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LONG TIME EXISTENCE FOR A STRONGLY DISPERSIVE BOUSSINESQ
SYSTEM

JEAN-CLAUDE SAUT AND LI XU

Abstract.

This paper is concerned with the one-dimensional version of a specific member of the (abcd) family
of Boussinesq systems having the higher possible dispersion. We will establish two different long time
existence results for the solutions of the Cauchy problem. The first result concerns the system (4]
without a small parameter. If the initial data is of order O(g), we prove that the existence time scale is of
1/ £3 which improves the result 1/e that could be obtained by a ”dispersive” method. The second result
is about the system ([6) which involves a small parameter e in front of the dispersive and nonlinear
terms and which is the form obtained when the system is derived from the water wave system in the
KdV/Boussinesq regime. If the initial data is of order O(1), we obtain the existence time scale 1/€3
which improves the result 1/1/€ obtained by a dispersive method. These results were not included in the
previous papers dealing with similar issues because of the presence of zeroes in the phases. The proof
involves normal form transformations suitably modified away from the zero set of the phases.
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1. INTRODUCTION

1.1. The general setting. The four-parameter (abcd) Boussinesq systems for long wavelength, small
amplitude gravity-capillary surface water waves introduced in [0, [7] couples the elevation of the wave
¢ = ((x,t) to a measure of the horizontal velocity v = v(x,t),z € RY,N = 1,2, € R and read as

follows:
OH(+V-v+eV-((v)+e(aV - Av—bAJK() =0,

c ) (1.1)
0w +V(+ §V(|v| ) + €(cVAC — dAdyv) = 0.

Here a, b, ¢, d are modeling parameters which satisfy the constraint a + b+ c+d = % — 7 where 7 > 0
is a measure of surface tension effects, 7 = 0 for pure gravity waves.

In (L)), the small parameter € is defined by

e=a/h~ (h/\)?,
where h denotes the mean depth of the fluid, a a typical amplitude of the wave and A a typical horizontal
wavelength.

It was established in [6] that, in suitable Sobolev classes, the error with solutions of the full water

waves system and the approximation given by (L)) is of order O(e?*t). This result is of course useful if one
knows that the corresponding solutions of the water wave system in this regime and of the Boussinesq
systems exist on time scales of at least O(1/e). This has been proven in [3], see also [18], for the water
wave systems and in [10] [T}, 20 22] 23] for all the locally-well posed Boussinesq systems except the case
b=d=0,a =c> 0 which is in some sense special since the ”generic” case b = d = 0,a,¢ > 0,a # c is
linearly ill-posed.
Remark 1.1. The global well-posedness of Boussinesq systems has been only established in a few one-
dimensional cases, including the case a = c =b=0,d > 0 that can be viewed as a dispersive perturbation
of the hyperbolic Saint-Venant (shallow water) system, see [, 24], and the Hamiltonian cases b = d >
0,a < 0,¢ < 0, see [8]. We also refer to [16l [I7] for scattering results in the energy space for those
Hamiltonian cases when b =d > 0.

Recall that the linearization of (II]) around the null solution is well-posed (see [7]) provided that
a<0, ¢<0, b>0, d>0, (1.2)
or a=c>0, b>0, d>0. (1.3)

Actually the linear well-posedness occurs when the non zero eigenvalues of the linearization of ([T
at (0,0)

e (Lol )\
A+ (€) = +il¢] ((1 +ed|€2)(1 + eb|£|2)>

are purely imaginary.

This paper will focus on the exceptional case ([3]) with b = d = 0, a = ¢ = 1 which is the only
linearly well-posed case with eigenvalues having non trivial zeroes. Moreover we will restrict to the
one-dimensional case, N = 1.

If (¢, v) is a solution of (), then by the scaling

Cta) = e((e%t,eéx), o(t,x) = e’v(e%t,e%x),
(¢, d) satisfies (ICT) with € = 1 (see also [7]).

In this article, we first establish the long time existence theory for the following strongly dispersive
(1D) Boussinesq system
0:¢ + (14 02)0v + 0.(Cv) =0,
) 1 ) (1.4)
v+ (14 05)0.¢ + 58:5(1) ) =0,

with initial data

Clt=o = Co, v|t=0 =0 (1.5)
which are of order O(¢) in a suitable Sobolev class on time scales of order O(1/¢3). A similar issue was
discussed in [12] for multi-dimensional periodic water waves.
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As a consequence, we will prove the long time existence of solutions to (L)) with b =d=0,a=c=1
in the one-dimensional case, that is

O:C + (14 €0%)0,v + €0, (Cv) = 0,

1.6
v + (14 €0%)0,¢ + %81(112) =0, (1.6)

with initial data
Clt=0o = Co, v|t=0 =0 (1.7)
which are of order O(1), on time scales of order O(1/¢?/3).

Contrary to [22 23] where only symmetrization techniques were used to establish the well-posedness
of Boussinesq systems on time scales of order O(1/¢), we will use normal form transformations suitably
modified to avoid the zero set of the phases. Normal form techniques were used to obtain global or long
time existence results of small solutions to the full water wave system, see e.g., [1l [12] 25].

We recall that the local well-posedness of ([L4]) and (6) can be established by reducing to known
results for the KdV equation.
Actually, as noticed in [8], the change of variable ( = u + w, v = u — w reduces (L) to the following
system:
Ut + Uy + €Ugge + S[3UUr — Ww, — (Uw),] =0
{ W — Wy — EWggpy —|—2§ [uu, — 3ww, + (uw),] =0 zER, tER, (1.8)
which is a system of KdV type with uncoupled (diagonal) linear part. Thus (see [§]) the Cauchy problem
is easily seen to be locally well-posed for initial data in H*(R) x H*(R), s > 2 by the results in [13], [14].
On the other hand, as noticed in [2I] Appendix A in a slightly different context, a minor modification of
Bourgain’s method as used in [I5] allows to solve the Cauchy problem for (L)) for data in H*(R) x H*(R)
with s > —%. We refer to [9] for details. It is worth noticing that in [9] the question of the dependence
of the existence time with respect to € is not considered but one can check that it is of order O(1/+/€).
By using dispersive properties it has been moreover established in [19] that the two-dimensional version
of (LH) is well-posed in H*(R?) x H*(R*) x H*(R?),s > 2 on time scales of order O(1//€). Note that
neglecting the dispersive terms in (L6l one gets by a standard symmetrization method the existence on
time scales of order O(1/¢) but in the ”hyperbolic” space H*(R?),s > 2.

We also recall (see [§]) that (L) and (T4 have an Hamiltonian structure given (for (L)) ) by

O (g) = Jgrad H (g)
0 0O,
7= (5. %)

HGo =3 [ (@ra?-¢ = —aar

— 0o

where

and

Unfortunately, contrary to the case b =d > 0,a < 0, ¢ < 0 mentioned above, it does not seem possible
to use uniquely this structure to prove the global existence of small solutions.

The paper will be organized as follows. The Introduction will continue by some heuristics and the
statements of the main results. Section 2 is devoted to some preliminary results. A symmetrization of
the strongly dispersive system is given in Section 3 while Sections 4 and 5 are devoted to the proof of the
main results, Theorem [[.T] and Theorem [[.2] respectively.

1.2. Heuristics analysis of the system ([4]). In order to diagonalize the linear part of (L4]), we define

V—<—|—i|gm|v and A = (14 9%)|0.).

Then (I4]) is rewritten as

OV —iAV = > Qu.(V'VY), (1.9)
wre{+,—}
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where VT =V, V- =V and Q. (VF, V") are quadratic terms in V# and V¥ with symbol ¢, (-, "), i.e.,

F(Quotv'.V))(©) = 3= [ aunl€n Vi€ =T (i (1.10)

One could check that |g,.,(&,n)| ~ [£]. Since we aim to prove long time existence results for solutions of
(T4), we hope that the quadratic terms could be killed. To do so, we use normal form transformation
techniques.

Defining the profile of V' as follows

flt,2) = e MV (), ie, f(t,€) =e MMOV(L ),
we have
af= > / R (€M g, (€,m) FR(E = )7 (n)dn, (1.11)

wve{+, }
where the phase @, ,,(£,n) is defined by

Quu(&m) = —A(E) + pA(E —n) +vA(n).

To remove the quadratic terms in the right hand side of (IIl), we introduce the following normal forms
transformation

g=Ff+ D> A, (1.12)
N7V€{+)_}
where

F(Auu 7, £9) () = 5 / e/ &Ma, (6, m) FHE — ) ¥ (n)dn

with the symbol
AN (&,n)

GH,V(§777) ’L‘I)# v(é 77)

(1.13)

Thus, we have

0g=5- Y, /”‘I’““(“”a w(&, n)at(f“(ﬁ OIRG ))dn (1.14)

wv€{+,—}

By virtue of (ILTT), we see that the r.h.s. of (ILI4)) includes the cubic terms in (f#, f¥, f7). Therefore,
if the symbols of quadratic terms have "good” properties, for data of small size e, the time scale E% is
much likely expected.

We will use the normal form techniques in another way, that is, integrating by parts with respect to
time in the energy estimate. More precisely, energy estimate gives rise to

) dt”VHHN = Z (Quw(vﬂvvy) | V+)HN’
wve{+,—}

which implies that

Vs SIVOIz~ + > /QWV“ VIIVT) T (1.15)

pve{+,—

I

For 1, ,, using m and the profiles, we have

/ / N () V(E — n)T¥ () VT (€)dndedr
27T RxR

_ eI Pun (Em) (e)2N g (e Fh(E _ o \FU () FE '
o /0 e g2V, (€. nFe - P ()] (©dndedr

Since

eif%,u(&n) — 1 d € 7@, (§m)

i®,, (& m) dr ’
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integrating by parts with respect to 7, we have

1 : ONquw(&n)
l,,=——— z‘rqm,u(ﬁﬂl)+ . _ > + d d
" (27T)2 /]RxRe zfl)l“,(g n) fr(g n)f (n )f )dn 5}7. 0

i@ (€m) A5/ Gpr Sy T (€N g (&, 77) File TN T i
(@) //RX]R i®,,(6n) O (f1(& = n).f* (M FH(8))dndedr.

By virtue of ([LIT), we see that the second term in the r.h.s of ([I6]) includes inner product between
the cubic terms of (f#, f¥, f7) and fT. The first term in the r.h.s of (LI6) may be controlled by the initial
energy. If the symbols of quadratic terms have ”"good” properties, one may derive an energy estimate
from (IIH) so that the time scale 8% is much likely expected, provided that the data is of small size €.

(1.16)

However, the phase ®, ., (£, ) may equal 0 for some £ and 7. The symbol a,, ,(§ —n,n) in (II3)) is not
well-defined for all (€,7) € R?. While the integration by parts with respect to 7 in (ILI6) could not work
for all (¢,n) € R?. We have to modify the normal forms transformation only on the ”good frequencies
set” that is far away from the zeroes of the phase ®, ,(&,7) . Then the existence time scale may be
enlarged. Although we could not obtain the time scale E%, we may get the existence time scale Hé (for
some 6 € (0,1)). Tt extends the local existence time scale % that can be obtained by a purely dlsperswe
method as in [19].

In the present paper, we thus use normal form techniques after integration by parts with respect to
time as in (I6]).

1.3. The main results. We now state the main results of this paper. The first one concerns the system
(C4) without the small parameter e but with ”small” initial data.

Theorem 1.1. Assume that ((y,vo) € HY(R) for some Ny > 4 satisfying a)(()) =109(0) =0 and
160l 3rm0 + lvollFrmo = €7 (1.17)

There exists a small eg > 0 such that for all € € (0,eq], there exists T. = coa_% for some ¢y > 0 and a
unique solution (¢,v) € C(0,T.; HN°(R)) of system ([LA)-({LH) such that

(211Tp)(|\é(t)||HNo +llv@®lla~o) < C (1ol no + lvoll o), (1.18)

where C' > 0 is a universal constant.

Remark 1.2. If a)(()) = 09(0) = 0, (CA) shows that Z(t,()) = 0(t,0) = 0 holds for all time t > 0.
Therefore, throughout the whole paper, we shall use the condition ((t,0) =0(t,0) = 0.

As a consequence of Theorem [[LT] we get the long time existence of solutions to system (L6l :

Theorem 1.2. Assume that (Co,vo) € HN0(R) with Ny > 4 satisfying o(0) = 75(0) = 0. There exist a
small eg > 0 and a constant To = To(||(Co,v0)|| gvo) such that for any e € (0, €], there exists a unique
solution (C,v) € C(0, Toe=3; HN(R)) of system (LO)-(C7) such that

sup (1€ zvo + l[o@llavo) < C(lIColl o + llvollzvo). (1.19)
(0,Toe™ 3)

Here Ty = To(||(Co, o)l gvo ) s a constant depending on ||(Co,vo)|| g -

Remark 1.3. Contrary to the previous known results on long time existence of other (abed) Boussinesq
systems obtained in [10] 111, 20| 22| 23], we do not reach in Theorem[LQ the expected time scales O(1/€).
Recall however that Theorem [L2 improves the O(1/+/€) result obtained by purely dispersive methods, see

[19].
1.4. Comments on the proofs of Theorems [I.1] and We shall prove two different long time
existence results in Theorems [[.1] and The proofs of the theorems share some common features.
To avoid losing derivative, we introduce the good unknowns (in the sense of Alinhac [2]) (¢, u) via
nonlinear and nonlocal transformation. Then the principal paralinearization parts for the new system of
V = (+ifgru (or (¢, u) are symmetric (see B0) and (5.3)).

However, to enlarge the scale of the existence time, the difficulties of system (B.6) and (B3] are
different. For system (B8], we want to prove an existence time of scale O(1/¢*/3) when the data are
of order O(e). The main difficulty arises from all the quadratic terms so that we have to deal with all
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the quadratic terms by the normal form transformation techniques which sketched in subsection
Whereas for system (5.3)), we want to prove an existence time of scale O(1/€*/3) when the data are of
order O(1) with small parameter e. The key difficulty stems from the quadratic term that is of order
O(y/¢€) involving the low frequencies. We only apply the normal form transformation techniques to such
O(y/€) term. Ome could check that the normal form transformation could not improve the estimates
involving other quadratic terms which are of order O(e).

2. PRELIMINARY

2.1. Definitions and notations. The notation f ~ g means that there exists a constant C' such that
%f < g < Cf. f < g means that there exists a constant C' such that f < Cg. We shall use C' to denote
a universal constant which may changes from line to line. For any s € R, H*(R) denotes the classical
L? based Sobolev spaces with the norm || - ||z+s. The notation || - ||z» stands for the LP(R) norm for
1 <p < o0o. For any k € N, we denote by

k
£ llwese =D (109 F] poe-

Jj=0

The L?(R) scalar product is denoted by (u|v)s def Jp uvdz.
If A, B are two operators, [4, B] = AB — BA denotes their commutator.
The Fourier transform of a tempered distribution v € 8" is denoted by @, which is defined as follows

u(g) o Fu)(§) = /n e Su(z)da.

We use F~1(f) to denote the inverse Fourier transform of f(&).
If f and u are two functions defined on R, the Fourier multiplier f(D)u is defined in term of Fourier
transforms, i.e.,

We shall use notations

o\ L oy 1
€ =@+1%)2 (02)=(1+10[%)>
For two well-defined functions f(x), g(x) and their bilinear form Q(f,g), we use the convection that
the symbol ¢(&,n) of Q(f,g) is defined in the following sense

1 2 .
FQU-E) = 5= [ € f(€ ~na©)an
R

2.2. Para-differential decomposition theory. Our proof of the main results relies on suitable energy
estimates for the solutions of (I4) and (IL6). To do so, we introduce para-differential formulations (see
e.g., [B) to symmetrize the systems (L)) and (L4)).

We fix an even smooth function ¢ : R — [0, 1] supported in [-2, 2] and equals to 1 in [—2,2]. For
any k € Z, we define

def x x def x def
or(z) = Plgr) —elg=r) wsnla) = plor) = @), por(r) S 1 - o (a).
1<k
While for any interval I of R, we define
def
er(@) S @)= Y wrla).

kel kelnzZ

Then for any = € R,
5 3
D k(@) =1 and supper() € {z €R |[a] € [52’“, 52'“]}- (2.1)

kEZ

We use Py, P<i, P> and Pr to denote the Littlewood-Paley projection operators of the Fourier
multiplier ¢y, <k, @>k and @g, respectively.
We shall use the following para-differential decomposition: for any functions f, g € S'(R),
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with the para-differential operators being defined as follows

Tyg = ZPSjﬂf Pig, R(f,9) = ijf “Pj_¢,j+6]9-
jez jez

2.3. Analysis of the phases. In this subsection, we shall discuss the quadratic phase function ®,, ,,(£,7)
which is defined as follows:

(I)u,u(§7 77) = —A(f) + MA(€ - 77) + VA(n)7 M,V € {+7 _}7 (23)
where A(§) is defined by
AE) = (L~ IEP)IEl = L] — €

We first rewrite the explicit expressions of the phases.

Lemma 2.1. For any (&,1) € R* with &€ #n, € # 0, 1 # 0, we have
3IEE = mllnl, if (E—mn)-n>0,
1
P44 (85m) = —EHMKK—WLMH@KF+3mMQK—nﬁhf}+mmﬂ€—m3MFD—4)
if (§=mn)-n<0;

SIEI(ER + 3l —nl + 3P~ 4), i (€~n)-n>0,

==& = Smac(le — il Inl} (BIEP? + Bminle —nf?, Inf?} + max{lé ~ nf, %) — 4),
if (§=mn)-n<0;
and
Py (&n) =24 4(n.), P+ (&m) =4 4(n—E&m).
Proof. We derive the expressions of phases one by one.
(1) For ®4 4, by the definition, we have
Oy (&) = —[€l +|& = nl + [l + &P — 1€ = n* = n®
= (&l = I = nl = ) (21¢]* = (1 + 2sign((¢ = n) - n))I¢ = nll
+ IEl(1€ = nl + Inl) = 1) + 3IglI¢ = mlln]
If (¢ —n)-n >0, we have
1§l = 1€ =nl = Inl =0,
which gives rise to
Oy 4 (§m) = 3[El1€ = nllnl-
If (¢ —n)-n <0, we have

1€l = [I€ = nl — Inl| = max{|¢ — nl, |n|} — min{|¢ — n], ||},
and [{| —[§ —n| — | = —2min{[£ — 7], |n|},

which yields

3
21¢[2 + I — mlnl + [€1(1€ = 0l + nl) — S lelmax{]¢ =, Inl} — 1)

/N

(I)+)+(§, 77) = _2m1n{|€ - n|7 |77|}
3
= —2min{|¢ =, [n} (5 max{[¢ = nl*, [n]*} + min{|¢ = nl*, [n]*} = 1€ = nllnl = 1)

= —2min{[¢ — 7|, |n|}

——
oo Nl

1 3
max{[¢ —nf*, [nf*} + 7 min{[¢ =%, [n*} + Z(€ =l = |nl)* - 1)

31¢]* + 3 max{|¢ — 0, [n|*} + min{|¢ —n|*, [n]*}) - 4).

—~

1
= —gmin{|¢ — |, [n]}
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(2) For ®_ _, by the definition, we have

O (&n) =—(lel+ 1€ =nl+ ) + (€7 + 1€ =l + In?)
= ([¢] + 1§ —nl + |77|)(|§|2 —[€1(1€ = nl + Inl) + (1€ =0l + Inl)* = 3|¢ = nlin| — 1)
+ 3[¢[1€ = nl[nl.

If (€ — 1) -5 > 0, we have
el = le 1+ b,
and
@ (&) = 20el(€ — nl? + P + 1€~ nlln] ~ 1)
= IEI(El” + 3l€ — nl? + 3lnl” — 4).
If (¢ —n) - n < 0, we have

€] = |1€ = nl = |nl| = max{|§ — nl, |n|} — min{|¢ — 7], |n|},
and || + [ —n| + |n] = 2max{[§ — 7], nl},

which implies
2,12 3 . 20,12 3
O (& n) = 2max{[¢ —nl, [} (max{|¢ = nl*, [0} + 5 min{|¢ =0l [} = S1€ = nllnl = 1)

1
= 5 max{[¢ —nl, [} (31¢]* + 3min{|¢ —nf*, [n*} + max{|¢ —nl*, [n[*} - 4).

(3) For ®4 _ and ®_ , by the definition, we have

O () =—24 +(0,8), P4 -(§m) =24 1(n—& ).

The lemma is proved.

As a consequence, defining

Ac(§) = (1 —ele)[g] = [€] — el¢]?,
and
@f,,(6,n) = —A(&) + pA(§—n) +vAc(n), pve{+ ],

we obtain explicit expressions of the phases ®f, ,(£,7) which involve the operator A..
Lemma 2.2. For any (&,1) € R* with &€ #n, € # 0, 1 # 0, we have
= 3elgllE =nllnl, if §-n <0,

Oy (&) = %minﬂﬂv I} (3el¢ — nl? + 3emax{|¢[?, [n]*} + emin{|¢]%, 7>} — 4),
if §-m>0;

SIEI(Clel? +3elé — nf? + 3elnl” 1), i (€=nm) - >0,

6 =4 L mac{le — ol I} (Belel? + Bemin{le — nf?, I’} + emax{le — ol Inf?} — 4),
if (§=mn)-n<0;
and

(I)j-,+(€7 77) = _(I)fi-,—(n - 65 77)7 (I)E—,-i-(ga 77) = —(I)i,+(777 5) = (I):-,—(g -, 5)7
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2.4. Technical lemmas.

Lemma 2.3. Let f,g be smooth enough functions. Then,
(2o
|0z’
Proof. By the definitions of commutator and para-differential operators, we have
Oy . . . 2 .
f([m, Tf]g) (&) =i /R(81gn(€) —sign(n)) Y o<;-7(1& = nl)e; (M) £ (& = m)a(n)dn.
* J€z
For fixed ¢ € R, when |n| € (2%, 28] with k € Z, we have

Tylg = o. (2.5)

k+1

1€ =nl  _Inl € =l
> e<i—r(€ =) =D w<i—r(1€ = nDe; (Inl) < o “oimg) < <l ). (26)
: - Il 2 ul
JEZ i=k
Then we get |£ —n| < 27°|n|, which yields
£-n>0.
Otherwise,
& —nl = &1+ |nl = [nl.
Therefore, we have £ - > 0 and
Os
Fllm=. T =0,
(I Trlo) (@)
which implies (2.5). The lemma is proved. O

3. SYMMETRIZATION OF THE SYSTEM ([4)
In this section, we will symmetrize the system (4] by introducing good unknowns.

3.1. Symmetrization of the system (I.4]). By virtue of the para-differential decomposition, we rewrite

@) to
¢+ (1 + 92)0pv + 04(ToC) + 02(Tev) + 95 (R(¢,v)) = 0,

3.1

v 4 (1 4 02)05C + 02 (Tyv) + %81 (R(v,v)) = 0. (3.1)

We introduce good unknowns (¢, u) with
u=uv+ B((,v), (3.2)

where B(-,-) is a bilinear operator defined as

BUJ,g) = 3Ty ((1+02) 7 Pagg).

Without confusion, we sometimes use B to denote the bilinear term B((,v).
Thanks to B1]) and 32), we have

O + (14 02)0pu + 05 (ToC) + 0z (Teu) = (1 + 02)0, B — 9, (R(¢,v)) + 04 (T B).

Since
2 1 1 1 2 2\ —1
(L4020, B = 50, (TcPoou) = 50 (TcP26B) + 50s ([am, T)(1 + 82) Pzﬁv),
we have )
0+ (1+ 0)0u + 05 (ToC) + 50 (Tcu) = N, (3:3)
where

1 1 1
Ne = =500 (TePst) = 500 (TePooB) + (T ) + 50 (05 T(1 + 20) Poaw) = 01 (RIC.v).

Using (L4), BI) and [B2]), we also have
8tu = 6{1) + B(@tc, ’U) + B(C, (’%U)

= _(1 + 3§)3IC - 890(T'uv) - %890 (R(’U,’U)) + B(atCa 1)) - B(Cv (1 + 85)8m<) - %B(C, 8m(|v|2))
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Noticing that
B(C (14 82)0.0) = 5Te0hPos, 0u(Ty0) = 0u(Tyw) — Ou(T, B),
we have
1
where

N, = %31 (TeP<s() + %TBI<PZ6C + 0,(T,B) — %31 (R(v,v)) + B(8:¢,v) — %B(Cuaw(|v|2))'

Now, we define

Oy
V=C+ig (3.5)
2.
Thanks to (B3]) and B4, using ([2.3), we have
1
OV —iAV +0p(T,V) = 5ild.|(TeV) = Ne +i |§ | (3.6)

where A = [0,](1 — |0z|?). The Lh.s of ([B.6) is the quasi-linear part of system ().
Denoting by

Vvt=Vv, V- =V,
we shall rewrite the quadratic terms of (3.6]) in terms of V' and V~. Whereas we keep the cubic and

quartic terms in terms of ¢ and v.
Before ending this subsection, we provide a lemma involving the bilinear operator B(-,-).

Lemma 3.1. Assume that the real-valued functions f € L (R), g € H*(R) for s > —2. There hold

F(B(f.9))(€) = F(B(f,9)) (=€) (3.7)

and

1B(f,9) (3.8)

where Cg > 0 is a universal constant.

Proof. By the definition of B(-,-), we have

F(B(f.g /f§ Mg = nl*) " eze(nl) Y e<i—7(1€ = nDe;(In))dn, (3.9)
JEL
and
F(B(f.9)) (=€) /f &= am@ = Inl*) " exeln) Y w<j—r(l =& —nl)e;(Inl)dn
JEZ
= i/ﬂ{f(—é +0) g(=n) (1 = [n*) " s6(In]) j%skm(lﬁ —n|)g;(Inl)dn

Since f, g are real-valued functions, we have

o~ [

f(=¢+n)=FfE—n), 3(=n) =g,
which gives rise to
FEUED = 3= [ Fie=mam = 1n) oxolla) 3 (1€ =)y (i
JEZ
Then we have
F(B(f,9))(€) = F(B(f,9))(=¢).

Estimate ([B.8)) follows from the standard estimate on Tg and the definition of B(f, g). This completes
the proof of the lemma. O
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3.2. Main proposition for the symmetric system ([B.6)). For (3.6, we state the following proposition.

Proposition 3.2. Assume that ((,v) € HNo(R) with Ny > 4 solves (L4). Then V defined in (B.5)
satisfies the following system

OV —iAV =Sy + Qv + Ry + My + Ly 4+ Cy + Ny, (3.10)
where

e The quadratic term Sy s of the form
Sy = S+,+(V+7 V+) + S—,+(V_7 V+)
And the symbol s, 1 (§,m) of S, + (for =+, —) satisfies
S#Hr(gv 77) = _S#Hr(ga 77)7 (311)

670 (€ €) — (05 1. S e~ peo (). 12

e The quadratic term Qy s of the form
QV = Q+,—(V+7 V_) + Q—,—(V_u V_)
And the symbol q,.— (&, 1) of Qu,— satisfies

1€ =l
.- (Em)] S 1610 () - <o (510 (3.13)
e The quadratic term Ry is of the form
Rv= > Ru,(V"V)
wve{+,—}
And the symbol v, (§,m) of R, satisfies
§—n
& S 1€ =1l p2a(ln) - <o (). (3.14)
e The quadratic term My, is of the form
My = > M, (V" V).
wve{+,—}
And the symbol m,, ., (§,n) of M, . satisfies
€ =
mu (&) Sl er-67( —— ) 3.15
&) S Il oo (S ) (3.15)
e The cubic term Ly = 0,(TpV) satisfies
|Re{ ((0:)™ Ly [ (02)¥ V), }| S ¢l pee ol 2 1V [ Fve - (3.16)
e The cubic term Cy satisfies
ICv 1 zvo S ¢Twroe (1€ Fv0 + 0l )- (3.17)
e The quartic term Ny satisfies
NV Lo S ST E < 10l v - (3.18)

Remark 3.3. Proposition [T shows that there is no loss of derivative for the nonlinear terms of (B.6l).
Indeed, in the energy estimates, we shall use the symmetric structure of the quadratic terms Sy to avoid
losing derivative(see BI2)). We also use the symmetric structure of Ly to avoid losing derivative(see

the proof of (B.10)).

Remark 3.4. For the symmetric system B8) or B3)-BA), the standard energy estimates will provide
the local existence on time of scale O(%), for the initial data of size €. To enlarge the existence time
of the system, we shall use the new formulation BIQ) and the normal form transformations. Thanks
to Proposition [3.3, if the quadratic terms equal zero, the estimates of the cubic terms and the quartic
terms guarantee the existence time of scale E% For the non-trivial quadratic terms in (BI0), we shall
apply normal forms transformation in the ”good frequencies set”(far away from zeroes of the phases )
to kill the quadratic terms to the cubic and quartic order terms, while for the quadratic terms in the

"bad frequencies set” (in a small neighborhood of zeroes of phases), we will use the smallness size of the
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frequencies set. Combining the two estimates on both "good” and "bad” sets, the optimal “cut-off” of the
frequencies spaces will determine an existence time of order # for e sufficiently small.

3.3. Proof of Proposition In this subsection, we present the proof of Proposition 3.2

Proof of Proposition[ZZ2 The nonlinear terms in the r.h.s. of (BI0) come from the nonlinear terms in
BH). We rewrite [B:6) to be (BI0) with the nonlinear terms in the following forms

1
Sy = —0.(T,V) + §i|8w|(TCV),

) .
Qy = _Eam (T¢ P<su) — %|3z|(T<P§5C)7

O 10y

§| |(Ta <P>6<) |(9 | B((1 + 0%)0,u, u),

Ry = 20, ([02, 7)1 +02) " Pogu) +
My = =0, (R(G,u)) + 510:|(R(u,w),
‘CV - 8z(TBV)a

1 1
Cv = 0x(TcB) = 50, (T¢P>B) — 5(%([85,%](1 +02) ' Ps¢B) —i|0,|(T,B)
0y i,y i,y

2 2
+|a| B((1+87)0.v, B) + o] B((1+07)0.B,v) — o] B(0:(¢v),v) + 9. (R(¢, B))
i i O, )
- §|3x|(R(UaB)) - §|3m|(R(B,U)) - gmB(Cvam(M ),
i0,

Ny = —=B((1+82)0,B,B) — |6m|(R(B,B)).

182
Here we used the first equation of (L)) and [B2]). Thanks to (31, we have

- O (vt — Z u . (3.19)

(V*E+V7) Z R —
210y
u€{+ -}

u€{+ -1}

(=

N)I)—l

(1) For the quadratic term Sy, by virtue of (3I9), we rewrite it in terms of V* and V~ as
Sv =84+ (VEVH) + 5 (V7 VT,
with
S (VH V) = —u%@m(T‘g_:‘vuVJr) + £i|8m|(TvuV+).

By the definition of the para-differential operator, we have

F(S0s V9V )(© = 5 [ (g sionts —n) + 71€l) 3 pes-r(1€ = ey (D V(€ = )V ()
JEZ

with the symbol

ot (€)= i (ug€sign(e —n) + 7161) 3 w<sr(1E — al)s ) (3.20)

JEZ

Then B20) yields s,,4(&§,1m) = —su,+(&,n) which is exactly (BI). Thanks to ([2Z0), we have

S pes-rlle ~lleslal) $ we-o (1),

JEZ
which implies

=l (3.21)

31
. d =
>0 ad Sul<lg <
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Since
()7 () ™0 (62 50 (6 ) — (M) N05 4 (7, 6))
= ie) o)~ {1y (e sian(e — m) + 16) S o< r(1E — s (i)
JEL
— )N (gnsian(e —n) + 1hl) S o< r(le — s (i)},
JEL
and
o5(1) = 251D S s gl =
using (3ZI]), we obtain
N s\ —No . X 1€ —nl
Y™ 0= (€N s (€)= s s 0. )| S Ve =l o (e )

This is exactly (B12]).
(2) For the quadratic term Qy, by virtue of (BIJ), we rewrite it in terms of V' and V™~ as
Qr=" > Qu.(V"VY),
povE€{+,~}

where

. " .
Quu (VI V) = —uéam (Twmpgv") - %|8m|(TwP§5V”).

Applying Fourier transformation to Q. (V*, V"), we have

F(QualV V) = 5= [ 5 (vtsientan = €D pcs(lnh 3 ool = s (a6 = )P ).

21 Jg 8 s
Using ([B.21]), we have the symbol of Q,, ., (V#*, V") as follows
7
G (&) = 5 (VI€] = [€]) @5 (1)) > e<i-r(l€ = nl)e;(n) (3.22)
JEZ

Thanks to ([2.6]), we obtain

Gt €n) =0 and[g,,-(€n)] S elpsaubos—o( £ 1),

which implies @, + = 0 and B.I3)).
(3) For the quadratic term Ry, by virtue of [3I9), we rewrite it in terms of V¥ and V™~ as

RV - Z R#’U(V#7VV),

prve{+,—}
where
. 9,
R (VI V) = g ([0, T )0 4+ 03) 7 (55 PoaV)
i 0 i 0 7]
= (To,vuPs6V") — pv—~ == (T, w(1+07) ' =5 PogVY).
+8|8m|( b, viPssV") W8|8m|( (1+02)[0,ve (1 +0z) ERRED )

Here we used the definition of B(-,-). Applying Fourier transformation to R, , (V*,V"), we have

F(Rus V7)) (€ = 3= [ 5 (6P = 1nP) 1 = o) esizntr)

— (& — m)sign(€) + pr(1 — € — )€ = nl(1 ~ Iﬁlz)_lsign(é)sign(ﬁ))

cosa(n) D w<ior (1€ = nl)es (I VEE — n)V¥ (n)dn,
JEZ
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which implies that the symbol of R, , (-, ) is
ru€m) = = (w162 = )1~ o) Il = (€ ~ m)sign(@)
+ (L= € = n*)[€ —nl(1 - Inl2)’1)sﬁze(|n|) > p<ion(1€ = nle;(Inl),
jEL
where we used the fact £-n > 0 (in (32I))). Using (Z0]), we obtain (B14).
(3) For the quadratic term My, by virtue of (3IJ), we rewrite it in terms of V* and V'~ as
MV = Z Mu,u(vuavu)u
prve{+,—}

where

O O 0y

)
M, (VEVY) = —p= 0y (R(VF, 22V ;w 10, i)

1

Then we have
f(MW(V“, V”)) (&) = Py /R %(2%‘ sign(n) + pv|€[sign(§ — n)sign(n))

<> @i (1€ = 1)ey—s.g4a (NN VEE —m)V (n)dn.

JEZ

and we obtain the symbol of M, ,(-,-) as follows

My (§5m) = é (2V§sign(n) + pv|€sign (€ — n)sign(n)) > @il = Do (In)-

jEL
For fixed &, when || € (2%,2%+1] with k € Z, we have
k+7
> i€ = nDey—ssra(n) = Y ©i(1€ = nl)ey—s.i+einime+1 (1)
JEZ j=k—6

< Pp—6k+7 € —11) < 9-6,7) ( €|77| |),

which implies (3.15)).

(4) For the cubic term Ly, we first have
—~ i ~ ~
E0(6) = 5= [ €3 eeimrle = ey (DB~ n)V n)n
JEZ

Then there holds

(@Y ey [0)%7), = 5= [ @ Ev ©T ¢
L[ 0 S o (1€ — nles (n) B(E — )V ()Y (€)dnde

(271') R2 jez

and

(@ >N°£v [(0:)No V),

€MD" oci (1€ = nl)p; (In)) B(E = mV (€)V (n)dnds
JEZL

NN " o< 2(1€ = nl)e; (1) B — OV )V (§)dnd.
JEZ

Thanks to ([B7), we have

B(n—¢) =B(E-n)
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which leads to
Re{ ((8)N°Ly [ (0:)"V),} = %((<am>N°,cv [(02)™ V), + ((0e)No Ly | <am>Nov)2)

1&,mB(E —n) - ()N V(n) - NV (€)dnde,

871'2 R2

where

1Em) = w<i—r(1€ = n) (€)M w;(Inl) — n(n)* w; (1) (€)M (m) .
JEZ
Using (28] for I(£,n), there holds

For fixed &, 7, we have
1

1
IeallEh = @il s e o €]

Noticing that for fixed &, 7, the summation in I(&, n) is finite, we get
L&, ml < 1€ =l

€=l S 51—l

Then we obtain
[Re{ ((02) Ly [ (0:)"V), }| < / e =allBE =)l ™ V)] - €)™V (€)|dnde

SIEB@ N 1™ V©NZ2 < I BEON Lz IVIng < IBlla2 IV Iz, -
Thanks to ([B.8]), we have
1Bllg2 = [1B(C,v)l[a> S lI¢Hes llv]] 22
Thus we obtain
[Re{ ((92)™ Ly [(0:)™ V), }| S IIKlze ol 2V [ -
This is (B.16).
(5) For the cubic term Cy, we first have
ICv e < (ISl + lollwee) | Bllgvo+s + 10:([07, Te] (1 + 82) ™" P26 B) || o
+1B((1+82)0,0, B) | gmo + [ B((L+ 2)0,B,v) | (3.23)
+1B(02(Cv), v) Lo + 1B (S, 0 ([0]*) [l rvo
Since
[02,T¢lg = 2T, 029 + To2 49,
we have
102 (102, Te] (1 + 02) 7' Po6B) v S I To,¢(1+ 02) ™' 07 P6B| v
+ | Toz¢c(1+ 92) ™' 0o Po6Bll gvo + 1 Tozc (1 + 02) ™" Po6 Bl o
S MI€liwsoe [ Bl rvo-
Thanks to [B.8]), we can bound the last four terms of [B23]) by
SN+ 02)0zvl Lo | Bl prvo-2 + (1 + 92) 05 Bl| L= [[0l] srvo—2 + 1|05 (Cv) [z 0] grvo -
ISl 2o 19z (J0]*) | 02
S Bllao l[vll v + €< 0]l
where we used the Sobolev inequality and the assumption Ny > 4. Then we obtain
ICvllzzve < (ISl mvo + vl vo ) I Bl vots + ICllwee [0l v
Using ([B.8) again, we have
[ Bllzrvor = [[B(C v)[lmvo+r S IClzoe [[oll zrvo-r-
Thus, we obtain

ICv Il z~o < lISHweee (€I~ + l10l1En)-



16 JEAN-CLAUDE SAUT AND LI XU

This is B17).
(6) For the quartic term Ny, using ([3.8), we have
INV L ve S QL+ 02)00 Bl oe 1Bl srvo + 102 Bl <l Bl srvo < 1Bl -
Using (3.8) again for B = B((,v), we obtain
NV Ilzrvo S ST 10l o -

This is (BI8). The proposition is proved. O

4. THE PROOF OF THEOREM [1.1]

In this section, we shall prove Theorem [Tl The proof relies on the continuity argument and the a
priori estimates which are presented in the following subsections.

4.1. Ansatz for the continuity argument. Our first ansatz for the continuity argument is about the
amplitude of (. We assume that

1
HC(t)HL“’ S E? for te [O7TE]7 (41)

where Cp is a constant determined in Lemma 3.l We define the energy functional
Exy(6) = 1O g + [0 3rne.
Our second ansatz for the continuity argument is about the energy. We assume that
En, (t) < 20pe?,  for t€0,T.], (4.2)
where Cy > 1 is a universal constant that will be determined in the end of the proof. We take

Cl 4
T. = —¢e 3, Cy=20C,
£ CQ 0 1
where C1, Cy are constants stated in the following Proposition E1

We use the standard continuity argument: since for small ¢,

RN

4Cp ~ 20p°

the ansatz ([@1]) and [@2) hold on a short time interval [0,¢*), where t* is the maximal possible time
on which (£I) and (2) are correct. Without loss of generality, we assume that 7. = ¢*. To close the

continuity argument, we need the following two steps:
Step 1. There exists a small constant g > 0, such that for all € < g9, we can improve the ansatz

1) to

Eny(0) =% < 2Coe?,  [|¢(0) ]| <

ICE) L < for te[0,T:]. (4.3)

1Cy’

Step 2. There exists a small constant €9 > 0, such that for all € < gy, we can improve the ansatz
#2) to

En,(t) < Coe?, for t€[0,T]. (4.4)

Theorem [[T] follows from the above two steps and the local regularity theorem. To complete the above

two steps, we need Proposition @ Tlin the following subsection. Thus, the rest of this section is concerned
with the proof of Proposition F1]

4.2. The a priori energy estimates. The main result of this section is about the a priori estimates of
(CA)-([C3) which is stated in the following proposition.

Proposition 4.1. Under the ansatz {1)) and {@2), the solution ((,v) of (LA)-([LH) satisfies

4
3

En, (t) < Cre? + Oytes -2, for any t € (0,T%], (4.5)

. _a
where C1 and Cy are two universal constants, and T. = %5 E
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Proof. We shall divide the proof into several steps.
Step 1. The a priori energy estimate. Thanks to (88) and ({I]), we have

1B(G, o < gllolno,
which along with (32)), (335]) implies that
Eno(8) ~ ICOIEpno + T Fo ~ IV @)~ for ¢ € [0, Te]. (4.6)
By virtue of (£6), we perform the energy estimate of ([B.I0). First, we have
LIV e = Re{ (V08 [ (0:)0V), + (@)™ Qv [ {0)%0V), + ((20) "R | 0270V,
(@Y My | (@)%V), + (00 Ly [0)™V), + ((02)¥(Cy +Ny) [ 0:)¥V), ).

Thanks to the estimates (B16), (117 and (BI]) in Proposition B2 using (£2) and (@6, we obtain
Ene(t) S+ [Re(I + 1T+ 11T+ IV)| + te?, (4.7)

where

1S [ @ e - TV @i,

pe{+,—}
1S [ [ @€V~ 7 7 (andear
pe{+,—} R?
(4.8)
def
DY (€)2N0r, (6, VI(E — VP (n)VF(€)dndédt,
pve{+, }‘/ ‘/RQ :
def
=y )2Nom,, , (&, MVI(E — ) V¥ (n)VF(€)dndgdt.
e }/ /]R2 H

Step 2. The evolution equation and estimates of the profile. To estimate the quadratic terms
in (@), we introduce the profiles f and g of V and (9,)N°V as follows

f=e "V and g=(9,)"N°f.
Thanks to ([@.6]), we have
Eno (8) ~ IV () I5e ~ 1O Iz0 = lg(®)]|Z2- (4.9)
By virtue of the definition of f and the equation (BII) we have
i Oy
Of =e tA(—am(TvV) |a (T.V) + Ne + zla | ) (4.10)

Notice that the r.h.s of (ZI0) consists in quadratic terms and higher order terms.
To bound 9, f, we have to investigate the expressions of N and N,,. Thanks to (3.9) and (2.6, there
holds

supp B(-,)(€) € {€ € R [[¢] > 27},
which along with the expressions of N and N, shows that
1 1
P<oN; = —8mP50(§T<P55v + R(¢,v)), P<oNu= Eango (T¢ P<5¢ — R(v,v)).
Then we have

I BN |P<08tf||L2 S (Wllze + 1K) (vllz2 + ISl 2z + 1V 2)-

Whereas the expressions of N¢ and N, give rise to
Po10:fllave S (Ivllzee + [I¢Twace) (VLo + vl ano + 1€H vo + ull vo

Bl ) + 1B@:C, v)llrvo-1 + 1B (S, B ([0)) [l v
The first equation of ([4]) shows that
¢ = —(1+82)0sv — 9, (Cv).

||Ial
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Thanks to (B.8]) and (6], we obtain
1
HmatfHHNo S (lvllws.eo + lIKllws.ee) (IVIEvo + [VIG,) S +e® S e (4.11)
Step 3. Estimate for Re(/). In this step, we shall prove

Re(I)| < &%+ tes - &2, (4.12)
By the expression of I, using (3I1), we have

t
= 2Nos, (€, VP(E — ) V() VF (e
ue{%:_/o/w<§> Sut+(EmMVHE =) VH(n)VH(E)dndEdt

Noticing that

we have

== 5 [ [0 s eV - O T @ (et

pne{+,—}

{Z }/ /R2 2N05;L+ (n, é)V m(E— 77)V+( ) +(&)dndedt.
pneE{t+

Since Re(I) = (I + I), we obtain

Re( / / St (EMVR(E =) - (NOVF () - (€) NV (=€) dndeat,
pe{+,—}
where

St (€)= ()7t ((€)* 05,4 (€,m) — ()*M0 54 (1, )).
Thanks to ([BI2]), we have

supp s+ C S L {(&,m) € R? [|¢ —n| < 27 max{[¢], [n]}}. (4.13)
and
150+ &M S1E—n]-1s(&n). (4.14)

For simplicity, we denote
f - —_— —
S,u(€.m) E B (EMVEE =) - ()N VF() - (V= (—).
To estimate Re(I), we rewrite &,(&,n) in terms of profiles f*, g% as follows
Gu(&m) = P ED5, (€ m)frE—mn) gt (n) - g (—€). (4.15)
Thanks to Lemma 2.1} we have
P 1 (&n) = =Py 4 (n,8).

Then the estimate of fo Jg2 ©—(&,n)dnd&dt is similar to fo Jr2 ©4(&,m)dndédt. We only derive the

estimate for fo Sz 6. (&,m)dndédt.
By the expression of ®4 1 (&, 1), we divide &4 (&,7) into two parts as follows

6+(§777) = 6+(§, 77) ) 1(£—n)-n>0 + 6+(§777) : 1(5—n)»n<0-

&7°%(&m) &5 (&m)

Step 8.1. Estimate for the integral of &3°(¢,n). For (€ —n) -1 > 0, Lemma [ZI] shows that

Dy 4 (§m) = 3ENE —nllnl.

Now we split the integral of Gio(g,n) into two parts which correspond to high and low frequencies
respectively, i.e.,

€] >27P7" and [¢] <277,

where D € N is a large number that will be determined later on.
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(1). For |¢| > 27P~1 using (3ZI) and {@I4), we have
5+.4+(5m) ‘ PR e
i@y (&) (eIl 1€

(4.16)

Using ([EI3), we have
&0 = &M 4 e e T e _ ) T ) 27 (—) - Liemrrr oo,
+i&m i@ (& n)dt (€ =n) g7 () - 97(=) - Lig—nyn>0
Integrating by parts with respect to t, we have

/0 /Rz S2%(&, n)e>—p(|¢])dndedt

- /R 2 %eww(&")ﬁ(m — ) g ) g (1 =€) - 95 D) - Le—nymmodnde]'_

Ay

-] e emesena,(Fre = ) 7)) - es-nED ot

Az

Thanks to (B21]) and [@I4]), we have
a5 2 [ olfee =l (i ~Oles-p(lehdnde

Te{0,t}

~ 1 ~
Y ||f(7'7§)||L2”Wg(ﬁ§)||L1(|§|22*D*2)||g(7’a§)||L2

T7€{0,t}

(1 OezllgO)NI + 1/ )22 llg@)72)

where we used the following formula in the last inequality
1 1
i |§|T 91, )L (ez2-p-2) S 207 DP|G(r, €)|| L2, for any r > 5 (4.17)
Whereas using (Bm]) and ([{.10), we have

4a] S toup / g (07 =l 17l - lg™ (<O + 17 (& =) (™ (g™ (~) ) e p(€l)ende
<tsup(|\|§|8tf( )22l A exqiz2- 2 @12 + 17 OGO gl eoa-o-2)

< 23 Ptsup (| 5100 Iz gl + 1l 5= dhglse gl ),
©.0) 0] 0]

where we used (LI7) in the last inequality.
Thanks to [@2), (@J) and [@II), noticing that g = (9,.)V° f, we have

t
[ ], &2 mes-pllehdndsar] 2Pe + 2202, (4.18)
0 JRr2
(2). For |£] <272, we have |n| < 27P*! for any (£,7) € S. Using (@I4) and @IH), we have

t
| / / &70(E,m) o< p1 (1]} dndédt]
2 D+1

< tsup / / e =l e~ )l - 500 - 13(€)ldnde
(0,6) 2-D
< tf(}lf; IEFE 2 1F(E) | (e <2-p+1)IFll 22 S 2’§Dt(sglg 102 f 122 llgll72

which along with [@2]) and (@3] implies that

t 1
[ [ 8206 noc pos(ehanasar]s 2737 (4.19)
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: 21 4 _2y .
Taking D = [log, e~ 3] (i.e, 2P ~ ¢73) in ([@EIY) and @I), we have

t
\/ / &70(€, n)dndedt| < €% + tes - 2. (4.20)
0 JR2
Here the notation [z] means the largest integer that does not exceed z.
Step 3.2. Estimate for the integral of &5°(¢,n). For (£,n) € S with (€ —n) -1 < 0, there holds
31
& n >0, Sl < < nl. (4.21)
Lemma 2.1 yields
1
Dy (&) = —§|§ =l (BIEP* + 3nl* + |€ —nf* —4) = —2/€ —nlo+ 1 (&), (4.22)
where
1
O (&m) =& +m* =3¢ n—1.

Now, we split the frequencies space into three parts as follows:

(1). For high frequencies |n| > 25 and low frequencies |n| < 3, using (BI2), we have

s4,+(&n) 1 5
Oy (&m)| ~E—nn* and || S —5,  for [y > 2°,
By plenl ~ =l and | < oy
Sy+(&m) 1
Q&) ~]E—n and |=————%|<1, for |n < .
Besen)] ~le—nl and | R <
Similarly as in the derivation of ([£I8), integrating by parts with respect to t, we have
t
I/ AGio(ﬁan)-(wg-z(InI)+wzs(|n|))dnd§dt| < e+ tet. (4.23)
0

(2). For moderate frequencies with large modulation of ¢4 1(&,n), i.e.,

1 —D—
€[5, 2°] and |y (& m)| > 2777,
using ([@I4) and [@22), we have

Sy+(6m) < 1 < 9D
7;(1)+,+(§777) ~ |¢+,+(§7n)| ~

Following a similar argument as for ([AIJ)), integrating by parts with respect to t, noticing that the
integral set is bounded, we have

t
| / / S n) - o (1095 (bt (€. m))dndedt] < 2Pe% 1 2P, (4.24)
0 R2

(3). For moderate frequencies with small modulation of ¢4 +(&,n), i.e.,

1 _
In| € [17 2] and ¢4 (&) <277,

using ([E2Z1]), we only consider the integral over the set
1 31
Sy ={(&m R [ne (1,29, Son <& <nl,
since the integral over the set

S_={(6m) B [ne[-2%~7] << o),

could be estimated in a similar way.
Introducing the coordinate transformation on S, as follows

U:S, —S; CR?
&m) = (E,m) = (d+.+(&m)n),

we have

8\11(57 77)) _ 6¢+,+(§7 77)

det (e ) o€

1
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which implies that ¥ is invertible and we denote by

(&m) = (En).
Changing variables (£,7) to (£,7), using {Z5), we have

t
| / / 6i°<s,n>-%1,5]<|n|>sog_D_1<¢>+,+<§,n))dndﬁdﬂ

26
S tam / / (7€ =1 - 1O - T, (€M) ey - [0
9-D

26 R ~
< 24Pt 001 / T O 6.6 it)

Then changing variables (£,7) to (€,7), using [25), we obtain

(S

| / / STE ) - pror (o2 (6 (€ m)ndal] £ 24P sup 175l

which along with (@2]) and (@3] implies that
t
[ ] &5 wivalinos-poi (s s 6 n)dndsd] £ 27401 (1.26)
0 JS4+

The same estimate holds for | [* [, &°(6,n) - o5y (nlp<_p-1(6s 4 (€, n))dnded].
Taking D = [log, e~ %] (i.e., 2P ~ ¢ %) in (@) and [@Z0), we obtain

| / [, &5 prasnandsat] s & 12 &% (4.27)
Thanks to [@.23]) and [@21), we obtain
|// S50(¢, n)dndedt| < €2 + tes - €2, (4.28)

Step 3.3. Estimate for Re(I). Combining ([@20) and ([{28), we get
|/ / S, (&, n)dndedt| < €2 + tes - 2

The same estimate holds for fo Jr2 ©_(&,m)dndédt. Then we obtain

R < [ [ evenanea+| [ [ o nanea s ict e

This is exactly (Z12).
Step 4. Estimate for Re(/]). In this step, we will prove
Re(I1)| < €2 + tes - £2, (4.29)
By the expression of 11, denoting by

def .

(&) E G (&) - VEE =) - () NV () - (©NVH(e),

with
Gu,— (& m) = ()N qu,— (€ m),
we have
= > // Q.. (&, n)dndédt.
nef{+,—}
Step 4.1. Estimate for 35 .\ }fo Jgz Quu— (&, m)dndédt. Now, we rewrite 9, (£,7) in terms of

profiles as follows

o~

Q- (& m) = P ENG, (& m)FAE —n)g™ (Mg (9.
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Thanks to ([BI3]), we have
u) (4.30)

B (€] S Jel- pesll) oo (B

Lemma [ZT] and the fact £ -1 > 0 (in B21)) yield
1 .
Sl (3l€ = nl* + 3IE* + > —4) if |¢] > Inl,
(I)Jr,*(é.an) = 1
SEIBIE=n* +31” + [¢* —4), if [¢] < [n].
(4.31)

(7775)5 and (I)Jr,*(é.an) = (I)+,*(777§)'

Then there hold
(&,m) over the set with restriction [£| > |n|.

o (6=
Due to (@31, we only need to estimate the integral of Q.

For [£| > |n|, we have
3 3
2 2
=n"—=én+ =& -1
n 2577 25

(I)+7—(§777) = 2|n|¢+7—(§7 77) with ¢+,—(§777) -
A similar argument as in Step 3.2 leads to
t

|/ / Qi - (&M jgismp<—2(|n)dndédt] < & + tet, (4.32)

0 JR?

t

[ e €mbesmersn(nhes-p(6r (€ m)dndéde S 200+ 2P, (1.33)
(4.34)

t
|/0 /}R2 Qi —(&Mep> 9 2i-1,5 (1) o< - D1 (D4, (€, m))dndEdt| <272 te
where D € N need to be determined later on. Here we only verify [@34). Indeed, since | —n| < 2757

we only consider the integral over set
1 33
S> ={(&n) €R® [ne[3,2% n << Tom),

since the same estimate will also hold for the integral over set
S<={(¢neR [ne [—267—31 3—77 <¢<n}k
Introducing the coordinates transformation on Ss as follows
. :Ss —S. CR?,
(&m) = (&) = (& ¢4~ (&m)),
we have
8\I/>(§,n)) _ 994, -(n) :2n—g§~n~1, (4.35)

det
( (&, m) n
which implies that ¥ is invertible. With ([£3H), following the similar derivation of ([{28]), we obtain

E39).
logy e~ 3] (ie., 2P ~ e~ %) in [@33) and [@34), using [E32), @33) and E3), we get

Taking D =
|/ / Q.h f’l]) 1(|§|>|n|)d77d§dt| < g2 +t€%-

(le|<inpdnd€dt and [} [.. 9

The same estimate hold for fo Jre Q4 —(&m) - 1 _—(&n)dnd&dt. We finally

obtain
/ / Q.- (€, n)dndédt] < €2 + te

u€{+ -}

4
3

This is ([£29).
Step 5. Estimate for Re(/I]). Firstly, we rewrite I1] in terms of the profiles as follows

= Y [ [ e, e e - i i (€,

wve{+,—}



WELL-POSEDNESS

where

?u,u(fan) = <§>N0 <77>7N0T#,V(§v77)-
Thanks to ([BI4]), we have

|§—n|),

Fus €] S I =l zallal) oo (S

23

where we used [§] ~ |n| which is stated in [B21]). After similar derivations as in Step 3 and Step 4, we

obtain §
|Re(I11)|< &% + tes - &%,

Step 6. Estimate for Re(/V). In this step, we shall prove
Re(IV)| < &2 +tes - 2.
First, denoting by

My (€,m) () Nom,, (6, VR (E — V() VT (E),
we have

w= % /O /szmu,u(ﬁ,n)dndédt-

mve{+,—}
Thanks to [B.I3]), we have

supp My, C {(£,m) € R? [277|n| < [¢ —n| < 2%},
ie., for any (§,n) esuppM,, .,

[§=nl~nl, [&1< Inl.
By the definitions of the profiles, we rewrite M, ,,(£,n) to

My, () = P ©Nim, (€ ) FEE - n)g” (n)g™ (),

where
1,1, (&,m) = ()N ()~ Nomy, . (€, m).

Due to (I3 and (£38), we have
0 (& m)| S 18-
Thanks to Lemma 2] we shall only derive the estimates for the integral of 94 4 (&, 7).

Step 6.1. The integral over the set with (£ —n)-n > 0. For (£ —n)-n > 0, Lemma [2ZT] yields

Oy 4 (§m) = 3[lIE = nllnl,
which along with (£39]) shows

‘ﬁl+,+(§777)‘ < 1
Sy (&m) " IE = mlInl
Similarly as the derivation of ([20), using (£3]), we have
t
4
[ oesteom ey pmodnde] S 225 13 -2
Step 6.2. The integral over the set with (£ —n)-n < 0. For (£ —n)-n < 0, Lemma [ZT] shows

1
Dy 1 (&n) = —5 min{[§ — 7|, 9|} o+ 4+ (&)

with ¢y (&, n) = 3I¢* + 3max{|¢ —n|?, [n*} + min{|¢ — 9[>, [n*} - 4.
Now we split the frequency space into three parts as follows:

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(1). For high frequencies |n| > 4 and low frequency |n| < 272 , using the fact that [¢—n| € [277|n|, 28|n|]

and ([{39), we have
m 5 (65 )| < L if

"
Oy (En)| ~n? and | nl >4,
D4 1 (& m)] ~ [ |(I)++(§’77 In]

m
@4 (& m)| ~[n and |
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Following similar derivation as [IJ)), using (£38), we have
t
[ esem Lemmco (prollnh) + eoa(lnh)dndsat] < <8+ t* (4.42)
o Jr

(2). For moderate frequencies with large modulation of ¢4 1(&,n), i.e.,

|77| € [271078] and |¢+,+(§777)| Z 27D717

following similar derivation as ([@24]), we have
t
] e Vemyaco - tonm(nl - 0 p(os. 4 6. mhndga] £ 2060+ 20168, (443)
0 Js|

(3). For moderate frequencies with small modulation of ¢4 +(&,n), i.e.,

|77| € [2_1078] and |¢+7+(§7n)| < 2_D7

we divide the integral set

s L n) eR [(E—n)-n<0,|nl €2798], [¢ =l € 2770, 25|n[]}

into two sets as follows
§'={En) €S [£-n>0, |n| > €]} U{(&n) €S"|§-n<0}.
B S5
(i). When (§,m) € S}, we have | —n| = |n| — |¢] . Due to (@41, there holds
G (€)= 46% + 4 — 26 — 4.

Following similar derivation as ([£20), we have

t
|/ /s My 1+ (6,n) - Le—nym<o - P1—0.21(IN]) - p<—p—1(P+ + (&, m))dndsdt| < 27 2Pe?, (4.44)
(U

Here we only need to verify (£44) on set
Sty ={(&m) €S [n>¢E>0, ne278]}

According to the proof of ([@26]), it is reduced to check that there exists an invertible coordinates trans-
formation on S} . Indeed, introducing the coordinates transformation on S/, as follows

\I/1+ : S/1+ —>§/1+ C R2,
(5777) = (gvﬁ) = (§7¢+,+(§777))7

we have

8\I/1+(§, 77)) _ 8¢+,+(§a 77)
a(&,m) o

which implies that W, is invertible.
(it). When (§,n) € Sy, we have [§ —n| = [£] + |n|. Due to (@41, there holds

b4+ (&,m) =682 +4n* — 66 -0 — 4.

det( =8n—2{~n~1,

Similarly as (£44]), we have

t
] e Lemapmco - wtam (i) - pepor(0r. (€ n)dndsa] S 273005, (445)

Here we only need to check that there exists invertible coordinates transformation on S}. Since -7 < 0
for any (&,7n) € S}, we only consider the set

Sps = {(&m) €856 <0,n € 2718}
Introducing coordinates transformation on S)- as follows
Uys : Sho — Sy C R,

(5777) = (5777]) = (§7¢+,+(§7n))7
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we have

3‘1’2>(§777)) _ 8¢+,+(§7n)
a(&m) on

Since € — 1| = [§] + |n] € [277|n], 2°[n]], we have
¢ € [=(2° =1, 0),
which along with the fact n € [271°, 8] implies

3‘1’2>(§a77))
a(&,m)

det (

= 8n — 6£.

det( ~n~ 1.

Then Uy is invertible.

Taking D = [log, e~ 3] (i.e., 20 ~ e~ %) in (@A3), @) and [EIH), we obtain

| / / M1 (€1) - Lemymeo - 1o (n)dndedt] < & + te - €2, (4.46)

Thanks to (4.40), (4.42)) and ([4.46]), we obtain
¢
|/0 /R M (&, n)dndedt] < 2 + tes - €2, (4.47)

The same estimate holds for fot Sz M, (€, m)dndédt. Then we obtain ([@3T).

Combining (@71), (12), (£29), (@36) and [L31), we finally obtain (L5]). The Proposition is proved.
]

5. THE PROOF OF THEOREM

In this section, we shall sketch the proof of Theorem [[L2l Since the small parameter € is considered in
(TH), we have to modify the proof of Theorem [IT] slightly.

5.1. Symmetrization of ([6l). Similarly as the derivation of ([B:6), we firstly introduce good unknowns
(¢, u) with

u=v+eB((,v), (5.1)
where B¢(-,-) is a bilinear operator defined as

BE(f,9) = 3T (1 + c02)p20(Va12: o).

Without confusion, we sometimes use B¢ to denote the bilinear term B¢((,v). Defining

0,
V=C+i7— 5.2

we get .
OV = iNV + e0,(T,V) = Seldul (TeV) = NE + |g N (5.3)

where A, = |0;|(1 — €]0,|?) and
2
N¢ = — S0, (Tepeal/Al0L1)) — S0, (TepsolVAOLNBY) + 0, (T )

62
+ 50 (102 T (1 + €02) 6 (VelDlv) = 0 (R(G0)).

Ny = %az (TC<P§5(\/E|81|)<) + %Taxg‘@ZG(\/aazDC + ezaz(TvBe) - gaz (R(Uav))

62
+ eB(0:¢,v) — EBE (Cv 8m(|v|2))7

where we used (23] and the definition of B¢(-,-). Here we used the Fourier multipliers ¢<i (), ¢>x(+)
and @ (+), instead of their Littlewood-Paley projection operators P<j, P>, and Py, respectively (see
subsection 2.2.).

Following the proof of Lemma BT, for any f € L>°(R) and g € H*(R) with s > —2, we have

F(B(f,9)(€) = F(B(f,9) (=) (5.4)
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and
. _k
||B (fag)||H5+k SCBEG 2||f||L°°||g||H57 for k:051725 (55)
where Cge > 0 is a universal constant.

5.2. Main proposition on the symmetric system (0.3]). For (53), arranging the quadratic terms in
terms of V* and V~, we have a proposition similar to Proposition 3.2

Proposition 5.1. Assume that ((,v) € HNo(R) with Ny > 4 solves (LG). Then V defined in (5.2)
satisfies the following system

OV —iAV =S, + Qv + LY + N, (5.6)
where

e The quadratic term S5, is of the form
Sy =8, (VI Vv +5° (V7 V).
And the symbol s5,  (&,m) of S5, 4 (for p =+, —) satisfies
S;E,L,-i-(gv 77) = _S:L,-‘,-(é.a 77)7 (57)

)%t (€025, (€m) = 002057 (. )| S lé =l oo (). (59)

o The quadratic term Qf, is of the form
= Qj—,—(VJra Vﬁ) + Qe—,—(via Vﬁ)

And the symbol g;, _ (&, n) of QF, _ satisfies

g5, (€ S lél- pes(Vlnl) - pe-a( S ). 5.9

e The cubic term LS, = €0, (TV) satisfies
|Re{ ((9)™ L5 [ (02) V), }| S ¢l o= [[oll =1V [ Frve - (5.10)
e The remaining nonlinear term N satisfies
. 2
NVl mvo S €(llClwaee + llvllws.e) (14 1€l ano + 1ol avo) " (IS avo + [0l o). (5.11)

Remark 5.2. The terms S, Q5, and L5, in (50) correspond to Sy, Qv and Ly in BI0) respectively.
Whereas N in ([6.8) is corresponding to the sum Ry + My + Cy + Ny in (B10).

Remark 5.3. Proposition [5.]] reveals that the worst term is Q5. Indeed, (59) hints that term Q5 is of
order O(;\/€) if there is no loss of derivative.

Proof of Proposition [21l Thanks to (53], rewriting (B.3]) to (B.6]), we have

Sty = —€0u(TV) + Seldu| (TeV),

Qﬁv = =50 (Tep<s (Veluu) - e510:] (Tep<s (Vel2a 1)),

= €20,(TgV),
= (Ve + 500 (TepealVelDLl)w) + 155 (NG = 501 (Tepes (VD))
Thanks to (m) we have
(= (V+ +V7) Z VE u= %|g§|<V+ Z u . (5.12)

ue{+ -} u€{+ -}

Using (512), we could rewrite S, and O, in terms of V" and V. They would have similar expression
as Sy and Qy in the proof of Proposition B2l It is easy to check that there hold (B.8]) and (&.9)).
Similarly as in the derivation of (BI6)), using the symmetric structure of £f, and (&.4)), we have

[Re{ ((02)™ L5 1 (9:)™°V) , } S 1B |V [ 30
which along with (58] implies the estimate (5.10]).
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For the remained nonlinear term N, similarly as in the derivation of the estimates involving Cy and
Ny in the proof of Proposition [3.2] using product estimates and (£.5]), we obtain (5.11]). The proposition
is proved. O

5.3. Main a priori estimates for (6]). Similarly as the proof of Theorem [[T] the proof of Theorem
also relies on the continuity argument and the a priori energy estimates. Before stating the main a
priori energy estimates of (L], we present the ansatz for the continuity arguments.

The first ansatz is involving the amplitude of ¢ as follows

ell¢(t)] e < for t e [0,Toe 3]. (5.13)

1
2CBe ’
We define the energy functional for (LG) as

Eno(t) = KON 7zm0 + 10 1o -

For simplicity of the proof and without loss of generality, we assume

1ol 30 + llv0lFrng = 1. (5.14)
Our second ansatz is about the energy and reads
Eny (1) <2C), for te[0,The 3], (5.15)
where C} > 1 is an universal constant that will be determined in the end of the proof. We take
Ty = Q{ Cl =204
Oé 9 0 1

where C7, C} are constants stated in the following Proposition [5.4l Thanks to Proposition 5.4 we could
improve the ansatz (5.13) and (5.I5]). Precisely, there exists a constant ¢ > 0 such that for any € € (0, €],

we improve the ansatz (B.13) and (&13) to
e~ < 7o

and  Ep,(t) < Ch, for te0,The 3]

for te [O,TOE%]

Then Theorem follows from the above argument and the local regularity theorem.
Now, we focus on the a priori energy estimate which is established in the following proposition.

Proposition 5.4. Assume that 0 < € < 1 and there holds (&I4). Under the ansatz (B13) and (GI5),
the solution (,v) of (LO)-(1) satisfies

Eny (1) < C + Chtes, for any t € (0, Toe 3], (5.16)

where C and C4 are two universal constants, and Ty = %
2
Proof. We shall use the formulation (&.0]) to derive the energy estimates for the Boussinesq system (LZ0]).
Due to Proposition 5.1l standard energy estimates will give rise to a local existence theorem with time
scale of O(1/+/€). To enlarge the existence time, we will apply the normal forms transformation to the
worst term Qf,. Now we sketch the proof.
Step 1. The a priori energy estimate. Thanks to (53) and (EI3), we have

. 1
el BEC)llave < Sllvliamo,

which along with (B)) and (B.2]) implies

_z
Eny (1) ~ NCEFrme + a7 ~ IV (E)Ino,  for ¢ € [0, Toe™5] (5.17)
By virtue of (BI7), we start the energy estimate of (5.G]) as follows
1d

V)30 = Ref ((92)"°85 [ (0:)0V), + (000 Q5 | (0:)0V),
+ ((0)™ Ly [(0:)7V )y + ({0a) "N | (02)70V) 5}

Thanks to the estimates (B.I0) and (EI1)) in Proposition Bl using (&14), (BI5) and (BI7), we obtain
Eny(t) S 1+ |Re(I)| + [Re(11)] + te, (5.18)

2dt
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where
1S [ ] s e n e - 7TV €,
netroy 0 (5.19)
= S [ [ 9P eV T ndsar
O

Step 2. Estimate for Re(/). Similarly as Step 3 in the proof of Proposition B:2] using symmetric
structure of S‘e,, we have

Re(l) = 7 E:// LEMVRE — 1) - (VT () - €NV (—€)dndedr,
pe{+,—}
where

S (€m) = (€N )TN ((€)* M0 sy, 4 (&,m) — ()P0, 4 (0,€)).
Thanks to ([&.8]), we have
€ =] )

|55, 1 (& m)] Sele —nl - ‘Péfﬁ(m '

Then we obtain
[Re(]) //MnW§nnuWWw@WW@mwt

S etsup €V ()l - 1)V (E)IIZ2 S et sup [V ]| =l|V 13
(0,t) (0,t)

which along with (B14), (515) and (BI7) implies
|[Re(I)| < et. (5.20)
Step 3. Estimate for Re(/]). Due to (59), the direct estimate for /1 will lead to one derivative
loss or /€ loss. To improve the estimate, we shall apply the normal form transformation to this term.

Step 4.1. The evolution equation and estimates of the profile. Firstly, we introduce the profiles f, g of
V and (9,)NoV as follows

f=e "V and g=(9,)Nf.
Thanks to (.I7T), we have

Eno () ~ IV o ~ If w0 = llgllZo. (5.21)
Due to the equation (&3], we have

O, f = e~ithe (—eaw(TUV) n %6|(9I|(T¢ )+ NE+i Oa

5. |N6) (5.22)

By virtue of definition of B(, ), we have
supp B<(-,-)(€) C {€ € R [ Vel¢| = 2°},
which along with the expressions of N¢ and Ny implies
p<0(VelOr)NE = —edrp<o(Vel Oz I)( Tep<s(Veldul)v + R(C,v)),

p<o(VelOa| )N, = gazwso(\/glaml)(ngfs(\/glaml)é - R(v,v)).

Then we have
| B |<P<o(\f|5 )0 fllavo S €(lIClnee + llvllzee) (€l mxo + vl xo + 1V 1o )-

Due to the expressions of N¢ and Ny, using (5.5), we also have

I |90>1(\/E|8m|)atf”HN0 S elllvllwa= + lIClwe) 1+ [vlwaz + [I¢]wa=)

< (VI a~o + vl vo + €l e + lull o)
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Thanks to (BI4), (518) and (EI1), we obtain
770 f Lo Se. (5.23)
|8 |
Step 4.2. The profiles version for II. Denoting by

Q5(6,m) = (€)2Nogs _(&,mVE(E —mV—()VF(©),

11— /0 t /R (€, n)dnddt + /0 t /R (&, n)dndgar.

Now we rewrite 9, (£, 7) in terms of the profiles f and g as follows

we have

o~

Q5 (&,m) = P EMge (& mFrE—n)-g-(n) - g (=),
where
P _(&m) = —A(§) + pA(§ — 1) — Ac(n),
g, - (& m) = (m =N Nog, _(&m).
Thanks to (B9)), we have

17— (€| S el€] - o (Velnl) - wgfﬁ(m ; WI),

| | (5.24)
supp - <5 X {(6m) € €9 >0, Zpnl < el < ool velul < 2°).
Lemma [Z2] and the fact £ -1 > 0 (in (24) yield
@5 _(n) = 5 minflel o5, (€.
with
6eg® — Gel -+ den® —4, if €] > [,
() = {66772 —6el - n+4e6® —4, if |¢] < n|.
Then there hold
P _(&m) =2% _(n,§) and @ _(§n) =25 _(n,9). (5.25)
With (28]), we only derive the estimate for the integral of Qi(f ,m) over set S¢ with
SS ={(&n) € S°[[¢] > Inl}
Step 4.3. Estimate for f(f fs QE (§,m)dnd&dt. We divide Q¢ (€, ) into three parts as follows:
(1). For low frequency \/—|n < 1, using (5:24), we have
6 et and ST o © oo (5.26)

5 _En) VoGl

Integrating by parts w.r.t t, we have

t
| [ e mosatvinhindcar

-/, % SED (g = 1) 7 () - (- a(Velnl)nde [

A

—

-/ /S T e 0 ([ 1) )5 ()< (Val

Aj
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Similarly as the derivation of (£I8]) in Step 3.1 of proof to Proposition B2 using (5:24) and (524,

we have
|A5]S E/S &=l G| - [6(=&)ldnde S el N IGON72 S el flla g7,
|A5| S et (SSII;/ (195 (& =ml - [a)| - [8(=E) + 1T =m) - 10 (9~ (m) - 9~ (=€))]) <2 (Veln|)dide
) Jsg
< etsup([|0uf | llgll7- + 1l Hiatgl\mllgl\m)a
(0.t) Ve |0z
where we used the fact that || ~ |n| and the following inequality in the last inequality

Velnle<—2(Velnl) $1.
Thanks to (BI4), (&10), (E2I) and (E23]), we obtain

t
[ [ a5 €moca(Vananded] S e+ cbe (5.27)
0 Jse
(2). For moderate frequencies with large modulation of phase, i.e., for

LSVl <2 ad o5 (el 2P,
we have
T
Z‘1>€ ~(&m) T e (&)l s
Following similar arguments as (IBIZI), integrating by parts with respect to t, we get

[ | OE M1 (VEDP (b1 (6 ] S 20273 (5.25)
(3). For moderate frequencies with small modulation of phase, i.e., for
TSVl <2 ad oL _(en) 2P,
we divide the integral set into the following two parts
{(em €S 10<n<e< Ty 1S Van<PhU{(En) €810> > €2 S, —5 2 Va2 -2

SS 4+ SS -

We only derive the estimate for the integral over the set SS | . Now, introducing the coordinates trans-
formation on SS  as follows:

U, :SS =S 4 CR?

(&) = (Em) = (85 _(&.m),m),

we have

= €(126 — 61) ~ en ~ /e (5.29)

oV (&n)N 005 _(&n)
et (e ) =

Then W, is invertible and we denote by
(&m) =1 (Em).
Changing the variables (£,7) to (€,7), using (5.24) and (5.29), we have

t
y e O I

< tsup /  (VEIEIFE = - )] B s ey os ey

(0,1) —2-D

1
~ ~ 2
s 7% sup gl / / (IFE )P GO, e mymaeremdin)
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where we used the fact that /e|¢| ~ \/e|n| ~ 1 in the last inequality. Then changing variables (£,7) to
(&,n), using (5:29), we have

t
[ ] asemen (eles—p-s(on 6 nndcatl 28 s ol
>+ )
which along with (B14), (515) and (B21) implies
t
[ ] e (Vinee ot (o - (€ m)nicar| s 2 F ke (5.30)
0 J8s 4

The same estimate holds for the integral over set S _.
Taking D = [log, ¢ 6] (i.e., 2P ~ ¢78) in (5.28) and (5.30), together with (5.27), we obtain that

t
|/ / Q5 (&, n)dndedt] S 1+ €5t (5.31)
0 Jsg

The same estimates hold for fot ng Q¢ (&, n)dnd&dt and fot fRQ Q° (&,n)dndédt. Then we obtain
Re(I1)| <1+ €t (5.32)
Step 5. Final energy estimates. Combining (5.18), (5.20) and (5.32), we finally obtain
Eny (1) 1+ €3t
This is exactly (B.I0). This completes the proof of the proposition. O

6. FINAL COMMENTS

1. It would be interesting to extend the results of the present paper to the two-dimensional version of

@A) or [@L.G).
2. As for other Boussinesq systems except those described in Remark 1.1, the global well-posedness
(or finite time blow-up) of (I6) is an open question.
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