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LONG TIME EXISTENCE FOR A STRONGLY DISPERSIVE BOUSSINESQ

SYSTEM

JEAN-CLAUDE SAUT AND LI XU

Abstract.
This paper is concerned with the one-dimensional version of a specific member of the (abcd) family

of Boussinesq systems having the higher possible dispersion. We will establish two different long time
existence results for the solutions of the Cauchy problem. The first result concerns the system (1.4)
without a small parameter. If the initial data is of order O(ε), we prove that the existence time scale is of

1/ε
4
3 which improves the result 1/ε that could be obtained by a ”dispersive” method. The second result

is about the system (1.6) which involves a small parameter ǫ in front of the dispersive and nonlinear
terms and which is the form obtained when the system is derived from the water wave system in the
KdV/Boussinesq regime. If the initial data is of order O(1), we obtain the existence time scale 1/ǫ

2
3

which improves the result 1/
√
ǫ obtained by a dispersive method. These results were not included in the

previous papers dealing with similar issues because of the presence of zeroes in the phases. The proof
involves normal form transformations suitably modified away from the zero set of the phases.
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1. Introduction

1.1. The general setting. The four-parameter (abcd) Boussinesq systems for long wavelength, small
amplitude gravity-capillary surface water waves introduced in [6, 7] couples the elevation of the wave

ζ = ζ(x, t) to a measure of the horizontal velocity v = v(x, t), x ∈ R
N , N = 1, 2, t ∈ R and read as

follows: 



∂tζ +∇ · v + ǫ∇ · (ζv) + ǫ
(
a∇ ·∆v − b∆∂tζ

)
= 0,

∂tv +∇ζ +
ǫ

2
∇(|v|2) + ǫ

(
c∇∆ζ − d∆∂tv

)
= 0.

(1.1)

Here a, b, c, d are modeling parameters which satisfy the constraint a+ b+ c+ d = 1
3 − τ where τ ≥ 0

is a measure of surface tension effects, τ = 0 for pure gravity waves.
In (1.1), the small parameter ǫ is defined by

ǫ = a/h ∼ (h/λ)2,

where h denotes the mean depth of the fluid, a a typical amplitude of the wave and λ a typical horizontal
wavelength.

It was established in [6] that, in suitable Sobolev classes, the error with solutions of the full water
waves system and the approximation given by (1.1) is of order O(ǫ2t). This result is of course useful if one
knows that the corresponding solutions of the water wave system in this regime and of the Boussinesq
systems exist on time scales of at least O(1/ǫ). This has been proven in [3], see also [18], for the water
wave systems and in [10, 11, 20, 22, 23] for all the locally-well posed Boussinesq systems except the case
b = d = 0, a = c > 0 which is in some sense special since the ”generic” case b = d = 0, a, c > 0, a 6= c is
linearly ill-posed.

Remark 1.1. The global well-posedness of Boussinesq systems has been only established in a few one-
dimensional cases, including the case a = c = b = 0, d > 0 that can be viewed as a dispersive perturbation
of the hyperbolic Saint-Venant (shallow water) system, see [4, 24], and the Hamiltonian cases b = d >
0, a ≤ 0, c < 0, see [8]. We also refer to [16, 17] for scattering results in the energy space for those
Hamiltonian cases when b = d > 0.

Recall that the linearization of (1.1) around the null solution is well-posed (see [7]) provided that

a ≤ 0, c ≤ 0, b ≥ 0, d ≥ 0, (1.2)

or a = c > 0, b ≥ 0, d ≥ 0. (1.3)

Actually the linear well-posedness occurs when the non zero eigenvalues of the linearization of (1.1)
at (0, 0)

λ±(ξ) = ±i|ξ|
(
(1− ǫa|ξ|2)(1 − ǫc|ξ|2)
(1 + ǫd|ξ|2)(1 + ǫb|ξ|2)

) 1
2

.

are purely imaginary.

This paper will focus on the exceptional case (1.3) with b = d = 0, a = c = 1 which is the only
linearly well-posed case with eigenvalues having non trivial zeroes. Moreover we will restrict to the
one-dimensional case, N = 1.

If (ζ, v) is a solution of (1.1), then by the scaling

ζ̃(t, x) = ǫζ(ǫ
1
2 t, ǫ

1
2 x), ṽ(t, x) = ǫv(ǫ

1
2 t, ǫ

1
2x),

(ζ̃ , ṽ) satisfies (1.1) with ǫ = 1 (see also [7]).

In this article, we first establish the long time existence theory for the following strongly dispersive
(1D) Boussinesq system 




∂tζ + (1 + ∂2
x)∂xv + ∂x(ζv) = 0,

∂tv + (1 + ∂2
x)∂xζ +

1

2
∂x(v

2) = 0,
(1.4)

with initial data
ζ|t=0 = ζ0, v|t=0 = v0 (1.5)

which are of order O(ε) in a suitable Sobolev class on time scales of order O(1/ε
4
3 ). A similar issue was

discussed in [12] for multi-dimensional periodic water waves.
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As a consequence, we will prove the long time existence of solutions to (1.1) with b = d = 0, a = c = 1
in the one-dimensional case, that is





∂tζ + (1 + ǫ∂2
x)∂xv + ǫ∂x(ζv) = 0,

∂tv + (1 + ǫ∂2
x)∂xζ +

ǫ

2
∂x(v

2) = 0,
(1.6)

with initial data
ζ|t=0 = ζ0, v|t=0 = v0 (1.7)

which are of order O(1), on time scales of order O(1/ǫ2/3).
Contrary to [22, 23] where only symmetrization techniques were used to establish the well-posedness

of Boussinesq systems on time scales of order O(1/ǫ), we will use normal form transformations suitably
modified to avoid the zero set of the phases. Normal form techniques were used to obtain global or long
time existence results of small solutions to the full water wave system, see e.g., [1, 12, 25].

We recall that the local well-posedness of (1.4) and (1.6) can be established by reducing to known
results for the KdV equation.

Actually, as noticed in [8], the change of variable ζ = u+ w, v = u− w reduces (1.6) to the following
system: {

ut + ux + ǫuxxx +
ǫ
2 [3uux − wwx − (uw)x] = 0

wt − wx − ǫwxxx + ǫ
2 [uux − 3wwx + (uw)x] = 0

, x ∈ R, t ∈ R, (1.8)

which is a system of KdV type with uncoupled (diagonal) linear part. Thus (see [8]) the Cauchy problem
is easily seen to be locally well-posed for initial data in Hs(R)×Hs(R), s > 3

4 by the results in [13], [14].
On the other hand, as noticed in [21] Appendix A in a slightly different context, a minor modification of

Bourgain’s method as used in [15] allows to solve the Cauchy problem for (1.8) for data in Hs(R)×Hs(R)
with s > − 3

4 . We refer to [9] for details. It is worth noticing that in [9] the question of the dependence
of the existence time with respect to ǫ is not considered but one can check that it is of order O(1/

√
ǫ).

By using dispersive properties it has been moreover established in [19] that the two-dimensional version
of (1.6) is well-posed in Hs(R2) ×Hs(R2) ×Hs(R2), s > 3

2 on time scales of order O(1/
√
ǫ). Note that

neglecting the dispersive terms in (1.6) one gets by a standard symmetrization method the existence on
time scales of order O(1/ǫ) but in the ”hyperbolic” space Hs(R2), s > 2.

We also recall (see [8]) that (1.6) and (1.4) have an Hamiltonian structure given (for (1.6) ) by

∂t

(
ζ
v

)
= Jgrad H

(
ζ
v

)

where

J =

(
0 ∂x
∂x 0

)

and

H(ζ, v) =
1

2

∫ ∞

−∞

(ǫζ2x + ǫv2x − ζ2 − v2 − ǫv2ζ)dx.

Unfortunately, contrary to the case b = d > 0, a ≤ 0, c < 0 mentioned above, it does not seem possible
to use uniquely this structure to prove the global existence of small solutions.

The paper will be organized as follows. The Introduction will continue by some heuristics and the
statements of the main results. Section 2 is devoted to some preliminary results. A symmetrization of
the strongly dispersive system is given in Section 3 while Sections 4 and 5 are devoted to the proof of the
main results, Theorem 1.1 and Theorem 1.2 respectively.

1.2. Heuristics analysis of the system (1.4). In order to diagonalize the linear part of (1.4), we define

V = ζ + i
∂x
|∂x|

v and Λ = (1 + ∂2
x)|∂x|.

Then (1.4) is rewritten as

∂tV − iΛV =
∑

µ,ν∈{+,−}

Qµ,ν(V
µ, V ν), (1.9)
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where V + = V, V − = V and Qµ,ν(V
µ, V ν) are quadratic terms in V µ and V ν with symbol qµ,ν(·, ·), i.e.,

F
(
Qµ,ν(V

µ, V ν)
)
(ξ) =

1

2π

∫

R

qµ,ν(ξ, η)V̂ µ(ξ − η)V̂ ν(η)dη. (1.10)

One could check that |qµ,ν(ξ, η)| ∼ |ξ|. Since we aim to prove long time existence results for solutions of
(1.4), we hope that the quadratic terms could be killed. To do so, we use normal form transformation
techniques.

Defining the profile of V as follows

f(t, x) = e−itΛV (t, x), i.e., f̂(t, ξ) = e−itΛ(ξ)V̂ (t, ξ),

we have

∂tf̂ =
∑

µ,ν∈{+,−}

1

2π

∫

R

eitΦµ,ν (ξ,η)qµ,ν(ξ, η)f̂µ(ξ − η)f̂ν(η)dη, (1.11)

where the phase Φµ,ν(ξ, η) is defined by

Φµ,ν(ξ, η) = −Λ(ξ) + µΛ(ξ − η) + νΛ(η).

To remove the quadratic terms in the right hand side of (1.11), we introduce the following normal forms
transformation

g = f +
∑

µ,ν∈{+,−}

Aµ,ν(f
µ, fν), (1.12)

where

F
(
Aµ,ν(f

µ, fν)
)
(ξ) =

1

2π

∫

R

eitΦµ,ν(ξ,η)aµ,ν(ξ, η)f̂µ(ξ − η)f̂ν(η)dη

with the symbol

aµ,ν(ξ, η) = − qµ,ν(ξ, η)

iΦµ,ν(ξ, η)
. (1.13)

Thus, we have

∂tĝ =
1

2π

∑

µ,ν∈{+,−}

∫

R

eitΦµ,ν (ξ,η)aµ,ν(ξ, η)∂t

(
f̂µ(ξ − η)f̂ν(η)

)
dη. (1.14)

By virtue of (1.11), we see that the r.h.s. of (1.14) includes the cubic terms in (fµ, fν, fγ). Therefore,
if the symbols of quadratic terms have ”good” properties, for data of small size ε, the time scale 1

ε2 is
much likely expected.

We will use the normal form techniques in another way, that is, integrating by parts with respect to
time in the energy estimate. More precisely, energy estimate gives rise to

1

2

d

dt
‖V ‖2HN =

∑

µ,ν∈{+,−}

(
Qµ,ν(V

µ, V ν) |V +
)
HN ,

which implies that

‖V (t)‖2HN . ‖V (0)‖2HN +
∑

µ,ν∈{+,−}

∫ t

0

(
Qµ,ν(V

µ, V ν) |V +
)
HN dτ

︸ ︷︷ ︸
Iµ,ν

. (1.15)

For Iµ,ν , using (1.10) and the profiles, we have

Iµ,ν =
1

(2π)2

∫ t

0

∫

R×R

〈ξ〉2Nqµ,ν(ξ, η)V̂ µ(ξ − η)V̂ ν(η)V̂ +(ξ)dηdξdτ

=
1

(2π)2

∫ t

0

∫

R×R

eiτΦµ,ν(ξ,η)〈ξ〉2Nqµ,ν(ξ, η)f̂µ(ξ − η)f̂ν(η)f̂+(ξ)dηdξdτ.

Since

eiτΦµ,ν(ξ,η) =
1

iΦµ,ν(ξ, η)

d

dτ
eiτΦµ,ν(ξ,η),
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integrating by parts with respect to τ , we have

Iµ,ν =
1

(2π)2

∫

R×R

eiτΦµ,ν(ξ,η)
〈ξ〉2N qµ,ν(ξ, η)

iΦµ,ν(ξ, η)
· f̂µ(ξ − η)f̂ν(η)f̂+(ξ)dηdξ

∣∣t
τ=0

− 1

(2π)2

∫ t

0

∫

R×R

eiτΦµ,ν(ξ,η)
〈ξ〉2N qµ,ν(ξ, η)

iΦµ,ν(ξ, η)
· ∂τ

(
f̂µ(ξ − η)f̂ν(η)f̂+(ξ)

)
dηdξdτ.

(1.16)

By virtue of (1.11), we see that the second term in the r.h.s of (1.16) includes inner product between
the cubic terms of (fµ, fν , fγ) and f+. The first term in the r.h.s of (1.16) may be controlled by the initial
energy. If the symbols of quadratic terms have ”good” properties, one may derive an energy estimate
from (1.15) so that the time scale 1

ε2 is much likely expected, provided that the data is of small size ε.

However, the phase Φµ,ν(ξ, η) may equal 0 for some ξ and η. The symbol aµ,ν(ξ− η, η) in (1.13) is not

well-defined for all (ξ, η) ∈ R
2. While the integration by parts with respect to τ in (1.16) could not work

for all (ξ, η) ∈ R
2. We have to modify the normal forms transformation only on the ”good frequencies

set” that is far away from the zeroes of the phase Φµ,ν(ξ, η) . Then the existence time scale may be
enlarged. Although we could not obtain the time scale 1

ε2 , we may get the existence time scale 1
ε1+δ (for

some δ ∈ (0, 1)). It extends the local existence time scale 1
ε that can be obtained by a purely dispersive

method as in [19].

In the present paper, we thus use normal form techniques after integration by parts with respect to
time as in (1.16).

1.3. The main results. We now state the main results of this paper. The first one concerns the system
(1.4) without the small parameter ǫ but with ”small” initial data.

Theorem 1.1. Assume that (ζ0, v0) ∈ HN0(R) for some N0 ≥ 4 satisfying ζ̂0(0) = v̂0(0) = 0 and

‖ζ0‖2HN0
+ ‖v0‖2HN0

= ε2. (1.17)

There exists a small ε0 > 0 such that for all ε ∈ (0, ε0], there exists Tε = c0ε
− 4

3 for some c0 > 0 and a
unique solution (ζ, v) ∈ C(0, Tε;H

N0(R)) of system (1.4)-(1.5) such that

sup
(0,Tε)

(
‖ζ(t)‖HN0 + ‖v(t)‖HN0

)
≤ C

(
‖ζ0‖HN0 + ‖v0‖HN0

)
, (1.18)

where C > 0 is a universal constant.

Remark 1.2. If ζ̂0(0) = v̂0(0) = 0, (1.4) shows that ζ̂(t, 0) = v̂(t, 0) = 0 holds for all time t > 0.

Therefore, throughout the whole paper, we shall use the condition ζ̂(t, 0) = v̂(t, 0) = 0.

As a consequence of Theorem 1.1, we get the long time existence of solutions to system (1.6) :

Theorem 1.2. Assume that (ζ0, v0) ∈ HN0(R) with N0 ≥ 4 satisfying ζ̂0(0) = v̂0(0) = 0. There exist a
small ǫ0 > 0 and a constant T0 = T0(‖(ζ0, v0)‖HN0 ) such that for any ǫ ∈ (0, ǫ0], there exists a unique

solution (ζ, v) ∈ C(0, T0ǫ
− 2

3 ;HN0(R)) of system (1.6)-(1.7) such that

sup
(0,T0ǫ

− 2
3 )

(
‖ζ(t)‖HN0 + ‖v(t)‖HN0

)
≤ C

(
‖ζ0‖HN0 + ‖v0‖HN0

)
. (1.19)

Here T0 = T0(‖(ζ0, v0)‖HN0 ) is a constant depending on ‖(ζ0, v0)‖HN0 .

Remark 1.3. Contrary to the previous known results on long time existence of other (abcd) Boussinesq
systems obtained in [10, 11, 20, 22, 23], we do not reach in Theorem 1.2 the expected time scales O(1/ǫ).
Recall however that Theorem 1.2 improves the O(1/

√
ǫ) result obtained by purely dispersive methods, see

[19].

1.4. Comments on the proofs of Theorems 1.1 and 1.2. We shall prove two different long time
existence results in Theorems 1.1 and 1.2. The proofs of the theorems share some common features.
To avoid losing derivative, we introduce the good unknowns (in the sense of Alinhac [2]) (ζ, u) via
nonlinear and nonlocal transformation. Then the principal paralinearization parts for the new system of
V = ζ + i ∂x

|∂x|
u (or (ζ, u)) are symmetric (see (3.6) and (5.3)).

However, to enlarge the scale of the existence time, the difficulties of system (3.6) and (5.3) are
different. For system (3.6), we want to prove an existence time of scale O(1/ε4/3) when the data are
of order O(ε). The main difficulty arises from all the quadratic terms so that we have to deal with all
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the quadratic terms by the normal form transformation techniques which sketched in subsection 1.2.
Whereas for system (5.3), we want to prove an existence time of scale O(1/ǫ2/3) when the data are of
order O(1) with small parameter ǫ. The key difficulty stems from the quadratic term that is of order
O(

√
ǫ) involving the low frequencies. We only apply the normal form transformation techniques to such

O(
√
ǫ) term. One could check that the normal form transformation could not improve the estimates

involving other quadratic terms which are of order O(ǫ).

2. Preliminary

2.1. Definitions and notations. The notation f ∼ g means that there exists a constant C such that
1
C f ≤ g ≤ Cf . f . g means that there exists a constant C such that f ≤ Cg. We shall use C to denote
a universal constant which may changes from line to line. For any s ∈ R, Hs(R) denotes the classical
L2 based Sobolev spaces with the norm ‖ · ‖Hs . The notation ‖ · ‖Lp stands for the Lp(R) norm for
1 ≤ p ≤ ∞. For any k ∈ N, we denote by

‖f‖Wk,∞ =

k∑

j=0

‖∂j
xf‖L∞ .

The L2(R) scalar product is denoted by (u | v)2 def
=

∫
R
uv̄dx.

If A,B are two operators, [A,B] = AB −BA denotes their commutator.
The Fourier transform of a tempered distribution u ∈ S ′ is denoted by û, which is defined as follows

û(ξ)
def
= F(u)(ξ) =

∫

Rn

eix·ξu(x)dx.

We use F−1(f) to denote the inverse Fourier transform of f(ξ).
If f and u are two functions defined on R, the Fourier multiplier f(D)u is defined in term of Fourier

transforms, i.e.,

f̂(D)u(ξ) = f(ξ)û(ξ).

We shall use notations

〈ξ〉 =
(
1 + |ξ|2

) 1
2 , 〈∂x〉 =

(
1 + |∂x|2

) 1
2 .

For two well-defined functions f(x), g(x) and their bilinear form Q(f, g), we use the convection that
the symbol q(ξ, η) of Q(f, g) is defined in the following sense

F
(
Q(f, g)

)
(ξ) =

1

2π

∫

R

q(ξ, η)f̂(ξ − η)ĝ(ξ)dη.

2.2. Para-differential decomposition theory. Our proof of the main results relies on suitable energy
estimates for the solutions of (1.4) and (1.6). To do so, we introduce para-differential formulations (see
e.g., [5]) to symmetrize the systems (1.4) and (1.6).

We fix an even smooth function ϕ : R → [0, 1] supported in [− 3
2 ,

3
2 ] and equals to 1 in [− 5

4 ,
5
4 ]. For

any k ∈ Z, we define

ϕk(x)
def
= ϕ(

x

2k
)− ϕ(

x

2k−1
), ϕ≤k(x)

def
= ϕ(

x

2k
) =

∑

l≤k

ϕl(x). ϕ≥k(x)
def
= 1− ϕ≤k−1(x).

While for any interval I of R, we define

ϕI(x)
def
=

∑

k∈I

ϕk(x) =
∑

k∈I∩Z

ϕk(x).

Then for any x ∈ R,
∑

k∈Z

ϕk(x) = 1 and suppϕk(·) ∈ {x ∈ R | |x| ∈ [
5

8
2k,

3

2
2k]}. (2.1)

We use Pk, P≤k, P≥k and PI to denote the Littlewood-Paley projection operators of the Fourier
multiplier ϕk, ϕ≤k, ϕ≥k and ϕI , respectively.

We shall use the following para-differential decomposition: for any functions f, g ∈ S ′(R),

fg = Tfg + Tgf +R(f, g), (2.2)



WELL-POSEDNESS 7

with the para-differential operators being defined as follows

Tfg =
∑

j∈Z

P≤j−7f · Pjg, R(f, g) =
∑

j∈Z

Pjf · P[j−6,j+6]g.

2.3. Analysis of the phases. In this subsection, we shall discuss the quadratic phase function Φµ,ν(ξ, η)
which is defined as follows:

Φµ,ν(ξ, η) = −Λ(ξ) + µΛ(ξ − η) + νΛ(η), µ, ν ∈ {+,−}, (2.3)

where Λ(ξ) is defined by

Λ(ξ) = (1− |ξ|2)|ξ| = |ξ| − |ξ|3.
We first rewrite the explicit expressions of the phases.

Lemma 2.1. For any (ξ, η) ∈ R
2 with ξ 6= η, ξ 6= 0, η 6= 0, we have

Φ+,+(ξ, η) =





3|ξ||ξ − η||η|, if (ξ − η) · η > 0,

− 1

2
min{|ξ − η|, |η|}

(
3|ξ|2 + 3max{|ξ − η|2, |η|2}+min{|ξ − η|2, |η|2}

)
− 4

)
,

if (ξ − η) · η < 0;

Φ−,−(ξ, η) =





1

2
|ξ|

(
|ξ|2 + 3|ξ − η|2 + 3|η|2 − 4

)
, if (ξ − η) · η > 0,

1

2
max{|ξ − η|, |η|}

(
3|ξ|2 + 3min{|ξ − η|2, |η|2}+max{|ξ − η|2, |η|2} − 4

)
,

if (ξ − η) · η < 0;

and

Φ−,+(ξ, η) = −Φ+,+(η, ξ), Φ+,−(ξ, η) = −Φ+,+(η − ξ, η).

Proof. We derive the expressions of phases one by one.

(1) For Φ+,+, by the definition, we have

Φ+,+(ξ, η) = −|ξ|+ |ξ − η|+ |η|+ |ξ|3 − |ξ − η|3 − |η|3

= (|ξ| − |ξ − η| − |η|)
(
2|ξ|2 −

(
1 + 2sign

(
(ξ − η) · η

))
|ξ − η||η|

+ |ξ|(|ξ − η|+ |η|)− 1
)
+ 3|ξ||ξ − η||η|.

If (ξ − η) · η > 0, we have

|ξ| − |ξ − η| − |η| = 0,

which gives rise to

Φ+,+(ξ, η) = 3|ξ||ξ − η||η|.
If (ξ − η) · η < 0, we have

|ξ| =
∣∣|ξ − η| − |η|

∣∣ = max{|ξ − η|, |η|} −min{|ξ − η|, |η|},
and |ξ| − |ξ − η| − |η| = −2min{|ξ − η|, |η|},

which yields

Φ+,+(ξ, η) = −2min{|ξ − η|, |η|}
(
2|ξ|2 + |ξ − η||η|+ |ξ|(|ξ − η|+ |η|)− 3

2
|ξ|max{|ξ − η|, |η|} − 1

)

= −2min{|ξ − η|, |η|}
(3
2
max{|ξ − η|2, |η|2}+min{|ξ − η|2, |η|2} − 3

2
|ξ − η||η| − 1

)

= −2min{|ξ − η|, |η|}
(3
4
max{|ξ − η|2, |η|2}+ 1

4
min{|ξ − η|2, |η|2}+ 3

4
(|ξ − η| − |η|)2 − 1

)

= −1

2
min{|ξ − η|, |η|}

(
3|ξ|2 + 3max{|ξ − η|2, |η|2}+min{|ξ − η|2, |η|2}

)
− 4

)
.
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(2) For Φ−,−, by the definition, we have

Φ−,−(ξ, η) = −
(
|ξ|+ |ξ − η|+ |η|

)
+
(
|ξ|3 + |ξ − η|3 + |η|3

)

= (|ξ|+ |ξ − η|+ |η|)
(
|ξ|2 − |ξ|(|ξ − η|+ |η|) + (|ξ − η|+ |η|)2 − 3|ξ − η||η| − 1

)

+ 3|ξ||ξ − η||η|.

If (ξ − η) · η > 0, we have

|ξ| = |ξ − η|+ |η|,

and

Φ−,−(ξ, η) = 2|ξ|
(
|ξ − η|2 + |η|2 + 1

2
|ξ − η||η| − 1

)

=
1

2
|ξ|

(
|ξ|2 + 3|ξ − η|2 + 3|η|2 − 4

)
.

If (ξ − η) · η < 0, we have

|ξ| =
∣∣|ξ − η| − |η|

∣∣ = max{|ξ − η|, |η|} −min{|ξ − η|, |η|},
and |ξ|+ |ξ − η|+ |η| = 2max{|ξ − η|, |η|},

which implies

Φ−,−(ξ, η) = 2max{|ξ − η|, |η|}
(
max{|ξ − η|2, |η|2}+ 3

2
min{|ξ − η|2, |η|2} − 3

2
|ξ − η||η| − 1

)

=
1

2
max{|ξ − η|, |η|}

(
3|ξ|2 + 3min{|ξ − η|2, |η|2}+max{|ξ − η|2, |η|2} − 4

)
.

(3) For Φ+,− and Φ−,+, by the definition, we have

Φ−,+(ξ, η) = −Φ+,+(η, ξ), Φ+,−(ξ, η) = −Φ+,+(η − ξ, η).

The lemma is proved. �

As a consequence, defining

Λǫ(ξ) = (1 − ǫ|ξ|2)|ξ| = |ξ| − ǫ|ξ|3,

and

Φǫ
µ,ν(ξ, η) = −Λǫ(ξ) + µΛǫ(ξ − η) + νΛǫ(η), µ, ν ∈ {+,−}, (2.4)

we obtain explicit expressions of the phases Φǫ
µ,ν(ξ, η) which involve the operator Λǫ.

Lemma 2.2. For any (ξ, η) ∈ R
2 with ξ 6= η, ξ 6= 0, η 6= 0, we have

Φ+,−(ξ, η) =





− 3ǫ|ξ||ξ − η||η|, if ξ · η < 0,

1

2
min{|ξ|, |η|}

(
3ǫ|ξ − η|2 + 3ǫmax{|ξ|2, |η|2}+ ǫmin{|ξ|2, |η|2} − 4

)
,

if ξ · η > 0;

Φǫ
−,−(ξ, η) =





1

2
|ξ|

(
ǫ|ξ|2 + 3ǫ|ξ − η|2 + 3ǫ|η|2 − 4

)
, if (ξ − η) · η > 0,

1

2
max{|ξ − η|, |η|}

(
3ǫ|ξ|2 + 3ǫmin{|ξ − η|2, |η|2}+ ǫmax{|ξ − η|2, |η|2} − 4

)
,

if (ξ − η) · η < 0;

and

Φǫ
+,+(ξ, η) = −Φǫ

+,−(η − ξ, η), Φǫ
−,+(ξ, η) = −Φǫ

+,+(η, ξ) = Φǫ
+,−(ξ − η, ξ), .
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2.4. Technical lemmas.

Lemma 2.3. Let f, g be smooth enough functions. Then,

[
∂x
|∂x|

, Tf ]g = 0. (2.5)

Proof. By the definitions of commutator and para-differential operators, we have

F
(
[
∂x
|∂x|

, Tf ]g
)
(ξ) = i

∫

R

(
sign(ξ)− sign(η)

)∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)f̂(ξ − η)ĝ(η)dη.

For fixed ξ ∈ R, when |η| ∈ (2k, 2k+1] with k ∈ Z, we have

∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|) =
k+1∑

j=k

ϕ≤j−7(|ξ − η|)ϕj(|η|) ≤ ϕ(
|ξ − η|
|η| · |η|

2k−6
) ≤ ϕ≤−6(

|ξ − η|
|η| ). (2.6)

Then we get |ξ − η| ≤ 2−5|η|, which yields

ξ · η > 0.

Otherwise,

|ξ − η| = |ξ|+ |η| ≥ |η|.
Therefore, we have ξ · η > 0 and

F
(
[
∂x
|∂x|

, Tf ]g
)
(ξ) = 0,

which implies (2.5). The lemma is proved. �

3. Symmetrization of the system (1.4)

In this section, we will symmetrize the system (1.4) by introducing good unknowns.

3.1. Symmetrization of the system (1.4). By virtue of the para-differential decomposition, we rewrite
(1.4) to 




∂tζ + (1 + ∂2
x)∂xv + ∂x(Tvζ) + ∂x(Tζv) + ∂x

(
R(ζ, v)

)
= 0,

∂tv + (1 + ∂2
x)∂xζ + ∂x(Tvv) +

1

2
∂x

(
R(v, v)

)
= 0.

(3.1)

We introduce good unknowns (ζ, u) with

u = v +B(ζ, v), (3.2)

where B(·, ·) is a bilinear operator defined as

B(f, g) =
1

2
Tf

(
(1 + ∂2

x)
−1P≥6g

)
.

Without confusion, we sometimes use B to denote the bilinear term B(ζ, v).
Thanks to (3.1) and (3.2), we have

∂tζ + (1 + ∂2
x)∂xu+ ∂x(Tvζ) + ∂x(Tζu) = (1 + ∂2

x)∂xB − ∂x
(
R(ζ, v)

)
+ ∂x(TζB).

Since

(1 + ∂2
x)∂xB =

1

2
∂x

(
TζP≥6u

)
− 1

2
∂x

(
TζP≥6B

)
+

1

2
∂x

(
[∂2

x, Tζ](1 + ∂2
x)

−1P≥6v
)
,

we have

∂tζ + (1 + ∂2
x)∂xu+ ∂x(Tvζ) +

1

2
∂x(Tζu) = Nζ, (3.3)

where

Nζ = −1

2
∂x

(
TζP≤5u

)
− 1

2
∂x

(
TζP≥6B

)
+ ∂x(TζB) +

1

2
∂x

(
[∂2

x, Tζ ](1 + ∂2
x)

−1P≥6v
)
− ∂x

(
R(ζ, v)

)
.

Using (1.4), (3.1) and (3.2), we also have

∂tu = ∂tv +B(∂tζ, v) +B(ζ, ∂tv)

= −(1 + ∂2
x)∂xζ − ∂x(Tvv)−

1

2
∂x

(
R(v, v)

)
+B(∂tζ, v)−B(ζ, (1 + ∂2

x)∂xζ)−
1

2
B
(
ζ, ∂x(|v|2)

)
.
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Noticing that

B(ζ, (1 + ∂2
x)∂xζ) =

1

2
Tζ∂xP≥6ζ, ∂x(Tvv) = ∂x(Tvu)− ∂x(TvB),

we have

∂tu+ (1 + ∂2
x)∂xζ + ∂x(Tvu) +

1

2
∂x

(
Tζζ

)
= Nu, (3.4)

where

Nu =
1

2
∂x

(
TζP≤5ζ

)
+

1

2
T∂xζP≥6ζ + ∂x(TvB)− 1

2
∂x

(
R(v, v)

)
+B(∂tζ, v)−

1

2
B
(
ζ, ∂x(|v|2)

)
.

Now, we define

V = ζ + i
∂x
|∂x|

u. (3.5)

Thanks to (3.3) and (3.4), using (2.5), we have

∂tV − iΛV + ∂x(TvV )− 1

2
i|∂x|(TζV ) = Nζ + i

∂x
|∂x|

Nu, (3.6)

where Λ = |∂x|(1 − |∂x|2). The l.h.s of (3.6) is the quasi-linear part of system (1.4).
Denoting by

V + = V, V − = V ,

we shall rewrite the quadratic terms of (3.6) in terms of V + and V −. Whereas we keep the cubic and
quartic terms in terms of ζ and v.

Before ending this subsection, we provide a lemma involving the bilinear operator B(·, ·).

Lemma 3.1. Assume that the real-valued functions f ∈ L∞(R), g ∈ Hs(R) for s ≥ −2. There hold

F
(
B(f, g)

)
(ξ) = F

(
B(f, g)

)
(−ξ) (3.7)

and

‖B(f, g)‖Hs+2 ≤ CB‖f‖L∞‖g‖Hs , (3.8)

where CB > 0 is a universal constant.

Proof. By the definition of B(·, ·), we have

F
(
B(f, g)

)
(ξ) =

1

4π

∫

R

f̂(ξ − η)ĝ(η)(1 − |η|2)−1ϕ≥6(|η|)
∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)dη, (3.9)

and

F
(
B(f, g)

)
(−ξ) =

1

4π

∫

R

f̂(−ξ − η) ĝ(η)(1 − |η|2)−1ϕ≥6(|η|)
∑

j∈Z

ϕ≤j−7(| − ξ − η|)ϕj(|η|)dη

=
1

4π

∫

R

f̂(−ξ + η) ĝ(−η)(1− |η|2)−1ϕ≥6(|η|)
∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)dη.

Since f, g are real-valued functions, we have

f̂(−ξ + η) = f̂(ξ − η), ĝ(−η) = ĝ(η),

which gives rise to

F
(
B(f, g)

)
(−ξ) =

1

4π

∫

R

f̂(ξ − η)ĝ(η)(1 − |η|2)−1ϕ≥6(|η|)
∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)dη.

Then we have

F
(
B(f, g)

)
(ξ) = F

(
B(f, g)

)
(−ξ).

Estimate (3.8) follows from the standard estimate on Tfg and the definition of B(f, g). This completes
the proof of the lemma. �
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3.2. Main proposition for the symmetric system (3.6). For (3.6), we state the following proposition.

Proposition 3.2. Assume that (ζ, v) ∈ HN0(R) with N0 ≥ 4 solves (1.4). Then V defined in (3.5)
satisfies the following system

∂tV − iΛV = SV +QV +RV +MV + LV + CV +NV , (3.10)

where

• The quadratic term SV is of the form

SV = S+,+(V
+, V +) + S−,+(V

−, V +).

And the symbol sµ,+(ξ, η) of Sµ,+ (for µ = +,−) satisfies

sµ,+(ξ, η) = −sµ,+(ξ, η), (3.11)

|〈ξ〉−N0〈η〉−N0
(
〈ξ〉2N0sµ,+(ξ, η)− 〈η〉2N0s−µ,+(η, ξ)

)
| . |ξ − η| · ϕ≤−6

( |ξ − η|
max{|ξ|, |η|}

)
. (3.12)

• The quadratic term QV is of the form

QV = Q+,−(V
+, V −) +Q−,−(V

−, V −).

And the symbol qµ,−(ξ, η) of Qµ,− satisfies

|qµ,−(ξ, η)| . |ξ| · ϕ≤5

(
|η|

)
· ϕ≤−6

( |ξ − η|
|η|

)
. (3.13)

• The quadratic term RV is of the form

RV =
∑

µ,ν∈{+,−}

Rµ,ν(V
µ, V ν).

And the symbol rµ,ν(ξ, η) of Rµ,ν satisfies

|rµ,ν(ξ, η)| . |ξ − η| · ϕ≥6

(
|η|

)
· ϕ≤−6

( |ξ − η|
|η|

)
. (3.14)

• The quadratic term MV is of the form

MV =
∑

µ,ν∈{+,−}

Mµ,ν(V
µ, V ν).

And the symbol mµ,ν(ξ, η) of Mµ,ν satisfies

|mµ,ν(ξ, η)| . |ξ| · ϕ[−6,7]

( |ξ − η|
|η|

)
. (3.15)

• The cubic term LV = ∂x(TBV ) satisfies
∣∣Re

{(
〈∂x〉N0LV | 〈∂x〉N0V

)
2

}∣∣ . ‖ζ‖L∞‖v‖L2‖V ‖2HN0
. (3.16)

• The cubic term CV satisfies

‖CV ‖HN0 . ‖ζ‖W 1,∞
(
‖ζ‖2HN0

+ ‖v‖2HN0

)
. (3.17)

• The quartic term NV satisfies

‖NV ‖HN0 . ‖ζ‖2L∞‖v‖2HN0
. (3.18)

Remark 3.3. Proposition 3.2 shows that there is no loss of derivative for the nonlinear terms of (3.6).
Indeed, in the energy estimates, we shall use the symmetric structure of the quadratic terms SV to avoid
losing derivative(see (3.12)). We also use the symmetric structure of LV to avoid losing derivative(see
the proof of (3.16)).

Remark 3.4. For the symmetric system (3.6) or (3.3)-(3.4), the standard energy estimates will provide
the local existence on time of scale O(1ε ), for the initial data of size ε. To enlarge the existence time
of the system, we shall use the new formulation (3.10) and the normal form transformations. Thanks
to Proposition 3.2, if the quadratic terms equal zero, the estimates of the cubic terms and the quartic
terms guarantee the existence time of scale 1

ε2 . For the non-trivial quadratic terms in (3.10), we shall
apply normal forms transformation in the ”good frequencies set”(far away from zeroes of the phases )
to kill the quadratic terms to the cubic and quartic order terms, while for the quadratic terms in the
”bad frequencies set” (in a small neighborhood of zeroes of phases), we will use the smallness size of the
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frequencies set. Combining the two estimates on both ”good” and ”bad” sets, the optimal ”cut-off” of the
frequencies spaces will determine an existence time of order 1

ε4/3
for ε sufficiently small.

3.3. Proof of Proposition 3.2. In this subsection, we present the proof of Proposition 3.2.

Proof of Proposition 3.2. The nonlinear terms in the r.h.s. of (3.10) come from the nonlinear terms in
(3.6). We rewrite (3.6) to be (3.10) with the nonlinear terms in the following forms

SV = −∂x(TuV ) +
1

2
i|∂x|(TζV ),

QV = −1

2
∂x

(
TζP≤5u

)
− i

2
|∂x|

(
TζP≤5ζ

)
,

RV =
1

2
∂x

(
[∂2

x, Tζ ](1 + ∂2
x)

−1P≥6u
)
+

i

2

∂x
|∂x|

(
T∂xζP≥6ζ

)
− i∂x

|∂x|
B((1 + ∂2

x)∂xu, u),

MV = −∂x
(
R(ζ, u)

)
+

i

2
|∂x|

(
R(u, u)

)
,

LV = ∂x(TBV ),

CV = ∂x(TζB)− 1

2
∂x

(
TζP≥6B

)
− 1

2
∂x

(
[∂2

x, Tζ ](1 + ∂2
x)

−1P≥6B
)
− i|∂x|(TvB)

+
i∂x
|∂x|

B
(
(1 + ∂2

x)∂xv,B
)
+

i∂x
|∂x|

B
(
(1 + ∂2

x)∂xB, v
)
− i∂x

|∂x|
B
(
∂x(ζv), v

)
+ ∂x

(
R(ζ, B)

)

− i

2
|∂x|

(
R(v,B)

)
− i

2
|∂x|

(
R(B, v)

)
− i

2

∂x
|∂x|

B
(
ζ, ∂x(|v|2)

)
,

NV =
i∂x
|∂x|

B
(
(1 + ∂2

x)∂xB,B
)
− i

2
|∂x|

(
R(B,B)

)
.

Here we used the first equation of (1.4) and (3.2). Thanks to (3.5), we have

ζ =
1

2
(V + + V −) =

1

2

∑

µ∈{+,−}

V µ, u =
i

2

∂x
|∂x|

(V + − V −) =
i

2

∑

µ∈{+,−}

µ
∂x
|∂x|

V µ. (3.19)

(1) For the quadratic term SV , by virtue of (3.19), we rewrite it in terms of V + and V − as

SV = S+,+(V
+, V +) + S−,+(V

−, V +),

with

Sµ,+(V
µ, V +) = −µ

i

2
∂x(T ∂x

|∂x|V
µV

+) +
1

4
i|∂x|(TV µV +).

By the definition of the para-differential operator, we have

F
(
Sµ,+(V

µ, V +)
)
(ξ) =

1

2π

∫

R

i
(
µ
1

2
ξ sign(ξ − η) +

1

4
|ξ|

)∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)V̂ µ(ξ − η)V̂ +(η)dη,

with the symbol

sµ,+(ξ, η) = i
(
µ
1

2
ξ sign(ξ − η) +

1

4
|ξ|

)∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|). (3.20)

Then (3.20) yields sµ,+(ξ, η) = −sµ,+(ξ, η) which is exactly (3.11). Thanks to (2.6), we have

∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|) . ϕ≤−6

( |ξ − η|
|η|

)
,

which implies

ξ · η > 0 and
31

32
|η| ≤ |ξ| ≤ 33

32
|η|. (3.21)
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Since

〈ξ〉−N0〈η〉−N0
(
〈ξ〉2N0sµ,+(ξ, η)− 〈η〉2N0s−µ,+(η, ξ)

)

= i〈ξ〉−N0〈η〉−N0

{
〈ξ〉2N0

(
µ
1

2
ξ sign(ξ − η) +

1

4
|ξ|

)∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)

− 〈η〉2N0

(
µ
1

2
η sign(ξ − η) +

1

4
|η|

)∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|ξ|)
}
,

and

|ϕj(|ξ|) − ϕj(|η|)| .
1

min{|ξ|, |η|} |ξ − η|,

using (3.21), we obtain

|〈ξ〉−N0〈η〉−N0
(
〈ξ〉2N0sµ,+(ξ, η) − 〈η〉2N0s−µ,+(η, ξ)

)
| . |ξ − η| · ϕ≤−6

( |ξ − η|
max{|ξ|, |η|}

)
.

This is exactly (3.12).

(2) For the quadratic term QV , by virtue of (3.19), we rewrite it in terms of V + and V − as

QV =
∑

µ,ν∈{+,−}

Qµ,ν(V
µ, V ν),

where

Qµ,ν(V
µ, V ν) = −ν

i

8
∂x

(
TV µ

∂x
|∂x|

P≤5V
ν
)
− i

8
|∂x|

(
TV µP≤5V

ν
)
.

Applying Fourier transformation to Qµ,ν(V
µ, V ν), we have

F
(
Qµ,ν(V

µ, V ν)
)
(ξ) =

1

2π

∫

R

i

8

(
νξsign(η) − |ξ|

)
ϕ≤5(|η|)

∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)V̂ µ(ξ − η)V̂ ν(η)dη.

Using (3.21), we have the symbol of Qµ,ν(V
µ, V ν) as follows

qµ,ν(ξ, η) =
i

8

(
ν|ξ| − |ξ|

)
ϕ≤5(|η|)

∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|) (3.22)

Thanks to (2.6), we obtain

qµ,+(ξ, η) = 0 and |qµ,−(ξ, η)| . |ξ|ϕ≤5(|η|)ϕ≤−6

( |ξ − η|
|η|

)
,

which implies Qµ,+ = 0 and (3.13).

(3) For the quadratic term RV , by virtue of (3.19), we rewrite it in terms of V + and V − as

RV =
∑

µ,ν∈{+,−}

Rµ,ν(V
µ, V ν),

where

Rµ,ν(V
µ, V ν) = ν

i

8
∂x

(
[∂2

x, TV µ ](1 + ∂2
x)

−1 ∂x
|∂x|

P≥6V
ν
)

+
i

8

∂x
|∂x|

(
T∂xV µP≥6V

ν
)
− µν

i

8

∂x
|∂x|

(
T(1+∂2

x)|∂x|V µ(1 + ∂2
x)

−1 ∂x
|∂x|

P≥6V
ν
)
.

Here we used the definition of B(·, ·). Applying Fourier transformation to Rµ,ν(V
µ, V ν), we have

F
(
Rµ,ν(V

µ, V ν)
)
(ξ) =

1

2π

∫

R

i

8

(
ν
(
|ξ|2 − |η|2

)
(1− |η|2)−1ξsign(η)

− (ξ − η)sign(ξ) + µν(1− |ξ − η|2)|ξ − η|(1− |η|2)−1sign(ξ)sign(η)
)

· ϕ≥6(|η|) ·
∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)V̂ µ(ξ − η)V̂ ν(η)dη,
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which implies that the symbol of Rµ,ν(·, ·) is

rµ,ν(ξ, η) =
i

8

(
ν
(
|ξ|2 − |η|2

)
(1− |η|2)−1|ξ| − (ξ − η)sign(ξ)

+ µν(1 − |ξ − η|2)|ξ − η|(1− |η|2)−1
)
ϕ≥6(|η|)

∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|),

where we used the fact ξ · η > 0 (in (3.21)). Using (2.6), we obtain (3.14).

(3) For the quadratic term MV , by virtue of (3.19), we rewrite it in terms of V + and V − as

MV =
∑

µ,ν∈{+,−}

Mµ,ν(V
µ, V ν),

where

Mµ,ν(V
µ, V ν) = −ν

i

4
∂x

(
R(V µ,

∂x
|∂x|

V ν)
)
− µν

i

8
|∂x|

(
R(

∂x
|∂x|

V µ,
∂x
|∂x|

V ν)
)
.

Then we have

F
(
Mµ,ν(V

µ, V ν)
)
(ξ) =

1

2π

∫

R

i

8

(
2νξ sign(η) + µν|ξ|sign(ξ − η)sign(η)

)

×
∑

j∈Z

ϕj(|ξ − η|)ϕ[j−6,j+6](|η|)V̂ µ(ξ − η)V̂ ν(η)dη.

and we obtain the symbol of Mµ,ν(·, ·) as follows

mµ,ν(ξ, η) =
i

8

(
2νξsign(η) + µν|ξ|sign(ξ − η)sign(η)

)∑

j∈Z

ϕj(|ξ − η|)ϕ[j−6,j+6](|η|).

For fixed ξ, when |η| ∈ (2k, 2k+1] with k ∈ Z, we have

∑

j∈Z

ϕj(|ξ − η|)ϕ[j−6,j+6](|η|) =
k+7∑

j=k−6

ϕj(|ξ − η|)ϕ[j−6,j+6]∩[k,k+1](|η|)

≤ ϕ[k−6,k+7](|ξ − η|) ≤ ϕ[−6,7]

( |ξ − η|
|η|

)
,

which implies (3.15).

(4) For the cubic term LV , we first have

L̂V (ξ) =
i

2π

∫

R

ξ
∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)B̂(ξ − η)V̂ (η)dη.

Then there holds

(
〈∂x〉N0LV | 〈∂x〉N0V

)
2
=

1

2π

∫

R

〈ξ〉2N0 L̂V (ξ)V̂ (ξ)dξ

=
i

(2π)2

∫

R2

ξ〈ξ〉2N0

∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)B̂(ξ − η)V̂ (η)V̂ (ξ)dηdξ

and
(
〈∂x〉N0LV | 〈∂x〉N0V

)
2

= − i

(2π)2

∫

R2

ξ〈ξ〉2N0

∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|η|)B̂(ξ − η)V̂ (ξ)V̂ (η)dηdξ

= − i

(2π)2

∫

R2

η〈η〉2N0

∑

j∈Z

ϕ≤j−7(|ξ − η|)ϕj(|ξ|)B̂(η − ξ)V̂ (η)V̂ (ξ)dηdξ.

Thanks to (3.7), we have

B̂(η − ξ) = B̂(ξ − η)
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which leads to

Re
{(

〈∂x〉N0LV | 〈∂x〉N0V
)
2

}
=

1

2

((
〈∂x〉N0LV | 〈∂x〉N0V

)
2
+
(
〈∂x〉N0LV | 〈∂x〉N0V

)
2

)

=
i

8π2

∫

R2

l(ξ, η)B̂(ξ − η) · 〈η〉N0 V̂ (η) · 〈ξ〉N0 V̂ (ξ)dηdξ,

where

l(ξ, η) =
∑

j∈Z

ϕ≤j−7(|ξ − η|)
(
ξ〈ξ〉2N0ϕj(|η|) − η〈η〉2N0ϕj(|ξ|)

)
〈ξ〉−N0〈η〉−N0 .

Using (2.6) for l(ξ, η), there holds

|ξ| ∼ |η|, ξ · η > 0.

For fixed ξ, η, we have

|ϕj(|ξ|) − ϕj(|η|)| .
1

min{|ξ, |η||} |ξ − η| . 1

|ξ| |ξ − η|.

Noticing that for fixed ξ, η, the summation in l(ξ, η) is finite, we get

|l(ξ, η)| . |ξ − η|.
Then we obtain

∣∣Re
{(

〈∂x〉N0LV | 〈∂x〉N0V
)
2

}∣∣ .
∫

R2

|ξ − η||B̂(ξ − η)| · 〈η〉N0 |V̂ (η)| · 〈ξ〉N0 |V̂ (ξ)|dηdξ

. ‖ξB̂(ξ)‖L1‖〈ξ〉N0 V̂ (ξ)‖2L2 . ‖〈ξ〉2B̂(ξ)‖L2‖V ‖2HN0
. ‖B‖H2‖V ‖2HN0

.

Thanks to (3.8), we have

‖B‖H2 = ‖B(ζ, v)‖H2 . ‖ζ‖L∞‖v‖L2.

Thus we obtain
∣∣Re

{(
〈∂x〉N0LV | 〈∂x〉N0V

)
2

}∣∣ . ‖ζ‖L∞‖v‖L2‖V ‖2HN0
.

This is (3.16).

(5) For the cubic term CV , we first have

‖CV ‖HN0 .
(
‖ζ‖W 1,∞ + ‖v‖W 1,∞

)
‖B‖HN0+1 + ‖∂x

(
[∂2

x, Tζ](1 + ∂2
x)

−1P≥6B
)
‖HN0

+ ‖B
(
(1 + ∂2

x)∂xv,B
)
‖HN0 + ‖B

(
(1 + ∂2

x)∂xB, v
)
‖HN0

+ ‖B
(
∂x(ζv), v

)
‖HN0 + ‖B

(
ζ, ∂x(|v|2)

)
‖HN0 .

(3.23)

Since

[∂2
x, Tf ]g = 2T∂xf∂xg + T∂2

xf
g,

we have

‖∂x
(
[∂2

x, Tζ ](1 + ∂2
x)

−1P≥6B
)
‖HN0 . ‖T∂xζ(1 + ∂2

x)
−1∂2

xP≥6B‖HN0

+ ‖T∂2
xζ
(1 + ∂2

x)
−1∂xP≥6B‖HN0 + ‖T∂3

xζ
(1 + ∂2

x)
−1P≥6B‖HN0

. ‖ζ‖W 3,∞‖B‖HN0 .

Thanks to (3.8), we can bound the last four terms of (3.23) by

. ‖(1 + ∂2
x)∂xv‖L∞‖B‖HN0−2 + ‖(1 + ∂2

x)∂xB‖L∞‖v‖HN0−2 + ‖∂x(ζv)‖L∞‖v‖HN0−2

+ ‖ζ‖L∞‖∂x(|v|2)‖HN0−2

. ‖B‖HN0 ‖v‖HN0 + ‖ζ‖W 1,∞‖v‖2HN0
,

where we used the Sobolev inequality and the assumption N0 ≥ 4. Then we obtain

‖CV ‖HN0 .
(
‖ζ‖HN0 + ‖v‖HN0

)
‖B‖HN0+1 + ‖ζ‖W 1,∞‖v‖2HN0

Using (3.8) again, we have

‖B‖HN0+1 = ‖B(ζ, v)‖HN0+1 . ‖ζ‖L∞‖v‖HN0−1 .

Thus, we obtain

‖CV ‖HN0 . ‖ζ‖W 1,∞
(
‖ζ‖2HN0

+ ‖v‖2HN0

)
.
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This is (3.17).

(6) For the quartic term NV , using (3.8), we have

‖NV ‖HN0 . ‖(1 + ∂2
x)∂xB‖L∞‖B‖HN0 + ‖∂xB‖L∞‖B‖HN0 . ‖B‖2HN0

.

Using (3.8) again for B = B(ζ, v), we obtain

‖NV ‖HN0 . ‖ζ‖2L∞‖v‖2HN0
.

This is (3.18). The proposition is proved. �

4. The proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. The proof relies on the continuity argument and the a
priori estimates which are presented in the following subsections.

4.1. Ansatz for the continuity argument. Our first ansatz for the continuity argument is about the
amplitude of ζ. We assume that

‖ζ(t)‖L∞ ≤ 1

2CB
, for t ∈ [0, Tε], (4.1)

where CB is a constant determined in Lemma 3.1. We define the energy functional

EN0
(t) = ‖ζ(t)‖2HN0

+ ‖v(t)‖2HN0
.

Our second ansatz for the continuity argument is about the energy. We assume that

EN0
(t) ≤ 2C0ε

2, for t ∈ [0, Tε], (4.2)

where C0 > 1 is a universal constant that will be determined in the end of the proof. We take

Tε =
C1

C2
ε−

4
3 , C0 = 2C1,

where C1, C2 are constants stated in the following Proposition 4.1.
We use the standard continuity argument: since for small ε,

EN0
(0) = ε2 < 2C0ε

2, ‖ζ(0)‖L∞ ≤ 1

4CB
<

1

2CB
,

the ansatz (4.1) and (4.2) hold on a short time interval [0, t∗), where t∗ is the maximal possible time
on which (4.1) and (4.2) are correct. Without loss of generality, we assume that Tε = t∗. To close the
continuity argument, we need the following two steps:

Step 1. There exists a small constant ε0 > 0, such that for all ε < ε0, we can improve the ansatz
(4.1) to

‖ζ(t)‖L∞ ≤ 1

4CB
, for t ∈ [0, Tε]. (4.3)

Step 2. There exists a small constant ε0 > 0, such that for all ε < ε0, we can improve the ansatz
(4.2) to

EN0
(t) ≤ C0ε

2, for t ∈ [0, Tε]. (4.4)

Theorem 1.1 follows from the above two steps and the local regularity theorem. To complete the above
two steps, we need Proposition 4.1 in the following subsection. Thus, the rest of this section is concerned
with the proof of Proposition 4.1.

4.2. The a priori energy estimates. The main result of this section is about the a priori estimates of
(1.4)-(1.5) which is stated in the following proposition.

Proposition 4.1. Under the ansatz (4.1) and (4.2), the solution (ζ, v) of (1.4)-(1.5) satisfies

EN0
(t) ≤ C1ε

2 + C2tε
4
3 · ε2, for any t ∈ (0, Tε], (4.5)

where C1 and C2 are two universal constants, and Tε =
C1

C2
ε−

4
3 .
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Proof. We shall divide the proof into several steps.
Step 1. The a priori energy estimate. Thanks to (3.8) and (4.1), we have

‖B(ζ, v)‖HN0 ≤ 1

2
‖v‖HN0 ,

which along with (3.2), (3.5) implies that

EN0
(t) ∼ ‖ζ(t)‖2HN0

+ ‖u(t)‖2HN0
∼ ‖V (t)‖2HN0

, for t ∈ [0, Tε]. (4.6)

By virtue of (4.6), we perform the energy estimate of (3.10). First, we have

1

2

d

dt
‖V (t)‖2HN0

= Re{
(
〈∂x〉N0SV | 〈∂x〉N0V

)
2
+

(
〈∂x〉N0QV | 〈∂x〉N0V

)
2
+
(
〈∂x〉N0RV | 〈∂x〉N0V

)
2

+
(
〈∂x〉N0MV | 〈∂x〉N0V

)
2
+
(
〈∂x〉N0LV | 〈∂x〉N0V

)
2
+
(
〈∂x〉N0(CV +NV ) | 〈∂x〉N0V

)
2
}.

Thanks to the estimates (3.16), (3.17) and (3.18) in Proposition 3.2, using (4.2) and (4.6), we obtain

EN0
(t) . ε2 + |Re(I + II + III + IV )|+ tε4, (4.7)

where

I
def
=

∑

µ∈{+,−}

∫ t

0

∫

R2

〈ξ〉2N0sµ,+(ξ, η)V̂ µ(ξ − η)V̂ +(η)V̂ +(ξ)dηdξdt,

II
def
=

∑

µ∈{+,−}

∫ t

0

∫

R2

〈ξ〉2N0qµ,−(ξ, η)V̂ µ(ξ − η)V̂ −(η)V̂ +(ξ)dηdξdt,

III
def
=

∑

µ,ν∈{+,−}

∫ t

0

∫

R2

〈ξ〉2N0rµ,ν(ξ, η)V̂ µ(ξ − η)V̂ ν(η)V̂ +(ξ)dηdξdt,

IV
def
=

∑

µ,ν∈{+,−}

∫ t

0

∫

R2

〈ξ〉2N0mµ,ν(ξ, η)V̂ µ(ξ − η)V̂ ν(η)V̂ +(ξ)dηdξdt.

(4.8)

Step 2. The evolution equation and estimates of the profile. To estimate the quadratic terms
in (4.8), we introduce the profiles f and g of V and 〈∂x〉N0V as follows

f = e−itΛV and g = 〈∂x〉N0f.

Thanks to (4.6), we have

EN0
(t) ∼ ‖V (t)‖2HN0

∼ ‖f(t)‖2HN0
= ‖g(t)‖2L2. (4.9)

By virtue of the definition of f and the equation (3.6), we have

∂tf = e−itΛ
(
−∂x(TvV ) +

i

2
|∂x|(TζV ) +Nζ + i

∂x
|∂x|

Nu

)
. (4.10)

Notice that the r.h.s of (4.10) consists in quadratic terms and higher order terms.
To bound ∂tf , we have to investigate the expressions of Nζ and Nu. Thanks to (3.9) and (2.6), there

holds

supp B̂(·, ·)(ξ) ⊂ {ξ ∈ R | |ξ| ≥ 25},
which along with the expressions of Nζ and Nu shows that

P≤0Nζ = −∂xP≤0

(1
2
TζP≤5v +R(ζ, v)

)
, P≤0Nu =

1

2
∂xP≤0

(
TζP≤5ζ −R(v, v)

)
.

Then we have

‖ 1

|∂x|
P≤0∂tf‖L2 .

(
‖v‖L∞ + ‖ζ‖L∞

)(
‖v‖L2 + ‖ζ‖L2 + ‖V ‖L2

)
.

Whereas the expressions of Nζ and Nu give rise to

‖ 1

|∂x|
P≥1∂tf‖HN0 .

(
‖v‖L∞ + ‖ζ‖W 3,∞

)(
‖V ‖HN0 + ‖v‖HN0 + ‖ζ‖HN0 + ‖u‖HN0

+ ‖B(ζ, v)‖HN0

)
+ ‖B(∂tζ, v)‖HN0−1 + ‖B

(
ζ, ∂x(|v|2)

)
‖HN0−1 .

The first equation of (1.4) shows that

∂tζ = −(1 + ∂2
x)∂xv − ∂x(ζv).
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Thanks to (3.8) and (4.6), we obtain

‖ 1

|∂x|
∂tf‖HN0 .

(
‖v‖W 3,∞ + ‖ζ‖W 3,∞

)(
‖V ‖HN0 + ‖V ‖2HN0

)
. ε2 + ε3 . ε2. (4.11)

Step 3. Estimate for Re(I). In this step, we shall prove

|Re(I)| . ε2 + tε
4
3 · ε2. (4.12)

By the expression of I, using (3.11), we have

Ī = −
∑

µ∈{+,−}

∫ t

0

∫

R2

〈ξ〉2N0sµ,+(ξ, η)V̂ µ(ξ − η) V̂ +(η)V̂ +(ξ)dηdξdt

Noticing that

V̂ µ(ξ) = V̂ −µ(−ξ),

we have

Ī = −
∑

µ∈{+,−}

∫ t

0

∫

R2

〈ξ〉2N0sµ,+(ξ, η)V̂ −µ(η − ξ) V̂ +(η)V̂ +(ξ)dηdξdt

= −
∑

µ∈{+,−}

∫ t

0

∫

R2

〈η〉2N0sµ,+(η, ξ)V̂ −µ(ξ − η)V̂ +(η)V̂ +(ξ)dηdξdt.

Since Re(I) = 1
2 (I + Ī), we obtain

Re(I) =
∑

µ∈{+,−}

∫ t

0

∫

R2

s̃µ,+(ξ, η)V̂ µ(ξ − η) · 〈η〉N0 V̂ +(η) · 〈ξ〉N0 V̂ −(−ξ)dηdξdt,

where

s̃µ,+(ξ, η) = 〈ξ〉−N0〈η〉−N0
(
〈ξ〉2N0sµ,+(ξ, η)− 〈η〉2N0s−µ,+(η, ξ)

)
.

Thanks to (3.12), we have

supp s̃µ,+ ⊂ S
def
= {(ξ, η) ∈ R

2 | |ξ − η| ≤ 2−5 max{|ξ|, |η|}}. (4.13)

and
|s̃µ,+(ξ, η)| . |ξ − η| · 1S(ξ, η). (4.14)

For simplicity, we denote

Sµ(ξ, η)
def
= s̃µ,+(ξ, η)V̂ µ(ξ − η) · 〈η〉N0 V̂ +(η) · 〈ξ〉N0 V̂ −(−ξ).

To estimate Re(I), we rewrite Sµ(ξ, η) in terms of profiles f±, g± as follows

Sµ(ξ, η) = eitΦµ,+(ξ,η)s̃µ,+(ξ, η)f̂µ(ξ − η) · ĝ+(η) · ĝ−(−ξ). (4.15)

Thanks to Lemma 2.1, we have

Φ−,+(ξ, η) = −Φ+,+(η, ξ).

Then the estimate of
∫ t

0

∫
R2 S−(ξ, η)dηdξdt is similar to

∫ t

0

∫
R2 S+(ξ, η)dηdξdt. We only derive the

estimate for
∫ t

0

∫
R2 S+(ξ, η)dηdξdt.

By the expression of Φ+,+(ξ, η), we divide S+(ξ, η) into two parts as follows

S+(ξ, η) = S+(ξ, η) · 1(ξ−η)·η>0︸ ︷︷ ︸
S

>0
+

(ξ,η)

+S+(ξ, η) · 1(ξ−η)·η<0︸ ︷︷ ︸
S

<0
+

(ξ,η)

.

Step 3.1. Estimate for the integral of S>0
+ (ξ, η). For (ξ − η) · η > 0, Lemma 2.1 shows that

Φ+,+(ξ, η) = 3|ξ||ξ − η||η|.
Now we split the integral of S>0

+ (ξ, η) into two parts which correspond to high and low frequencies
respectively, i.e.,

|ξ| ≥ 2−D−1 and |ξ| ≤ 2−D,

where D ∈ N is a large number that will be determined later on.
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(1). For |ξ| ≥ 2−D−1, using (3.21) and (4.14), we have
∣∣∣ s̃+,+(ξ, η)

iΦ+,+(ξ, η)

∣∣∣ . 1

|ξ||η| ∼
1

|ξ|2 . (4.16)

Using (4.15), we have

S
>0
+ (ξ, η) =

s̃+,+(ξ, η)

iΦ+,+(ξ, η)

d

dt
eitΦµ,+(ξ,η)f̂+(ξ − η) · ĝ+(η) · ĝ−(−ξ) · 1(ξ−η)·η>0.

Integrating by parts with respect to t, we have
∫ t

0

∫

R2

S
>0
+ (ξ, η)ϕ≥−D(|ξ|)dηdξdt

=

∫

R2

s̃+,+(ξ, η)

iΦ+,+(ξ, η)
eiτΦµ,+(ξ,η)f̂+(τ, ξ − η) · ĝ+(τ, η) · ĝ−(τ,−ξ) · ϕ≥−D(|ξ|) · 1(ξ−η)·η>0dηdξ

∣∣t
τ=0

︸ ︷︷ ︸
A1

−
∫ t

0

∫

R2

s̃+,+(ξ, η)

iΦ+,+(ξ, η)
eiτΦµ,+(ξ,η)∂t

(
f̂+(ξ − η) · ĝ+(η) · ĝ−(−ξ)

)
· ϕ≥−D(|ξ|)1(ξ−η)·η>0dηdξdτ

︸ ︷︷ ︸
A2

.

Thanks to (3.21) and (4.16), we have

|A1| .
∑

τ∈{0,t}

∫

S

1

|η|2 |f̂(τ, ξ − η)| · |ĝ(τ, η)| · |ĝ(τ,−ξ)|ϕ≥−D(|ξ|)dηdξ

.
∑

τ∈{0,t}

‖f̂(τ, ξ)‖L2‖ 1

|ξ|2 ĝ(τ, ξ)‖L1(|ξ|≥2−D−2)‖ĝ(τ, ξ)‖L2

. 2
3
2
D
(
‖f(0)‖L2‖g(0)‖2L2 + ‖f(t)‖L2‖g(t)‖2L2

)
,

where we used the following formula in the last inequality

‖ 1

|ξ|r ĝ(τ, ξ)‖L1(|ξ|≥2−D−2) . 2(r−
1
2
)D‖ĝ(τ, ξ)‖L2 , for any r >

1

2
. (4.17)

Whereas using (3.21) and (4.16), we have

|A2| . t sup
(0,t)

∫

S

1

|ξ|2
(
|∂tf̂+(ξ − η)| · |ĝ+(η)| · |ĝ−(−ξ)|+ |f̂+(ξ − η)| · |∂t

(
ĝ+(η)ĝ−(−ξ)

)
|
)
ϕ≥−D(|ξ|)dηdξ

. t sup
(0,t)

(
‖ 1

|ξ|∂tf̂(ξ)‖L2‖ 1

|ξ| ĝ(ξ)‖L1(|ξ|≥2−D−2)‖ĝ‖L2 + ‖f̂‖L2‖ 1

|ξ|∂tĝ(ξ)‖L2‖ 1

|ξ| ĝ‖L1(|ξ|≥2−D−2)

)

. 2
1
2
Dt sup

(0,t)

(
‖ 1

|∂x|
∂tf‖L2‖g‖2L2 + ‖f‖L2‖ 1

|∂x|
∂tg‖L2‖g‖L2

)
,

where we used (4.17) in the last inequality.
Thanks to (4.2), (4.9) and (4.11), noticing that g = 〈∂x〉N0f , we have

∣∣
∫ t

0

∫

R2

S
>0
+ (ξ, η)ϕ≥−D(|ξ|)dηdξdt

∣∣. 2
3
2
Dε3 + 2

1
2
Dtε4. (4.18)

(2). For |ξ| < 2−D, we have |η| < 2−D+1 for any (ξ, η) ∈ S. Using (4.14) and (4.15), we have

|
∫ t

0

∫

R2

S
>0
+ (ξ, η)ϕ≤−D−1(|ξ|)dηdξdt|

. t sup
(0,t)

∫ 2−D

−2−D

∫ 2−D+1

−2−D+1

|ξ − η||f̂(ξ − η)| · |ĝ(η)| · |ĝ(ξ)|dηdξ

. t sup
(0,t)

‖ξf̂(ξ)‖L2‖ĝ(ξ)‖L1(|ξ|<2−D+1)‖ĝ‖L2 . 2−
1
2
Dt sup

(0,t)

‖∂xf‖L2‖g‖2L2,

which along with (4.2) and (4.9) implies that

∣∣
∫ t

0

∫

R2

S
>0
+ (ξ, η)ϕ≤−D−1(|ξ|)dηdξdt

∣∣. 2−
1
2
Dtε3. (4.19)
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Taking D = [log2 ε
− 2

3 ] (i.e, 2D ∼ ε−
2
3 ) in (4.18) and (4.19), we have

∣∣
∫ t

0

∫

R2

S
>0
+ (ξ, η)dηdξdt

∣∣. ε2 + tε
4
3 · ε2. (4.20)

Here the notation [x] means the largest integer that does not exceed x.

Step 3.2. Estimate for the integral of S<0
+ (ξ, η). For (ξ, η) ∈ S with (ξ − η) · η < 0, there holds

ξ · η > 0,
31

32
|η| ≤ |ξ| < |η|. (4.21)

Lemma 2.1 yields

Φ+,+(ξ, η) = −1

2
|ξ − η|

(
3|ξ|2 + 3|η|2 + |ξ − η|2 − 4

)
= −2|ξ − η|φ+,+(ξ, η), (4.22)

where

φ+,+(ξ, η) = ξ2 + η2 − 1

2
ξ · η − 1.

Now, we split the frequencies space into three parts as follows:

(1). For high frequencies |η| ≥ 25 and low frequencies |η| ≤ 1
2 , using (3.12), we have

|Φ+,+(ξ, η)| ∼ |ξ − η||η|2 and | s̃+,+(ξ, η)

iΦ+,+(ξ, η)
| . 1

|η|2 , for |η| ≥ 25,

|Φ+,+(ξ, η)| ∼ |ξ − η| and | s̃+,+(ξ, η)

iΦ+,+(ξ, η)
| . 1, for |η| ≤ 1

2
.

Similarly as in the derivation of (4.18), integrating by parts with respect to t, we have

|
∫ t

0

∫

S

S
<0
+ (ξ, η) ·

(
ϕ≤−2(|η|) + ϕ≥6(|η|)

)
dηdξdt| . ε3 + tε4. (4.23)

(2). For moderate frequencies with large modulation of φ+,+(ξ, η), i.e.,

|η| ∈ [
1

4
, 26] and |φ+,+(ξ, η)| ≥ 2−D−1,

using (4.14) and (4.22), we have

| s̃+,+(ξ, η)

iΦ+,+(ξ, η)
| . 1

|φ+,+(ξ, η)|
. 2D.

Following a similar argument as for (4.18), integrating by parts with respect to t, noticing that the
integral set is bounded, we have

|
∫ t

0

∫

R2

S
<0
+ (ξ, η) · ϕ[−1,5](|η|)ϕ≥−D(φ+,+(ξ, η))dηdξdt| . 2Dε3 + 2Dtε4. (4.24)

(3). For moderate frequencies with small modulation of φ+,+(ξ, η), i.e.,

|η| ∈ [
1

4
, 26] and |φ+,+(ξ, η)| ≤ 2−D,

using (4.21), we only consider the integral over the set

S+ = {(ξ, η) ∈ R
2 | η ∈ [

1

4
, 26],

31

32
η ≤ ξ < η},

since the integral over the set

S− = {(ξ, η) ∈ R
2 | η ∈ [−26,−1

4
], η < ξ ≤ 31

32
η},

could be estimated in a similar way.
Introducing the coordinate transformation on S+ as follows

Ψ : S+ → S̃+ ⊂ R
2,

(ξ, η) 7→ (ξ̃, η) = (φ+,+(ξ, η), η),

we have

det
(∂Ψ(ξ, η)

∂(ξ, η)

)
=

∂φ+,+(ξ, η)

∂ξ
= 2ξ − 1

2
η ∼ η ∼ 1, (4.25)
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which implies that Ψ is invertible and we denote by

(ξ, η) = Ψ−1(ξ̃, η).

Changing variables (ξ, η) to (ξ̃, η), using (4.25), we have

|
∫ t

0

∫

S+

S
<0
+ (ξ, η) · ϕ[−1,5](|η|)ϕ≤−D−1(φ+,+(ξ, η))dηdξdt|

. t sup
(0,t)

∫ 26

1
4

∫ 2−D

−2−D

(
|f̂(ξ − η)| · |ĝ(ξ)| · 1S+(ξ, η)

)
|(ξ,η)=Ψ−1(ξ̃,η) · |ĝ(η)|dξ̃dη

. 2−
1
2
Dt sup

(0,t)

‖ĝ(η)‖L2

(∫ 26

1
4

∫ 2−D

−2−D

(
|f̂(ξ − η)|2 · |ĝ(ξ)|2 · 1S+(ξ, η)

)
|(ξ,η)=Ψ−1(ξ̃,η)dξ̃dη

) 1
2

.

Then changing variables (ξ̃, η) to (ξ, η), using (4.25), we obtain

|
∫ t

0

∫

S+

S
<0
+ (ξ, η) · ϕ[−1,5](|η|)ϕ≤−D−1(φ+,+(ξ, η))dηdξdt| . 2−

1
2
Dt sup

(0,t)

‖f‖L2‖g‖2L2,

which along with (4.2) and (4.9) implies that

|
∫ t

0

∫

S+

S
<0
+ (ξ, η) · ϕ[−1,5](|η|)ϕ≤−D−1(φ+,+(ξ, η))dηdξdt| . 2−

1
2
Dtε3. (4.26)

The same estimate holds for |
∫ t

0

∫
S−

S<0
+ (ξ, η) · ϕ[−1,5](|η|)ϕ≤−D−1(φ+,+(ξ, η))dηdξdt|.

Taking D = [log2 ε
− 2

3 ] (i.e., 2D ∼ ε−
2
3 ) in (4.24) and (4.26), we obtain

|
∫ t

0

∫

R2

S
<0
+ (ξ, η) · ϕ[−1,5](|η|)dηdξdt| . ε2 + tε

4
3 · ε2. (4.27)

Thanks to (4.23) and (4.27), we obtain

|
∫ t

0

∫

R2

S
<0
+ (ξ, η)dηdξdt| . ε2 + tε

4
3 · ε2. (4.28)

Step 3.3. Estimate for Re(I). Combining (4.20) and (4.28), we get

|
∫ t

0

∫

R2

S+(ξ, η)dηdξdt| . ε2 + tε
4
3 · ε2.

The same estimate holds for
∫ t

0

∫
R2 S−(ξ, η)dηdξdt. Then we obtain

|Re(I)| ≤ |
∫ t

0

∫

R2

S+(ξ, η)dηdξdt| + |
∫ t

0

∫

R2

S−(ξ, η)dηdξdt| . ε2 + tε
4
3 · ε2,

This is exactly (4.12).

Step 4. Estimate for Re(II). In this step, we will prove

|Re(II)| . ε2 + tε
4
3 · ε2, (4.29)

By the expression of II, denoting by

Qµ,−(ξ, η)
def
= q̃µ,−(ξ, η) · V̂ µ(ξ − η) · 〈η〉N0 V̂ −(η) · 〈ξ〉N0 V̂ +(ξ),

with

q̃µ,−(ξ, η) = 〈η〉−N0〈ξ〉N0qµ,−(ξ, η),

we have

II =
∑

µ∈{+,−}

∫ t

0

∫

R2

Qµ,−(ξ, η)dηdξdt.

Step 4.1. Estimate for
∑

µ∈{+,−}

∫ t

0

∫
R2 Qµ,−(ξ, η)dηdξdt. Now, we rewrite Qµ,−(ξ, η) in terms of

profiles as follows

Qµ,−(ξ, η) = eitΦµ,−(ξ,η)q̃µ,−(ξ, η)f̂µ(ξ − η)ĝ−(η)ĝ−(−ξ).
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Thanks to (3.13), we have

|q̃µ,−(ξ, η)| . |ξ| · ϕ≤5(|η|) · ϕ≤−6

( |ξ − η|
|η|

)
. (4.30)

Lemma 2.1 and the fact ξ · η > 0 (in (3.21)) yield

Φ+,−(ξ, η) =





1

2
|η|

(
3|ξ − η|2 + 3|ξ|2 + |η|2 − 4

)
if |ξ| > |η|,

1

2
|ξ|

(
3|ξ − η|2 + 3|η|2 + |ξ|2 − 4

)
, if |ξ| < |η|.

Then there hold

Φ−,−(ξ, η) = Φ+,−(η, ξ), and Φ+,−(ξ, η) = Φ+,−(η, ξ). (4.31)

Due to (4.31), we only need to estimate the integral of Q+,−(ξ, η) over the set with restriction |ξ| > |η|.
For |ξ| > |η|, we have

Φ+,−(ξ, η) = 2|η|φ+,−(ξ, η) with φ+,−(ξ, η) = η2 − 3

2
ξη +

3

2
ξ2 − 1.

A similar argument as in Step 3.2 leads to

|
∫ t

0

∫

R2

Q+,−(ξ, η)1|ξ|>|η|ϕ≤−2(|η|)dηdξdt| . ε3 + tε4, (4.32)

|
∫ t

0

∫

R2

Q+,−(ξ, η)1|ξ|>|η|ϕ[−1,5](|η|)ϕ≥−D(φ+,−(ξ, η))dηdξdt| . 2Dε3 + 2Dtε4, (4.33)

|
∫ t

0

∫

R2

Q+,−(ξ, η)1|ξ|>|η|ϕ[−1,5](|η|)ϕ≤−D−1(φ+,−(ξ, η))dηdξdt| . 2−
1
2
Dtε3, (4.34)

where D ∈ N need to be determined later on. Here we only verify (4.34). Indeed, since |ξ − η| ≤ 2−5|η|,
we only consider the integral over set

S> = {(ξ, η) ∈ R
2 | η ∈ [

1

4
, 26], η < ξ ≤ 33

32
η},

since the same estimate will also hold for the integral over set

S< = {(ξ, η) ∈ R
2 | η ∈ [−26,−1

4
],

33

32
η ≤ ξ < η}.

Introducing the coordinates transformation on S> as follows

Ψ> : S> → S̃> ⊂ R
2,

(ξ, η) 7→ (ξ, η̃) = (ξ, φ+,−(ξ, η)),

we have

det
(∂Ψ>(ξ, η)

∂(ξ, η)

)
=

∂φ+,−(η)

∂η
= 2η − 3

2
ξ ∼ η ∼ 1, (4.35)

which implies that Ψ> is invertible. With (4.35), following the similar derivation of (4.26), we obtain
(4.34).

Taking D = [log2 ε
− 2

3 ] (i.e., 2D ∼ ε−
2
3 ) in (4.33) and (4.34), using (4.32), (4.33) and (4.34), we get

|
∫ t

0

∫

R2

Q+,−(ξ, η) · 1(|ξ|>|η|)dηdξdt| . ε2 + tε
4
3 · ε2.

The same estimate hold for
∫ t

0

∫
R2 Q+,−(ξ, η) · 1(|ξ|<|η|)dηdξdt and

∫ t

0

∫
R2 Q−,−(ξ, η)dηdξdt. We finally

obtain

|
∑

µ∈{+,−}

∫ t

0

∫

R2

Qµ,−(ξ, η)dηdξdt| . ε2 + tε
4
3 · ε2.

This is (4.29).

Step 5. Estimate for Re(III). Firstly, we rewrite III in terms of the profiles as follows

III =
∑

µ,ν∈{+,−}

∫ t

0

∫

R2

eitΦµ,ν(ξ,η)r̃µ,ν(ξ, η)f̂µ(ξ − η)ĝν(η)ĝ−(−ξ)dηdξdt,
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where

r̃µ,ν(ξ, η) = 〈ξ〉N0〈η〉−N0rµ,ν(ξ, η).

Thanks to (3.14), we have

|r̃µ,ν(ξ, η)| . |ξ − η| · ϕ≥6(|η|) · ϕ≤−6

( |ξ − η|
|η|

)
,

where we used |ξ| ∼ |η| which is stated in (3.21). After similar derivations as in Step 3 and Step 4, we
obtain ∣∣Re(III)

∣∣. ε2 + tε
4
3 · ε2. (4.36)

Step 6. Estimate for Re(IV ). In this step, we shall prove

|Re(IV )| . ε2 + tε
4
3 · ε2. (4.37)

First, denoting by

Mµ,ν(ξ, η)
def
= 〈ξ〉2N0mµ,ν(ξ, η)V̂ µ(ξ − η)V̂ ν(η)V̂ +(ξ),

we have

IV =
∑

µ,ν∈{+,−}

∫ t

0

∫

R2

Mµ,ν(ξ, η)dηdξdt.

Thanks to (3.15), we have

suppMµ,ν ⊂ {(ξ, η) ∈ R
2 | 2−7|η| ≤ |ξ − η| ≤ 28|η|},

i.e., for any (ξ, η) ∈suppMµ,ν ,
|ξ − η| ∼ |η|, |ξ| . |η|. (4.38)

By the definitions of the profiles, we rewrite Mµ,ν(ξ, η) to

Mµ,ν(ξ, η) = eitΦµ,ν (ξ,η)m̃µ,ν(ξ, η)f̂µ(ξ − η)ĝν(η)ĝ+(ξ),

where

m̃µ,ν(ξ, η) = 〈ξ〉N0〈η〉−N0mµ,ν(ξ, η).

Due to (3.15) and (4.38), we have
|m̃µ,ν(ξ, η)| . |ξ|. (4.39)

Thanks to Lemma 2.1, we shall only derive the estimates for the integral of M+,+(ξ, η).

Step 6.1. The integral over the set with (ξ − η) · η > 0. For (ξ − η) · η > 0, Lemma 2.1 yields

Φ+,+(ξ, η) = 3|ξ||ξ − η||η|,
which along with (4.39) shows

∣∣m̃+,+(ξ, η)

Φ+,+(ξ, η)

∣∣ . 1

|ξ − η||η| .

Similarly as the derivation of (4.20), using (4.38), we have

|
∫ t

0

∫

R2

M+,+(ξ, η) · 1(ξ−η)·η>0dηdξ| . ε2 + tε
4
3 · ε2. (4.40)

Step 6.2. The integral over the set with (ξ − η) · η < 0. For (ξ − η) · η < 0, Lemma 2.1 shows

Φ+,+(ξ, η) = −1

2
min{|ξ − η|, |η|}φ+,+(ξ, η)

with φ+,+(ξ, η) = 3|ξ|2 + 3max{|ξ − η|2, |η|2}+min{|ξ − η|2, |η|2} − 4.
(4.41)

Now we split the frequency space into three parts as follows:
(1). For high frequencies |η| > 4 and low frequency |η| < 2−9 , using the fact that |ξ−η| ∈ [2−7|η|, 28|η|]

and (4.39), we have

|Φ+,+(ξ, η)| ∼ |η|3 and
∣∣m̃+,+(ξ, η)

Φ+,+(ξ, η)

∣∣ . 1

|η|2 , if |η| > 4,

|Φ+,+(ξ, η)| ∼ |η| and
∣∣m̃+,+(ξ, η)

Φ+,+(ξ, η)

∣∣ . 1, if |η| < 2−9.
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Following similar derivation as (4.18), using (4.38), we have

|
∫ t

0

∫

R2

M+,+(ξ, η) · 1(ξ−η)·η<0 ·
(
ϕ≤−10(|η|) + ϕ≥3(|η|)

)
dηdξdt| . ε3 + tε4. (4.42)

(2). For moderate frequencies with large modulation of φ+,+(ξ, η), i.e.,

|η| ∈ [2−10, 8] and |φ+,+(ξ, η)| ≥ 2−D−1,

following similar derivation as (4.24), we have

|
∫ t

0

∫

S′
1

M+,+(ξ, η) · 1(ξ−η)·η<0 · ϕ[−9,2](|η|) · ϕ≥−D(φ+,+(ξ, η))dηdξdt| . 2Dε3 + 2Dtε4. (4.43)

(3). For moderate frequencies with small modulation of φ+,+(ξ, η), i.e.,

|η| ∈ [2−10, 8] and |φ+,+(ξ, η)| ≤ 2−D,

we divide the integral set

S
′ def= {(ξ, η) ∈ R

2 | (ξ − η) · η < 0, |η| ∈ [2−10, 8], |ξ − η| ∈ [2−7|η|, 28|η|]}
into two sets as follows

S
′ = {(ξ, η) ∈ S

′ | ξ · η > 0, |η| > |ξ|}︸ ︷︷ ︸
S′
1

∪{(ξ, η) ∈ S
′ | ξ · η < 0}︸ ︷︷ ︸
S′
2

.

(i). When (ξ, η) ∈ S′1, we have |ξ − η| = |η| − |ξ| . Due to (4.41), there holds

φ+,+(ξ, η) = 4ξ2 + 4η2 − 2ξ · η − 4.

Following similar derivation as (4.26), we have

|
∫ t

0

∫

S′
1

M+,+(ξ, η) · 1(ξ−η)·η<0 · ϕ[−9,2](|η|) · ϕ≤−D−1(φ+,+(ξ, η))dηdξdt| . 2−
1
2
Dtε3, (4.44)

Here we only need to verify (4.44) on set

S
′
1+ = {(ξ, η) ∈ S

′
1 | η > ξ > 0, η ∈ [2−10, 8]}.

According to the proof of (4.26), it is reduced to check that there exists an invertible coordinates trans-
formation on S′1+. Indeed, introducing the coordinates transformation on S′1+ as follows

Ψ1+ : S′1+ → S̃′1+ ⊂ R
2,

(ξ, η) 7→ (ξ, η̃) = (ξ, φ+,+(ξ, η)),

we have

det
(∂Ψ1+(ξ, η)

∂(ξ, η)

)
=

∂φ+,+(ξ, η)

∂η
= 8η − 2ξ ∼ η ∼ 1,

which implies that Ψ1+ is invertible.
(ii). When (ξ, η) ∈ S′2, we have |ξ − η| = |ξ|+ |η|. Due to (4.41), there holds

φ+,+(ξ, η) = 6ξ2 + 4η2 − 6ξ · η − 4.

Similarly as (4.44), we have

|
∫ t

0

∫

S′
2

M+,+(ξ, η) · 1(ξ−η)·η<0 · ϕ[−9,2](|η|) · ϕ≤−D−1(φ+,+(ξ, η))dηdξdt| . 2−
1
2
Dtε3. (4.45)

Here we only need to check that there exists invertible coordinates transformation on S′2. Since ξ · η < 0
for any (ξ, η) ∈ S′2, we only consider the set

S
′
2> = {(ξ, η) ∈ S

′
2 | ξ < 0, η ∈ [2−10, 8]}

Introducing coordinates transformation on S′2> as follows

Ψ2> : S′2> → S̃′2> ⊂ R
2,

(ξ, η) 7→ (ξ, η̃) = (ξ, φ+,+(ξ, η)),



WELL-POSEDNESS 25

we have

det
(∂Ψ2>(ξ, η)

∂(ξ, η)

)
=

∂φ+,+(ξ, η)

∂η
= 8η − 6ξ.

Since |ξ − η| = |ξ|+ |η| ∈ [2−7|η|, 28|η|], we have

ξ ∈ [−(28 − 1)η, 0),

which along with the fact η ∈ [2−10, 8] implies

det
(∂Ψ2>(ξ, η)

∂(ξ, η)

)
∼ η ∼ 1.

Then Ψ2> is invertible.

Taking D = [log2 ε
− 2

3 ] (i.e., 2D ∼ ε−
2
3 ) in (4.43), (4.44) and (4.45), we obtain

|
∫ t

0

∫

R2

M+,+(ξ, η) · 1(ξ−η)·η<0 · ϕ[−9,2](|η|)dηdξdt| . ε2 + tε
4
3 · ε2, (4.46)

Thanks to (4.40), (4.42) and (4.46), we obtain

|
∫ t

0

∫

R2

M+,+(ξ, η)dηdξdt| . ε2 + tε
4
3 · ε2. (4.47)

The same estimate holds for
∫ t

0

∫
R2 Mµ,ν(ξ, η)dηdξdt. Then we obtain (4.37).

Combining (4.7), (4.12), (4.29), (4.36) and (4.37), we finally obtain (4.5). The Proposition is proved.
�

5. The proof of Theorem 1.2

In this section, we shall sketch the proof of Theorem 1.2. Since the small parameter ǫ is considered in
(1.6), we have to modify the proof of Theorem 1.1 slightly.

5.1. Symmetrization of (1.6). Similarly as the derivation of (3.6), we firstly introduce good unknowns
(ζ, u) with

u = v + ǫBǫ(ζ, v), (5.1)

where Bǫ(·, ·) is a bilinear operator defined as

Bǫ(f, g) =
1

2
Tf

(
(1 + ǫ∂2

x)
−1ϕ≥6(

√
ǫ|∂x|)g

)
.

Without confusion, we sometimes use Bǫ to denote the bilinear term Bǫ(ζ, v). Defining

V = ζ + i
∂x
|∂x|

u, (5.2)

we get

∂tV − iΛǫV + ǫ∂x(TvV )− i

2
ǫ|∂x|(TζV ) = N ǫ

ζ + i
∂x
|∂x|

N ǫ
u, (5.3)

where Λǫ = |∂x|(1− ǫ|∂x|2) and

N ǫ
ζ = − ǫ

2
∂x

(
Tζϕ≤5(

√
ǫ|∂x|)u

)
− ǫ2

2
∂x

(
Tζϕ≥6(

√
ǫ|∂x|)Bǫ

)
+ ǫ2∂x(TζB

ǫ)

+
ǫ2

2
∂x

(
[∂2

x, Tζ](1 + ǫ∂2
x)

−1ϕ≥6(
√
ǫ|∂x|)v

)
− ǫ∂x

(
R(ζ, v)

)
,

N ǫ
u =

ǫ

2
∂x

(
Tζϕ≤5(

√
ǫ|∂x|)ζ

)
+

ǫ

2
T∂xζϕ≥6(

√
ǫ|∂x|)ζ + ǫ2∂x(TvB

ǫ)− ǫ

2
∂x

(
R(v, v)

)

+ ǫBǫ(∂tζ, v)−
ǫ2

2
Bǫ

(
ζ, ∂x(|v|2)

)
,

where we used (2.5) and the definition of Bǫ(·, ·). Here we used the Fourier multipliers ϕ≤k(·), ϕ≥k(·)
and ϕk(·), instead of their Littlewood-Paley projection operators P≤k, P≥k and Pk, respectively (see
subsection 2.2.).

Following the proof of Lemma 3.1, for any f ∈ L∞(R) and g ∈ Hs(R) with s ≥ −2, we have

F
(
Bǫ(f, g)

)
(ξ) = F

(
Bǫ(f, g)

)
(−ξ) (5.4)
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and

‖Bǫ(f, g)‖Hs+k ≤ CBǫǫ−
k
2 ‖f‖L∞‖g‖Hs , for k = 0, 1, 2, (5.5)

where CBǫ > 0 is a universal constant.

5.2. Main proposition on the symmetric system (5.3). For (5.3), arranging the quadratic terms in
terms of V + and V −, we have a proposition similar to Proposition 3.2.

Proposition 5.1. Assume that (ζ, v) ∈ HN0(R) with N0 ≥ 4 solves (1.6). Then V defined in (5.2)
satisfies the following system

∂tV − iΛǫV = Sǫ
V +Qǫ

V + Lǫ
V +N ǫ

V , (5.6)

where

• The quadratic term Sǫ
V is of the form

Sǫ
V = Sǫ

+,+(V
+, V +) + Sǫ

−,+(V
−, V +).

And the symbol sǫµ,+(ξ, η) of S
ǫ
µ,+ (for µ = +,−) satisfies

sǫµ,+(ξ, η) = −sǫµ,+(ξ, η), (5.7)

|〈ξ〉−N0〈η〉−N0
(
〈ξ〉2N0sǫµ,+(ξ, η) − 〈η〉2N0sǫ−µ,+(η, ξ)

)
| . ǫ|ξ − η| · ϕ≤−6

( |ξ − η|
max{|ξ|, |η|}

)
. (5.8)

• The quadratic term Qǫ
V is of the form

Qǫ
V = Qǫ

+,−(V
+, V −) +Qǫ

−,−(V
−, V −).

And the symbol qǫµ,−(ξ, η) of Q
ǫ
µ,− satisfies

|qǫµ,−(ξ, η)| . ǫ|ξ| · ϕ≤5

(√
ǫ|η|

)
· ϕ≤−6

( |ξ − η|
|η|

)
. (5.9)

• The cubic term Lǫ
V = ǫ2∂x(TBǫV ) satisfies

∣∣Re
{(

〈∂x〉N0Lǫ
V | 〈∂x〉N0V

)
2

}∣∣ . ǫ2‖ζ‖L∞‖v‖H2‖V ‖2HN0
. (5.10)

• The remaining nonlinear term N ǫ
V satisfies

‖N ǫ
V ‖HN0 . ǫ

(
‖ζ‖W 3,∞ + ‖v‖W 3,∞

)(
1 + ‖ζ‖HN0 + ‖v‖HN0

)2(‖ζ‖HN0 + ‖v‖HN0

)
. (5.11)

Remark 5.2. The terms Sǫ
V , Qǫ

V and Lǫ
V in (5.6) correspond to SV , QV and LV in (3.10) respectively.

Whereas N ǫ
V in (5.6) is corresponding to the sum RV +MV + CV +NV in (3.10).

Remark 5.3. Proposition 5.1 reveals that the worst term is Qǫ
V . Indeed, (5.9) hints that term Qǫ

V is of
order O(

√
ǫ) if there is no loss of derivative.

Proof of Proposition 5.1. Thanks to (5.3), rewriting (5.3) to (5.6), we have

Sǫ
V = −ǫ∂x(TvV ) +

i

2
ǫ|∂x|(TζV ),

Qǫ
V = − ǫ

2
∂x

(
Tζϕ≤5(

√
ǫ|∂x|)u

)
− ǫ

i

2
|∂x|

(
Tζϕ≤5(

√
ǫ|∂x|)ζ

)
,

Lǫ
V = ǫ2∂x(TBǫV ),

N ǫ
V =

(
N ǫ

ζ +
ǫ

2
∂x

(
Tζϕ≤5(

√
ǫ|∂x|)u

))
+ i

∂x
|∂x|

(
N ǫ

u − ǫ

2
∂x

(
Tζϕ≤5(

√
ǫ|∂x|)ζ

))
.

Thanks to (5.2), we have

ζ =
1

2
(V + + V −) =

1

2

∑

µ∈{+,−}

V µ, u =
i

2

∂x
|∂x|

(V + − V −) =
i

2

∑

µ∈{+,−}

µ
∂x
|∂x|

V µ. (5.12)

Using (5.12), we could rewrite Sǫ
V and Qǫ

V in terms of V + and V −. They would have similar expression
as SV and QV in the proof of Proposition 3.2. It is easy to check that there hold (5.8) and (5.9).

Similarly as in the derivation of (3.16), using the symmetric structure of Lǫ
V and (5.4), we have

∣∣Re
{(

〈∂x〉N0Lǫ
V | 〈∂x〉N0V

)
2

}∣∣ . ǫ2‖Bǫ‖H2‖V ‖2HN0
,

which along with (5.5) implies the estimate (5.10).
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For the remained nonlinear term N ǫ
V , similarly as in the derivation of the estimates involving CV and

NV in the proof of Proposition 3.2, using product estimates and (5.5), we obtain (5.11). The proposition
is proved. �

5.3. Main a priori estimates for (1.6). Similarly as the proof of Theorem 1.1, the proof of Theorem
1.2 also relies on the continuity argument and the a priori energy estimates. Before stating the main a
priori energy estimates of (1.6), we present the ansatz for the continuity arguments.

The first ansatz is involving the amplitude of ζ as follows

ǫ‖ζ(t)‖L∞ ≤ 1

2CBǫ

, for t ∈ [0, T0ǫ
− 2

3 ]. (5.13)

We define the energy functional for (1.6) as

EN0
(t) = ‖ζ(t)‖2HN0

+ ‖v(t)‖2HN0
.

For simplicity of the proof and without loss of generality, we assume

‖ζ0‖2HN0
+ ‖v0‖2HN0

= 1. (5.14)

Our second ansatz is about the energy and reads

EN0
(t) ≤ 2C′

0, for t ∈ [0, T0ǫ
− 2

3 ], (5.15)

where C′
0 > 1 is an universal constant that will be determined in the end of the proof. We take

T0 =
C′

1

C′
2

, C′
0 = 2C′

1,

where C′
1, C

′
2 are constants stated in the following Proposition 5.4. Thanks to Proposition 5.4, we could

improve the ansatz (5.13) and (5.15). Precisely, there exists a constant ǫ0 > 0 such that for any ǫ ∈ (0, ǫ0],
we improve the ansatz (5.13) and (5.15) to

ǫ‖ζ(t)‖L∞ ≤ 1

4CBǫ

, for t ∈ [0, T0ǫ
− 2

3 ]

and EN0
(t) ≤ C′

0, for t ∈ [0, T0ǫ
− 2

3 ].

Then Theorem 1.2 follows from the above argument and the local regularity theorem.
Now, we focus on the a priori energy estimate which is established in the following proposition.

Proposition 5.4. Assume that 0 < ǫ < 1 and there holds (5.14). Under the ansatz (5.13) and (5.15),
the solution (ζ, v) of (1.6)-(1.7) satisfies

EN0
(t) ≤ C′

1 + C′
2tǫ

2
3 , for any t ∈ (0, T0ǫ

− 2
3 ], (5.16)

where C′
1 and C′

2 are two universal constants, and T0 =
C′

1

C′
2

.

Proof. We shall use the formulation (5.6) to derive the energy estimates for the Boussinesq system (1.6).
Due to Proposition 5.1, standard energy estimates will give rise to a local existence theorem with time
scale of O(1/

√
ǫ). To enlarge the existence time, we will apply the normal forms transformation to the

worst term Qǫ
V . Now we sketch the proof.

Step 1. The a priori energy estimate. Thanks to (5.5) and (5.13), we have

ǫ‖Bǫ(ζ, v)‖HN0 ≤ 1

2
‖v‖HN0 ,

which along with (5.1) and (5.2) implies

EN0
(t) ∼ ‖ζ(t)‖2HN0

+ ‖u(t)‖2HN0
∼ ‖V (t)‖2HN0

, for t ∈ [0, T0ǫ
− 2

3 ] (5.17)

By virtue of (5.17), we start the energy estimate of (5.6) as follows

1

2

d

dt
‖V (t)‖2HN0

= Re{
(
〈∂x〉N0Sǫ

V | 〈∂x〉N0V
)
2
+
(
〈∂x〉N0Qǫ

V | 〈∂x〉N0V
)
2

+
(
〈∂x〉N0Lǫ

V | 〈∂x〉N0V
)
2
+
(
〈∂x〉N0N ǫ

V | 〈∂x〉N0V
)
2
}.

Thanks to the estimates (5.10) and (5.11) in Proposition 5.1, using (5.14), (5.15) and (5.17), we obtain

EN0
(t) . 1 + |Re(I)|+ |Re(II)|+ tε, (5.18)
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where

I
def
=

∑

µ∈{+,−}

∫ t

0

∫

R2

〈ξ〉2N0sǫµ,+(ξ, η)V̂
µ(ξ − η)V̂ +(η)V̂ +(ξ)dηdξdt,

II
def
=

∑

µ∈{+,−}

∫ t

0

∫

R2

〈ξ〉2N0qǫµ,−(ξ, η)V̂
µ(ξ − η)V̂ −(η)V̂ +(ξ)dηdξdt.

(5.19)

Step 2. Estimate for Re(I). Similarly as Step 3 in the proof of Proposition 3.2, using symmetric
structure of Sǫ

V , we have

Re(I) =
1

2
(I + Ī) =

∑

µ∈{+,−}

∫ t

0

∫

R2

s̃ǫµ,+(ξ, η)V̂
µ(ξ − η) · 〈η〉N0 V̂ +(η) · 〈ξ〉N0 V̂ −(−ξ)dηdξdt,

where

s̃ǫµ,+(ξ, η) = 〈ξ〉−N0〈η〉−N0
(
〈ξ〉2N0sǫµ,+(ξ, η)− 〈η〉2N0sǫ−µ,+(η, ξ)

)
.

Thanks to (5.8), we have

|s̃ǫµ,+(ξ, η)| . ǫ|ξ − η| · ϕ≤−6

( |ξ − η|
max{|ξ|, |η|}

)
.

Then we obtain

|Re(I)| . ǫ

∫ t

0

∫

R2

|ξ − η||V̂ (ξ − η)| · 〈η〉N0 |V̂ (η)| · 〈ξ〉N0 |V̂ (ξ)|dηdξdt

. ǫt sup
(0,t)

‖ξV̂ (ξ)‖L1 · ‖〈ξ〉N0 V̂ (ξ)‖2L2 . ǫt sup
(0,t)

‖V ‖H2‖V ‖2HN0

which along with (5.14), (5.15) and (5.17) implies

|Re(I)| . ǫt. (5.20)

Step 3. Estimate for Re(II). Due to (5.9), the direct estimate for II will lead to one derivative
loss or

√
ǫ loss. To improve the estimate, we shall apply the normal form transformation to this term.

Step 4.1. The evolution equation and estimates of the profile. Firstly, we introduce the profiles f , g of
V and 〈∂x〉N0V as follows

f = e−itΛǫV and g = 〈∂x〉N0f.

Thanks to (5.17), we have

EN0
(t) ∼ ‖V ‖2HN0

∼ ‖f‖2HN0
= ‖g‖2L2. (5.21)

Due to the equation (5.3), we have

∂tf = e−itΛǫ

(
−ǫ∂x(TvV ) +

i

2
ǫ|∂x|(TζV ) +N ǫ

ζ + i
∂x
|∂x|

N ǫ
u

)
. (5.22)

By virtue of definition of Bǫ(·, ·), we have

supp B̂ǫ(·, ·)(ξ) ⊂ {ξ ∈ R | √ǫ|ξ| ≥ 25},
which along with the expressions of N ǫ

ζ and N ǫ
u implies

ϕ≤0(
√
ǫ|∂x|)N ǫ

ζ = −ǫ∂xϕ≤0(
√
ǫ|∂x|)

(1
2
Tζϕ≤5(

√
ǫ|∂x|)v +R(ζ, v)

)
,

ϕ≤0(
√
ǫ|∂x|)N ǫ

u =
ǫ

2
∂xϕ≤0(

√
ǫ|∂x|)

(
Tζϕ≤5(

√
ǫ|∂x|)ζ −R(v, v)

)
.

Then we have

‖ 1

|∂x|
ϕ≤0(

√
ǫ|∂x|)∂tf‖HN0 . ǫ

(
‖ζ‖L∞ + ‖v‖L∞

)(
‖ζ‖HN0 + ‖v‖HN0 + ‖V ‖HN0

)
.

Due to the expressions of N ǫ
ζ and N ǫ

u, using (5.5), we also have

‖ 1

|∂x|
ϕ≥1(

√
ǫ|∂x|)∂tf‖HN0 . ǫ

(
‖v‖W 3,∞ + ‖ζ‖W 3,∞

)(
1 + ‖v‖W 3,∞ + ‖ζ‖W 3,∞

)

×
(
‖V ‖HN0 + ‖v‖HN0 + ‖ζ‖HN0 + ‖u‖HN0

)
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Thanks to (5.14), (5.15) and (5.17), we obtain

‖ 1

|∂x|
∂tf‖HN0 . ǫ. (5.23)

Step 4.2. The profiles version for II. Denoting by

Q
ǫ
µ(ξ, η) = 〈ξ〉2N0qǫµ,−(ξ, η)V̂

µ(ξ − η)V̂ −(η)V̂ +(ξ),

we have

II =

∫ t

0

∫

R2

Q
ǫ
+(ξ, η)dηdξdt +

∫ t

0

∫

R2

Q
ǫ
−(ξ, η)dηdξdt.

Now we rewrite Qǫ
µ(ξ, η) in terms of the profiles f and g as follows

Q
ǫ
µ(ξ, η) = eitΦ

ǫ
µ,−(ξ,η)q̃ǫµ,−(ξ, η)f̂

µ(ξ − η) · ĝ−(η) · ĝ−(−ξ),

where

Φǫ
µ,−(ξ, η) = −Λǫ(ξ) + µΛǫ(ξ − η)− Λǫ(η),

q̃ǫµ,−(ξ, η) = 〈η〉−N0〈ξ〉N0qǫµ,−(ξ, η).

Thanks to (5.9), we have

|q̃ǫµ,−(ξ, η)| . ǫ|ξ| · ϕ≤5

(√
ǫ|η|

)
· ϕ≤−6

( |ξ − η|
|η|

)
,

supp q̃ǫµ,− ⊂ S
ǫ def
= {(ξ, η) ∈ R

2 | ξ · η > 0,
31

32
|η| ≤ |ξ| ≤ 33

32
|η|, √

ǫ|η| ≤ 26}.
(5.24)

Lemma 2.2 and the fact ξ · η > 0 (in (5.24)) yield

Φǫ
+,−(ξ, η) =

1

2
min{|ξ|, |η|}φǫ

+,−(ξ, η),

with

φǫ
+,−(ξ, η) =

{
6ǫξ2 − 6ǫξ · η + 4ǫη2 − 4, if |ξ| > |η|,
6ǫη2 − 6ǫξ · η + 4ǫξ2 − 4, if |ξ| < |η|.

Then there hold

Φǫ
−,−(ξ, η) = Φǫ

+,−(η, ξ) and Φǫ
+,−(ξ, η) = Φǫ

+,−(η, ξ). (5.25)

With (5.25), we only derive the estimate for the integral of Qǫ
+(ξ, η) over set S

ǫ
> with

S
ǫ
> = {(ξ, η) ∈ S

ǫ | |ξ| > |η|}.

Step 4.3. Estimate for
∫ t

0

∫
Sǫ>

Qǫ
+(ξ, η)dηdξdt. We divide Qǫ

+(ξ, η) into three parts as follows:

(1). For low frequency
√
ǫ|η| ≤ 1

2 , using (5.24), we have

|φǫ
+,−(ξ, η)| ∼ 1 and | q̃

ǫ
+,−(ξ, η)

iΦǫ
+,−(ξ, η)

| . ǫ

|φǫ
+,−(ξ, η)|

. ǫ. (5.26)

Integrating by parts w.r.t t, we have
∫ t

0

∫

Sǫ>

Q
ǫ
+(ξ, η)ϕ≤−2(

√
ǫ|η|)dηdξdt

=

∫

Sǫ>

q̃ǫ+,−(ξ, η)

iΦǫ
+,−(ξ, η)

eitΦ
ǫ
+,−(ξ,η)f̂+(τ, ξ − η) · ĝ−(τ, η) · ĝ−(τ,−ξ)ϕ≤−2(

√
ǫ|η|)dηdξ

︸ ︷︷ ︸
Aǫ

1

|tτ=0

−
∫ t

0

∫

Sǫ>

q̃ǫ+,−(ξ, η)

iΦǫ
+,−(ξ, η)

eitΦ
ǫ
+,−(ξ,η)∂t

(
f̂+(ξ − η) · ĝ−(η) · ĝ−(−ξ)

)
ϕ≤−2(

√
ǫ|η|)dηdξdt

︸ ︷︷ ︸
Aǫ

2
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Similarly as the derivation of (4.18) in Step 3.1 of proof to Proposition 3.2, using (5.24) and (5.26),
we have

|Aǫ
1| . ǫ

∫

Sǫ>

|f̂(ξ − η)| · |ĝ(η)| · |ĝ(−ξ)|dηdξ . ǫ‖f̂(ξ)‖L1‖ĝ(ξ)‖2L2 . ǫ‖f‖H1‖g‖2L2,

|Aǫ
2| . ǫt sup

(0,t)

∫

Sǫ>

(
|∂tf̂(ξ − η)| · |ĝ(η)| · |ĝ(−ξ)|+ |f̂(ξ − η)| · |∂t

(
ĝ−(η) · ĝ−(−ξ)

)
|
)
ϕ≤−2(

√
ǫ|η|)dηdξ

. ǫt sup
(0,t)

(
‖∂tf‖H1‖g‖2L2 +

1√
ǫ
‖f‖H1‖ 1

|∂x|
∂tg‖L2‖g‖L2

)
,

where we used the fact that |ξ| ∼ |η| and the following inequality in the last inequality
√
ǫ|η|ϕ≤−2(

√
ǫ|η|) . 1.

Thanks to (5.14), (5.15), (5.21) and (5.23), we obtain

|
∫ t

0

∫

Sǫ>

Q
ǫ
+(ξ, η)ϕ≤−2(

√
ǫ|η|)dηdξdt| . ǫ+ ǫ

3
2 t. (5.27)

(2). For moderate frequencies with large modulation of phase, i.e., for

1

4
≤ √

ǫ|η| ≤ 26 and |φǫ
+,−(ξ, η)| ≥ 2−D−1,

we have

| q̃
ǫ
+,−(ξ, η)

iΦǫ
+,−(ξ, η)

| . ǫ

|φǫ
+,−(ξ, η)|

. 2Dǫ.

Following similar arguments as (5.27), integrating by parts with respect to t, we get

|
∫ t

0

∫

Sǫ>

Q
ǫ
+(ξ, η)ϕ[−1,5](

√
ǫ|η|)ϕ≥−D(φ+,−(ξ, η))dηdξdt| . 2Dǫ+ 2Dǫ

3
2 t. (5.28)

(3). For moderate frequencies with small modulation of phase, i.e., for

1

4
≤ √

ǫ|η| ≤ 26 and |φǫ
+,−(ξ, η)| ≤ 2−D,

we divide the integral set into the following two parts

{(ξ, η) ∈ S
ǫ | 0 < η < ξ ≤ 33

32
η,

1

4
≤ √

ǫη ≤ 26}
︸ ︷︷ ︸

Sǫ>,+

∪{(ξ, η) ∈ S
ǫ | 0 > η > ξ ≥ 33

32
η, −1

4
≥ √

ǫη ≥ −26}
︸ ︷︷ ︸

Sǫ>,−

.

We only derive the estimate for the integral over the set Sǫ>,+. Now, introducing the coordinates trans-
formation on Sǫ>,+ as follows:

Ψǫ : S
ǫ
>,+ → S̃ǫ>,+ ⊂ R

2,

(ξ, η) 7→ (ξ̃, η) = (φǫ
+,−(ξ, η), η),

we have

det
(∂Ψǫ(ξ, η)

∂(ξ, η)

)
=

∂φǫ
+,−(ξ, η)

∂ξ
= ǫ(12ξ − 6η) ∼ ǫη ∼ √

ǫ. (5.29)

Then Ψǫ is invertible and we denote by

(ξ, η) = Ψ−1
ǫ (ξ̃, η).

Changing the variables (ξ, η) to (ξ̃, η), using (5.24) and (5.29), we have

|
∫ t

0

∫

Sǫ>,+

Q
ǫ
+(ξ, η)ϕ[−1,5](

√
ǫ|η|)ϕ≤−D−1(φ+,−(ξ, η))dηdξdt|

. t sup
(0,t)

∫ 32√
ǫ

1

4
√

ǫ

∫ 2−D

−2−D

(√
ǫ|ξ||f̂(ξ − η)| · |ĝ(η)| · |ĝ(ξ)|1Sǫ>,+

)
|(ξ,η)=Ψ−1

ǫ (ξ̃,η)dξ̃dη

. t2−
D
2 sup

(0,t)

‖g‖L2

(∫ 32√
ǫ

1

4
√

ǫ

∫ 2−D

−2−D

(
|f̂(ξ − η)|2 · |ĝ(ξ)|21Sǫ>,+

)
|(ξ,η)=Ψ−1

ǫ (ξ̃,η)dξ̃dη
) 1

2

,
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where we used the fact that
√
ǫ|ξ| ∼ √

ǫ|η| ∼ 1 in the last inequality. Then changing variables (ξ̃, η) to
(ξ, η), using (5.29), we have

|
∫ t

0

∫

Sǫ>,+

Q
ǫ
+(ξ, η)ϕ[−1,5](

√
ǫ|η|)ϕ≤−D−1(φ+,−(ξ, η))dηdξdt| . 2−

D
2 ǫ

1
4 t sup

(0,t)

‖f‖L2‖g‖2L2,

which along with (5.14), (5.15) and (5.21) implies

|
∫ t

0

∫

Sǫ>,+

Q
ǫ
+(ξ, η)ϕ[−1,5](

√
ǫ|η|)ϕ≤−D−1(φ+,−(ξ, η))dηdξdt| . 2−

D
2 ǫ

1
4 t. (5.30)

The same estimate holds for the integral over set Sǫ>,−.

Taking D = [log2 ǫ
− 5

6 ] (i.e., 2D ∼ ǫ−
5
6 ) in (5.28) and (5.30), together with (5.27), we obtain that

|
∫ t

0

∫

Sǫ>

Q
ǫ
+(ξ, η)dηdξdt| . 1 + ǫ

2
3 t. (5.31)

The same estimates hold for
∫ t

0

∫
R2 Q

ǫ
+(ξ, η)dηdξdt and

∫ t

0

∫
R2 Q

ǫ
−(ξ, η)dηdξdt. Then we obtain

|Re(II)| . 1 + ǫ
2
3 t. (5.32)

Step 5. Final energy estimates. Combining (5.18), (5.20) and (5.32), we finally obtain

EN0
(t) . 1 + ǫ

2
3 t.

This is exactly (5.16). This completes the proof of the proposition. �

6. Final comments

1. It would be interesting to extend the results of the present paper to the two-dimensional version of
(1.4) or (1.6).

2. As for other Boussinesq systems except those described in Remark 1.1, the global well-posedness
(or finite time blow-up) of (1.6) is an open question.
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