
∂p

(x, t, p̄ + τξ, q̄ − τξ)dτ −
∫ 1

0

∂aij
∂q

(x, t, p̄ + τξ, q̄ − τξ)dτ

)

ξ

and

Ri(x, t, p, q, ζ, η) = Ri(x, t, p̄, q̄, ζ, η)

+

(
∫ 1

0

∂Ri

∂p
(x, t, p̄+ τξ, q̄ − τξ, ζ, η)dτ −

∫ 1

0

∂Ri

∂q
(x, t, p̄ + τξ, q̄ − τξ)dτ

)

ξ.

Denote

aij = aij(x, t, p̄, q̄), Ri = Ri(x, t, p̄, q̄),

bij =

∫ 1

0

∂aij
∂p

(x, t, p̄ + τξ, q̄ − τξ)dτ −
∫ 1

0

∂aij
∂q

(x, t, p̄ + τξ, q̄ − τξ)dτ,

ci =

∫ 1

0

∂Ri

∂p
(x, t, p̄+ τξ, q̄ − τξ, ζ, η)dτ −

∫ 1

0

∂Ri

∂q
(x, t, p̄ + τξ, q̄ − τξ, ζ, η)dτ.
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Then we get a system for (p̄, q̄),






























p̄t + µ1p̄x =εp̄xx + a11p̄+ a12q̄ + b12q̄ξ + R̄1 + c̄1ξ − 2µ1M̄0
sinhx

coshN
eΛt

+ ξ(−Λ + ε+ a11 − a12),

q̄t + µ2q̄x =εq̄xx + a21p̄+ a22q̄ + b21p̄ξ + R̄2 + c̄2ξ + 2µ2M̄0
sinhx

coshN
eΛt

+ ξ(Λ− ε+ a21 − a22).

Note that for any Λ > 0, p̄(x, t) < 0 and q̄(x, t) > 0 hold for any |x| ≥ N . Next we show

Claim :There exists Λ = Λ(M̄0) such that

p̄(x, t) ≤ 0 and q̄(x, t) ≥ 0 for x ∈ (−N,N), 0 ≤ t ≤ s∗ =
1

Λ
.

To this end, let

A = {t ∈ [0, s∗]| there exist x ∈ [−N,N ] such that p̄(x, t) > 0 or q̄(x, t) < 0}.
We shall prove the set A is empty by contradiction. In fact, if A is not empty, let t∗ =
inf A > 0, and then there exists |x∗| ≤ N such that p̄(x∗, t∗) = 0 or q̄(x∗, t∗) = 0. Without
loss of generality, we assume p̄(x∗, t∗) = 0. Then, p̄(x, 0) ≤ 0, q̄(x, 0) ≥ 0, |x| ≤ N. For
0 ≤ t < t∗,

p̄(±N, t) < 0, q̄(±N, t) > 0, |x| ≤ N,

and thus p̄(x, t) takes the maximum value over [−N,N ]× [0, t∗] at the point (x∗, t∗). We
have

p̄x(x∗, t∗) = 0, p̄xx(x∗, t∗) ≤ 0, p̄t(x∗, t∗) ≥ 0, q̄(x∗, t∗) ≥ 0.

Note that at the point (x∗, t∗), a12 ≤ 0, R̄1 ≤ 0,Λt∗ ≤ Λs∗ = 1.Moreover, for any τ ∈ [0, 1],

|p̄ + τξ| ≤ |p|+ 2ξ ≤ M̄0 + 4M̄0e ≤ C1(M̄0),

|q̄ − τξ| ≤ |q|+ 2ξ ≤ M̄0 + 4M̄0e ≤ C1(M̄0).

Therefore, |b12| ≤ C2(M̄0), |b21| ≤ C2(M̄0), |c1| ≤ C3(M̄0), |c2| ≤ C3(M̄0). A direct com-
putation yields that at the point (x∗, t∗),

p̄t + µ1p̄x ≤a12q̄ + b12q̄ξ + R̄1 + c̄1ξ + ξ(−Λ+ ε+ a11 − a12 + |µ1|)
≤ξ
(

−Λ+ ε+ a11 − a12 + |µ1|+ C2(M̄0)M̄0 + 2C2(M̄0)M̄0e+ 2C3(M̄0)M0e
)

.

Then, choosing

Λ =: 2ε+
2
∑

i=1

‖µi‖L∞ +
2
∑

i,j=1

‖aij‖L∞ + C2(M̄0)M̄0(2e+ 1) + 2C3(M̄0)M0e,

we get p̄t + µ1p̄x < 0. It contradicts with

p̄t + µ1p̄x ≥ 0, at (x∗, t∗).

Hence A is empty and Claim holds. Letting N tend to infinity, we obtain that p(x, t) ≤
0, and q(x, t) ≥ 0 ∀x ∈ R, 0 ≤ t ≤ s∗. From the above analysis, we have proved that the
set

Ω = {t ∈ [0, T ]| p(x, s) ≤ 0, q(x, s) ≥ 0∀x ∈ R, 0 ≤ s ≤ t}
is an open set. It is obvious that Ω is a closed subset of [0, T ]. Therefore, Ω = [0, T ]. We
thus complete Lemma3.1. �
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