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KNOCKING OUT TEETH IN ONE-DIMENSIONAL PERIODIC NLS.

L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

Abstract. We show the existence of weak solutions in the extended sense of the Cauchy
problem for the cubic nonlinear Schrödinger equation in one dimension with initial data

u0 in Hs1(R) +Hs2(T), 0 ≤ s1 ≤ s2. In addition, we show that if u0 ∈ Hs(R) +H
1

2
+ǫ(T)

where ǫ > 0 and 1
6
≤ s ≤ 1

2
the solution is unique in Hs(R) +H

1

2
+ǫ(T). Our main tool is

a normal form type reduction via the use of the differentiation by parts technique.

1. introduction and main results

We are interested in the equation

(1)

{
iut − uxx ± |u|2u = 0 , (t, x) ∈ R

2

u(0, x) = u0(x) , x ∈ R

with initial data u0 ∈ Hs(R) + Hs(T) for s ≥ 0, where T := R/Z is the one-dimensional
torus, that is, the circle. The Sobolev Hs spaces are defined as

(2) Hs(R) := {f ∈ L2(R) / ‖f‖Hs(R) :=
(ˆ

R

(1 + |ξ|2)s|f̂(ξ)|2dξ
) 1

2
< ∞}

and

(3) Hs(T) := {f ∈ L2(T) / ‖f‖Hs(T) :=
(∑

n∈Z

(1 + |n|2)s|fn|2
) 1

2
< ∞},

and we will use 〈k〉 := (1+ |k|2) 1
2 for the so–called Japanese bracket. S(R) is the Schwartz

class, D(T) = C∞(T), S′(R) the tempered distributions, and D′(T) the distributions on
the torus T. The Fourier transform of a function f : R → C is given by

(4) f̂(ξ)(= F(f)(ξ)) :=

ˆ

R

e−2πiξxf(x)dx, ξ ∈ R,

and the Fourier coefficients of a periodic function f : T → C are

(5) fn :=

ˆ 1

0
e−2πinxf(x)dx, n ∈ Z.

In [18] it was proved that NLS (1) is locally wellposed in L2(R) with guaranteed time of
existence depending only on the L2(R) norm of the initial data and since this is a conserved
quantity, ‖u(t, ·)‖L2(R) = ‖u0‖L2(R) for all t ∈ R, it follows that the NLS (1) is globally
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wellposed in L2(R). In [2] it was proved that the NLS (1) is locally wellposed in L2(T)
and again by the L2(T) conservation law it follows that it is globally wellposed in L2(T).
In [7] the NLS (1) was studied for initial conditions u0 ∈ Hs(T) and in [12] and [20] for
u0 ∈ Hs(R), s ≥ 0. In both papers unconditional well–posedness was proved for s ≥ 1

6 , that
is uniqueness of solutions in C([0, T ],Hs(T)) (and C([0, T ],Hs(R)) respectively) without
intersecting with any auxiliary function space (see [9] where this notion first appeared).
They used a normal form reduction via the differentiation by parts technique which was
originally introduced in [1] in the study of the KdV equation for periodic initial data. We
also refer to [15] where the last author introduced a different approach to the normal form
reduction for the NLS (1) on R which follows closely what is done in the periodic case
and is well suited for modulation spaces defined in equation (13). See also [3] for the case
of general modulation spaces. For textbook accounts on these type of results we refer to
[13, 17], to [16] for a slightly more applied point of view, and, in particular, [5] for a nice
discussion of the differentiation by parts technique.

Here we make the differentiation by parts approach work in a hybrid case, namely the
case where the initial data u0 is the sum of a periodic function w0 on R and an L2(R)
function v0. A tooth, as referred to in the title of this paper, is, for example, w0 restricted
to one period. We think of the addition of v0 to w0 as eliminating, or knocking out, finitely
many of these teeth in the underlying periodic signal.

Our work is motivated by high–speed optical fiber communications, where in a certain
approximation the behavior of pulses in glass–fiber cables is described by a NLS. A periodic
signal is the simplest type of a non-decaying signal, encoding, for example, an infinite string
of ones if there is exactly one tooth per period. However, such a purely periodic signal
carries no information. One would like to be able to change it, at least locally. This leads
necessarily to a hybrid formulation of the NLS where the signal is the sum of a periodic
and a localized part. The localized part being able to knock out, i.e., remove, one or more
of the teeth in the underlying periodic signal. This way one can model, for example, a
signal consisting of two infinite blocks of ones which are separated by a single zero, or even
far more complicated patterns. An interesting question then naturally arises: Can the
missing teeth regrow, which means that the original signal gets distorted (in optics this
phenomenon is known as ghost pulses, see e.g. [14] or [21]). Is there an optimal choice of
a periodic signal, which makes this distortion very weak or even impossible?

From a mathematics point of view, in order to be able to address these type of questions,
one should have first solved the corresponding local existence and uniqueness problems,
which is the main purpose of this work: We solve the local existence problem and provide
an unconditional uniqueness result. Since the underlying periodic signal can also be the
constant function, we also cover the case of so–called dark solitons, that is, NLS with a
non-zero boundary conditions at infinity, where the signals are of the form u = c+ v with
c a constant, see [10] and [11] for a review on dark solitons from a point of view of applied
mathematics and physics.
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Our solution of NLS (1) with initial data u0 = v0 + w0 ∈ Hs1(R) + Hs2(T) will be
constructed as the sum of the solutions of the following partial differential equations

(6)

{
iwt − wxx ± |w|2w = 0 , (t, x) ∈ R× T

w(0, x) = w0(x) ∈ Hs2(T) , x ∈ T ,

which is the periodic cubic NLS on the real line, and the modified cubic NLS

(7)

{
ivt − vxx ±G(w, v) = 0 , (t, x) ∈ R× R

v(0, x) = v0(x) ∈ Hs1(R) , x ∈ R ,

where G(w, v) is the nonlinearity

(8) G(w, v) = |w + v|2(w + v)− |w|2w = |v|2v + v2w̄ + w2v̄ + 2w|v|2 + 2v|w|2.
In order to give a meaning to solutions of NLS (6) in C([0, T ],Hs(T)) and NLS (7) in

C([0, T ],H s̃(R)), s, s̃ ∈ R and to the nonlinearities N (w) := w|w|2 and G(w, v) we need
the following definitions, which first appeared in [4] for the periodic NLS.

Definition 1. A sequence of Fourier cutoff operators is a sequence of Fourier multiplier

operators {TN}N∈N with multipliers mN : R → C such that

• mN has compact support on R for every N ∈ N,

• mN is uniformly bounded,

• limN→∞mN (x) = 1, for any x ∈ R.

Definition 2 (Periodic case). Let w ∈ C([0, T ],Hs(T)). We say that N (w) exists and is

equal to a distribution w̃ ∈ [C∞((0, T ),D(T))]′ if, for every sequence {TN}N∈N of Fourier

cutoff operators, we have

(9) lim
N→∞

N (TNw) = w̃,

in the sense of distributions on (0, T ) × T.

Definition 3 (Periodic case). Let r ≥ 0. We say that w ∈ C([0, T ],Hr(T)) is a weak

solution in the extended sense of the NLS (6) if

• w(0, x) = w0(x),
• the nonlinearity N (w) exists in the sense of Definition 2,

• w satisfies (6) in the sense of distributions on (0, T ) × T, where the nonlinearity

N (w) = w|w|2 is interpreted as above.

For a fixed such solution w of equation (6), in the sense of Definition 3, we define a
solution v of equation (7) as

Definition 4 (Continuous case). Let s ≥ 0 and v ∈ C([0, T ],Hs(R)). We say that G(w, v)
exists and is equal to a distribution ṽ ∈ [C∞((0, T ), S(R)]′ if, for every sequence {TN}N∈N

of Fourier cutoff operators, we have

(10) lim
N→∞

G(TNw, TNv) = ṽ,

in the sense of distributions on (0, T ) ×R.
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Similarly to the periodic case, we also introduce

Definition 5 (Continuous case). We say that v ∈ C([0, T ],Hs(R)) is a weak solution in

the extended sense of NLS (7) if

• v(0, x) = v0(x),
• the nonlinearity G(w, v) exists in the sense of Definition 4,

• v satisfies (7) in the sense of distributions on (0, T ) × R, where the nonlinearity

G(w, v) is interpreted as above.

The main results of the paper are the following

Theorem 6 (Local existence and well–posedness). Let 0 ≤ s1 ≤ s2 and u0 = v0 + w0 ∈
Hs1(R) + Hs2(T). There exists a weak solution in the extended sense u = v + w ∈
C([0, T ],Hs1(R)) + C([0, T ],Hs2(T)) of NLS (1) with initial condition u0 where w solves

NLS (6) in the sense of Definition 3, v solves NLS (7) in the sense of Definition 5 and

the time T of existence depends only on ‖v0‖Hs1 (R), ‖w0‖Hs2 (T).

Moreover, the solution map is locally Lipschitz continuous.

Theorem 7 (Unconditional uniqueness). Let ǫ > 0 and 1
6 ≤ s ≤ 1

2 . For any initial

condition u0 ∈ Hs(R) + H
1
2
+ǫ(T) the solution u = v + w constructed in Theorem 6 is

unique in C([0, T ],Hs(R) +H
1
2
+ǫ(T)).

Remark 8. The result of Theorem 7 is also true for s > 1
2 , but in this case the spaces Hs(R)

andH
1
2
+ǫ(T) embed continuously into L∞(R), thus also their sum. HenceHs(R)+H

1
2
+ǫ(T)

is a Banach algebra and existence and uniqueness results become much easier with the help
of straightforward direct Banach contraction mapping arguments. The condition s ≥ 1

6

guarantees that v ∈ Hs(R) →֒ L3(R) which means that |v|2v ∈ L1(R) and together with

H
1
2
+ǫ(T) →֒ L∞(T), allows us to control non–linear interaction terms which pair v and w

together. For example, integrals of the form
´

w2v̄ and
´

v2w̄ which appear naturally due
to the nonlinearity G(w, v).

Remark 9. The unconditional uniqueness of NLS (1) with initial data in Hs(R) for s ≥ 1
6

was first proved by Kato in [9].

For the proof of Theorem 6 we will need to localise our functions on the Fourier side and
this is achieved through the box operators that are defined as follows: Let Q0 = [−1

2 ,
1
2 )

and its translations Qk = Q0 + k for all k ∈ Z. Consider a partition of unity {σk =
σ0(· − k)}k∈Z ⊂ C∞(R) satisfying

• ∃c > 0 : ∀η ∈ Q0 : |σ0(η)| ≥ c,
• supp(σ0) ⊆ {ξ ∈ R : |ξ| < 1}.

Note that this implies 1 = σ0(0) = σk(k) for all k ∈ Z. Given a partition of unity as above,
we define the isometric decomposition operators (box operators)

(11) �k := F (−1)σkF , (∀k ∈ Z) .
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It is not difficult to see that for 1 ≤ p1 ≤ p2 ≤ ∞ the following holds

(12) ‖�kf‖p2 . ‖�kf‖p1 ,
where the implicit constant is independent of k and the function f . Having the box
operators we may define the modulation spaces M s

p,q(R), s ∈ R, 1 ≤ p, q ≤ ∞ as

(13) M s
p,q(R) := {f ∈ S′(R) / ‖f‖Ms

p,q
:=

(∑

k∈Z

〈k〉sq‖�kf‖qp
) 1

q
< ∞},

with the usual interpretation when the index q is equal to infinity. It can be proved that
different choices of the function σ0 lead to equivalent norms in M s

p,q(R). When s = 0

we denote the space M0
p,q(R) by Mp,q(R). In the special case where p = q = 2 we have

M s
2,2(R) = Hs(R). The usual Sobolev spaces as in (2). Modulation spaces were introduced

by Feichtinger in [6]. In [3] and [15] the NLS (1) was studied with initial data u0 ∈
M s

p,q(R) and under the restrictions s ∈ [0,∞), q ∈ [1, 2] and p ∈ [2, 10q′

q′+6), existence of

weak solutions in the extended sense was proved. Moreover, under the extra assumption
that M s

p,q(R) →֒ L3(R) unconditional well–posedness of the Cauchy problem was shown
to be true. Unfortunately, the space M∞,2(R) is not included in the previously mentioned
family of modulation spaces. Nevertheless, we are able to obtain an existence result (and
uniqueness of solutions under some extra assumptions) for initial data u0 in its subspace
Hs(R) +Hs(T) ⊂ M∞,2(R) for s ≥ 0.

1.1. Preliminaries. The following lemma will be needed in the proof of Theorem 6. It is
a straightforward consequence of Young’s inequality.

Lemma 10. Let 1 ≤ p ≤ ∞ and σ ∈ C∞
c (R). Then the multiplier operator Tσ : S′(R) →

S′(R) defined by

(Tσf) = F−1(σ · f̂), ∀f ∈ S′(R)

is bounded on Lp(R) and

‖Tσ‖Lp(R)→Lp(R) . ‖σ̌‖L1(R).

We also need for S(t) = eit∆, the Schrödinger semigroup, the ‘conservation of mass’

(14) ‖S(t)f‖L2(R) = ‖f‖L2(R).

Lastly, let us recall the following number theoretic fact (see [8], Theorem 315) which is
going to be used throughout the proof of Theorem 6: Given an integer m, let d(m) denote
the number of divisors of m. Then

(15) d(m) . ec
logm

log logm = o(mǫ)

for all ǫ > 0.
The paper is organised as follows: In Section 2 we consider initial data u0 = v0 + w0

with v0, w0 sufficiently smooth and we show that NLS (1) is locally wellposed. In Section
3 we describe the first steps of the differentiation by parts technique and in Section 4 we
define the trees which allow us to continue with the infinite iteration procedure. Finally,
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in Section 5 we show that the solution u described in Theorem 6 exists through a smooth
approximation procedure and in Section 6 we prove Theorem 7.

2. smooth initial data

Let us assume that the initial data is smooth, that is, u0 = v0 + w0 where v0 ∈
Hs1(R), w0 ∈ Hs2(T) for sufficiently large s1, s2 ∈ R. We choose s1 > 1, s2 = s1 + 1.
Then the spaces Hs1(R) and Hs2(T) are Banach algebras and an easy Banach contraction
argument for the operator

(16) Tw = eit∂
2
xw0 ±

ˆ t

0
ei(t−τ)∂2

x |w|2w dτ

shows that the NLS (6) is locally wellposed in X2 := C([0, T ],Hs2(T)) for some T =
T (‖w0‖Hs2 ). Let w be that solution of NLS (6) in the ball {w ∈ X2 : ‖w‖X2 ≤ 2‖w0‖Hs2}
and consider the operator

(17) Tv = eit∂
2
xv0 ±

ˆ t

0
ei(t−τ)∂2

xG(w, v) dτ.

Our goal is to show that T is a contraction in a suitable ball in X1 := C([0, T ],Hs1(R)).
Before we prove this, let us estimate the norm of ‖wv‖Hs1 (R) for w ∈ Hs2(T) and

v ∈ Hs1(R). First we need to calculate F(wv)(ξ) which equals

ŵ ∗ v̂(ξ) =
(∑

n∈Z

wnδn

)
∗ v̂(ξ) =

∑

n∈Z

wnv̂(ξ − n),

where we used that for a 1–periodic function w its Fourier transform is given by ŵ =∑
n∈Zwnδn, where δn is Dirac delta centered at n. Thus,

|F(wv)(ξ)|2 =
∑

n,m∈Z

wnw̄mv̂(ξ − n)v̂(ξ −m)

and, therefore,

‖wv‖2Hs1 =

ˆ

R

(1 + |ξ|2)s1
∑

n,m∈Z

wnw̄mv̂(ξ − n)v̂(ξ −m)dξ

=
∣∣∣
ˆ

R

(1 + |ξ|2)s1
∑

n,m∈Z

wnw̄mv̂(ξ − n)v̂(ξ −m)dξ
∣∣∣

≤
∑

n,m∈Z

|wn||w̄m|
ˆ

R

(1 + |ξ|2)s1 |v̂(ξ − n)||v̂(ξ −m)|dξ.

For the integral we apply Hölder’s inequality
ˆ

R

(1 + |ξ|2)s1 |v̂(ξ − n)||v̂(ξ −m)|dξ

≤
(ˆ

R

(1 + |ξ|2)s1 |v̂(ξ − n)|2dξ
) 1

2
( ˆ

R

(1 + |ξ|2)s1 |v̂(ξ −m)|2dξ
) 1

2
,
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and this can be estimated from above by the product

.s1 (1 + |n|s1)(1 + |m|s1)‖v‖2Hs1 ,

which implies

‖wv‖2Hs1 .s1 ‖v‖2Hs1

(∑

n∈Z

(1 + |n|)s1 |wn|
)2

.

Since s1 > 1, the last sum is again easily estimated using Hölder’s inequality as follows

(∑

n∈Z

(1 + |n|)s1 |wn|
)2

=
(∑

n∈Z

(1 + |n|)s1+1

(1 + |n|) |wn|
)2

≤
(∑

n∈Z

(1 + |n|)2s1+2|wn|2
)(∑

n∈Z

1

(1 + |n|)2
)
. ‖w‖2

Hs1+1 .

Thus

(18) ‖wv‖Hs1 (R) .s1 ‖w‖Hs1+1(T)‖v‖Hs1 (R).

From (18) and (8) we also obtain

(19) ‖Tv‖X1 . ‖v0‖Hs1 (R) + T‖G(w, v)‖X1 . ‖v0‖X1 + T (‖v‖X1 + ‖w‖X2)
3,

which implies

(20) ‖Tv‖X1 . ‖v0‖Hs1 (R) + T (‖v‖X1 + 2‖w0‖Hs2 (T))
3.

If we assume v ∈ B := {v ∈ X1 : ‖v‖X1 ≤ 2‖v0‖Hs1 := R}, then T maps B into it-
self for sufficiently small T = T (‖v0‖Hs1 (R), ‖w0‖Hs2 (T)). Indeed, for T > 0 such that

16T (‖v0‖Hs1 + ‖w0‖Hs2 )3 ≤ R, we see from (20) that Tv ∈ B.
Also, for v1, v2 ∈ B, it is easy to see

(21) Tv1 − Tv2 = ±
ˆ t

0
(G(w, v1)−G(w, v2)) dτ

where the difference inside the integral equals

|v1|2v1 − |v2|2v2 + v21w − v22w + w2v̄1 − w2v̄2 + 2w|v1|2 − 2w|v2|2 + 2v1|w|2 − 2v2|w|2 =

(v1 − v2)(|v1|2 + v̄1v2) + (v̄1 − v̄2)v
2
2 + w(v1 + v2)(v1 − v2) + w2(v̄1 − v̄2)+

2w(v1(v̄1 − v̄2) + v̄2(v1 − v2)) + 2|w|2(v1 − v2).

Thus,

(22) ‖Tv1 − Tv2‖X1 ≤ T (‖v1‖X1 + ‖v2‖X1 + ‖w‖X2)
2‖v1 − v2‖X1 ,

which implies, for sufficiently small T = T (‖v0‖Hs1 , ‖w0‖Hs2 ) > 0, that the operator
T : B → B is a contraction. Therefore, we have proved

Lemma 11. Let s > 1 and u0 = v0 + w0 ∈ Hs(R) + Hs+1(T). Then NLS (1) is locally

wellposed with a solution u = v+w ∈ C([0, T ],Hs(R))+C([0, T ],Hs+1(T)) where w solves

(6) in the sense that satisfies (16) and v solves (7) in the sense that it satisfies (17) for a

sufficiently small T = T (‖v0‖Hs , ‖w0‖Hs+1) > 0.
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3. first steps of the iteration process

From here on, we consider only the case s1 = s2 = 0 in Theorem 6 since for the other
cases similar considerations apply. See Remark 25 at the end of the Section 4 for a more
detailed argument. We also assume in the following calculations that the functions v and
w are sufficiently smooth.

Let us define the function Φ : R4 → R,Φ(ξ, ξ1, ξ2, ξ3) := ξ2−ξ21+ξ22−ξ23 and observe that,
under the hypothesis ξ = ξ1 − ξ2 + ξ3, it factorizes into Φ(ξ, ξ1, ξ2, ξ3) = 2(ξ − ξ1)(ξ − ξ3).

By making the change of variables w 7→ e−it∂2
xw, we can rewrite the periodic NLS (6) in

terms of its Fourier coefficients as

∂twn =
∑

n=n1−n2+n3

e−2i(n−n1)(n−n3)twn1w̄n2wn3 − |wn|2wn + 2
( ˆ

T

|w|2dx
)
wn(23)

= N
t
1 (w)(n) − R

t
1(w)(n) + R

t
2(w)(n).

In a similar fashion, we would like to rewrite the modified NLS (7), which contains both
periodic and non–periodic functions. For this we again make the change of variables v 7→
e−it∂2

xv and introduce, with the help of the isometric decomposition operators, vn := �nv
for n ∈ Z. Note that its Fourier transform, v̂n, is a function supported within the interval
(n−1, n+1), so, in general, products of the form v̂nv̂m can be non-zero only if |n−m| ≤ 1,
that is, only neighbouring v̂n can overlap. Thus it is convenient to define

(24) n ≈ m iff n = m or n = m+ 1 or n = m− 1

for n,m ∈ Z. Recall that for a 1–periodic function w its Fourier transform is given by
ŵ =

∑
n∈Z wnδn, where δn is Dirac delta centered at n. Thus �nw(x) = wne

inx, since
the partition of unity we use in the definition of �n obeys 1 = σn(n). With this we may
rewrite the modified NLS (7) on the Fourier side, up to constants, as

∂tv̂n = E1,t
I,n(vn1 , v̄n2 , vn3) +E1,t

II,n(wn1 , w̄n2 , vn3) + E1,t
III,n(wn1 , v̄n2 , wn3)

+ E1,t
IV,n(vn1 , v̄n2 , wn3) + E1,t

V.n(vn1 , w̄n2 , vn3) .
(25)

where we also introduced
(26)

E1,t
I,n(vn1 , v̄n2 , vn3)(ξ) :=

∑

n≈n1−n2+n3

=:F(Q1,t
I,n

(vn1 ,v̄n2 ,vn3 ))︷ ︸︸ ︷
σn(ξ)

¨

R2

e−2i(ξ−ξ1)(ξ−ξ3)tv̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3)dξ1dξ3

(27) E1,t
II,n(wn1 , w̄n2 , vn3)(ξ) :=

∑

n≈n1−n2+n3

=:F(Q1,t
II,n

(wn1 ,w̄n2 ,vn3 ))︷ ︸︸ ︷
σn(ξ)e

−2i(ξ−n1)(n1−n2)twn1w̄n2 v̂n3(ξ − n1 + n2)
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(28) E1,t
III,n(wn1 , v̄n2 , wn3)(ξ) :=

∑

n≈n1−n2+n3

=:F(Q1,t
III,n

(wn1 ,v̄n2 ,wn3))︷ ︸︸ ︷
σn(ξ)e

−2i(ξ−n1)(ξ−n3)twn1
ˆ̄vn2(ξ − n1 − n3)wn3

(29)

E1,t
IV,n(vn1 , v̄n2 , wn3)(ξ) :=

∑

n≈n1−n2+n3

=:F(Q1,t
IV,n

(vn1 ,v̄n2 ,wn3 ))︷ ︸︸ ︷
σn(ξ)wn3

ˆ

R

e−2i(ξ−n3)(ξ−ξ1)tv̂n1(ξ1)ˆ̄vn2(ξ − n3 − ξ1)dξ1

(30)

E1,t
V.n(vn1 , w̄n2 , vn3)(ξ) :=

∑

n≈n1−n2+n3

=:F(Q1,t
V,n

(vn1 ,w̄n2 ,vn3 ))︷ ︸︸ ︷
σn(ξ)w̄n2

ˆ

R

e−2i(ξ−ξ1)(ξ1−n2)tv̂n1(ξ1)v̂n3(ξ + n2 − ξ1)dξ1 .

Remark 12. A short note on our notation is necessary here: The expression E1,t
I,n(vn1 , v̄n2 , vn3)

above depends not only on the single vn1 , v̄n2 , or vn3 , but on the sequences (vn1)n1∈Z,

(v̄n2)n2∈Z, and (vn3)n3∈Z. So one should instead write E1,t
I,n((vn1)n1∈Z, (v̄n2)n2∈Z, (vn3)n3∈Z),

or simply, E1,t
I,n(v, v̄, v). However, when we construct a tree–type expansion later, it will

be very important to know in which order the vn and wm appear in considerably more
involved expressions. Thus it will be convenient to write E1,t

I,n(v, v̄, v) as E
1,t
I,n(vn1 , v̄n2 , vn3),

keeping in mind, that one sums over n1, n2, and n3. The same applies to the other terms
on the right–hand side of equation (25).

Remark 13. The operator Q1,t
I,n in the definition of E1,t

I,n in equation (26) is the same as

the operator Q1,t
n studied in [3] and [15]. Here let us notice that if we choose functions

such that v̂n1 = wn1δn1 and v̂n2 = wn2δn2 then we obtain the relation Q1,t
I,n(vn1 , v̄n2 , vn3) =

Q1,t
II,n(wn1 , w̄n2 , vn3). Similar relations hold between Q1,t

I,n and the remaining operators

Q1,t
III,n, Q

1,t
IV,n and Q1,t

V,n.

We split the sums in (26), (27), (28), (29) and (30) into
∑

n1≈n
or

n3≈n

. . .+
∑

n1,n3 6≈n

. . .

and define the resonant operators

(31) Rt
2(v)(n) :=

( ∑

n1≈n

+
∑

n3≈n

)(
Q1,t

I,n +Q1,t
II,n +Q1,t

III,n +Q1,t
IV,n +Q1,t

V,n

)

Rt
1(v)(n) :=

∑

n1≈n
and
n3≈n

(
Q1,t

I,n +Q1,t
II,n +Q1,t

III,n +Q1,t
IV,n +Q1,t

V,n

)
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and the non-resonant operator

(32) N t
1(v)(n) :=

∑

n1,n3 6≈n

(
Q1,t

I,n +Q1,t
II,n +Q1,t

III,n +Q1,t
IV,n +Q1,t

V,n

)
.

With this notation, equation (25) can be written in the form

(33) ∂tvn = Rt
2(v)(n) −Rt

1(v)(n) +N t
1(v)(n),

keeping in mind that the operators appearing in the RHS above depend also on the periodic
function w, which we suppress in our notation, for simplicity. For the resonant part we
have the estimate

Lemma 14. For j = 1, 2

‖Rt
j(v)‖l2(Z)L2(R) . ‖v‖3L2(R) + ‖w‖L2(T)‖v‖2L2(R) + ‖w‖2L2(T)‖v‖L2(R)

and

‖Rt
j(v) −Rt

j(u)‖l2(Z)L2(R) .

(‖v‖2L2(R) + ‖u‖2L2(R) + ‖w‖L2(T)(‖v‖L2(R) + ‖u‖L2(R)) + ‖w‖2L2(T))‖v − u‖L2(R).

Proof. Both resonant operators contain a sum that only involves the v function, that is
( ∑

n1≈n

+
∑

n3≈n

−
∑

n1≈n
and
n3≈n

)
Q1,t

I,n(vn1 , v̄n2 , vn3).

As mentioned in Remark 13 this operator was estimated in [15], it gives the upper bound
of ‖v‖32 and we refer the interested reader to Lemma 10 of that paper.

For the sum that contains Q1,t
II,n and Q1,t

III,n it suffices to estimate only Q1,t
II,n., the bound

for the sum involving Q1,t
III,n is very similar to one for Q1,t

II,n Moreover, since, for fixed n ∈ Z,
the sum ∑

n1≈n
and
n3≈n

Q1,t
II,n(wn1 , w̄n2 , vn3)

is only over the neighbours of n, we only look at the part where n1 = n and n3 = n, the
other summands are bounded in the same way. Then we have the estimate
∥∥∥σn(ξ)wnw̄nv̂n(ξ)

∥∥∥
l2(Z)L2

ξ
(R)

.
(∑

n∈Z

|wn|4‖vn‖22
) 1

2
. ‖wn‖2l∞(Z)‖v‖2 ≤ ‖w‖2L2(T)‖v‖L2(R),

by the embedding l2(Z) →֒ l∞(Z). To continue it suffices to look at the sum
∑

n1≈n

Q1,t
II,n(wn1 , w̄n2 , vn3).

Again, since it consists of finitely many summands, depending on whether n1 = n − 1 or
n1 = n or n1 = n+1, it is enough to estimate the part where n1 = n. In this case, we have∥∥∥σn(ξ)wn

∑

n2∈Z

e−2it(ξ−n)(n−n2)w̄n2 v̂n2(ξ − n+ n2)
∥∥∥
L2(R)

. |wn|
∑

n2∈Z

|wn2 |‖vn2‖2,
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so with Hölder’s inequality we get the upper bound

|wn|
( ∑

n2∈Z

|wn2 |2
) 1

2
( ∑

n2∈Z

‖vn2‖22
) 1

2
= |wn|‖w‖L2(T)‖v‖L2(R).

Taking the l2(Z) norm we obtain

‖w‖2L2(T)‖v‖L2(R).

For the sum that contains Q1,t
IV,n and Q1,t

V.n it suffices to estimate only Q1,t
V,n. As before,

from the sum ∑

n1≈n
and
n3≈n

Q1,t
V,n(vn1 , w̄n2 , vn3)

we may look only at the part where n1 = n and n3 = n. Thus, we have
∥∥∥σn(ξ)w̄n

ˆ

R

e−2it(ξ−ξ1)(ξ1−n)v̂n(ξ1)v̂n(ξ − ξ1 + n)dξ1

∥∥∥
L2(R)

which, by setting V̂n = eitξ
2
v̂n and using (14), we may rewrite as

∥∥∥σn(ξ)w̄ne
−itn2

ˆ

R

V̂n(ξ1)V̂n(ξ − ξ1 + n)dξ1

∥∥∥
L2(R)

. |wn|
∥∥∥V̂n ∗ V̂n(·+ n)

∥∥∥
L2(R)

.

The last expression equals

|wn|
∥∥∥Vne

in(·)Vn

∥∥∥
L2(R)

= |wn|‖Vn‖2L4(R) . |wn|‖Vn‖2L2(R),

where we used (12) and, since ‖Vn‖2 = ‖vn‖2 (by (14)), we can take the l2(Z) norm in n
and obtain the upper bound

(∑

n

|wn|2‖vn‖42
) 1

2 ≤ ‖w‖L2(T)‖{‖vn‖2}n∈Z‖2l∞(Z) ≤ ‖w‖L2(T)‖v‖2L2(R),

by the embedding l2(Z) →֒ l∞(Z). Finally, we look at the sum
∑

n1≈n

Q1,t
V,n(vn1 , w̄n2 , vn3).

As before, it suffices to look at the term where n1 = n. In this case we have
∥∥∥σn(ξ)

∑

n2∈Z

w̄n2

ˆ

R

e−2it(ξ−ξ1)(ξ1−n2)v̂n1(ξ1)v̂n2(ξ − ξ1 + n2)dξ1

∥∥∥
L2(R)

,

and setting again V̂n = eitξ
2
v̂n, we arrive at the upper bound

∑

n2∈Z

|wn2 |‖V̂n ∗ V̂n2(·+ n2)‖2 =
∑

n2∈Z

|wn2 |‖Vne
in2(·)Vn2‖2 =

∑

n2∈Z

|wn2 |‖VnVn2‖2.
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Applying Hölder’s inequality, (12) and (14) we continue the estimate as follows
∑

n2∈Z

|wn2 |‖Vn‖4‖Vn2‖4 . ‖Vn‖2
∑

n2∈Z

|wn2 |‖Vn2‖2 = ‖vn‖2
∑

n2∈Z

|wn2 |‖vn2‖2

≤ ‖vn‖2
( ∑

n2∈Z

|wn2 |2
) 1

2
( ∑

n2∈Z

‖vn2 |2
) 1

2
= ‖vn‖2‖w‖L2(T)‖v‖L2(R).

Taking the l2(Z) norm in n finishes the proof. �

Remark 15. In [7] it was proved that the resonant part of the periodic solution w satisfies

‖Rt
j(w)‖L2(T) . ‖w‖3L2(T)

for j = 1, 2. This will be used later in Lemma 23 for the estimate of the N
(J)
r operator.

In order to continue the iteration process we define the sets

(34) AN (n) = {(n1, n2, n3) ∈ Z
3 : n1 − n2 + n3 ≈ n, n1 6≈ n 6≈ n3, |Φ(n, n1, n2, n3)| ≤ N}

and

(35) AN (n)c = {(n1, n2, n3) ∈ Z
3 : n1−n2+n3 ≈ n, n1 6≈ n 6≈ n3, |Φ(n, n1, n2, n3)| > N}.

The number N > 0 is considered to be large and will be fixed later in the proof. The
non-resonant operator N t

1 we split as

(36) N t
1(v)(n) = N t

11(v)(n) +N t
12(v)(n),

where

N t
11(v)(n) =

∑

AN (n)

(
Q1,t

I,n(vn1 , v̄n2 , vn3) +Q1,t
II,n(wn1 , w̄n2 , vn3) +Q1,t

III,n(wn1 , v̄n2 , wn3)

+Q1,t
IV,n(vn1 , v̄n2 , wn3) +Q1,t

V,n(vn1 , w̄n2 , vn3)
)
,

and the following yields a convenient bound on N t
11.

Lemma 16.

‖N t
11(v)‖l2(Z)L2(R) . N

1
2
+(‖v‖3L2(R) + ‖w‖L2(T)‖v‖2L2(R) + ‖w‖2L2(T)‖v‖L2(R))

and

‖N t
11(v) −N t

11(u)‖l2(Z)L2(R) .

N
1
2
+(‖v‖2L2(R) + ‖u‖2L2(R) + ‖w‖L2(T)(‖v‖L2(R) + ‖u‖L2(R)) + ‖w‖2L2(T))‖v − u‖L2(R).

Proof. The part ∑

AN (n)

Q1,t
I,n(vn1 , v̄n2 , vn3)
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has been estimated in [15], Lemma 11 giving an upper bound of the form N
1
2
+‖v‖32. For

the sum that contains Q1,t
II,n and Q1,t

III,n it suffices to estimate only Q1,t
II,n, the other one

being similar. We have
∑

AN (n)

∥∥∥σn(ξ)e−2it(ξ−n1)(n1−n2)wn1w̄n2 v̂n3(ξ − n1 + n2)
∥∥∥
L2(R)

.
∑

AN (n)

|wn1 ||wn2 |‖vn3‖2,

which by Hölder’s inequality implies the estimate

(37)
( ∑

AN (n)

1
) 1

2
( ∑

AN (n)

|wn1 |2|wn2 |2‖vn3‖22
) 1

2
.

The first factor is estimated by N
1
2
+ with the use of (15) and then, by taking the l2(Z)

norm of the second sum and applying Young’s inequality in l1(Z), we obtain the upper
bound

N
1
2
+
(∑

n∈Z

∑

AN (n)

|wn1 |2|wn2 |2‖vn3‖22
) 1

2 ≤ N
1
2
+‖w‖2L2(T)‖v‖L2(R).

For the sum that contains Q1,t
IV.n and Q1,t

V,n it again suffices to estimate only Q1,t
V,n. In this

case, letting V̂n = eitξ
2
v̂n, we have

∑

AN (n)

∥∥∥σn(ξ)w̄n2

ˆ

R

e−2it(ξ−ξ1)(ξ1−n2)v̂n1(ξ1)v̂n3(ξ − ξ1 + n2)dξ1

∥∥∥
L2(R)

.

∑

AN (n)

|wn2 |
∥∥∥V̂n1 ∗ V̂n3(·+ n2)

∥∥∥
L2(R)

=
∑

AN (n)

|wn2 |
∥∥∥Vn1Vn3

∥∥∥
L2(R)

≤

∑

AN (n)

|wn2 |‖Vn1‖4‖Vn3‖4 .
∑

AN (n)

|wn2 |‖Vn1‖2‖Vn3‖2 =
∑

AN (n)

|wn2 |‖vn1‖2‖vn3‖2,

where we used (12) and (14). Then the estimate continues as in (37) giving the upper

bound N
1
2
+‖w‖2‖v‖22. �

For the N t
12 operator we only look at frequencies where |Φ(n, n1, n2, n3)| > N , which

means that we can apply the differentiation by parts techniques, in order to take advantage
of possible cancellations, due to the fact that the exponential terms contain the phase factor
Φ(n, n1, n2, n3), having a large magnitude. By doing this separately to the Q1,t

I,n . . . , Q
1,t
V,n

operators we obtain the following expressions

∂t

(
=:F(Q̃1,t

I,n
)

︷ ︸︸ ︷

σn(ξ)

ˆ

R2

e−2it(ξ−ξ1)(ξ−ξ3)

−2i(ξ − ξ1)(ξ − ξ3)
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3) dξ1dξ3

)

−

=:F(T 1,t
I,n

)
︷ ︸︸ ︷

σn(ξ)

ˆ

R2

e−2it(ξ−ξ1)(ξ−ξ3)

−2i(ξ − ξ1)(ξ − ξ3)
∂t

(
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3)

)
dξ1dξ3,

(38)
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∂t

(
=:F(Q̃1,t

II,n
)

︷ ︸︸ ︷

σn(ξ)
e−2it(ξ−n1)(n1−n2)

−2i(ξ − n1)(n1 − n2)
wn1w̄n2 v̂n3(ξ − n1 + n2)

)

−

=:F(T 1,t
II,n

)
︷ ︸︸ ︷

σn(ξ)
e−2it(ξ−n1)(n1−n2)

−2i(ξ − n1)(n1 − n2)
∂t

(
wn1w̄n2 v̂n3(ξ − n1 + n2)

)
,

(39)

∂t

(
=:F(Q̃1,t

III,n
)

︷ ︸︸ ︷

σn(ξ)
e−2it(ξ−n1)(ξ−n3)

−2i(ξ − n1)(ξ − n3)
wn1

ˆ̄vn2(ξ − n1 − n3)wn3

)

−

=:F(T 1,t
III,n

)
︷ ︸︸ ︷

σn(ξ)
e−2it(ξ−n1)(ξ−n3)

−2i(ξ − n1)(ξ − n3)
∂t

(
wn1

ˆ̄vn2(ξ − n1 − n3)wn3

)

(40)

∂t

(
=:F(Q̃1,t

IV.n
)︷ ︸︸ ︷

σn(ξ)wn3

ˆ

R

e−2it(ξ−n3)(ξ−ξ1)

−2i(ξ − n3)(ξ − ξ1)
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − n3)dξ1

)

−

=:F(T 1,t
IV,n

)
︷ ︸︸ ︷

σn(ξ)

ˆ

R

e−2it(ξ−n3)(ξ−ξ1)

−2i(ξ − n3)(ξ − ξ1)
∂t

(
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − n3)wn3

)
dξ1

(41)

and

∂t

(
=:F(Q̃1,t

V,n
)

︷ ︸︸ ︷

σn(ξ)w̄n2

ˆ

R

e−2it(ξ−ξ1)(ξ1−n2)

−2i(ξ − ξ1)(ξ1 − n2)
v̂n1(ξ1)v̂n3(ξ − ξ1 + n2)dξ1

)
−

F(T 1,t
V,n

)
︷ ︸︸ ︷

σn(ξ)

ˆ

R

e−2it(ξ−ξ1)(ξ1−n2)

−2i(ξ − ξ1)(ξ1 − n2)
∂t

(
v̂n1(ξ1)w̄n2 v̂n3(ξ − ξ1 + n2)

)
dξ1 .

(42)
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This allows us to express

N t
12(v) =

∑

AN (n)

(
Q1,t

I,n +Q1,t
II,n +Q1,t

III,n +Q1,t
IV,n +Q1,t

V,n

)

= ∂t

(
=:Nt

21(v)︷ ︸︸ ︷∑

AN (n)

(
Q̃1,t

I,n + Q̃1,t
II,n + Q̃1,t

III,n + Q̃1,t
IV,n + Q̃1,t

V,n

))

+

=:Nt
22(v)︷ ︸︸ ︷∑

AN (n)

(
T 1,t
I,n + T 1,t

II,n + T 1,t
III,n + T 1,t

IV,n + T 1,t
V,n

)
.

(43)

At this point let us also define the operators

F(R1,t
I,n(vn1 , v̄n2 , vn3))(ξ) = σn(ξ)

ˆ

R2

v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3)

(ξ − ξ1)(ξ − ξ3)
dξ1dξ3 ,(44)

F(R1,t
II,n(wn1 , w̄n2 , vn3))(ξ) = σn(ξ)

wn1w̄n2 v̂n3(ξ − n1 + n2)

(ξ − n1)(n1 − n2)
,(45)

F(R1,t
III,n(wn1 , v̄n2 , wn3))(ξ) = σn(ξ)

wn1
ˆ̄vn2(ξ − n1 − n3)wn3

(ξ − n1)(ξ − n3)
,(46)

F(R1,t
IV,n(vn1 , v̄n2 , wn3))(ξ) = σn(ξ)wn3

ˆ

R

v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − n3)

(ξ − n3)(ξ − ξ1)
dξ1 ,(47)

F(R1,t
V,n(vn1 , w̄n2 , vn3))(ξ) = σn(ξ)w̄n2

ˆ

R

v̂n1(ξ1)v̂n3(ξ − ξ1 + n2)

(ξ − ξ1)(ξ1 − n2)
dξ1 ,(48)

and observe that, if we let

(49) V̂n = eitξ
2
v̂n, Wn = eitn

2
wn ,

then

F(Q̃1,t
I,n(vn1 , v̄n2 , vn3))(ξ) = e−itξ2F(R1,t

I,n(Vn1 , V̄n2 , Vn3))(ξ) ,(50)

F(Q̃1,t
II,n(wn1 , w̄n2 , vn3))(ξ) = e−itξ2F(R1,t

II,n(Wn1 , W̄n2 , Vn3))(ξ) ,(51)

F(Q̃1,t
III,n(wn1 , v̄n2 , wn3))(ξ) = e−itξ2F(R1,t

III,n(Wn1 , V̄n2 ,Wn3))(ξ) ,(52)

F(Q̃1,t
IV,n(vn1 , v̄n2 , wn3))(ξ) = e−itξ2F(R1,t

IV,n(Vn1 , V̄n2 ,Wn3))(ξ)(53)

F(Q̃1,t
V,n(vn1 , w̄n2 , vn3))(ξ) = e−itξ2F(R1,t

V,n(Vn1 , W̄n2 , Vn3))(ξ).(54)

Also notice that, writing out the Fourier transforms of the functions inside the integral of
(44), it is not difficult to see

(55) R1,t
I,n(vn1 , v̄n2 , vn3)(x) =

ˆ

R3

K(1)
n (x, x1, y, x3)vn1(x)v̄n2(y)vn3(x3) dx1dydx3,



16 L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

where

K(1)
n (x, x1, y, x3) =

ˆ

R3

eiξ1(x−x1)+iη(x−y)+iξ3(x−x3) σn(ξ1 + η + ξ3)

(η + ξ1)(η + ξ3)
dξ1dηdξ3 =

F−1ρ(1)n (x− x1, x− y, x− x3)

and

ρ(1)n (ξ1, η, ξ3) =
σn(ξ1 + η + ξ3)

(η + ξ1)(η + ξ3)
.

Remark 17. The operators Q̃1,t
I,n and R1,t

I,n are the same as the operators Q̃1,t
n and R1,t

n

studied in [3, Lemma 12] and [15, Lemma 12]. Also notice that for v̂n2 = wn2δn2 and

v̂n1 = wn1δn1 we have R1,t
I,n(vn1 , v̄n2 , vn3) = R1,t

II,n(wn1 , w̄n2 , vn3). Similar relations hold

between R1,t
I,n and the remaining operators R1,t

III,n, R
1,t
IV,n and R1,t

V,n.

Lemma 18. For fixed n, n1, n2, n3, the multilinear operators defined in (44)–(48) are

bounded by

‖R1,t
I,n(vn1 , v̄n2 , vn3)‖L2(R) .

‖vn1‖2‖vn2‖2‖vn3‖2
|n− n1||n− n3|

,

‖R1,t
II,n(wn1 , w̄n2 , vn3)‖L2(R) .

|wn1 ||wn2 |‖vn3‖2
|n− n1||n− n3|

,

‖R1,t
III,n(wn1 , v̄n2 , wn3)‖L2(R) .

|wn1 |‖vn2‖2|wn3 |
|n− n1||n− n3|

,

‖R1,t
IV,n(vn1 , v̄n2 , wn3)‖L2(R) .

‖vn1‖2‖vn2‖2|wn3 |
|n− n1||n − n3|

,

and

‖R1,t
V,n(vn1 , w̄n2 , vn3)‖L2(R) .

‖vn1‖2|wn2 |‖vn3‖2
|n− n1||n − n3|

.

where the implicit constants do not depend on n, n1, n2, n3.

Proof. As mentioned in Remark 17 the operator R1,t
I,n was estimated in [3] and [15].

For R1,t
II,n, R

1,t
III,n the estimate is obvious since ξ ∈ supp(σn), otherwise the integrand is

zero.
For R1,t

IV,n, R
1,t
V,n it suffices to estimate only R1,t

IV,n since for R1,t
V,n similar considerations ap-

ply. To bound ‖R1,t
IV,n(vn1 , v̄n2 , wn3)‖L2(R) let g ∈ L2(R), In1 = supp(v̂n1), In2 = supp(ˆ̄vn2),
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and consider the duality pairing

〈g,R1,t
IV,n(vn1 , v̄n2 , wn3)〉L2(R) =

∣∣∣
ˆ

R2

ĝ(ξ) σn(ξ)
wn3 v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − n3)

(ξ − n3)(ξ − ξ1)
dξ1dξ

∣∣∣

= |wn3 |
∣∣∣
ˆ

R2

ĝ(ξ1 + η + n3) σn(ξ1 + η + n3)
v̂n1(ξ1)ˆ̄vn2(η)

(η + ξ1)(η + n3)
dξ1dη

∣∣∣

.
‖σn‖∞|wn3 |

|n− n1||n− n3|

ˆ

In1

ˆ

In2

|ĝ(ξ1 + η + n3)||v̂n1(ξ1)||ˆ̄vn2(η)| dξ1dη

.
|wn3 |‖vn1‖2‖vn2‖2
|n− n1||n− n3|

‖g‖2 |In1 |
1
2 ,

where we used that ξ1 ∈ In1 ,−η ∈ In2 , ξ ∈ supp(σn) and Hölder’s inequality. �

Remark 19. Notice that the same proof implies the following bounds

‖Q1,t
I,n(vn1 , v̄n2 , vn3)‖L2(R) . ‖vn1‖2‖vn2‖2‖vn3‖2

‖Q1,t
II,n(wn1 , w̄n2 , vn3)‖L2(R) . |wn1 ||wn2 |‖vn3‖2

‖Q1,t
III,n(wn1 , v̄n2 , wn3)‖L2(R) . |wn1 |‖vn2‖2|wn3 |

‖Q1,t
IV,n(vn1 , v̄n2 , wn3)‖L2(R) . ‖vn1‖2‖vn2‖2|wn3 |

‖Q1,t
V,n(vn1 , w̄n2 , vn3)‖L2(R) . ‖vn1‖2|wn2 |‖vn3‖2,

which will be used later in Lemmata 24 and 26.

For the N t
21 operator the following bound holds

Lemma 20.

‖N t
21(v)‖l2(Z)L2(R) . N− 1

2
+(‖v‖3L2(R) + ‖w‖L2(T)‖v‖2L2(R) + ‖w‖2L2(T)‖v‖L2(R))

and

‖N t
21(v) −N t

21(u)‖l2(Z)L2(R) .

N− 1
2
+(‖v‖2L2(R) + ‖u‖2L2(R) + ‖w‖L2(T)(‖v‖L2(R) + ‖u‖L2(R)) + ‖w‖2L2(T))‖v − u‖L2(R).

Proof. The sum ∑

AN (n)c

Q̃1,t
I,n

was estimated in [15] Lemma 14 giving an upper bound of the form N− 1
2
+‖v‖32.

For the sum that contains Q̃1,t
II,n, Q̃

1,t
III,n it suffices to estimate

∑

AN (n)c

∥∥∥Q̃1,t
II,n(wn1 , w̄n2 , vn3)

∥∥∥
L2(R)

=
∑

AN (n)c

∥∥∥R1,t
II,n(Wn1 , W̄n2 , Vn3)

∥∥∥
L2(R)

,
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where we used (51), (14) and (49). By Lemma 18 and Hölder’s inequality we obtain the
upper bound

∑

AN (n)c

|Wn1 ||Wn2‖Vn3‖2
|n− n1||n− n3|

≤
( ∑

AN (n)c

1

|n− n1|2|n− n3|2
) 1

2
( ∑

AN (n)c

|Wn1 |2|Wn2 |2‖Vn3‖22
) 1

2
.

The first sum is estimated by N− 1
2
+ with the use of (15) and then by taking the l2(Z)

norm and applying Young’s inequality in l1(Z) we arrive at

N− 1
2
+
(∑

n∈Z

∑

AN (n)c

|Wn1 |2|Wn2 |2‖Vn3‖22
) 1

2 ≤ N− 1
2
+‖W‖2L2(T)‖V ‖L2(R) =

N− 1
2
+‖w‖2L2(T)‖v‖L2(R),

where we also used (14).

For the sum that contains Q̃1,t
IV,n and Q̃1,t

V,n we use again Lemma 18 and a similar argument
as above, we leave the details to the reader . �

In order to use a similar strategy to bound the operator N t
22, the last term in equation

(43), we need to use equation (23) for the terms where ∂t(wn) appears and (33) for the
terms where ∂t(vn) appears. Because of the nonlinearity G(w, v) there will be 51 new
operators in total. For example, the summand

∑

AN (n)c

σn(ξ)

ˆ

R2

e−2it(ξ−ξ1)(ξ−ξ3)

(ξ − ξ1)(ξ − ξ3)
∂t(v̂n1(ξ1))ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3) dξ1dξ3

equals

∑

AN (n)c

σn(ξ)

ˆ

R2

e−2it(ξ−ξ1)(ξ−ξ3)

(ξ − ξ1)(ξ − ξ3)

(
F(Rt

2(v)(n1))(ξ1)−F(Rt
1(v)(n1))(ξ1)

)
ˆ̄vn2(ξ−ξ1−ξ3)v̂n3(ξ3) dξ1dξ3

+
∑

AN (n)c

σn(ξ)

ˆ

R2

e−2it(ξ−ξ1)(ξ−ξ3)

(ξ − ξ1)(ξ − ξ3)
F(N t

1(v)(n1))(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3) dξ1dξ3

the summand
∑

AN (n)c

σn(ξ)
e−2it(ξ−n1)(n1−n2)

(ξ − n1)(n1 − n2)
∂t(wn1)w̄n2 v̂n3(ξ − n1 + n2)

equals

∑

AN (n)c

σn(ξ)
e−2it(ξ−n1)(n1−n2)

(ξ − n1)(n1 − n2)

(
R

t
2(w)(n1)− R

t
1(w)(n1)

)
w̄n2 v̂n3(ξ − n1 + n2)

+
∑

AN (n)c

σn(ξ)
e−2it(ξ−n1)(n1−n2)

(ξ − n1)(n1 − n2)
N

t
1 (w)(n1)w̄n2 v̂n3(ξ − n1 + n2) ,
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and the summand

∑

AN (n)c

σn(ξ)
e−2it(ξ−n1)(n1−n2)

(ξ − n1)(n1 − n2)
wn1w̄n2∂t(v̂n3(ξ − n1 + n2))

equals

∑

AN (n)c

σn(ξ)
e−2it(ξ−n1)(n1−n2)

(ξ − n1)(n1 − n2)
wn1w̄n2

(
F(Rt

2(v)(n3))(ξ−n1+n2)−F(Rt
1(v)(n3))(ξ−n1+n2)

)

+
∑

AN (n)c

σn(ξ)
e−2it(ξ−n1)(n1−n2)

(ξ − n1)(n1 − n2)
wn1w̄n2F(N t

1(v)(n3))(ξ − n1 + n2) .

All summands that contain the resonant operators Rt
2(w),R

t
1(w),F(Rt

2(v)),F(Rt
1(v)) are

good in the sense that they are controllable and all summands that contain the non-resonant
operators N t

1 (w),F(N t
1(v)) need to be decomposed further into ”small” frequencies which

give good operators and ”big” frequencies using differentiation by parts.
In order to be able to consistently write all these summands in a closed form we need

the tree notation similarly as it was introduced in [7], but with some modifications.

4. colored trees and the infinite iteration process

A tree T is a finite, partially ordered set with the following properties:

• For any a1, a2, a3, a4 ∈ T if a4 ≤ a2 ≤ a1 and a4 ≤ a3 ≤ a1 then a2 ≤ a3 or a3 ≤ a2.
• There exists a maximum element r ∈ T , that is a ≤ r for all a ∈ T which is called
the root.

We call the elements of T the nodes of the tree and in this content we will say that b ∈ T
is a child of a ∈ T (or equivalently, that a is the parent of b) if b ≤ a, b 6= a and for all
c ∈ T such that b ≤ c ≤ a we have either b = c or c = a.

A node a ∈ T is called terminal if it has no children. A nonterminal node a ∈ T is a
node with exactly 3 children a1, the left child, a2, the middle child, and a3, the right child.
We define the sets

(56) T 0 = {all nonterminal nodes},
and

(57) T∞ = {all terminal nodes}.
Obviously, T = T 0 ∪ T∞, T 0 ∩ T∞ = ∅ and if |T 0| = j ∈ Z+ we have |T | = 3j + 1 and
|T∞| = 2j + 1. We denote the collection of trees with j parental nodes by

(58) T (j) = {T is a tree with |T | = 3j + 1}.
So far, the notation agrees with the tree notation from [7]. In addition, we color the

trees by assigning a specific color, black or red, to each one of the nodes of such a tree.
Let us describe the procedure: The first generation of colored trees, C(1), consists of the
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following 5 trees

b

b b b

b

r r b

b

r b r

b

b b r

b

b r b

These trees describe all possible ”patterns” of the non-linearity G(w, v), namely all combi-
nations of |v|2v, |w|2v,w2v̄, |v|2w, v2w̄ where v is black and w is red. There is also the red
tree, which is not considered to belong to any generation, that plays an important role in
the construction of the next generations and is simply given by

r

r r r

Next we assume that the Jth generation of colored trees, say C(J), has been constructed,
and we describe how the new generation C(J + 1) arises. Thus, let T J

k be one of the trees

of the C(J) family. We look at each of the 2J + 1 terminal nodes of T J
k :

• If one of these nodes is red then it gives rise to one new tree where this red node
gave birth to three new red nodes. In other words, if a terminal node is red then
attach the red tree to the tree T J

k at the red node.
• If one of these nodes is black then it gives rise to five new trees where each one of
them is born by attaching one of the trees of the first generation to the tree T J

k at
the black node.

We will denote by

(59) N(J) := card(C(J)).

Moreover, for a tree T = T J
k ∈ C(J) let

(60)

bJk = number of black terminal nodes of T J
k , rJk = number of red terminal nodes of T J

k

and denote by

(61) BJ
k = {a ∈ T∞ : a is black}, RJ

k = {a ∈ T∞ : a is red}.
Obviously we have the relations BJ

k ∪RJ
k = T∞, BJ

k ∩RJ
k = ∅, card(BJ

k ) = bJk , card(R
J
k ) = rJk

and

(62) bJk + rJk = 2J + 1, max
1≤k≤N(J)

bJk = 2J + 1, and max
1≤k≤N(J)

rJk = 2J.

The last two are true because there is at least one tree T J
1 that consists of only black nodes.

Therefore, for such tree we have bJ1 = 2J +1, rJ1 = 0, and there is also at least one tree T J
2

with only one black terminal node, which implies bJ2 = 1, rJ2 = 2J . Also observe that by
our construction there is no tree with only red terminal nodes.

We also define the quantities

(63) bJ =

N(J)∑

k=1

bJk , rJ =

N(J)∑

k=1

rJk ,
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which respectively give the total number of black and red terminal nodes of the colored
family C(J). Notice that the number of colored trees of the next generation C(J + 1) is
given by the formula

(64) N(J + 1) = 5bJ + rJ .

This is because each one of the black nodes gives rise to 5 new trees and each one of the
red nodes gives rise to just 1 new tree.

Knowing the numbers bJk , r
J
k for each tree T J

k ∈ C(J), 1 ≤ k ≤ N(J) allows us to
calculate the precise numbers bJ+1 and rJ+1 of the next generation by using the formulas

(65) bJ+1 =

N(J)∑

k=1

(
(5bJk + 4)bJk + rJk b

J
k

)

(66) rJ+1 = 6bJ + 2rJ +

N(J)∑

k=1

(
5bJkr

J
k + (rJk )

2
)
.

Indeed, each bJk gives rise to 9+5(bJk − 1) new black nodes and each red node rJk leaves the

number of black nodes the same as before. Also, each black node bJk gives rise to 6 + 5rJk
new red nodes and each red node rJk gives rise to 3 + rJk − 1 new red nodes.

For our calculations it is important to know how fast the number N(J) grows as J
approaches infinity. Since we have to count trees, one expects a factorial growth and
coloring the trees does not change this significantly:

Lemma 21. For every J ∈ N

N(J) ≤ 10J Γ(J + 1
2 )√

π
,

where Γ is the Gamma function.

Proof. By (64) and (62) we obtain

N(J + 1) = 4bJ +N(J)(2J + 1) ≤ 4(2J + 1)N(J) +N(J)(2J + 1) = 5(2J + 1)N(J).

Let us define a sequence A(J) by the recurrence relation A(J+1) = 5(2J+1)A(J), A(1) = 5.
This can be solved explicitly in terms of the Gamma function using the equality Γ(x+1) =
xΓ(x), x > 0 and gives the result

A(J) =
10J Γ(J + 1

2)√
π

.

An easy induction argument shows that for all J ∈ N we have N(J) ≤ A(J) which finishes
the proof. �

Using the equality

(67) Γ(J +
1

2
) =

(2J − 1)!!

2J
√
π,
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J ∈ N, where the double factorial (2J − 1)!! = 1 · 3 · 5 · . . . · (2J − 1), we obtain the bound

(68) N(J) ≤ 5J(2J − 1)!!,

for all J ∈ N.
Given a colored tree T = T J

k of the C(J) family we define an index function n : T J
k → Z

such that

• If a is a black node in T 0 then na ≈ na1 − na2 + na3 (see (24)) where a1, a2, a3 are
the children of a.

• If a is a red node in T 0 then na = na1 −na2 +na3 , where a1, a2, a3 are the children
of a,

• na 6≈ na1 and na 6≈ na3 for all black nodes a ∈ T 0 and na 6= na1 and na 6= na3 for
all red nodes a ∈ T 0.

• |µ1| := 2|nr − nr1 ||nr − nr3 | > N , where r is the root of T J
k .

We denote the collection of all such index functions by R(T J
k ).

Similar to what was done in [7], given a colored tree T in C(J) and an index function
n ∈ R(T ), we need to keep track of the generations of frequencies. Consider the very first
tree T1, that is, the root r and its children r1, r2, r3. We define the first generation of
frequencies by

(n(1), n
(1)
1 , n

(1)
2 , n

(1)
3 ) := (nr, nr1 , nr2 , nr3).

From the definition of the index function we have

n(1) ≈ n
(1)
1 − n

(1)
2 + n

(1)
3 , n

(1)
1 6≈ n(1) 6≈ n

(1)
3 ,

since the root node is colored black. The tree T2 of the second generation is obtained
from T1 by changing one of its terminal nodes a = rk ∈ T∞

1 for some k = 1, 2, 3 into a
nonterminal node. Then, the second generation of frequencies is defined by

(n(2), n
(2)
1 , n

(2)
2 , n

(2)
3 ) := (na, na1 , na2 , na3).

Thus we have n(2) = n
(1)
k for some k = 1, 2, 3 and from the definition of the index function

we get

n(2) ≈ n
(2)
1 − n

(2)
2 + n

(2)
3 , n

(2)
1 6≈ n(2) 6≈ n

(2)
3

if n
(1)
k is black or

n(2) = n
(2)
1 − n

(2)
2 + n

(2)
3 , n

(2)
1 6= n(2) 6= n

(2)
3

if n
(1)
k is red. After j − 1 steps, the tree Tj of the jth generation is obtained from Tj−1

by changing one of its terminal nodes a ∈ T∞
j−1 into a nonterminal node. Then, the jth

generation frequencies are defined as

(n(j), n
(j)
1 , n

(j)
2 , n

(j)
3 ) := (na, na1 , na2 , na3)

and we have n(j) = n
(m)
k (= na) for some m = 1, 2, . . . , j − 1 and k = 1, 2, 3, since this

corresponds to the frequency of some terminal node in Tj−1. In addition, from the definition
of the index function we have

n(j) ≈ n
(j)
1 − n

(j)
2 + n

(j)
3 , n

(j)
1 6≈ n(j) 6≈ n

(j)
3
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if n
(m)
k is black or

n(j) = n
(j)
1 − n

(j)
2 + n

(j)
3 , n

(j)
1 6= n(j) 6= n

(j)
3

if n
(m)
k is red.
We use µj to denote the corresponding phase factor introduced at the jth generation.

That is,

(69) µj = 2(n(j) − n
(j)
1 )(n(j) − n

(j)
3 ),

and we also introduce the quantities

(70) µ̃J =
J∑

j=1

µj, µ̂J =
J∏

j=1

µ̃j.

We should keep in mind that every time we apply differentiation by parts and split the
operators, we need to control the new frequencies that arise from this procedure. For this
reason, we need to define the sets

(71) CJ := {|µ̃J+1| ≤ (2J + 3)3|µ̃J |1−
1

100 } ∪ {|µ̃J+1| ≤ (2J + 3)3|µ1|1−
1

100 }.
Let us denote by Tα all the nodes of the tree T that are descendants of the node α ∈ T 0,

i.e. Tα = {β ∈ T : β ≤ α, β 6= α}.
We also need to define the principal and final ”signs” of a node a ∈ T which are

functions from the tree T into the set {±1}:

(72) psgn(a) =





+1, a is not the middle child of his parent

+1, a = r, the root node

−1, a is the middle child of his parent

(73) fsgn(a) =





+1, psgn(a) = +1 and a has an even number of middle predecessors

−1, psgn(a) = +1 and a has an odd number of middle predecessors

−1, psgn(a) = −1 and a has an even number of middle predecessors

+1, psgn(a) = −1 and a has an odd number of middle predecessors,

where the root node r ∈ T is not considered a middle parent.
Next we define two ”prototype” operators in the following way. Suppose that T ∈ T (J)

(see (58)) is a tree of only black nodes. Let q̃J,tT,n and RJ,t
T,n be related as

(74) F(q̃J,tT,n({vnβ
}β∈T∞))(ξ) = e−itξ2F(RJ,t

T,n({e−it∂2
xvnβ

}β∈T∞))(ξ),

where the operator RJ,t
T,n acts on the functions {vnβ

}β∈T∞ as

(75) RJ,t
T,n({vnβ

}β∈T∞)(x) =

ˆ

R2J+1

K
(J)
T (x, {xβ}β∈T∞)

[
⊗β∈T∞ vnβ

(xβ)
] ∏

β∈T∞

dxβ,
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and the Kernel K
(J)
T,n is defined as

(76) K
(J)
T,n(x, {xβ}β∈T∞) = F−1(ρ

(J)
T,n)({x− xβ}β∈T∞),

where the formula for the function ρ
(J)
T,n with (|T∞| = 2J + 1)-variables, ξβ, β ∈ T∞ is

(77) ρ
(J)
T,n({ξβ}β∈T∞) =

[ ∏

α∈T 0

σnα

( ∑

β∈T∞∩Tα

fsgn(β) ξβ

)] 1

µ̂T
.

We denote by

(78) µ̂T =
∏

α∈T 0

µ̃α, µ̃α =
∑

β∈T 0\Tα

µβ,

and for β ∈ T 0 we have

(79) µβ = 2(ξβ − ξβ1)(ξβ − ξβ3),

where we impose the relation ξα = ξα1 − ξα2 + ξα3 for every α ∈ T 0 that appears in the
calculations, until we reach the terminal nodes of T∞. This is due to the fact that in the

definition of the function ρJ,tT we need the variables ”ξ” to be assigned only at the terminal
nodes of the tree T . We use the notation µβ similarly to µj of equation (69), because this
is the “continuous” version of the discrete case. In addition, the variables ξα1 , ξα2 , ξα3 that
appear in expression (77) are supported in such a way that ξα1 ≈ nα1 , ξα2 ≈ nα2 , ξα3 ≈ nα3 ,
due to the support properties of the cut–off functions σnα . Therefore, |µ̂T | ∼ |µ̂J |.

Notice that if {β1, . . . , β2J+1} = T∞, then we may rewrite (75) as

(80) RJ,t
T,n(vnβ1

, . . . , vnβ2J+1
)(x) =

ˆ

R

eixξ
(ˆ

R2J

ρ
(J)
T,n(ξβ1 , . . . , ξβ2J

, ξ −
2J∑

k=1

ξβk
)

2J∏

k=1

v̂nβk
(ξβk

) v̂nβ2J+1
(ξ −

2J∑

k=1

ξβk
)

2J∏

k=1

dξβk

)
dξ

which implies

(81) F(RJ,t
T,n(vnβ1

, . . . , vnβ2J+1
))(ξ) =

ˆ

R2J

ρ
(J)
T,n(ξβ1 , . . . , ξβ2J

, ξ −
2J∑

k=1

ξβk
)

2J∏

k=1

v̂nβk
(ξβk

) v̂nβ2J+1
(ξ −

2J∑

k=1

ξβk
)

2J∏

k=1

dξβk
.

Such an operator was studied in [3] Lemma 21 and in [15] Lemma 21.

Our goal is to define the operators q̃J,tT,n and RJ,t
T,n for any colored tree T J

k of the C(J)

family. From (61) we know that BJ
k ∪ RJ

k = (T J
k )

∞. If RJ
k = ∅ then the tree is black

and the operators have already been defined by (81). Thus, assume RJ
k = {rm}r

J
k

m=1 6=
∅, BJ

k = {bm}b
J
k

m=1 and consider functions {vnbm
}b

J
k

m=1 and Fourier coefficients {wnrm̃
}r

J
k

m̃=1.

Let {vnrm̃
} be defined by

(82) v̂nrm̃
(ξ) = wnrm̃

δnrm̃
(ξ),
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for all m̃ ∈ {1, . . . , rJk }. Then the operator RJ,t

TJ
k
,n

is defined as

(83) F(RJ,t

TJ
k
,n
({vnbm

}b
J
k

m=1, {wnrm̃
}r

J
k

m̃=1))(ξ) =

F(RJ,t
T,n({vnbm

}b
J
k

m=1, {vnrm̃
}r

J
k

m̃=1))(ξ)

and

(84) F(q̃J,t
TJ
k
,n
({vnbm

}b
J
k

m=1, {wnrm̃
}r

J
k

m̃=1))(ξ) =

e−itξ2F(RJ,t

TJ
k
,n
({e−it∂2

xvnbm
}b

J
k

m=1, {eitn
2
rm̃wnrm̃

}r
J
k

m̃=1))(ξ).

For these operators the following holds.

Lemma 22.

‖RJ,t

TJ
k
,n
({vnbm

}b
J
k

m=1, {wnrm̃
}r

J
k

m̃=1)‖L2(R) .

∏bJ
k

m=1 ‖vnbm
‖2

∏rJ
k

m̃=1 |wnrm̃
|

|µ̂TJ
k
|

Proof. The proof of the above bound is similar to the strategy of the proof of Lemma 18:
a repeated use of duality and Hölder’s inequality. We leave the details to the reader. �

Next, given a colored tree T = T J
k of the C(J) family and α ∈ T∞ we define the

operators Rt,α
2 −Rtα

1 ,Nt,α
1 by

(85) R
t,α
2 −R

t,α
1 =

{
Rt

2 −Rt
1 , α ∈ BJ

k

Rt
2 − Rt

1 , α ∈ RJ
k

, N
t,α
1 :=

{
N t

1 , α ∈ BJ
k

N t
1 , α ∈ RJ

k

.

Next, for such a tree T = T J
k , index function n ∈ R(T ), α ∈ T∞ and set of functions

{vnbm
}b

J
k

m=1, {wnrm̃
}r

J
k

m̃=1 we define the action of the operator Nt,α
1 onto the set of functions

to be the same set as before but with the difference that we have substituted the function
fnα

:= vnαχBJ
k
(α) + wnαχRJ

k
(α) with N

t,α
1 (fnα). Similarly, we define the action of the

operator Rt,α
2 −R

t,α
1 onto the set of functions {vnbm

}b
J
k

m=1, {wnrm̃
}r

J
k

m̃=1.
The operator of the Jth step, J ≥ 2, that we want to estimate, is given by the formula

(86) N
(J)
2 (v)(n) :=

∑

T∈C(J−1)

∑

α∈T∞

∑

n∈R(T )
nr=n

q̃J−1,t
T,n (Nt,α

1 ({vnbm
}b

J
k

m=1, {wnrm̃
}r

J
k

m̃=1)).

Applying differentiation by parts on the Fourier side, keeping in mind that from the splitting
procedure we are on the sets AN (n)c, Cc

1, . . . , C
c
J−1, we obtain the expression

(87) N
(J)
2 (v)(n) = ∂t(N

(J+1)
0 (v)(n)) +N (J+1)

r (v)(n) +N (J+1)(v)(n),

where

(88) N
(J+1)
0 (v)(n) :=

∑

T∈C(J)

∑

n∈R(T )
nr=n

q̃J,tT,n({vnbm
}b

J
k

m=1, {wnrm̃
}r

J
k

m̃=1),
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and

(89) N (J+1)
r (v)(n) :=

∑

T∈C(J)

∑

α∈T∞

∑

n∈R(T )
nr=n

q̃J,tT,n((R
t,α
2 −R

t,α
1 )({vnbm

}b
J
k

m=1, {wnrm̃
}r

J
k

m̃=1)),

and

(90) N (J+1)(v)(n) :=
∑

T∈C(J)

∑

α∈T∞

∑

n∈R(T )
nr=n

q̃J,tT,n(N
t,α
1 ({vnbm

}b
J
k

m=1, {wnrm̃
}r

J
k

m̃=1)).

We also split the operator N (J+1) as the sum

(91) N (J+1) = N
(J+1)
1 +N

(J+1)
2 ,

where N
(J+1)
1 is the restriction of N (J+1) onto CJ and N

(J+1)
2 onto Cc

J .

First we estimate the operators N
(J+1)
0 and N

(J+1)
r .

Lemma 23.

‖N (J+1)
0 (v)‖l2(Z)L2(R) . N−J

2
+

(J−1)
200

+(‖v‖L2(R) + ‖w‖L2(T))
2J+1

and

‖N (J+1)
0 (v)−N

(J+1)
0 (u)‖l2(Z)L2(R) . N−J

2
+ (J−1)

200
+(‖v‖L2(R)+‖u‖L2(R)+‖w‖L2(T))

2J‖v−u‖L2(R).

‖N (J+1)
r (v)‖l2(Z)L2(R) . N−J

2
+

(J−1)
200

+(‖v‖L2(R) + ‖w‖L2(T))
2J+3

and

‖N (J+1)
r (v)−N (J+1)

r (u)‖l2(Z)L2(R) . N−J
2
+

(J−1)
200

+(‖v‖L2(R)+‖u‖L2(R)+‖w‖L2(T))
2J+2‖v−u‖L2(R).

Proof. By (15) for fixed n(j) and µj there are at most o(|µj |+) many choices for n
(j)
1 , n

(j)
2 , n

(j)
3 .

In addition, let us observe that µj is determined by µ̃1, . . . , µ̃j and |µj| . max(|µ̃j−1|, |µ̃j |),
since µj = µ̃j − µ̃j−1. Then, for a fixed tree T = T J

k ∈ C(J), by Lemma 22 the estimate

for the operator q̃J,tT,n is as follows (remember that |µ̂T | ∼ |µ̂J | =
∏J

k=1 |µ̃k|)
∑

n∈R(T )
nr=n

‖q̃J,tT,n({vnbm
}b

J
k

m=1, {wnrm̃
}r

J
k

m̃=1)‖2 .

∑

n∈R(T )
nr=n

( bJ
k∏

m=1

‖vnbm
‖2

rJ
k∏

m̃=1

|wnrm̃
|
)( J∏

k=1

1

|µ̃k|
)
,

and, by Hölder’s inequality, this is bounded from above by

(92)
( ∑

|µ1|>N

|µ̃j |>(2j+1)3N1− 1
100

j=2,...,J

J∏

k=1

1

|µ̃k|2
|µk|+

) 1
2
( ∑

n∈R(T )
nr=n

bJ
k∏

m=1

‖vnbm
‖22

rJ
k∏

m̃=1

|wnrm̃
|2
) 1

q
.
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The first sum behaves like N−J
2
+

(J−1)
200

+ and for the remaining part we take the l2(Z) norm
in n and by the use of Young’s inequality we obtain the upper bound of

N−J
2
+

(J−1)
200

+‖v‖b
J
k

L2(R)
‖w‖r

J
k

L2(T)
.

Collecting terms, one sees that this proves the bound for ‖N (J+1)
0 (v)‖l2(Z)L2(R).

Note that there is an extra factor ∼ J when we estimate the differences N
(J+1)
0 (v) −

N
(J+1)
0 (w) since |a2J+1− b2J+1| . (

∑2J+1
j=1 a2J+1−jbj−1)|a− b| has O(J) many terms. Also,

we have N(J) = card(C(J)) many summands in the operator N
(J+1)
0 since there are N(J)

many trees of the Jth generation. However, these observations do not cause any problem
since the constant that we obtain from estimating the first sum of (92) decays like a
fractional power of a double factorial in J , or to be more precise, with the use of (68) we
have the following behaviour in J

(93) t
5J · (2J − 1)!!

(2J − 1)!!
3
2

=
5J

(2J − 1)!!
1
2

.

For the operator N
(J+1)
r the proof is the same but in addition we use Lemma 14 and

Remark 15 for the operator Rt
2 −Rt

1. �

Then the estimate for the operator N
(J+1)
1 is the following.

Lemma 24.

‖N (J+1)
1 (v)‖l2(Z)L2(R) . N−J−1

2
+

(J−2)
200

+(‖v‖L2(R) + ‖w‖L2(T))
2J+3

and

‖N (J+1)
1 (v)−N

(J+1)
1 (u)‖l2(Z)L2(R) . N−J−1

2
+

(J−2)
200

+(‖v‖L2(R)+‖u‖L2(R)+‖w‖L2(T))
2J+2‖v−u‖L2(R).

Proof. As before, for fixed n(j) and µj there are at most o(|µj |+) many choices for n
(1)
1 , n

(1)
2 , n

(1)
3

and note that µj is determined by µ̃1, . . . , µ̃j .

Let us assume that |µ̃J+1| = |µ̃J + µJ+1| . (2J + 3)3|µ̃J |1−
1

100 holds in (71). Then,

|µJ+1| . |µ̃J | and for fixed µ̃J there are at most o(|µ̃J |1−
1

100 ) many choices for µ̃J+1 and
therefore, also for µJ+1 = µ̃J+1 − µ̃J . For a fixed tree T = T J

k ∈ C(J), α ∈ BJ
k ⊂ T∞,

Lemma 22, Remark 19 and the definition of the operator N t
1(v), see (32), we estimate q̃J,tT,n

as follows (remember that |µ̂T | ∼ |µ̂J | =
∏J

k=1 |µ̃k|)
∑

n∈R(T )
nr=n

‖q̃J,tT,n(N
t,α
1 ({vnbm

}b
J
k

m=1, {wnrm̃
}r

J
k

m̃=1))‖2 .

∑

n∈R(T )
nr=n

([
‖vnα1

‖2‖vnα2
‖2‖vnα3

‖2 + ‖vnα1
‖2|wnα2

|‖vnα3
‖2 + ‖vnα1

‖2‖vnα2
‖2|wnα3

|+
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|wnα1
|‖vnα2

‖2|wnα3
|+ |wnα1

‖2|wnα2
|‖vnα3

‖2
] ∏

β∈BJ
k
\{α}

‖vnβ
‖2

rJ
k∏

m̃=1

|wnrm̃
|
)( J∏

k=1

1

|µ̃k|
)
.

Then for the ‖vnα1
‖2‖vnα2

‖2‖vnα3
‖2 term, the same calculations work for the other terms,

we apply Hölder’s inequality and obtain the upper bound

(94)
( ∑

|µ1|>N

|µ̃j |>(2j+1)3N1− 1
100

j=2,...,J

|µ̃J |1−
1

100
+

J∏

k=1

1

|µ̃k|2
|µk|+

) 1
2

( ∑

n∈R(T )
nr=n

‖vnα1
‖22‖vnα2

‖22‖vnα3
‖22

∏

β∈BJ
k
\{α}

‖vnβ
‖22

rJ
k∏

m̃=1

|wnrm̃
|2
) 1

2
.

An easy calculation shows that the first sum behaves like N−J−1
2

+ (J−2)
200

+ and then by taking
the l2(Z) norm and use Young’s inequality we arrive at

N−J−1
2

+ (J−2)
200

+ ‖v‖b
J
k
+2

L2(R)
‖w‖r

J
k

L2(T)
.

Similar considerations apply in the case that α ∈ RJ
k ⊂ T∞ and give the upper bound

N−J−1
2

+
(J−2)
200

+ ‖v‖b
J
k

L2(R)
‖w‖r

J
k
+2

L2(T)
.

If |µ̃J+1| . (2J + 3)3|µ1|1−
1

100 holds in (71), then for fixed µj, j = 1, . . . , J , there are at

most O(|µ1|1−
1

100 ) many choices for µJ+1. The same argument as above leads us to exactly
the same expressions as in (94) but with the first sum replaced by the following

( ∑

|µ1|>N

|µ̃j |>(2j+1)3N1− 1
100

j=2,...,J

|µ1|1−
1

100

J∏

k=1

1

|µ̃k|2
|µk|+

) 1
2
,

which again is bounded from above by N−J−1
2

+ (J−2)
200

+ and the proof is complete. �

Remark 25. For s > 0 we have to observe that all previous lemmata hold true if we replace
the l2L2 norm by the l2sL

2 norm and the L2(R) norm by the Hs(R) norm. To see this,

consider n(j) large. Then there exists at least one of n
(j)
1 , n

(j)
2 , n

(j)
3 such that |n(j)

k | ≥ 1
3 |n(j)|,

k ∈ {1, 2, 3}, since we have the relation n(j) ≈ n
(j)
1 −n

(j)
2 +n

(j)
3 . Therefore, in the estimates

of the Jth generation, there exists at least one frequency n
(j)
k for some j ∈ {1, . . . , J} with

the property

〈n〉s ≤ 3js〈n(j)
k 〉s ≤ 3Js〈n(j)

k 〉s.
This exponential growth does not affect our calculations due to the double factorial decay
in the denominator of (93).
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Before we finish this section let us state a lemma about the behaviour of the remainder
operator N

(J)
2 as J → ∞.

Lemma 26. Suppose that w is a smooth periodic solution of (6) in L2(T) such that its

Fourier coefficients {wm}m∈Z ∈ l1(Z) and v is a smooth solution of (7) such that v ∈
M2,1(R) ⊂ L2(R). Then

lim
J→∞

‖N (J+1)
2 (v)‖l2(Z)L2(R) = 0.

Proof. Obviously,

‖N (J+1)
2 (v)‖2 ≤

∑

T∈C(J)

∑

α∈T∞

∑

n∈R(T )
nr=n

‖q̃J,tT,n(N
t,α
1 ({vnbm

}b
J
k

m=1, {wnrm̃
}r

J
k

m̃=1))‖2.

For a fixed tree T = T J
k ∈ C(J) assume that α ∈ BJ

k . Using Lemma 22 we have the upper
bound

∑

n∈R(T )
nr=n

∏

β∈BJ
k
\{α}

‖vnβ
‖2

‖N t
1(v)(nα)‖2∏J
k=1 |µ̃k|

rJ
k∏

m̃=1

|wnrm̃
|.

By the definition of the operator N t
1(v), see (32), and Remark 19, we bound this further

∑

n∈R(T )
nr=n

∏

β∈BJ
k
\{α}

‖vnβ
‖2

rJ
k∏

m̃=1

|wnrm̃
|
( ∑

nα≈nα1−nα2+nα3
nα1 6≈nα 6≈nα3

‖vnα1
‖2‖vnα2

‖2‖vnα3
‖2+

‖vnα1
‖2|wnα2

|‖vnα3
‖2 + ‖vnα1

‖2‖vnα2
‖2|wnα3

|+ |wnα1
|‖vnα2

‖2|wnα3
|+

|wnα1
‖2|wnα2

|‖vnα3
‖2
) 1

∏J
k=1 |µ̃k|

.

Let us treat only the sum that contains the quantity ‖vnα1
‖2|wnα2

|‖vnα3
‖2, the remaining

terms can be treated in a similar manner. As in the proof of Lemma 23, Hölder’s inequality
implies the upper bound

1

(2J − 1)!!
3
2

( ∑

n∈R(T )
nr=n

∏

β∈BJ
k
\{α}

‖vnβ
‖22

rJ
k∏

m̃=1

|wnrm̃
|2
( ∑

nα≈nα1−nα2+nα3
nα1 6≈nα 6≈nα3

‖vnα1
‖2|wnα2

|‖vnα3
‖2
)2) 1

2
.

Then by taking the l2(Z) norm we arrive at

1

(2J − 1)!!
3
2

(∑

n∈Z

∑

n∈R(T )
nr=n

∏

β∈BJ
k
\{α}

‖vnβ
‖22

rJ
k∏

m̃=1

|wnrm̃
|2({‖vnα1

‖2}∗{|wnα2
|}∗{‖vnα3

‖2})2(nα)
) 1

2
,

applying Young’s inequality in l1(Z) for 2J + 1 sequences we get

1

(2J − 1)!!
3
2

‖v‖b
J
k
−1

L2(R)
‖w‖r

J
k

L2(T)
‖{‖vnα1

‖2} ∗ {|wnα2
|} ∗ {‖vnα3

‖2}‖l2 ,
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and, again using Young’s inequality together with the embedding M2,1(R) →֒ L2(R) and
the assumption that the Fourier coefficients of w are in l1(Z), this implies the upper bound

1

(2J − 1)!!
3
2

‖v‖b
J
k
−1

M2,1
‖{wm}m∈Z}‖r

J
k

l1(Z)
‖v‖2M2,1

‖{wm}m∈Z‖l1(Z) =
‖v‖b

J
k
+1

M2,1
‖{wm}m∈Z‖r

J
k
+1

l1

(2J − 1)!!
3
2

.

Similar estimates apply in the case α ∈ RJ
k .

Finally, by adding up all these expressions for every different colored tree T ∈ C(J), see
(68), we get

‖N (J+1)
2 (v)‖l2(Z)L2(R) .

5J

(2J − 1)!!
1
2

(‖v‖M2,1 + ‖{wm}m∈Z‖l1(Z))2J+3,

which goes to zero as J → ∞. So the proof is complete. �

5. existence of weak solutions in the extended sense

In this subsection we prove Theorem 6. The calculations are the similar as in [7],
[3], [15], however, with the additional difficulty that we have to handle mixed continuous
and discrete variables. For this reason we only mention the basic steps of the argument,
concentrating mainly on the important differences.

We start by defining the partial sum operator Γ
(J)
v0 as

(95) Γ(J)
v0

v(t) = v0 +

J∑

j=2

N
(j)
0 (v)(n)−

J∑

j=2

N
(j)
0 (v0)(n)

+

ˆ t

0
Rτ

1(v)(n) +Rτ
2(v)(n) +

J∑

j=2

N (j)
r (v)(n) +

J∑

j=1

N
(j)
1 (v)(n) dτ,

where we have N
(1)
1 := N t

11 from (36), N
(2)
0 := N t

21 from (43) and v0 ∈ Hs1(R) is our initial
data. Here we assume that we have smooth solutions (see Section 2 so that all calculations
of Sections 3 and 4 are applicable. Moreover, let us state that all operators appearing in the

definition of Γ
(J)
v0 v(t) depend also on the fixed function w ∈ XT0(T) = C([0, T0],H

s2(T))
that is the solution of (6) with initial data w0 ∈ Hs2(T). For this w we know that

(96) ‖w‖XT0
(T) . ‖w0‖Hs2 (T).

In the following we will denote by XT (R) = C([0, T ],Hs1(R)). Our goal is to show that
the series appearing on the RHS of (95) converge absolutely in XT (R) for sufficiently small
T > 0, if v ∈ XT (R), even for J = ∞. Indeed, by Lemmata 14, 16, 23, and 24 we obtain

(97) ‖Γ(J)
v0

v‖XT (R) ≤ ‖v0‖Hs1 (R)+C
J∑

j=2

N− j−1
2

+ j−2
200

+(‖v‖2j−1
XT (R)+ ‖v0‖2j−1

Hs1 (R)+ ‖w‖2j−1
XT0

(T))

+CT
[
‖v‖3XT (R) + ‖w‖3XT0

(T) +

J∑

j=2

N− j−1
2

+ j−2
200

+(‖v‖2j+1
XT (R) + ‖w‖2j+1

XT0
(T))+
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N
1
2
+(‖v‖3XT (R) + ‖w‖3XT0

(T)) +

J∑

j=2

N− j−2
2

+ j−3
200

+(‖v‖2j+1
XT (R) + ‖w‖2j+1

XT0
(T))

]
.

From (96) we estimate ‖w‖XT0
(T) by ‖w0‖Hs2 (T) and assuming that the sum ‖v0‖Hs1 (R) +

‖w0‖Hs2 (T) ≤ R and ‖v‖XT (R) ≤ R̃, with R̃ ≥ R ≥ 1 we may continue from (97) in exactly
the same way as in [7], [3], [15] to show that for sufficiently large N and sufficiently small

T = T (‖v0‖Hs1 (R) + ‖w0‖Hs2 (T)) > 0 the partial sum operators Γ
(J)
v0 are well defined in

XT (R), for every J ∈ N ∪ {∞}. We will write Γv0 for Γ
(∞)
v0 .

Our next step is, given an initial data u0 = v0 + w0 ∈ Hs1(R) +Hs2(T), to construct a
solution u with the properties claimed in Theorem 6. We start with the periodic part w0.

As it was done in [7] we approximate w0 by smooth initial data w
(m)
0 ∈ H∞(T) with

(98) lim
m→∞

w
(m)
0 = w0, in Hs2(T).

For such initial data w
(m)
0 we know that we can find smooth solution w(m) of NLS (6) in

C([0, T ],Hs2(T)) that satisfies Duhamel’s formulation

(99) w(m) = w
(m)
0 ±

ˆ t

0
S(−τ)[|S(τ)w(m) |2S(τ)w(m)] dτ

and from [7] it follows that there is a common time of existence T0 = T0(‖w0‖Hs2 (T))

for all solutions w(m). In addition, they show that the sequence {w(m)}m∈N is Cauchy in
XT0(T) = C([0, T0],H

s2(T)) and that the limit function w ∈ XT0(T) satisfies NLS (6) in
the sense of Definition 3.

We also approximate v0 by smooth functions v
(m)
0 ∈ Hs1(R), so that

(100) lim
m→∞

v
(m)
0 = v0, in Hs1(R),

and by Section 2 we may find smooth solutions v(m) of (7) in XT (R) = C([0, T ],Hs1(R))
that satisfy Duhamel’s formulation

(101) v(m) = v
(m)
0 ±

ˆ t

0
S(−τ)[G(S(τ)w(m) , S(τ)v(m))] dτ =

v
(m)
0 +

∞∑

j=2

N
(j)
0 (v(m))(n)−

∞∑

j=2

N
(j)
0 (v

(m)
0 )(n)

+

ˆ t

0
Rτ

1(v
(m))(n) +Rτ

2(v
(m))(n) +

∞∑

j=2

N (j)
r (v(m))(n) +

∞∑

j=1

N
(j)
1 (v(m))(n) dτ = Γ

v
(m)
0

v(m),

where we used Lemma 26, namely that the remainder operator goes to zero as J → ∞.
From this, following exactly the same arguments as in [7], [3], [15] we can prove that (101)
holds in XT0(R) for the same time T0 = T0(R) > 0 independent of m ∈ N and also that

(102) ‖v(m1)− v(m2)‖XT0(R)
= ‖Γ

v
(m1)
0

v(m1)−Γ
v
(m2)
0

v(m2)‖XT0
(R) ≤ c ‖v(m1)

0 − v
(m2)
0 ‖Hs1 (R)
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for some constant c > 0. Therefore, the sequence {v(m)}m∈N is Cauchy in the Banach space
XT0(R), we denote by v∞ its limit in XT0(R).

We will show that V ∞ = S(t)v∞ satisfies NLS (7) in the sense of Definition 5. For

convenience, we drop the superscript ∞ and write V , and v. In addition, let V (m) :=
S(t)v(m),W (m) = S(t)w(m) and W = S(t)w. Obviously, V (m) → V in XT0(R), because

v(m) → v in XT0(R), and similarly W (m) → W in XT0(T) since w(m) → w in XT0(T).

Thus, ∂xV
(m) → ∂xV, ∂tV

(m) → ∂tV and ∂xW
(m) → ∂xW , ∂tW

(m) → ∂tW in the sense of
distributions. Since V (m) satisfies (7) and W (m) satisfies (6) for every m ∈ N, we have that

(103) N (W (m)) = |W (m)|2W (m) = −i∂tW
(m) + ∂2

xW
(m)

converges to some distribution w̃, which is equal to N (W ) interpreted in the sense of
Definition 3, as it was shown in [7]. and
(104)

G(W (m), V (m)) = |W (m) + V (m)|2(W (m) + V (m))− |W (m)|2W (m) = −i∂tV
(m) + ∂2

xV
(m)

converges to some distribution ṽ. Our claim is the following.

Proposition 27. Let ṽ be the limit of G(W (m), V (m)) in the sense of distributions asm → ∞.
Then ṽ = G(W,V ) where G(W,V ) is to be interpreted in the sense of Definition 5.

Proof. Consider a sequence of Fourier cutoff multipliers {TN}N∈N as in Definition 1. We
will prove that

lim
N→∞

G(TNW,TNV ) = ṽ

in the sense of distributions. Let φ be a test function and ǫ > 0 a fixed given number. Our
goal is to find N0 ∈ N such that for all N ≥ N0 we have

(105) |〈ṽ −G(TNW,TNV ), φ〉| < 3ǫ.

The LHS can be estimated by

(106) |〈ṽ −G(W (m), V (m)), φ〉| + |〈G(W (m), V (m))−G(TNW (m), TNV (m)), φ〉|+

|〈G(TNW (m), TNV (m))−G(TNW,TNV ), φ〉|.
The first term is estimated very easily since by the definition of ṽ we have that

(107) |〈ṽ −G(W (m), V (m)), φ〉| < ǫ,

for sufficiently large m ∈ N.
To continue, we consider the second summand of (106) for fixed m. Writing out the

difference, we see that we have to estimate five expressions

〈|V (m)|2V (m) − |TNV (m)|2TNV (m), φ〉+ 〈(W (m))2V (m) − (TNW (m))2TNV (m), φ〉
+ 〈(V (m))2W (m) − (TNV (m))2TNW (m), φ〉 + 2 〈|W (m)|2V (m) − |TNW (m)|2TNV (m), φ〉

+ 2 〈|V (m)|2W (m) − |TNV (m)|2TNW (m), φ〉.
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The first was estimated in [3] and [15]. For the second term we note

∣∣∣
ˆ ˆ

(W (m))2(Id− TN )V (m)φ+ TNV (m)(W (m) − TNW (m))(W (m) + TNW (m))φ
∣∣∣

≤ ‖W (m)‖2L∞

T,x
‖(Id− TN )V (m)‖L2

T,x
‖φ‖L2

T,x
+ ‖TNV (m)‖L∞

T,x
‖W (m)

+ TNW (m)‖L∞

T,x

ˆ ˆ

|W (m) − TNW (m)||φ|.

The integral term can be written as
ˆ T

0

∑

k∈Z

ˆ k+1

k

|W (m) − TNW (m)||φ| ≤
ˆ T

0

∑

k∈Z

‖(Id − TN )W (m)‖L2(k,k+1)‖φ‖L2(k,k+1)

=

ˆ T

0
‖(Id− TN )W (m)‖L2(T)

∑

k∈Z

‖φ‖L2(k,k+1) ,

which is bounded from above by

‖(Id − TN )W (m)‖L2
T,x

‖t →
∑

k∈Z

‖φ(t, ·)‖L2(k,k+1)‖L2(0,T ).

Therefore, for the second term we have the estimate

(108) Cφ,m

(
‖(Id− TN )V (m)‖L2([0,T ],L2(R)) + ‖(Id− TN )W (m)‖L2([0,T ],L2(T))

)

which tends to zero as N → ∞ by the definition of the Fourier cutoff operators and the
Dominated Convergence Theorem. For the third term we have to consider the quantities

∣∣∣
ˆ ˆ

(V (m))2W (m) − TNW (m)φ+ TNW (m)(V (m) − TNV (m))(V (m) + TNV (m))φ
∣∣∣.

Doing the same as for the previous term, we obtain an expression analog to (108). We
treat the forth and fifth terms similarly. This allows us to choose N0 = N0(m) > 0 with
the property

(109) Cφ,m

(
‖(Id − TN )V (m)‖L2([0,T ],L2(R)) + ‖(Id − TN )W (m)‖L2([0,T ],L2(T))

)
< ǫ,

for all N ≥ N0.
For the last term of (106) we need to observe two things. Firstly, by applying the

iteration process (see also [7], [3] and [15]) that we described in Sections 3 and 4 we see

that {G(W (m), V (m))}m∈N is Cauchy in S′((0, T )×R) as m → ∞ for each fixed N, since the

sequences V (m),W (m) are Cauchy in C([0, T ],Hs1(R)) and C([0, T ],Hs2(T)) respectively.
Because the multipliers mN of TN are uniformly bounded we conclude that this convergence
is uniform in N .

Secondly, for fixed N, TNV ∈ C([0, T ],H∞(R)) and TNW ∈ C([0, T ],H∞(T)) since
V ∈ Hs1(R),W ∈ Hs2(T) and the multiplier mN of TN is compactly supported. Hence

G(TNW,TNV ) = |TNV |2TNV+(TNW )2TNV+(TNV )2TNW+2|TNW |2TNV+2|TNV |2TNW
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makes sense as a function. Then we have to estimate the following five summands

〈|TNV (m)|2TNV (m) − |TNV |2TNV, φ〉+ 〈(TNW (m))2TNV (m) − (TNW )2TNV , φ〉+
〈(TNV (m))2TNW (m) − (TNV )2TNW,φ〉+ 2〈|TNW (m)|2TNV (m) − |TNW |2TNV, φ〉+

2〈|TNV (m)|2TNW (m) − |TNV |2TNW,φ〉.
The first term was estimated in [3] and [15]. For the second term we have to bound

∣∣∣
ˆ ˆ

(TNW (m))2(TN (V (m) − V ))φ+ TNV (TNW (m) − TNW )(TNW (m) + TNW )φ
∣∣∣ ≤

‖TNW (m)‖2L∞

T,x
‖TN (V (m) − V )‖L2

T,x
‖φ‖L2

T,x
+

ˆ T

0

∑

k∈Z

ˆ k+1

k

∣∣∣TNV (TNW (m) − TNW )(TNW (m) + TNW )φ
∣∣∣.

The second expression is bounded from above by
ˆ T

0

∑

k∈Z

‖TNV ‖L4(k,k+1)‖TN (W (m) −W )‖L4(k,k+1)‖TNW (m) + TNW‖L4(k,k+1)‖φ‖L4(k,k+1)

which is less than
ˆ T

0
‖TNV ‖L4(R)‖TN (W (m) −W )‖L4(T)‖TNW (m) + TNW‖L4(T)

∑

k∈Z

‖φ‖L4(k,k+1) ≤

‖TNV ‖L4
T,x

‖TNW (m) + TNW‖L4
T,x

‖TN (W (m) −W )‖L4
T,x

‖t →
∑

k∈Z

‖φ‖L4(k,k+1)‖L4(0,T ).

Then we use Hölder’s inequality in the interval (0, T ) to pass from the L4 norm to the
L∞ norm and in the space variable an application of Parseval’s identity, together with the
fact that the multiplier operators TN have compactly supported symbols mN , implies the
bound

Cφ,‖V ‖XT (R),‖W‖XT (T)
M

3
4T

3
4‖W (m) −W‖XT (T) < ǫ,

where the number M = M(N) > 0 is chosen so that suppmN ⊂ [−M,M ]. For the third
term we have to estimate the quantity

∣∣∣
ˆ ˆ

(TNV (m))2(TN (W (m) −W ))φ+ TNW (TN (V (m) − V ))(TNV (m) + TNV )φ
∣∣∣,

for which similar bounds apply as for the previous term. The same holds for the forth and
fifth terms.

From these observations we derive that G(TNW (m), TNV (m)) → G(TNW,TNV ) in the
space S′((0, T ) × R) as m → ∞ uniformly in N . Equivalently,

(110) |〈G(TNW (m), TNV (m))−G(TNW,TNV ), φ〉| < ǫ,

for all large m, uniformly in N . Therefore, (105) follows by choosing m sufficiently large
so that (107) and (110) hold, and then choosing N0 = N0(m) such that (109) holds.

�
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Finally, we have shown that the function V = V ∞ is a solution of NLS (7) in the sense
of Definition 5.

6. unconditional uniqueness of solutions

In this section we prove Theorem 7. Let us assume that the initial condition u0 =

v0 + w0 ∈ Hs(R) + H
1
2
+ǫ(T) where 1

6 ≤ s ≤ 1
2 and ǫ > 0. Notice that for such s

we have the embeddings Hs(R) →֒ L3(R) and H
1
2
+ǫ(T) →֒ L∞(T). Therefore, if V is

a solution of NLS (7) in C([0, T ],Hs(R)), then V and hence v = eit∂
2
xV are elements

of C([0, T ],Hs(R)) →֒ C([0, T ], L3(R)). Similarly, for W being a solution of NLS (6) in

C([0, T ],H
1
2
+ǫ(T)), we have w = eit∂

2
xW ∈ C([0, T ],H

1
2
+ǫ(T)) →֒ C([0, T ], L∞(T)).

Therefore, the nonlinearity G(w, v) makes sense as a function in L1(R) + L2(R) since

|v|2v ∈ L1(R), w2v̄, |w|2v ∈ L3(R) ∩ L2(R) and v2w̄, |v|2w ∈ L1(R) ∩ L
3
2 (R).

As a consequence of this, its box operator �nG(w, v) ∈ L2(R) and from the PDE

(111) i∂tvn = S(t)�nG(S(−t)w,S(−t)v) ,

which is true in the sense of distributions (C∞([0, T ], S(R)))′ , we infer ∂tvn ∈ C([0, T ], L2(R)).
This, together with vn ∈ C([0, T ], L2(R)), already implies vn ∈ C1([0, T ], L2(R)). In-

deed, to obtain this it suffices to know that if two space–time distributions S and T ∈
(C∞([0, T ], S(R)))′ have the same time derivatives, ∂tS = ∂tT , then there is distribution
c, acting only on the space variable, such that S = T + c. This can be found, for example,
in [19, Section 3.3].

Thus, we can rewrite the the PDE in the integral form

(112) vn = vn(0) + i

ˆ t

0
S(τ)�nG(S(−τ)w,S(−τ)v) dτ ,

which means that we can continue with the differentiation by parts technique, as it was
described in Sections 3 and 4, directly for the function v without having to approximate
it by smooth solutions, as done in the previous Section 5. The next lemma justifies the
interchange of time differentiation and space integration

Lemma 28. Let f(t, x), ∂tf(t, x) ∈ C([0, T ], L1(Rd)) and define the distribution
´

Rd f(·, x)dx
by 〈 ˆ

Rd

f(·, x)dx, φ
〉
=

ˆ

R

ˆ

Rd

f(t, x)φ(t)dxdt,

with φ ∈ C∞
c (R). Then, ∂t

´

Rd f(·, x)dx =
´

Rd ∂tf(·, x)dx.
Proof. By definition

〈
∂t

ˆ

Rd

f(·, x)dx, φ
〉
= −

〈ˆ

Rd

f(·, x)dx, φ′
〉
= −

ˆ

R

ˆ

Rd

f(t, x)φ′(t)dxdt

and, since f ∈ C([0, T ], L1(Rd)), we can change the order of integration by Fubini’s Theo-
rem to obtain

−
ˆ

Rd

ˆ

R

f(t, x)φ′(t)dtdx =

ˆ

Rd

ˆ

R

∂tf(t, x)φ(t)dtdx =

ˆ

R

ˆ

Rd

∂tf(t, x)φ(t)dxdt,
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where in the first equality we used the definition of the weak derivative of f and in the
second equality Fubini’s Theorem with the fact that ∂tf ∈ C([0, T ], L1(Rd)). The last
integral is equal to 〈ˆ

Rd

∂tf(·, x)dx, φ
〉

and the proof is complete. �

Consider now the expressions (38), (41) and (42) for fixed n and ξ. We want to apply
Lemma 28 to each one of the following functions

f1(t, ξ1, ξ3) = σn(ξ)
e−2it(ξ−ξ1)(ξ−ξ3)

−2i(ξ − ξ1)(ξ − ξ3)
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3),

f2(t, ξ1) = σn(ξ)wn3

e−2it(ξ−n3)(ξ−ξ1)

−2i(ξ − n3)(ξ − ξ1)
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − n3),

f3(t, ξ1) = σn(ξ)w̄n2

e−2it(ξ−ξ1)(ξ1−n2)

−2i(ξ − ξ1)(ξ1 − n2)
v̂n1(ξ1)v̂n3(ξ − ξ1 + n2),

where ξ ≈ n, ξ1 ≈ n1, ξ3 ≈ n3, ξ − ξ1 − ξ3 ≈ −n2 and (n, n1, n2, n3) ∈ AN (n)c given by
(35). With the use of Young’s inequality and the fact that for all n, v̂n, ∂tv̂n are compactly
supported functions in L2(R), it is not hard to obtain that f1, ∂tf1 ∈ C([0, T ], L1(R2)) and
f2, f3, ∂tf2, ∂tf3 ∈ C([0, T ], L1(R)). Thus, for f1, and similarly for f2, f3,

∂t

[ˆ

R2

σn(ξ)
e−2it(ξ−ξ1)(ξ−ξ3)

−2i(ξ − ξ1)(ξ − ξ3)
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3)dξ1dξ3

]

=

ˆ

R2

σn(ξ)∂t

[
σn(ξ)

e−2it(ξ−ξ1)(ξ−ξ3)

−2i(ξ − ξ1)(ξ − ξ3)
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3)

]
dξ1dξ3

=

ˆ

R2

σn(ξ)∂t

[ e−2it(ξ−ξ1)(ξ−ξ3)

−2i(ξ − ξ1)(ξ − ξ3)

]
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3)dξ1dξ3

+

ˆ

R2

σn(ξ)
e−2it(ξ−ξ1)(ξ−ξ3)

−2i(ξ − ξ1)(ξ − ξ3)
∂t

[
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3)

]
dξ1dξ3.

In the second equality we used the product rule which is applicable since v̂n ∈ C1([0, T ], L2(R)).
Finally it remains to justify the interchange of differentiation in time and summation in

the discrete variable but this is done in exactly the same way as in [7] (Lemma 5.1). Similar
arguments justify the interchange on the Jth step of the infinite iteration procedure.

Thus, we obtain the following expression in C([0, T ],Hs(R)) for the solution v of NLS
(111) with initial data v0

(113) v = Γv0v + lim
J→∞

ˆ t

0
N

(J+1)
2 (v)dτ,

where the limit is an element of C([0, T ],Hs(R)). Its existence follows from the fact that

the operators Γ
(J)
v0 v converge to Γv0v in the norm of C([0, T ],Hs(R)) as J → ∞. The

important estimate about the remainder operator N
(J)
2 is the following
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Lemma 29.

lim
J→∞

‖N (J)
2 (v)‖l∞L2(R) = 0.

The proof is very similar to the one given in [15], Lemma 28, where we have to consider

the cases ∂tvn, ∂twn with similar arguments. This lemma implies that limJ→∞

´ t

0 N
(J+1)
2 (v)dτ

is equal to 0 in X(T ) = C([0, T ],Hs(R)). From this we obtain the uniqueness of NLS (111)
since if there are two solutions v1 and v2 with the same initial datum v0 we obtain by (102)

‖v1 − v2‖XT
= ‖Γv0v1 − Γv0v2‖XT

. ‖v0 − v0‖Hs(R) = 0.
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[5] M. B. Erdoğan and N. Tzirakis Dispersive partial differential equations. Wellposedness and appli-

cations. London Mathematical Society Student Texts, 86. Cambridge University Press, Cambridge,
2016. xvi+186 pp. ISBN: 978-1-316-60293-5;

[6] H. G. Feichtinger,Modulation spaces on locally compact Abelian groups. Technical Report, University
of Vienna, 1983, in: Proc. Internat. Conference on Wavelet and applications, 2002, New Delhi Allied
Publishers, India (2003), 99–140.
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