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Abstract. Many physical and biological processes are modeled by “particles” undergoing Lévy
random walks. A feature of significant interest in these systems is the mean square displacement
(MSD) of the particles. Long-time asymptotic approximations of the MSD have been established, via
the Tauberian Theorem, for systems in which the distribution of the step durations is asymptotically a
power law of infinite variance. We extend these results, using elementary analysis, and obtain closed-
form expressions as well as power law bounds for the MSD in equilibrium, and representations of the
MSD as sums of super-linear, linear, and sub-linear terms. We show that the super-linear components
are determined by the mean and asymptotics of the step durations, but that the linear and sub-linear
components (whose size has implications for the accuracy of the asymptotic approximation) depend
on the entire distribution function.
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1. Introduction. We consider a random walker in Rd moving at random veloci-
ties in straight line segments of random duration. At the end of each flight segment, a
new velocity and duration are chosen at random. We assume that the durations and
velocities are independent. Denote by F the distribution function of the duration.
When F has infinite variance, the case of primary focus in this paper, this process is
called a Lévy walk [20, 21, 25, 26, 30]. A swarm of random walkers starting at the
same location and performing independent Lévy walks exhibits super-diffusion, that
is, faster than linear growth in the mean square displacement (MSD) — the mean of
the square of their distances from the origin. One finds many discussions of physical
and biological applications of Lévy walks and related random processes leading to
super-diffusion in the literature. Our own interest in the subject started when we
modeled the evolution of a rarefied gas in an ultra-thin planar channel as a succes-
sion of infinite-variance flights and showed that the molecular density approaches a
Gaussian distribution with a variance which grows super-linearly [5, 15, 23]. Other
examples of applications include certain kinds of transport in fluid flow [26, 32], trans-
port in biological cells [6, 28], the migration of bacteria [1], predator search behavior
[27], and traveling humans [7]. Also, Lorentz gases [16, 33] and other billiards prob-
lems [2], in which there is no randomness in a strict sense but, rather, deterministic
chaos, have been approximated by super-diffusive random walks.

The most commonly studied Lévy walks are those in which the speeds of the
walkers are fixed. However, there are many interesting examples in which both the
directions and the speeds of the flights are random [31]. For example, in the gas
flow between horizontal plates with Maxwellian reflection conditions mentioned above,
individual molecules undergo random flights whose durations and horizontal velocities
are independent, with durations of infinite variance and finite expected square speed
[5]. By allowing speeds to be random, but assuming that the expectation of the
squared speed is finite, we include this and other examples without complicating the
analysis beyond that of the single-speed case.

A fundamental quantity characterizing super-diffusion is the MSD. The common
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2 C. Börgers and C. Greengard

approach to analyzing the MSD is to formulate an equation describing the density of
the walker location as a function of time and then to take a Fourier transform with
respect to the space variables and a Laplace transform with respect to the time vari-
able. One can then use the Tauberian theorem to deduce the long-time asymptotics
of the MSD from the behavior of derivatives with respect to the Fourier variable near
0 [19, 21, 29].

An alternative and more elementary approach is to express the MSD as an integral
over the velocity auto-correlation, and evaluate or analyze the integral; see for instance
[2, 12]. We present a mathematical analysis of the basic properties of the MSD, using
this approach, under the assumption that F has finite expectation.

While the standard approach is very useful in providing insights into various
aspects of the asymptotic behavior of Lévy walks, the more elementary approach taken
in this paper allows the derivation of exact, explicit expressions, valid for all times,
for the MSD, for important classes of problems (Section 4). This enables detailed
understanding of the accuracy of asymptotic approximations for the MSD (Section
6). In other examples, when exact expressions cannot be obtained, our approach
permits the derivation of time-dependent bounds, valid for all times (Corollary 7.4).

We will distinguish between the “equilibrium” MSD, Meq, and the “transitional”
MSD, Mtr. Precise definitions are given in Section 2. The difference between the
two cases lies in the interpretation of “t = 0”. In the equilibrium case, t = 0 should
be thought of as the time at which we start watching a random walk that has been
going on for a long (strictly speaking, infinite) time. In the transitional case, the walk
begins at time t = 0. The equilibrium case is easier to analyze since the MSD is then
expressible as a simple convolution integral, and we focus on this case.

Long-time asymptotic approximations have been derived for various duration dis-
tributions, for both Mtr and Meq. These approximations depend only on the tails
of the distributions. However, accuracy of the asymptotic approximation may only
emerge after an extremely long time. For instance, if Meq is proportional to t log t
to leading order, as occurs in numerous applications [2, 14, 33], there is typically a
correction term of order t. For this term to become negligible, 1/ log t must become
small, so t must be extremely large. We show that the presence or absence of a linear
correction term depends on the entire distribution F , not just on its tail. Similarly
we show that the presence of a logarithmic factor in 1 −F may cause Meq to consist,
to leading order, of a sum of two terms that only differ by a factor proportional to
log t. Highly precise and complete knowledge of F may therefore be needed to ascer-
tain whether leading-order long-time asymptotic approximations for Meq are accurate
approximations to the actual Meq at times of physical interest.

Of course, distributions found in real-world applications need not be exactly power
laws asymptotically. We show that the model is robust in the sense that for distribu-
tions bounded by power laws, the MSDs also satisfy related bounds.

We relate the transitional MSD, Mtr, to the equilibrium MSD, Meq. Our results
on Mtr are weaker than those on Meq and mostly concern the leading-order asymptotic
behavior, but we also give a result on correction terms for Mtr. Finally, we present
the asymptotic MSD for free molecular flow in planar channels [5].

2. Background and notation. Let Ti, i = 0,1,2, . . ., be random variables with

0 ≤ T0 < T1 < T2 < . . . .

We will consider a random walker changing velocities at times Ti. We assume that
the increments τi = Ti−Ti−1, i = 1,2,3, . . ., are independent and identically distributed
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positive random variables. The equilibrium and transitional cases differ in the choice
of distribution of T0, as discussed below.

Let F denote the distribution of the τi. We assume throughout this paper that
F is continuous and that its mean, τ , is finite:

τ = ∫
∞

0
(1 − F (s)) ds <∞.

Our primary concern is this paper is with the case when the second moment of F ,

σ2 = ∫
∞

0
2s(1 − F (s)) ds, (2.1)

is infinite.
At each time Ti a new velocity vector, Vi, is chosen. For simplicity of exposition,

we will often refer to the times T0, T1, . . . as ”collision” times, thinking of a particle
colliding with a background. Thus the random selection of a new Vi is thought of as
the result of a “collision”. We assume that the velocities are identically distributed
and independent of each other and of the collision times. We’ll also assume that the
mean velocity is zero, since if it were not, one could simply subtract the mean velocity
and consider the shifted velocities (the only change would be a drift in the direction
of the mean velocity). Denote by v the characteristic speed,

v =
√
E [∣Vi∣2],

where ∣ ⋅ ∣ denotes the Euclidean norm. As we shall see below, given a duration distri-
bution F , the MSD is proportional to v2 = E[∣Vi∣2]. This is the only dependence of
the MSD on the velocity distribution. So, for example, given F , walks in d dimensions
with post-collision velocities uniformly distributed on the sphere of radius v and those
which go only in axial directions, with equal probabilities, at speed v, have identical
MSDs — not just asymptotically, but for all time.

We consider two choices of T0:
1. Transitional case: T0 = 0.
2. Equilibrium case: T0 > 0 is random and independent of the τi, with distribu-

tion function

F0(t) =
1

τ
∫

t

0
(1 − F (s))ds, t > 0. (2.2)

To review the significance of the distribution F0, recall [17] that for any t ≥ 0,

Zt = min{Tj ∶ j ≥ 0, Tj > t} − t > 0

is called the residual life at time t. Denote its distribution function by FR(t, z), z > 0,
so that for t ≥ 0, z > 0,

FR(t, z) = P (∃j ≥ 0 t < Tj ≤ t + z).

Lemma 2.1. If F is continuous, then FR(t, z) is a continuous function of (t, z) ∈
[0,∞) × (0,∞).

Proof. Let t ≥ 0, z > 0. Let ∆t and ∆z be numbers with t+∆t ≥ 0 and z +∆z > 0.
We must prove that FR(t + ∆t, z + ∆z) → FR(t, z) as ∆t,∆z → 0. We will consider
the case ∆t ≥ 0 and ∆z ≥ 0. The cases when one or both of ∆t and ∆z are negative
can be understood analogously.
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We have

∃j ≥ 0 t +∆t < Tj ≤ t +∆t + z +∆z

⇒ ∃j ≥ 0 t < Tj ≤ t +∆t + z +∆z

⇒ ∃j ≥ 0 t < Tj ≤ t + z or t + z < Tj ≤ t + z +∆t +∆z

and therefore

FR(t +∆t, z +∆z) ≤ FR(t, z) + FR(t + z,∆t +∆z). (2.3)

Similarly,

∃j ≥ 0 t < Tj ≤ t + z
⇒ ∃j ≥ 0 t < Tj ≤ t +∆t + z +∆z

⇒ ∃j ≥ 0 t < Tj ≤ t +∆t or t +∆t < Tj ≤ t +∆t + z +∆z

and therefore

FR(t, z) ≤ FR(t,∆t) + FR(t +∆t, z +∆z). (2.4)

From (2.3) and (2.4),

∣FR(t +∆t, z +∆z) − FR(t, z)∣ ≤ max (FR(t + z,∆t +∆z), FR(t,∆t)) .

It therefore suffices to prove now that for any a ≥ 0,

lim
∆t→0+

P (∃j ≥ 0 a < Tj ≤ a +∆t) = 0. (2.5)

To prove (2.5), we write, for any n ≥ 1,

P (∃j ≥ 0 a < Tj ≤ a +∆t) ≤
n

∑
j=1

P (a < Tj ≤ a +∆t) + P (Tn+1 ≤ a +∆t) . (2.6)

Because F is continuous, the right-hand side of (2.6) converges to P (Tn+1 ≤ a) as
∆t→ 0+. This implies

lim sup
∆t→0+

P (∃j ≥ 0 a < Tj ≤ a +∆t) ≤ P (Tn+1 ≤ a) .

The assertion now follows because P (Tn+1 ≤ a)→ 0 as n→∞.
The importance of F0 lies in the following well-known result from renewal theory

[17, Chapter XI, Section 4].
Theorem 2.2. In the equilibrium case,

FR(t, z) = F0(z) for all t ≥ 0, z > 0.

In the transitional case,

lim
t→∞FR(t, z) = F0(z) for all z > 0.
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We will use the following elementary fact.

Lemma 2.3. If σ2 <∞, then 1 − F (t) = o (1/t2).

Proof. Let τ denote a random variable with distribution function F . Let Ω denote
the underlying probability space. For t > 0, let It(ω) = 1 if τ(ω) > t, and = 0 otherwise.
Then

t2(1 − F (t)) = ∫
τ(ω)>t

t2 dω ≤ ∫
τ(ω)>t

τ(ω)2dω = ∫
Ω
τ(ω)2It(ω)dω.

The integrand converges to zero as t → ∞ for any fixed ω, and is bounded by the
integrable function τ(ω)2. The Lebesgue dominated convergence theorem implies the
assertion.

Some simple properties of F0 that will be of use to us later on are collected in the
following lemma.

Lemma 2.4.

(a) If F is continuous, then F0 is continuously differentiable, with density

ρ0(t) =
1 − F (t)

τ
, t > 0.

(b) If σ2 <∞ then 1 − F0(t) = o(1/t) as t→∞.
(c) The expectation of F0 is σ2/(2τ), regardless of whether σ2 is finite or infinite.

Proof. (a) follows from the fundamental theorem of calculus.

(b) Since 1 − F0(t) = 1
τ ∫

∞
t (1 − F (s))ds, this follows from Lemma 2.3.

(c) The expectation of F0 is

∫
∞

0
(1 − F0(s))ds = [s(1 − F0(s))]∞0 + ∫

∞

0
s

1 − F (s)
τ

ds = lim
s→∞ s(1 − F0(s)) +

σ2

2τ
.

Using part (b), we see that this equals σ2/(2τ).
Now define the random, piecewise constant velocity, V ,

V (t) = { V0 if 0 ≤ t < T0,
Vi if Ti−1 ≤ t < Ti.

Consider a random walker in Rd starting at X(0) = 0 and moving with velocity V (t)
at time t. The position of the random walker at time t is

X(t) = ∫
t

0
V (s)ds.

The mean square displacement (MSD) is the quantity

M(t) = E[∣X(t)∣2].

As mentioned in the introduction, we use subscripts to distinguish the equilibrium
and transitional cases, writing Meq and Mtr and referring to Meq as the equilibrium
MSD, and to Mtr as the transitional MSD.
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3. Integral representations and properties of the MSD.

3.1. The MSD as a double integral. The MSD can be expressed as an integral
as follows [12]. For all t ≥ 0,

M(t) = E [∫
t

0
V (r)dr ⋅ ∫

t

0
V (s)ds]

= E [∫
t

0
∫

t

0
V (r) ⋅ V (s) dr ds]

= 2E [∫
t

0
∫

s

0
V (r) ⋅ V (s) dr ds] .

Recalling that expectations are integrals over the sample space and using Fubini’s
theorem, we conclude that

M(t) = 2∫
t

0
∫

s

0
E [V (r) ⋅ V (s)]dr ds. (3.1)

The auto-correlation E[V (r) ⋅V (s)] that appears in (3.1) is related to the residual life
distribution FR as follows. Assume that 0 ≤ r < s. If there is no j with Tj ∈ (r, s], an
event of probability 1 − FR(r, s − r), then V (r) = V (s) and so E[V (r) ⋅ V (s)] = v2. If
there is a j with Tj ∈ (r, s], then V (r) and V (s) are independent and E[V (r) ⋅V (s)] =
0. Hence,

E[V (r) ⋅ V (s)] = v2 (1 − FR(r, s − r)) (3.2)

and, inserting (3.2) into (3.1),

M(t) = 2v2 ∫
t

0
∫

s

0
(1 − FR(r, s − r))dr ds (3.3)

for all t ≥ 0.

3.2. Properties of the MSD. We record the following general consequences
of eq. (3.3).

Proposition 3.1. In both the equilibrium and transitional cases,
(a) M(t) ∼ v2t2 as t→ 0,
(b) M is continuously differentiable,
(c) M ′(t) > 0 for all t > 0,
(d) M grows at least linearly, i.e., lim inf

t→∞ M ′(t) > 0, and

(e) for any fixed s > 0, lim
t→∞

M(t − s)
M(t)

= 1.

Proof. (a) means

M(t)
t2

= 2v2

t2
∫

t

0
∫

s

0
(1 − FR(r, s − r)) dr ds→ v2,

and this holds because

max{FR(r, s − r) ∶ 0 ≤ r < s ≤ t} ≤ F (t)→ 0

as t → 0. (b) follows immediately from (3.3) because FR is a continuous function
(Lemma 2.1). In fact,

M ′(t) = 2v2 ∫
t

0
(1 − FR(r, t − r)) dr.
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Note that 1−FR(r, t− r) is a non-negative continuous function of r and t which tends
to 1 as r → t−. Thus, M ′(t) > 0 for all t > 0, establishing (c). To prove (d), we will
prove the existence of a positive lower bound on M ′, valid for sufficiently large t. Let
a > 0 and t ≥ a. Then

M ′(t) = 2v2 ∫
t

0
(1 − FR(r, t − r)) dr

≥ 2v2 ∫
t

t−a
(1 − FR(r, t − r))dr

≥ 2v2 ∫
t

t−a
(1 − FR(t − a, a))dr

= 2v2a (1 − FR(t − a, a))
→ 2v2a(1 − F0(a))

as t→∞. For sufficiently small a > 0, we have 2v2a(1 − F0(a)) > 0. Choose a so that
this holds. Then for sufficiently large t,

M ′(t) ≥ v2a(1 − F0(a)) > 0.

This implies (d). To prove (e), first note M(t)−M(t− s) > 0 because of (c). Further-
more,

(M(t) −M(t − s))2 = (E[∣X(t)∣2 − ∣X(t − s)∣2])2

= (E[(∣X(t)∣ − ∣X(t − s)∣)(∣X(t)∣ + ∣X(t − s)∣)])2

≤ E[∣X(t) −X(t − s)∣2] E[∣X(t) +X(t − s)∣2]

≤ E [(∫
t

t−s
∣V (u)∣du)

2

]2 (E[∣X(t)∣2] +E[∣X(t − s)∣2])

≤ 2E [s∫
t

t−s
∣V (u)∣2du] (E[∣X(t)∣2] +E[∣X(t)∣2])

= 2s∫
t

t−s
E [∣V (u)∣2]du(E[∣X(t)∣2] +E[∣X(t)∣2])

= 4v2s2M(t).

Hence, M(t) −M(t − s) ≤ 2vs
√
M(t), and, since M(t)→∞ by (d), (e) follows.

3.3. Computing Meq from F . As we have seen in Theorem 2.2, in the equi-
librium case, FR(r, s − r) = F0(s − r) for all r. Hence, eq. (3.3) becomes

Meq(t) = 2v2 ∫
t

0
∫

s

0
(1 − F0(s − r)) drds. (3.4)

We now establish two consequences of this integral expression which will allow us
both to construct illustrative examples and to establish the asymptotic behavior of
the MSD. First, differentiating (3.4) and introducing the change of variables t− r = u,
we find

M ′
eq(t) = 2v2 ∫

t

0
(1 − F0(u))du. (3.5)

Equation (3.5) implies, by anti-differentiation, a representation of Meq as a single
integral:

Meq(t) = 2v2 ∫
t

0
(1 − F0(u))(t − u)du. (3.6)



8 C. Börgers and C. Greengard

Integrating by parts in (3.6), using (2.2), we obtain an integral expression for Meq

directly in terms of F rather than F0:
Proposition 3.2. For all t ≥ 0, the equilibrium MSD can be expressed as

Meq(t) = v2 (t2 − 1

τ
∫

t

0
(1 − F (u))(t − u)2du)

= v
2

τ
(t2 ∫

∞

t
(1 − F (u))du + ∫

t

0
(1 − F (u))(2tu − u2)du) . (3.7)

Proposition 3.2 will prove useful in deriving asymptotic results. We now derive an
alternative characterization of Meq, which will prove useful in constructing examples.
Differentiating eq. (3.5), we obtain

M ′′
eq(t) = 2v2(1 − F0(t)). (3.8)

Differentiating a third time, we arrive at the following proposition.
Proposition 3.3. Meq is three times continuously differentiable and for all t ≥ 0,

M ′′′
eq(t) =

2v2

τ
(F (t) − 1) (3.9)

with boundary conditions,

Meq(0) = 0, M ′
eq(0) = 0, M ′′

eq(0) = 2v2, M ′′
eq(∞) = 0. (3.10)

It may appear at first sight that Meq is over-determined by the four conditions in
(3.10). However, note that (3.9) implies that M ′′

eq(0) −M ′′
eq(∞) = 2v2. Therefore,

M ′′
eq(0) = 2v2 and M ′′

eq(∞) = 0 are equivalent conditions.

4. A family of power laws with closed-form Meq. A standard assumption
in the literature is that F is, asymptotically, a power law. This enables derivation of
asymptotic behavior of Lévy walks, including the MSD, via Laplace transforms and
the Tauberian theorem [21].

However, in the equilibrium case, for a variety of power laws, one can get a more
precise result — the exact MSD for all times. For example, for α > 1 and t0 > 0, let

F (t) = 1 − (1 + t

t0
)
−α
. (4.1)

The mean of this distribution is

τ = ∫
∞

0
(1 + t

t0
)
−α
dt = t0

α − 1
. (4.2)

For α ≤ 2, the second moment of F is infinite, while for α > 2, it is finite. Using (4.2),
we see that in the limit as α →∞, with τ fixed, we obtain the exponential distribution

F (t) = 1 − e−t/τ . (4.3)

We also note that

F0(t) =
1

τ
∫

t

0
(1 − F (s))ds = 1 − (1 + t

t0
)

1−α
.
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Using either Proposition 3.2 or Proposition 3.3, we can compute Meq(t) exactly
for the distributions in (4.1) and (4.3). For example, consider the case α = 3. Using
eqs. (3.9) and (4.2), we obtain

M
′′′

eq(t) =
4v2

t0
(1 + t

t0
)
−3

.

Integrating, using the boundary conditions (3.10), we find

M
′′

eq(t) = −2v2 (1 + t

t0
)
−2

,

M
′

eq(t) = 2v2t0 − 2v2t0 (1 + t

t0
)
−1

,

and

Meq(t) = 2v2t20 ( t
t0
− log (1 + t

t0
)) .

This proves eq. (4.6) below. The other parts of Proposition 4.1 are proved by similar
straightforward calculations.

Proposition 4.1. For the distribution given by (4.1) if α < ∞, and by (4.3) if
α =∞, we have, for all t ≥ 0,

Meq(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(vt0)2

(2 − α)(3 − α)
((1 + t

t0
)

3−α
− (3 − α) t

t0
− 1) if α > 1, α≠2,3 (4.4)

2(vt0)2 ((1 + t

t0
) log (1 + t

t0
) − t

t0
) if α = 2 (4.5)

2(vt0)2 ( t
t0
− log (1 + t

t0
)) if α = 3 (4.6)

2(vτ)2 ( t
τ
− 1 + e−t/τ) if α =∞ (4.7)

We stress again that these are exact formulas valid for all times, not just asymp-
totic ones. Note that (4.4) tends to (4.5) as α → 2, and to (4.6) as α → 3. Using (4.2),
it is also straightforward to see that in the limit as α → ∞ with τ fixed, (4.4) tends
to (4.7).

When the particles move at a constant speed v, there is a sharp front consisting
of particles which have experienced no collisions. Then at time t, the probability of
having experienced no collisions is 1−F0(t) and the contribution to Meq of this front
is v2t2(1−F0(t)). For the above power law with 1 < α < 2, this gives a contribution of

Mf
eq(t) = v2t2 (1 + t

t0
)

1−α
.

As t → ∞, the front contributes an asymptotically constant proportion to the total
MSD:

Mf
eq(t)

Meq(t)
→ (2 − α)(3 − α)

2
.

For α ≥ 2, the contribution of the front to Meq(t) becomes negligible as t→∞.
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5. Leading-order asymptotics of Meq. If F has finite variance, then

lim
t→∞M

′
eq(t) = 2v2 lim

t→∞∫
t

0
(1 − F0(s))ds =

σ2v2

τ
,

by eq. (3.5) together with Lemma 2.4, part (c). Hence,

Meq(t) ∼ σ2v2 t

τ
as t→∞. (5.1)

The more interesting case is that of infinite variance, to which we now turn. In
several places we will make use of the following lemma.

Lemma 5.1. Let f and g be non-negative, locally integrable functions of t ∈ [0,∞)
with f(t) > 0 and g(t) > 0 for sufficiently large t,

f(t) ∼ g(t) as t→∞,

and

∫
∞

0
f(t)dt = ∫

∞

0
g(t)dt =∞.

Then

∫
t

0
f(s)ds ∼ ∫

t

0
g(s)ds as t→∞.

Proof. Let ε > 0. Choose A > 0 so that for t ≥ A, f(t) ≤ (1+ε)g(t). Then for t ≥ A,

∫
t

0
f(s)ds = ∫

A

0
f(s)ds + ∫

t

A
f(s)ds ≤ ∫

A

0
f(s)ds + (1 + ε)∫

t

A
g(s)ds

≤ ∫
A

0
f(s)ds + (1 + ε)∫

t

0
g(s)ds.

Therefore

∫
t

0 f(s)ds

∫
t

0 g(s)ds
≤ ∫

A
0 f(s)ds

∫
t

0 g(s)ds
+ 1 + ε.

Letting t→∞, we find

lim sup
t→∞

∫
t

0 f(s)ds

∫
t

0 g(s)ds
≤ 1 + ε.

By a similar argument,

lim inf
t→∞

∫
t

0 f(s)ds

∫
t

0 g(s)ds
≥ 1 − ε.

Since these conclusions hold for any ε > 0, the assertion follows.
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The following theorem shows that in the infinite variance case, the leading-order
long-time asymptotic behavior of τMeq is determined by the leading-order long-time
asymptotic behavior of 1 − F .

Theorem 5.2. Let F and F̃ be infinite-variance distributions with finite means
τ and τ̃ and equilibrium MSDs Meq and M̃eq, respectively. Assume that

1 − F (t) ∼ 1 − F̃ (t) as t→∞.

Then

τMeq(t) ∼ τ̃ M̃eq(t) as t→∞.

Proof. τM ′′′
eq = 2v2(F −1), M ′′

eq(∞) = 0 and τ̃ M̃ ′′′
eq = 2v2(F̃ −1), M̃ ′′

eq(∞) = 0 imply

τM ′′
eq(t) = ∫

∞

t
2v2(1 − F (s)) ds ∼ τ̃ M̃ ′′

eq(t) = ∫
∞

t
2v2(1 − F̃ (s)) ds

as t→∞. From Lemma 2.4, part (c), and eq.(3.5), we know that M ′
eq(t) and M̃ ′

eq(t)
tend to ∞ as t→∞. This implies, using Lemma 5.1, that

τM ′
eq(t) = ∫

t

0
τM ′′

eq(s)ds ∼ τ̃ M̃ ′
eq(t) = ∫

t

0
τ̃ M̃ ′′

eq(s)ds.

Because Meq(t) and M̃eq(t) tend to ∞, this in turn implies, again by Lemma 5.1,

τMeq(t) = ∫
t

0
τM ′

eq(s)ds ∼ τ̃ M̃eq(t) = ∫
t

0
τ̃ M̃ ′

eq(s)ds,

which is the statement of the theorem.

Proposition 4.1 and Theorem 5.2 together imply the well-known formulas [3, 24]
for the leading-order asymptotic behavior of Meq for α ∈ (1,2], summarized in the
following corollary. We add to the statement of this corollary the result for the finite
variance case α > 2 (see eq. (5.1)).

Corollary 5.3. Suppose that

1 − F (t) ∼ ( t
t0

)
−α

for some t0 > 0 and α > 1. Then as t→∞,

Meq(t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0
τ

2(vt0)2

(α − 1)(2 − α)(3 − α)
( t
t0

)
3−α

if 1 < α < 2, (5.2)

t0
τ

2(vt0)2 t

t0
log

t

t0
if α = 2, (5.3)

t0
τ
(vσ)2 t

t0
if α > 2. (5.4)



12 C. Börgers and C. Greengard

6. Accuracy of leading-order asymptotics: Examples.. In this section we
explore the accuracy of leading-order asymptotic descriptions of Meq such as those
given in Corollary 5.3.

6.1. Canonical power laws. For the power laws

F (t) = 1 − (1 + t

t0
)
−α

discussed in Section 4, the accuracy of the leading-order asymptotics can be ascer-
tained from eqs. (4.4)–(4.6). The discrepancy between the exact Meq and the leading-
order asymptotics given in Corollary 5.3 is O(t/t0) for α ≤ 2, and O((t/t0)3−α) for
2 < α < 3. Therefore the leading-order asymptotic approximation for Meq(t) is inac-
curate when α ≈ 2 unless t/t0 is very large.

Figure 6.1 illustrates this conclusion, using t0 = 1, v = 1, and six different values
of α. The figure shows, for 0 ≤ t ≤ 1000, the exact Meq(t) (solid), the leading-
order approximations (dotted), and Monte Carlo estimates of Meq (circles), based on
500,000 simulated random walkers for each value of α.
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Fig. 6.1: Exact Meq (solid), leading-order approximation as given in Corollary 5.3
(dotted), and approximations of Meq obtained by simulations of 500,000 walkers (cir-
cles) for six different values of α.

For α = 2, the relative difference between Meq and its leading-order approximation
is approximately 1/ log(t/t0), and for this to be smaller than 0.05, corresponding to
5% accuracy, we need t/t0 > e20 ≈ 5 × 108. Zarfaty et al. [33] relate slow convergence
of Meq to slow convergence in the Central Limit Theorem (CLT) for α = 2 [22], a
special case of slow convergence for any slowly varying scaling in the generalized CLT
[4]. A related, deterministic, problem is that of infinite-horizon billiards, in which
the asymptotic MSD also contains a logarithmic factor. For this case, Cristadoro
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et al. derived the first two terms in the asymptotic expansion of the MSD [9] and
demonstrated numerically that the leading-order term is a poor approximation of the
actual MSD for reasonable lengths of time [10]. In [11], the same authors derived
an evolution equation for the MSD for random walks on a lattice with exponentially
distributed waiting times between flight segments, a problem that can be seen as an
abstraction of the infinite-horizon Lorentz gas when α = 2.

6.2. A general approach to constructing examples. Instead of beginning
with F and computing Meq, we can also, for the purposes of constructing interesting
examples, start with Meq and compute F from it, based on the following proposition.

Proposition 6.1. Let M ∈ C3([0,∞)). There exist an expected speed v > 0 and
a continuous probability distribution function F on (0,∞) with finite mean τ such
that Meq =M is the equilibrium MSD associated with v and F if and only if

1. M(0) =M′(0) = 0,
2. M′′(0) > 0 and M′′(∞) = 0,
3. M′′′ is an increasing function with M′′′(0) < 0 and M′′′(∞) = 0.

In that case,

v2 = M
′′(0)
2

, F (t) = 1 − M
′′′(t)

M′′′(0)
, τ = M

′′(0)
∣M ′′′(0)∣

.

Proof. This is a straightforward consequence of Proposition 3.3.

6.3. Accurate leading-order asymptotics. Examples in which there are ac-
curate leading-order asymptotic descriptions of Meq can be constructed using Propo-
sition 6.1. For instance,

Meq = v2t log(1 + t) = v2t log t +O(1)

when

F (t) = 1 − 3 + t
3(1 + t)3

,

and for 1 < α < 2,

Meq(t) = v2t2(1 + t)1−α = v2t3−α +O(t2−α)

when

F (t) = 1 − (1 + t)−α (1 − αt

1 + t
+ α(α + 1)t2

6(1 + t)2
) .

6.4. Logarithmic factors for α ∈ (1,2). What happens when the distribution
function is asymptotically close to, but not exactly, a power law? For example, set

F (t) = 1 − 1 + log(1 + t)
(1 + t)3/2 .

A closed-form equilibrium MSD can be derived for this distribution function, as well:

Meq(t) = v2 (8

9
(t + 1)3/2

log (t + 1) + 8

27
(t + 1)3/2 − 4

3
t − 8

27
)

= v2 8

9
t3/2 (log (t) + 1

3
) +O(t).

The leading-order approximation Meq(t) ∼ v2 8
9
t3/2 log t is very poor because the next-

most-significant term is O(t3/2).
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7. Super-linear, linear, and sub-linear terms. We saw in the last section
that linear correction terms can have considerable implications for the accuracy of
the leading-order approximation of Meq when α is near 2. Here we show that that for
α ∈ (1,2], the linear contributions to Meq depend on the entire distribution F , while
super-linear terms, for a given τ , only depend on the asymptotic behavior of F .

The following theorem shows that the entire distribution F is needed to compute
linear contributions to Meq: The value of τ and the precise tail of F (i.e., F (t) for
t ≥ A, for some A > 0) do not determine the linear contributions.

Theorem 7.1. Let F be continuously differentiable, with equilibrium MSD Meq.

Then for all A > 0 such that F (A) > 0, there exists a distribution function F̃ , with
equilibrium MSD M̃eq, such that the means of F and F̃ agree, F and F̃ agree on
[A,∞), and

∣Meq(t) − M̃eq(t)∣ ≥ O(t)

as t→∞.
Proof. By eq. (3.7), if F and F̃ agree on [A,∞), then for all t ≥ A,

Meq(t) − M̃eq(t) = −
v2

τ
∫

A

0
(F (u) − F̃ (u))(2tu − u2)du.

Hence, to complete the proof, it suffices to find an increasing F̃ such that

∫
A

0
(F (u) − F̃ (u))du = 0 but ∫

A

0
(F (u) − F̃ (u))udu ≠ 0,

which is, of course, always possible.
On the other hand, the following theorem shows that the value of τ and knowledge

of F up to a “finite variance” piece are sufficient to determine super-linear contribu-
tions to Meq.

Theorem 7.2. Let

1 − F (t) = G(t) +H(t),

where G and H are integrable functions of t > 0 with

∫
∞

0
∣H(t)∣t dt <∞. (7.1)

Then

Meq(t) =
v2

τ
(t2 ∫

∞

t
G(u)du + ∫

t

0
G(u)(2tu − u2) du) +O(t). (7.2)

Assumption (7.1) makes precise the assertion that H is a “finite variance piece”;
compare eq. (2.1).

Proof. Because of Proposition 3.2 and assumption (7.1), it is enough to prove

∣∫
∞

t
H(u)du∣ = O (1

t
) and ∣∫

t

0
H(u)u2du∣ = O(t).

Both follow from (7.1):

∣∫
∞

t
H(u)du∣ ≤ ∫

∞

t
∣H(u)∣u 1

u
du ≤ ∫

∞

t
∣H(u)∣udu1

t
= o(1

t
)
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and

∣∫
t

0
H(u)u2du∣ ≤ ∫

t

0
∣H(u)∣udu t ≤ ∫

∞

0
∣H(u)∣udu t = O(t).

In particular, this proposition implies that an asymptotic expansion of the slowly
converging part of 1 − F translates into an asymptotic expansion of the super-linear
part of Meq:

Corollary 7.3. Suppose that

1 − F (t) =
n

∑
j=1

Cjt
−pj +Ct−2 +O(t−q) (7.3)

as t→∞, where n ≥ 0,

1 < p1 < . . . < pn < 2, q > 2,

and the Cj and C are constants. Then

Meq(t) =
2v2

τ

⎡⎢⎢⎢⎣

n

∑
j=1

Cj

(pj − 1)(2 − pj)(3 − pj)
t3−pj +Ct log t

⎤⎥⎥⎥⎦
+O(t). (7.4)

Proof. We set

G(t) = { ∑
n
j=1Cjt

−pj +Ct−2 for t ≥ 1,
0 for t < 1,

and

H(t) = 1 − F (t) −G(t) = O(t−q).

Theorem 7.2 implies that

Meq(t) =
v2

τ

⎡⎢⎢⎢⎢⎣
t2 ∫

∞

t

⎛
⎝

n

∑
j=1

Cju
−pj +Cu−2⎞

⎠
du + 2t∫

t

1

⎛
⎝

n

∑
j=1

Cju
−pj +Cu−2⎞

⎠
udu

−∫
t

1

⎛
⎝

n

∑
j=1

Cju
−pj +Cu−2⎞

⎠
u2du

⎤⎥⎥⎥⎥⎦
+O(t).

The assertion follows by evaluating the integrals.
What happens if F doesn’t follow a power law exactly? Power law bounds on F

give us bounds on the MSD. For instance, we have the following result.
Corollary 7.4.
(a) Let α ∈ (1,2), C > 0. If

1 − F (t) ≤ Ct−α

for all t > 0, then

Meq(t) ≤
2v2

τ

C

(α − 1)(2 − α)(3 − α)
t3−α

for all t > 0. Similarly, if 1 − F (t) ≥ Ct−α for all t > 0, then the reverse
inequality holds.
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(b) Let C > 0 and A > 0. If

1 − F (t) ≤ Ct−2

for all t ≥ A, then

Meq(t) ≤
v2

τ
[CA + ∫

A

0
(1 − F (u))(2tu − u2)du + 2Ct log

t

A
]

for t ≥ A. Similarly, if 1−F (t) ≥ Ct−2 for all t ≥ A, then the reverse inequality
holds.

Proof. These are immediate consequences of Proposition 3.2.

8. Asymptotic behavior of Mtr. We next relate Meq and Mtr to each other,
in order to deduce asymptotic behavior of Mtr from the asymptotic behavior of Meq.
(See also [3], where expressions for Meq and Mtr are obtained from assumed forms
of the Laplace transform of the duration density in a more general setting.) Let
t > 0 and denote by Xeq the position of the equilibrium process. Then the conditional

expectation of Xeq(t)2, given that T0 > t, is (vt)2
. If T0 ≤ t, then Xeq(t) consists of the

initial segment of duration T0, and the rest. The displacements experienced in these
two segments are not independent — when T0 is larger, the second segment is briefer.
They are, however, uncorrelated, and therefore the variances of the displacements
add. Writing as before ρ0 = F ′

0 = (1 − F )/τ , we have

Meq(t) = (1 − F0(t))(vt)2 + ∫
t

0
ρ0(s)((vs)2 +Mtr(t − s))ds. (8.1)

Equation (8.1) can be read as an equation representing ρ0 ∗Mtr in terms of Meq:

(ρ0 ∗Mtr)(t) =Meq(t) − (1 − F0(t))(vt)2 − ∫
t

0
ρ0(s)(vs)2ds.

By integration by parts, this can be re-written more simply:

(ρ0 ∗Mtr)(t) =Meq(t) − 2v2 ∫
t

0
(1 − F0(s)) s ds. (8.2)

Lemma 8.1.

ρ0 ∗Mtr(t) ∼Mtr(t) as t→∞.

Proof. It is clear that

ρ0 ∗Mtr(t) = ∫
t

0
ρ0(s)Mtr(t − s)ds ≤Mtr(t)

for all t, since Mtr is strictly increasing (Proposition 3.1, part (c)). Now let ε > 0. Let
S be so large that

∫
S

0
ρ0(s)ds ≥ 1 − ε.

Then for t ≥ S,

ρ0 ∗Mtr(t) = ∫
t

0
ρ0(s)Mtr(t − s)ds ≥ ∫

S

0
ρ0(s)Mtr(t − s)ds ≥ (1 − ε)Mtr(t − S).
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For t sufficiently large, this is ≥ (1 − ε)2Mtr(t) since Mtr(t − S) ∼ Mtr(t) as t → ∞
(Proposition 3.1, part (e)). Since the above arguments hold for all ε > 0, the assertion
follows.

Theorem 8.2. If σ2 <∞, then

Mtr(t) ∼Meq(t) ∼ σ2v2 t

τ

as t→∞.
Proof. This follows from eq. (8.2), together with Lemma 8.1, Lemma 2.4, part

(b), and eq. (5.1).
For power laws with exponent α ∈ (1,2), the smaller α− 1 (and hence the greater

the first step of the equilibrium process), the more we might expect Meq to exceed
Mtr. For fixed α, the two MSDs are asymptotically proportional, but, indeed, the
asymptotic ratio of Mtr to Meq is α − 1, as seen in [3, 13, 18].

Theorem 8.3. Let

1 − F (t) ∼ ( t
t0

)
−α

(8.3)

as t→∞, for some constant t0 > 0. Then
(a) Mtr ∼ (α − 1)Meq if α ∈ (1,2), and
(b) Mtr ∼Meq if α ≥ 2.
Proof. (a) Let α ∈ (1,2). From (8.3),

1 − F0(t) =
1

τ
∫

∞

t
(1 − F (s))ds ∼ t0

τ(α − 1)
( t
t0

)
−α+1

.

This yields, using Lemma 5.1, the asymptotic behavior of the second term on the
right-hand side of eq. (8.2):

2v2 ∫
t

0
(1 − F0(s)) s ds ∼

2t0(vt0)2

τ(α − 1)(3 − α)
( t
t0

)
3−α

.

From eq. (4.4) and Theorem 5.2,

Meq(t) ∼
t0/(α − 1)

τ

2(vt0)2

(2 − α)(3 − α)
( t
t0

)
3−α

.

Therefore, by eq. (8.2) and Lemma 8.1,

Mtr ∼
t0
τ

2(vt0)2

(α − 1)(2 − α)(3 − α)
( t
t0

)
3−α

− t0
τ

2(vt0)2

(α − 1)(3 − α)
( t
t0

)
3−α

∼ (α − 1)Meq.

(b) For α > 2, we have σ2 <∞, and therefore the assertion follows from Theorem 8.2.
For α = 2,

1 − F0(t) =
1

τ
∫

∞

t
(1 − F (s))ds ∼ t20

τt

and therefore, using Lemma 5.1,

2v2 ∫
t

0
(1 − F0(s)) s ds ∼ 2(vt0)2 t

τ
. (8.4)
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By eq. (4.5) and Theorem 5.2,

Meq(t) ∼ 2(vt0)2 t

τ
log

t

t0
.

Therefore, by eq. (8.2) and Lemma 8.1, Mtr(t) ∼Meq(t).
For specific examples, (8.2) enables us to compute ρ0 ∗Mtr, but not Mtr. We

know from Lemma 8.1 that the leading-order asymptotic behavior of ρ0 ∗Mtr is the
same as that of Mtr. However, in special cases, knowledge of ρ0 ∗Mtr yields more
than just the leading-order asymptotic behavior. We give the following example.

Lemma 8.4. Assume that

1 − F (t) ∼ ( t
t0

)
−2

as t→∞,

for some t0 > 0. Then there exists a constant C > 0 such that for all sufficiently large
t,

0 ≤Mtr(t) − ρ0 ∗Mtr(t) ≤ C
√
t(log t)3.

Proof. We noted in the proof of Lemma 8.1 that ρ0 ∗Mtr(t) is a lower bound on
Mtr(t), so 0 ≤ Mtr(t) − ρ0 ∗Mtr(t). We will now find an upper bound on Mtr(t) −
ρ0 ∗Mtr(t):

Mtr(t) − ρ0 ∗Mtr(t) = ∫
∞

0
ρ0(s)Mtr(t)ds − ∫

t

0
ρ0(s)Mtr(t − s)ds

= ∫
t

0
ρ0(s)(Mtr(t) −Mtr(t − s))ds + ∫

∞

t
ρ0(s)ds Mtr(t). (8.5)

In the proof of Proposition 3.1, we saw:

Mtr(t) −Mtr(t − s) < 2vs
√
Mtr(t).

Using this in (8.5), we find the upper bound

2v
√
Mtr(t)∫

t

0
sρ0(s)ds + ∫

∞

t
ρ0(s)ds Mtr(t) (8.6)

By hypothesis,

ρ0(t) ∼
1

τ
( t
t0

)
−2

(8.7)

as t→∞. This implies

∫
t

0
sρ0(s)ds ∼

t20
τ

log t. (8.8)

We know from Theorem 8.3 that

Mtr(t) ∼ C1t log t (8.9)

for some positive constant C1. Furthermore, from (8.7),

∫
∞

t
ρ0(s)ds ∼

t20
τ
t−1. (8.10)
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Using (8.8)–(8.10) in (8.6), we obtain the assertion.
As was the case for equilibrium Lévy walks, even exact knowledge of the tails

and means of step durations doesn’t suffice to determine the linear terms of the
asymptotics of the transitional MSDs:

Theorem 8.5. Let a distribution F , with mean τ , satisfy

1 − F (t) ∼ ( t
t0

)
−2

as t →∞, for some t0 > 0, and let A > 0 be given. Then there exists a distribution F̃
with the same mean, τ , and with

F (t) = F̃ (t) for all t ≥ A,

such that the corresponding mean square displacements Mtr and M̃tr differ by at least
O(t).

Proof. Let F̃ be as in Theorem 7.1. By Lemma 8.4 and eqs. (8.2) and (8.4),

Mtr(t) =Meq(t) − 2(vt0)2 t

τ
+ o(t),

and similarly

M̃tr(t) = M̃eq(t) − 2(vt0)2 t

τ
+ o(t),

as t→∞. Since, by Theorem 7.1, Meq(t) and M̃eq(t) differ by ≥ O(t), so do Mtr and

M̃tr.
For the canonical power laws of Section 6.1, Figure 8.1 illustrates our results by

showing, for six different values of α, the exact MSD (solid) and the leading order
asymptotic approximation (dots) for the equlibrium (black) and transitional (dots)
cases.

9. Application to free molecular flow in a planar channel. We studied
the flow of a rarefied gas in an infinite planar channel in [5]. Assuming that length
units are chosen so that the thickness of the channel is 1, we take the flow domain to
be

{(x1, x2, z) ∈ R3 ∶ 0 < z < 1}.

We refer to x = (x1, x2) as the “horizontal” coordinates, and to z as the “vertical”
coordinate. As in [5], we consider the projection of a particle trajectory into the
(x1, x2)-plane. Gas molecules are assumed not to interact with each other, to travel at
constant velocities in the interior of the channel, and to undergo random reflections at
the walls, described by Mawell’s boundary conditions [8, pp. 118 ff] (the accomodation
coefficient in [5] is arbitrary, but we take it to be 1 here for simplicity). Specifically, a
gas molecule that hits the lower wall z = 0 re-emerges with a random velocity (V,W ),
V ∈ R2 and W > 0, with density

e−∣ν∣
2/c2

πc2
2ωe−ω

2/c2

c2
, ν ∈ R2, ω > 0. (9.1)

The parameter c equals
√

2kT /m, with T = absolute temperature, m = mass per gas
molecule, and k = Boltzmann constant; dimensionally, c is a speed. The reflection law
at the upper wall, z = 1, is analogous, with the sign of W reversed.
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Fig. 8.1: Red: Mtr (solid, computed by Monte Carlo simulation) and leading asymp-
totic approximation for Mtr (dotted). Black: Meq (solid, computed analytically) and
leading asymptotic approximation for Meq (dotted). For α ≥ 2, the leading asymp-
totic approximations for Mtr and Meq are identical, and are shown as black dotted
curves.

The time τ between a collision with a wall and the next collision with the opposite
wall equals 1/∣W ∣. The distribution function of τ is

F (t) = P (τ ≤ t) = P (∣W ∣ ≥ 1

t
) = ∫

∞

1/t
2ωe−ω

2/c2

c2
dω = e−1/(ct)2 .

Note also that

F (t) = 1 − 1

(ct)2
+ 1

2(ct)4
− . . . as t→∞. (9.2)

The mean of τ is

τ = ∫
∞

0
(1 − e−1/(ct)2)dt =

√
π

c
. (9.3)

The two components of the horizontal velocity V are Gaussians with mean zero and
variance c2/2, independent of each other and of W . Therefore

v2 = E(∣V ∣2) = E(V 2
1 + V 2

2 ) = c2.

From Proposition 3.3, Meq can be expressed in terms of the error function erf and
the exponential integral Ei. We omit the unwieldy formula, which however makes it
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easy to find asymptotic expansions of Meq to arbitrary accuracy. For instance, we
find

Meq(t) =
2ct log(ct)√

π
+ 1 − γ√

π
ct + 2

3
+O (1

t
) as t→∞, (9.4)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Using eq. (8.2) and Lemma 8.4,
we also conclude

Mtr(t) =
2ct log(ct)√

π
− 1 + γ√

π
ct +O (t1/2(log t)3/2) (9.5)

for the transitional mean square displacement.

It is interesting to compare (9.4) and (9.5) with the main result of [5]. The
notation in [5] differs from that used here in several ways. In particular, in the limit
studied in [5], the channel width tends to zero while time tends to infinity. However,
it is not difficult to show that the result of [5], translated into the notation used here,
predicts that at time t, the distribution of the location of a particle starting at the
origin at time 0 will be approximately bivariate Gaussian with variance

ct log(ct)√
π

.

Comparing with (9.4) we see the “doubling effect” previously observed by others
[2, 3, 30] in which the variance of the long-time Gaussian approximation is half the
leading-order MSD approximation.

10. Summary. There is considerable interest in the MSD in Lévy walks due to
the importance of this quantity in a wide variety of application areas. The leading-
order behavior of MSDs for Lévy walks with power law distributions of the flight
segment duration is asymptotically determined by the exponent of the power law,
up to a constant of proportionality. Given a mean duration, the constant of propor-
tionality is determined as well. However, the quality of the asymptotic approximation
depends delicately on the exact form of the distribution. The dependence is especially
sensitive for power laws with exponents near 2. At α = 2, the leading-order term of the
MSD at time t is proportional to t log t, but the next-order term is usually proportional
to t, with a constant of proportionality which depends on the entire distribution. For
α near 2, the sub-leading-order terms can also be close to the leading-order terms for
values of t of physical interest.

We have derived exact, closed-form expressions, valid for all time, for the MSDs
for particular choices of the power laws and for a power law perturbed by a logarithmic
factor. These examples illustrate the dependence of the accuracy of the asymptotics on
the entire distribution. We have also established robustness of the MSD asymptotics in
the sense that power law bounds on the distribution functions imply power law bounds
on the equilibrium MSDs. Finally, we have proved that for power laws with α between
1 and 2, the equilibrium and transitional MSDs are asymptotically proportional, with
constant of proportionality α − 1.
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