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Abstract

This paper is devoted to studying a type of contact problems modeled by hemivariational
inequalities with small periodic coefficients appearing in PDEs, and the PDEs we considered
are linear, second order and uniformly elliptic. Under the assumptions, it is proved that the
original problem can be homogenized, and the solution weakly converges. We derive an O(ǫ1/2)
estimation which is pivotal in building the computational framework. We also show that Robin
problems— a special case of contact problems, it leads to an O(ǫ) estimation in L

2 norm. Our
computational framework is based on finite element methods, and the numerical analysis is
given, together with experiments to convince the estimation.

1 Introduction

In composite material design and performance optimization, the controlling PDEs within the models
frequently involve small periodic coefficients (e.g., [39, 12, 27, 28]). For those problems, the periodic
homogenization theory is the basis, and many PDE experts contributed considerable works to build
this theory. For examples: qualitative results such as asymptotic expansion [5, 34], H-convergence
[38], Γ-convergence [10], and two-scale convergence [2]; regularity results such as compactness prop-
erty investigated by M. Avellaneda and Lin in [3], and recently a thorough study for Neumann
boundary condition by Shen et al. [24, 37]. As a model problem for the multiscale phenomenon, it
also attracts great attention among scientific computation community. Due to the high oscillation
emerging in the solution, classical computational method, such as finite element methods (FEM)
can not reveal the fine scale information. Because of strong practical background, several modern
multiscale computation methods have been developed since 1990s. We can classify those as three
groups in methodology: modify FEM piecewise polynomial basis to enhance the expression ability,
such as MsFEM [21, 14, 8] and LOD [30, 20]; utilize scale separation property to decompose original
solution into coarsen and fine parts, VMM [22, 7, 25]; improve the accuracy of homogenized solution
by involving smallscale information, HMM [13, 1]. In those methods Dirichlet problem is chosen
when conducting numerical experiments and error analysis, while Robin problem or more general
contact problems are scarcely investigated.

The notion of hemivariational inequalities was first introduced by Panagiotopoulos in the early
1980s [35]. Since then, hemivariational inequalities receive broad applications in nonsmooth mechan-
ics, contact mechanics, physics, and economics [32, 36, 31, 16]. In this paper, we focus on boundary
hemivariational inequality problems, which originate from the mathematical model of elastic con-
tact system. To solve this kind of hemivariational inequalities, a finite element method had been
implemented [19] while the thorough numerical analysis has not been established until recent. In
[18], Han et al. derived a Céa’s inequality in an abstract framework, and figure out the influence
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of solution’s regularity to the numerical computation. To our knowledge, proper assumptions will
balance the solvability and generality of mathematical models, and this is extremely important in
nonlinear problems. Hence, we adopt the assumptions in [18] to prove our main results.

To our knowledge the study on hemivariational inequalities with the coefficients setting in small
periodic configurations is few. The homogenization result could be found in [29]. However, the result
or H-convergence property does not provide a priori convergence rate which is pivotal in numerical
analysis. It explains why we need to build an O(ǫ1/2) estimation. In the following sections, we set
model problem in a scalar form merely for the simplicity of symbols, and the extension to elastic
system will be straight.

The rest of paper is organized as follows. In section 2 we introduce notations, review some
preliminary materials including generalized directional derivative, and state the model problem and
assumptions for later proof. In section 3, firstly, we prove a uniform bound for solutions which
is missing in [29], and we think it is indispensable. Then we apply div-curl lemma to prove the
homogenization result, the proof will also be provided for the self-containing. We give an O(ǫ1/2)
estimation for first order asymptotic expansion in section 4, and the insight most comes from [37].
We discuss Robin problem in section 5, and show that with the duality technique from [37] the dif-
ference between original and homogenized solutions in L2 norm is O(ǫ). A computational framework
based on finite element methods will be presented in section 6 together with its numerical analy-
sis. Experiments are reported in section 7, and the results are in good agreement with predicted
estimation.

2 Preliminaries

Generally, when X is used, it denotes a real Banach space with its norm as ‖·‖X , X∗ as its topological
dual, 〈·, ·〉X∗×X as duality pairing. Without confusion, we omit the subscript and simply write 〈·, ·〉.
Weak convergence is indicated by ⇀. Given two normed spaces X and Y , L(X,Y ) is the space of
all linear continuous operators from X to Y .

Notation d is always used as the space dimension. In the full text, the Einstein summation
convention is adopted, means summing repeated indexes from 1 to d. Without specification, Ω is
a domain (open and bounded set in R

d) with Lipschitz boundary Γ, and denote n as the outward
unit normal to Γ. The Sobolev spaces W k,p and Hk are defined as usual (see [6]) and we abbreviate
the norm and seminorm of Sobolev space Hk(Ω) as ‖·‖k,Ω and |·|k,Ω.

To specify conditions respectively on the different parts of boundary, we rewrite Γ = ΓD∪ΓN∪ΓC ,
ΓD, ΓN and ΓC are open according to the inheriting topology on Γ and disjoint with each other,
ΓC 6= ∅ and ΓD 6= ∅ without specification. We mainly concern functional space V which its
functions u ∈ H1(Ω) and vanishing on ΓD in the sense of trace, and one can easily check that V is
Hilbertian, and the norm can be legally set as ‖·‖V = |·|1,Ω when ΓD 6= ∅. Following the notations

in [18], we denote Vj = L2(ΓC) as the main space for hemivariational inequality and γj ∈ L(V, Vj)
as trace operator from V to Vj . We point here that the split Γ = ΓD ∪ ΓN ∪ ΓC must be regular
enough to guarantee that γj is compact, and normally it is true because that fractional Sobolev
space H1/2(ΓC) is compactly embedded into L2(ΓC) (refer [33] for more details).

To describe the periodic structure, we denote Q = (−1/2, 1/2)d as a representative cell, and call
a function f 1-periodic, it means:

f(x + z) = f(x) ∀x ∈ R
d and ∀z ∈ Z

d,

and we also use a superscript ǫ for f(x) to represent scaling f ǫ(x) := f(x/ǫ) if f is 1-periodic. Hk
♯ (Q)

or W k,p
♯ (Q) with ”♯” means this functional space is the completion of smooth 1-periodic functions

with respect to the Hk(Q) or W k,p(Q) norm. We have a fundamental theorem for f ǫ:

Theorem 2.1 (see [9] Theorem 2.6). Let 1 ≤ p < ∞, ∀f ∈ Lp
♯ (Q), then f ǫ ⇀ MQf = 1/ |Q|

´

Q
f

in Lp(ω). Here ω is an arbitrary bounded open subset in R
d.

It is customary to write C as a positive constant, and C(p1, · · · , pn) indicates that C depends
on p1, · · · , pn.
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Then we introduce (Clarke) generalized directional derivative and subdifferential (see [11]).

Definition 2.2. Let ϕ : X → R be a locally Lipschitz function. For x, h ∈ X , the generalized
directional derivative of ϕ at x along the direction h, denoted by ϕ0(x;h) is defined by

ϕ0(x;h) := lim sup
y→x,λ↓0

ϕ(y + λh) − ϕ(y)

λ
= inf

ǫ,δ>0
sup

‖x−y‖X<ǫ
0<λ<δ

ϕ(y + λh) − ϕ(y)

λ
.

The generalized subdifferential of ϕ at x ∈ X , is the nonempty set ∂ϕ(x) ⊂ X∗ defined by

∂ϕ(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x;h), ∀h ∈ X}.

From now on, the matrix function

Aǫ(x) =
[

Aǫ
ij(x)

]

1≤i,j≤d
= A(x/ǫ) =

[

Aij(
x

ǫ
)
]

1≤i,j≤d

serves as the coefficients in our PDE model. The scale parameter ǫ ≪ 1. Also provide f ∈ V ∗,
g ∈ L2(ΓN ), and j : Vj → R is a locally Lipschitz function. Now we can formulate our contact
problem,



















−div(Aǫ(x)∇uǫ) = f in Ω

uǫ = 0 on ΓD

n · Aǫ∇uǫ = g on ΓN

−n ·Aǫ∇uǫ ∈ ∂j(γjuǫ) on ΓC

, (2.1)

and its hemivariational form:







Find uǫ ∈ V, s.t. ∀v ∈ V
ˆ

Ω

Aǫ∇uǫ · ∇v + j0(γjuǫ; γjv) ≥ 〈f, v〉 +

ˆ

ΓN

gv
. (2.2)

We mention that v 7→
´

ΓN
gv is a bounded functional on V since g ∈ L2(ΓN ), one can rewrite

〈

f̃ , v
〉

:= 〈f, v〉 +
´

ΓN
gv. It is clear that

∥

∥

∥
f̃
∥

∥

∥

V ∗

≤ ‖f‖V ∗ + ck ‖g‖0,ΓN
, where ck equals the trace

operator norm from V to L2(ΓN ).
To make this hemivariational form solvable, we need the following assumptions:

A: The coefficient matrix A(y) is symmetric and uniformly elliptic:

Aij(y) = Aji(y)

κ1 |ξ|
2
≤ Aij(y)ξiξj ≤ κ2 |ξ|

2
for a.e. y ∈ R

d and ξ ∈ R
d
. (2.3)

B: There exist constants c0, c1, αj , such that:

‖x∗‖V ∗

j
≤ c0 + c1 ‖x‖Vj

∀x ∈ Vj , ∀x
∗ ∈ ∂j(x), (2.4)

j0(x1;x2 − x1) + j0(x2;x1 − x2) ≤ αj ‖x1 − x2‖
2
Vj

∀x1, x2 ∈ Vj . (2.5)

C: Let cj = ‖γj‖V→Vj
be the operator norm, there exists that,

∆ := κ1 − αjc
2
j > 0. (2.6)

We remark here that assumptions B and C follow [18]. Then by utilizing the framework con-
structed in [18] following theorem is obvious:

Theorem 2.3. The solution of problem (2.2) exists and is unique.

3



Remark 2.4. The assumptions in former work [29] are sightly different with [18]. For example, [29]
needs j0N (x, r;−r) ≤ dN (1 + |r|) which is redundant in our case. Hence, we think the assumptions
in [18] are more reasonable.

We close this section by illustrating a specific contact problem. Here fig. 1 describes a domain
Ω with its boundary Γ composed by ΓD,ΓN ,ΓC′ ,ΓC′′ . On ΓD, we have u = 0; On ΓN , we have
g = n ·A∇u; On ΓC′ , a complete Robin condition is imposed, means −n ·A∇u = u; while on ΓC′′ ,
it is instead with a partial Robin condition −n · A∇u = 0 if u < 0 and −n · A∇u = u if u ≥ 0, or
write shortly as −n · A∇u = u+.

One can check in this problem j0(γju; γjv) =
´

ΓC′

uv +
´

ΓC′′

u+v. The original locally Lipschitz

function j(u) = 1/2
´

ΓC′

u2 + 1/2
´

ΓC′′

(u+)
2
, and ∂j(γju) = u on ΓC′ and ∂j(γju) = u+ on ΓC′′ .

∂j, j0 coincide respectively with classical Gâteaux and Frèchet derivative of functional j(u).

ΓN ΓN

ΓD

ΓC′ ΓC′′

Ω

Figure 1: A domain Ω, its boundary is split into four parts ΓD,ΓN ,ΓC′ ,ΓC′′

3 Homogenization

In this section, we will give the definition of correctors and present that the problem (2.2) has a
homogenized version, then we use div-curl lemma to prove uǫ can weak converge to the homogenized
solution.

We denote Nl(y) as correctors for Aǫ, which satisfy a group of PDEs with periodic boundary
condition:











− div (A(y)∇Nl) = div(Ael) = ∂iAil(y) in Q

Nl(y) ∈ H1
♯ (Q) and

ˆ

Q

Nl = 0
. (3.1)

For correctors, we have ‖Nl‖1,Q ≤ C(κ1, κ2). The homogenized coefficients are defined by Âil =
ffl

QAil + Aij∂jNldy. The next lemma characterizes the homogenized coefficients Â, the proof can

be found in [23] sect. 1.6.

Lemma 3.1. Let κ1, κ2 define as previous, then Â is symmetric and uniformly elliptic, means the
following relation

Âij = Âji

κ̃1 |ξ|
2
≤ Âij(y)ξiξj ≤ κ̃2 |ξ|

2
∀ξ ∈ R

d

holds, where κ̃1, κ̃2 depends on κ1, κ2.

Then we have the homogenized hemivariational form:







Find u0 ∈ V, s.t. ∀v ∈ V
ˆ

Ω

Â∇u0 · ∇v + j0(γju0; γjv) ≥
〈

f̃ , v
〉 . (3.2)

4



Again, [18] tells us u0 exists and is unique. To deduce uǫ ⇀ u0, we first claim that {uǫ} is
uniformly bounded, then a subsequence of {uǫ} will weakly converge in V . Finally, we prove the
convergence point can only be u0.

Lemma 3.2. There is a constant C independent with ǫ, such that ‖uǫ‖V ≤ C, and

C = 1/∆
(

c0cj +
∥

∥

∥
f̃
∥

∥

∥

V ∗

)

≤ 1/∆
(

c0cj + ‖f‖V ∗ + ck ‖g‖0,ΓN

)

.

Proof. Let v = −uǫ in (2.2), we have

κ1 ‖uǫ‖
2
V ≤

ˆ

Ω

Aǫ∇uǫ · ∇uǫ ≤
〈

f̃ , uǫ

〉

+ j0(γjuǫ;−γjuǫ)

≤
∥

∥

∥
f̃
∥

∥

∥

V ∗

‖uǫ‖V + j0(γjuǫ;−γjuǫ)

.

Recall (2.5), then

j0(γjuǫ;−γjuǫ) ≤ j0(γjuǫ;−γjuǫ) + j0(0; γjuǫ) − j0(0; γjuǫ)

≤ αj ‖γjuǫ‖
2
Vj

− j0(0; γjuǫ)

≤ αjc
2
j ‖uǫ‖

2
V − j0(0; γjuǫ)

.

By the definition of j0(x;h), we choose arbitrarily a ξ ∈ ∂j(0)

−j0(0; γjuǫ) ≤ −〈ξ, γjuǫ〉 ≤ ‖ξ‖X∗

j
‖γjuǫ‖Xj

≤ c0cj ‖uǫ‖V
.

Then we establish the desired inequality.

div-curl lemma states as follows:

Lemma 3.3 (see [23] Lem. 1.1). Let pǫ, qǫ ∈ L2(Ω)d, such that:

pǫ ⇀ p0 qǫ ⇀ q0 in L2(Ω)d.

If, in addition qǫ = ∇vǫ and divpǫ → f in H−1(Ω), then pǫ · qǫ
∗
⇀ p0 · q0. Here ”

∗
⇀” stands for

*-weak convergence, it means that ∀φ ∈ C∞
0 (Ω),

´

Ω
pǫ · qǫφ→

´

Ω
p0 · q0φ.

Now we can prove the main homogenization result:

Theorem 3.4. Under the assumptions (2.3)-(2.6), let uǫ and u0 be the unique solution of (2.2) and
(3.2) respectively. Then uǫ ⇀ u0 in V .

Proof. First, we make some justifications. Take v ∈ C∞
0 (Ω) and −v into (3.2), it is obvious that

j0(γjuǫ; γjv) = j0(γjuǫ;−γjv) = 0. We get
´

Ω
Aǫ∇uǫ · ∇v = 〈f, v〉, which means −div(Aǫ∇uǫ) = f

in the sense of weak derivative, and f can naturally embed into H−1(Ω).
We have already obtained that {uǫ} is uniformly bounded, then up to a subsequence, we have

∇uǫ ⇀ ∇u0, and Aǫ∇uǫ ⇀ p0 in L2(Ω)d. And then we show p0 = Â∇u0 and u0 satisfies (3.2).
Combine div-curl lemma and theorem 2.1 we get

Aǫ
ij∂juǫ∂i(ǫN

ǫ
l λl + λ · x)

∗
⇀ p0 · λ.

On the other side, notice Aǫ and Â are both symmetric, from the definition of correctors we have
∂j

(

Aǫ
ij∂i(ǫN

ǫ
l λl + λ · x)

)

= 0, and

Aǫ
ij∂juǫ∂i(ǫN

ǫ
l λl + λ · x) = Aǫ

ij∂j(ǫN
ǫ
l λl + λ · x)∂iuǫ

∗
⇀ Âλ · ∇u0 = Â∇u0 · λ.

It asserts that p0 = Â∇u0.

5



Recall that γj is a compact operator from V to Vj , then up to a subsequence {γjuǫ} converges
strongly in Vj . Because of uǫ ⇀ u0, γjuǫ → γju0 in L2(ΓC) holds. Utilize the fact that j0(x;h) is up-
per semicontinuous with x (see [11] Prop. 5.6.6), we arrive at j0(γju0; γjv) ≥ lim supǫ j

0(γjuǫ; γjv),
take the sup limit in the left hand of (2.2), we have ∀v ∈ V :

ˆ

Ω

Â∇u0 · ∇v + j0(γju0; γjv) ≥
〈

f̃ , v
〉

,

and this finishes the proof.

4 ǫ
1/2 estimation

Following lemma 4.1, lemma 4.2 and lemma 4.3 are quoted from [37]. In those the standard smooth-
ing operator Sǫu = φǫ ∗u is defined as usual (see [17] sect. 7.2), while we need the convolution kernel
to be contained in B1/2(0) ⊂ Q, Br(x) means an open ball centers in x with radius r.

Lemma 4.1. Let u ∈ H1(Rd). Then ∂iSǫ(u) = Sǫ(∂iu),

‖Sǫu‖0,Rd ≤ ‖u‖0,Rd ,

and there exists a constant C only depends on d, such that:

‖Sǫu− u‖0,Rd ≤ ǫC ‖∇u‖0,Rd .

Lemma 4.2. Let f ∈ L2
loc

(Rd) be a 1-periodic function. Then there exists a constant C only depends
on d, such that for any u ∈ L2(Rd),

‖f ǫSǫu‖0,Rd ≤ C ‖f‖0,Q ‖u‖0,Rd .

Denote Ω̃ǫ = {x ∈ R
d : dist(x, ∂Ω) < ǫ} as a boundary strip to Ω with width 2ǫ, and Ωǫ = {x ∈

Ω : dist(x, ∂Ω) < ǫ}. We have an estimation:

Lemma 4.3. Let Ω be a bounded Lipschitz domain in R
d and f ∈ L2

loc
(Rd) a 1-periodic function.

Then there exists a constant C only depends on Ω, such that for any u ∈ H1(Rd)
ˆ

Ω̃ǫ

|f ǫ|
2
|Sǫ(u)|

2
≤ Cǫ ‖f‖

2
0,Q ‖u‖

2
1,Rd .

Remark 4.4. We can obtain a similar result comparing to lemma 4.2 by assuming ‖f‖L∞(Ω) < ∞,
but in here the periodic property plays key role and leads to relax on regularity assumption for f ,
which provides us more generality in the estimation.

Recall the domain we consider has Lipschitz boundary, then the extension operator E : H1(Ω) 7→
H1(Rd) exists and is bounded. Let wǫ = uǫ−u0− ǫN

ǫ
l Sǫ(∂lu0), u0 = Eu0 ∈ H1(Rd) is the extension

of u0, our goal in this section is to prove following key lemma:

Lemma 4.5. Let (2.3) be satisfied, and uǫ, u0 the solution of (2.2) (3.2) respectively, and suppose
that u0 ∈ H2(Ω), then ∀v ∈ V :
ˆ

Ω

Aǫ∇wǫ · ∇v ≤ j0(γju0; γjv) + j0(γjuǫ;−γjv) + C ‖u0‖2,Ω

(

ǫ1/2 ‖∇v‖0,Ω2ǫ
+ ǫ ‖∇v‖0,Ω

)

,

here constant C dependents on Ω, κ1, κ2 and wǫ = uǫ − u0 − ǫN ǫ
l Sǫ(∂lu0).

Proof. It is harmless to assume v ∈ C∞(Ω) ∩ V . Since u0 ∈ H2(Ω), we have ‖u0‖2,Rd ≤ C ‖u‖2,Ω.
In following proof, constant C only depends on Ω, κ1, κ2. By Green formula, we have ∀v ∈ V

ˆ

Ω

Aǫ∇uǫ · ∇v −

ˆ

ΓC

n · Aǫ∇uǫv = 〈f, v〉 +

ˆ

ΓN

gv

=

ˆ

Ω

Â∇u0 · ∇v −

ˆ

ΓC

n · Â∇u0v

.
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The definition of j0 gives:

ˆ

Ω

Aǫ∇uǫ · ∇v =

ˆ

Ω

Â∇u0 · ∇v +

ˆ

ΓC

(

−n · Â∇u0

)

v +

ˆ

ΓC

(−n · Aǫ∇uǫ) (−v)

≤

ˆ

Ω

Â∇u0 · ∇v + j0(γju0; γjv) + j0(γjuǫ;−γjv)

.

Take a direct calculation,

ˆ

Ω

Aǫ∇wǫ · ∇v

=

ˆ

Ω

Aǫ∇uǫ · ∇v −

ˆ

Ω

Aǫ∇u0 · ∇v −

ˆ

Ω

Aǫ
ij (∂jNl)

ǫ
Sǫ(∂lu0)∂iv −

ˆ

Ω

ǫAǫ
ijN

ǫ
l Sǫ(∂

2
lju0)∂iv

≤j0(γju0; γjv) + j0(γjuǫ;−γjv)

+

ˆ

Ω

{

Âij∂ju0 −Aǫ
ij∂ju0 −Aǫ

ij (∂jNl)
ǫ
Sǫ(∂lu0)

}

∂iv

−

ˆ

Ω

ǫAǫ
ijN

ǫ
l Sǫ(∂

2
lju0)∂iv

.

The techniques for last two parts of above inequality are exactly same as ([37] Lem. 3.5). However,
we will still elaborate its details for the coherence and self-containing of the proof.

ˆ

Ω

{

Âij∂ju0 −Aǫ
ij∂ju0 −Aǫ

ij (∂jNl)
ǫ
Sǫ(∂lu0)

}

∂iv −

ˆ

Ω

ǫAǫ
ijN

ǫ
l Sǫ(∂

2
lju0)∂iv

:=

ˆ

Ω

Bǫ
ilSǫ(∂lu0)∂iv +

ˆ

Ω

Tǫ · ∇v

:=J1 + J2

.

Here Bǫ = [Bil(x/ǫ)]1≤i,l≤n := Â−Aǫ − (Aij∂jNl)
ǫ
, and

Tǫ :=
(

Â∇u0 − ÂSǫ(∇u0)
)

+ (Aǫ∇u0 −AǫSǫ(∇u0)) − ǫAǫ
ijN

ǫ
l Sǫ(∂

2
lju0),

lemma 4.1 together with lemma 4.2 implies ‖Tǫ‖0,Ω ≤ ǫ ‖u0‖2,Ω, then:

|J2| ≤ Cǫ ‖u0‖2,Ω ‖∇v‖0,Ω .

Because ∂iBil = 0 and
ffl

Q
Bil = 0, we can construct Eijl(y) ∈ H1

♯ (Q), such that Bil = ∂jEijl,

Eijl = −Ejil, and ‖Eijl‖1,Q ≤ C ‖Bil‖0,Q ≤ C(κ1, κ2), see ([23] p. 6-7). Take θǫ ∈ C∞(Rd),

let θǫ(x) ≡ 1 when dist(x, ∂Ω) ≤ ǫ; θǫ(x) ≡ 0 when dist(x, ∂Ω) ≥ 2ǫ; 0 ≤ θǫ(x) ≤ 1 when
ǫ ≤ dist(x, ∂Ω) ≤ 2ǫ. We have ‖∇θǫ‖L∞(Rd) ≤ C(Ω)/ǫ. Then split J1 as

J1 =

ˆ

Ω

(∂jEijl)
ǫθǫSǫ(∂lu0)∂iv +

ˆ

Ω

(∂jEijl)
ǫ(1 − θǫ)Sǫ(∂lu0)∂iv := J11 + J12.

Use lemma 4.3, we have:

|J11| ≤ ‖∇v‖0,Ω2ǫ

[

∑

i

ˆ

Ω2ǫ

|(∂jEijl)
ǫ|2 |Sǫ(∂lu0)|2 θ2ǫ

]1/2

≤‖∇v‖0,Ω2ǫ

[

∑

i

ˆ

Ω̃2ǫ

|(∂jEijl)
ǫ|
2
|Sǫ(∂lu0)|

2

]1/2

≤Cǫ1/2 ‖u0‖2,Ω ‖∇v‖0,Ω2ǫ

.
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Due to 1 − θǫ ≡ 0 on ∂Ω, (1 − θǫ)Sǫ(∂lu0)∂iv ∈ C∞
0 (Ω), and (∂jEijl)

ǫ = ǫ∂jE
ǫ
ijl. According to

integration by parts:

J12 =

ˆ

Ω

ǫ∂jE
ǫ
ijl(1 − θǫ)Sǫ(∂lu0)∂iv = −

ˆ

Ω

ǫEǫ
ijl∂j [(1 − θǫ)Sǫ(∂lu0)∂iv]

=

ˆ

Ω

Eǫ
ijlǫ∂jθǫSǫ(∂lu0)∂iv

−

ˆ

Ω

ǫEǫ
ijl(1 − θǫ)Sǫ(∂

2
jlu0)∂iv

−

ˆ

Ω

ǫEǫ
ijl(1 − θǫ)Sǫ(∂lu0)∂2ijv

,

Eijl = −Ejil implies
´

Ω
ǫEǫ

ijl(1 − θǫ)Sǫ(∂lu0)∂2ijv = 0, and

ˆ

Ω

∣

∣Eǫ
ijlǫ∂jθǫSǫ(∂lu0)∂iv

∣

∣ ≤C ‖∇v‖0,Ω2ǫ





∑

i,j

ˆ

Ω̃2ǫ

∣

∣Eǫ
ijl

∣

∣

2
|Sǫ(∂lu0)|

2





1/2

≤Cǫ1/2 ‖∇v‖0,Ω2ǫ
‖u0‖2,Ω

,

ˆ

Ω

∣

∣ǫEǫ
ijl(1 − θǫ)Sǫ(∂jlu0)∂iv

∣

∣ ≤ǫ ‖∇v‖0,Ω

[

∑

i

ˆ

Ω

∣

∣Eǫ
ijl

∣

∣

2
|Sǫ(∂jlu0)|

2

]1/2

≤Cǫ ‖∇v‖0,Ω ‖u0‖2,Ω

.

Finally, we derive |J1| + |J2| ≤ C ‖u0‖2,Ω

(

ǫ1/2 ‖∇v‖0,Ω2ǫ
+ ǫ ‖∇v‖0,Ω

)

.

A corollary of this lemma is following theorem:

Theorem 4.6. Let the assumptions (2.3)-(2.6) be satisfied, and u0 ∈ H2(Ω). Then

‖∇wǫ‖0,Ω ≤ Cǫ1/2 ‖u0‖2,Ω ,

here constant C depends on Ω, κ1, κ2,∆.

Proof. Take θǫ defined as previous, and let ũǫ = u0 + ǫN ǫ
l Sǫ(∂lu0)(1 − θǫ). Then wǫ = uǫ − ũǫ −

ǫN ǫ
l Sǫ(∂lu0)θǫ := uǫ − ũǫ − rǫ. It is obvious to see ũǫ ∈ V and γju0 = γj ũǫ. We use lemma 4.1-

lemma 4.3 to handle rǫ = ǫN ǫ
l Sǫ(∂lu0)θǫ:

‖∂irǫ‖0,Ω ≤‖(∂iNl)
ǫSǫ(∂lu0)θǫ‖0,Ω + ‖N ǫ

l ǫ∂iθǫSǫ(∂lu0)‖0,Ω

+
∥

∥ǫNlθǫSǫ(∂
2
ilu0)

∥

∥

0,Ω

≤C(Ω, κ1, κ2)
(

ǫ1/2 ‖u0‖2,Ω + ǫ ‖u0‖2,Ω

)

≤ C(Ω, κ1, κ2)ǫ1/2 ‖u0‖2,Ω

.

Substitute v = uǫ − ũǫ ∈ V into lemma 4.5, and recall γju0 = γj ũǫ, we have:
ˆ

Ω

Aǫ∇(uǫ − ũǫ) · ∇(uǫ − ũǫ)

=

ˆ

Ω

Aǫ∇wǫ · ∇(uǫ − ũǫ) +

ˆ

Ω

Aǫ∇rǫ · ∇(uǫ − ũǫ)

≤j0(γju0; γj(uǫ − ũǫ)) + j0(γjuǫ; γj(ũǫ − uǫ))

+ Cǫ1/2 ‖u0‖2,Ω ‖∇(uǫ − ũǫ)‖0,Ω + κ2 ‖∇rǫ‖0,Ω ‖∇(uǫ − ũǫ)‖0,Ω

≤j0(γj ũǫ; γj(uǫ − ũǫ)) + j0(γjuǫ; γj(ũǫ − uǫ)) + Cǫ1/2 ‖u0‖2,Ω ‖∇(uǫ − ũǫ)‖0,Ω

≤αjc
2
j ‖uǫ − ũǫ‖

2
V + Cǫ1/2 ‖u0‖2,Ω ‖uǫ − ũǫ‖V

.

By a direct calculation, we have ‖uǫ − ũǫ‖V ≤ 1/∆Cǫ1/2 ‖u0‖2,Ω. Then ‖∇wǫ‖0,Ω ≤ Cǫ1/2 ‖u0‖2,Ω,
C depends on Ω, κ1, κ2,∆, since ‖∇wǫ‖0,Ω ≤ ‖uǫ − ũǫ‖V + ‖∇rǫ‖0,Ω.
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We have following corollary to quantify the L2 convergence rate:

Corollary 4.7. Let the assumptions (2.3)-(2.6) be satisfied, and u0 ∈ H2(Ω). Then:

‖uǫ − u0‖0,Ω ≤ Cǫ1/2 ‖u0‖2,Ω .

Here the constant C depends on Ω, κ1, κ2,∆

Proof. Since ΓD 6= ∅, by Poincaré inequality, ‖uǫ − ũǫ‖0,Ω ≤ C(Ω) ‖uǫ − ũǫ‖V ≤ Cǫ1/2 ‖u0‖2,Ω. It
is easy to show ‖ũǫ − u0‖0,Ω ≤ C(Ω)ǫ ‖u0‖1,Ω. Then the triangle relation tells us ‖uǫ − u0‖0,Ω ≤

Cǫ1/2 ‖u0‖2,Ω.

Remark 4.8. This L2 convergence rate presented here is not optimal while We conjecture that best
results is ‖uǫ − u0‖0,Ω ≤ Cǫ ‖u0‖2,Ω (see [37]), and section 7 supports this claim. However, gradient
information is far more valuable in application, this is why we mainly consider norm |·|1,Ω or ‖∇·‖0,Ω.

5 A Special Case—Robin Problem

The assumptions (2.4)-(2.6) are relatively general to cover considerable situations. For example, let
us consider a simplified version of (2.2):

Proposition 5.1. Let B(x) be a function on R satisfying uniform Lipschitz condition, that is
|B(x) − B(y)| ≤ LB |x− y| ∀x, y ∈ R, and the other notations are defined as previous. Then the
following hemivariational inequality (variational equality) is solvable:







Find u ∈ V, s.t. ∀v ∈ V
ˆ

Ω

A∇uǫ · ∇v +

ˆ

ΓC

B (u) v = 〈f, v〉 +

ˆ

ΓN

gv
, (5.1)

if κ1 − LBc
2
j > 0.

We can reprove this proposition by directly utilizing strongly monotone operator theory (see
[40] sect. 2.14). Moreover, in a special case— Robin problems, we can obtain L2(Ω) estimation by
utilizing the bilinearity of its variational form.

Let Aǫ define as previous and satisfy the assumption (2.3), for simplicity, we state Robin problem
on the whole boundary Γ:

{

−div(Aǫ∇uǫ) = f in L2(Ω)

n · Aǫ∇uǫ + α(x)uǫ = g in L2(Γ)
. (5.2)

And the corresponding variational form is:







Find uǫ ∈ H1(Ω), s.t. ∀v ∈ H1(Ω)
ˆ

Ω

Aǫ∇uǫ · ∇v +

ˆ

Γ

αuǫv =

ˆ

Ω

fv +

ˆ

Γ

gv
. (5.3)

We need assumption
0 < α1 ≤ α(x) ≤ α2 <∞ ∀x ∈ Γ

to prove this bilinear form is coercive, then Lax-Milgram theorem asserts the solvability of (5.3).
We have following lemma, the proof is postponed in appendix.

Lemma 5.2. Let Ω be a Lipschitz domain and Γ its boundary. Then there exists a constant C(Ω),
such that ∀ψ ∈ H1(Ω):

C(Ω) ‖ψ‖
2
1,Ω ≤

ˆ

Ω

|∇ψ|
2

+

ˆ

Γ

ψ2.
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Similarly, we can prove

Theorem 5.3. The solutions uǫ of Robin problems (5.3) converge weakly to u0, while u0 is the
solution of homogenized Robin problem:

{

−div(Â∇u0) = f in L2(Ω)

n · Â∇u0 + α(x)u0 = g in L2(Γ)
. (5.4)

And the associated variation form is:







Find u0 ∈ H1(Ω) s.t. ∀v ∈ H1(Ω)
ˆ

Ω

Â∇u0 · ∇v +

ˆ

Γ

αu0v =

ˆ

Ω

fv +

ˆ

Γ

gv
. (5.5)

Estimation lemma 5.4 is cited from Thm 1.5.1.10 in [17], we use this lemma to prove O(ǫ1/2)
convergence rate in H1(Ω) norm.

Lemma 5.4. Let Ω be a Lipschitz domain in R
d, then for u ∈ H1(Ω),

ˆ

Γ

u2 ≤ C(Ω)

(

t

ˆ

Ω

|∇u|
2

+ t−1

ˆ

Ω

u2
)

.

Here t can choose arbitrarily in (0, 1).

Let wǫ be defined as previous, we have a parallel version of lemma 4.5:

Lemma 5.5. Assume u0 ∈ H2(Ω), then ∀v ∈ H1(Ω)

ˆ

Ω

Aǫ∇wǫ · ∇v +

ˆ

Γ

αwǫv ≤ C(Ω, κ1, κ2, α1, α2) ‖u0‖2,Ω

(

ǫ1/2 ‖∇v‖0,Ω2ǫ
+ ǫ ‖∇v‖0,Ω + ǫ ‖v‖0,Γ

)

.

Proof. Compare with the proof of lemma 4.5, we are left to show:

J3 :=

ˆ

Γ

ǫαN ǫ
l Sǫ(∂lu0)v ≤ Cǫ ‖u0‖2,Ω ‖v‖0,Γ .

By calculation:

|J3| ≤ C

ˆ

Γ

|ǫN ǫ
l Sǫ(∂lu0)θǫv| ≤ C ‖ǫN ǫ

l Sǫ(∂lu0)‖0,Γ ‖v‖0,Γ .

Then
ˆ

Γ

|ǫN ǫ
l Sǫ(∂lu0)θǫ|

2

≤
use (5.4)

Ct
∑

i

ˆ

Ω

|(∂iNl)
ǫSǫ(∂lu0)θǫ|

2
+ |N ǫ

l Sǫ(∂lu0)ǫ∂iθǫ|
2

+ ǫ2
∣

∣N ǫ
l Sǫ(∂

2
ilu0)θǫ

∣

∣

2

+ t−1ǫ2
ˆ

Ω

|N ǫ
l Sǫ(∂lu0)θǫ|

2

≤
take t = ǫ

Cǫ
∑

i

ˆ

Ω̃2ǫ

|(∂iNl)
ǫSǫ(∂lu0)|

2
+ |N ǫ

l Sǫ(∂lu0)|
2

+ ǫ2
ˆ

Ω

∣

∣N ǫ
l Sǫ(∂

2
ilu0)

∣

∣

2

+ ǫ

ˆ

Ω̃2ǫ

|N ǫ
l Sǫ(∂lu0)|

2

≤
use(4.3)(4.2)

Cǫ2 ‖u‖
2
2,Ω + ǫ3 ‖u0‖

2
2,Ω ≤ Cǫ2 ‖u0‖

2
2,Ω

.

Then, we have:
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Theorem 5.6. Let wǫ = uǫ − u0 − ǫN ǫ
l Sǫ(∂lu0), uǫ and u0 be the solution of (5.3) and (5.5)

respectively. Assume u0(Ω) ∈ H2(Ω), then
ˆ

Ω

|∇wǫ|
2

+

ˆ

Γ

αw2
ǫ ≤ C(Ω, κ1, κ2, α1, α2)ǫ ‖u0‖

2
2,Ω .

As a corollary, we have
‖∇wǫ‖0,Ω ≤ Cǫ1/2 ‖u0‖2,Ω ,

‖uǫ − u0‖0,Ω ≤ Cǫ1/2 ‖u0‖2,Ω .

Next, we will show that ‖uǫ − u0‖0,Ω can reach O(ǫ). We need a regularity result for Robin
boundary problem:

Proposition 5.7. Suppose that Ω has C1,1 boundary. In addition to uniformly ellipticity, coefficients
A(x) = [Aij ]1≤i,j≤d are in C0,1(Ω), and α(x) is C0,1(Γ) (in the sense of local coordinate). Then

∀f ∈ L2(Ω), u is the solution of Robin problem:
{

−div(A∇u) = f

n · A∇u+ α(x)u = 0
. (5.6)

Then u ∈ H2(Ω) with estimation ‖u‖2,Ω ≤ C ‖f‖0,Ω, here C depends on Ω, ‖Aij‖C0,1(Ω) , ‖α‖C0,1(Γ)

and κ1, κ2.

A proof is provided in the appendix. The L2 estimation states as following:

Theorem 5.8. Suppose that Ω has C1,1 boundary. In addition to the hypotheses in theorem 5.6,
α(x) is uniformly Lipschitz continuous on Γ. Then we have:

‖uǫ − u0‖0,Ω ≤ Cǫ ‖u0‖2,Ω .

Where C = C(Ω, κ1, κ2, ‖α‖C0,1(Γ)).

Proof. It is sufficient to show ‖wǫ‖0,Ω ≤ Cǫ ‖u0‖2,Ω, because of the fact that ‖ǫNlSǫ(∂lu0)‖0,Ω ≤
Cǫ ‖u0‖2,Ω.

We will take duality technique from [37] for the rest proof. First ∀G ∈ L2(Ω), we have ρ ∈ H2(Ω)
which satisfies homogenized Robin problem:

{

−div(Â∇ρ0) = G

n · Â∇ρ0 + α(x)ρ0 = 0
.

We also let ρǫ be the solution of original Robin problem:
{

−div(Aǫ∇ρǫ) = G

n · Aǫ∇ρǫ + α(x)ρǫ = 0
.

According to the regularity result, we have ‖ρ‖2,Ω ≤ C ‖G‖0,Ω. Take wǫ as test function into previous
equation,

ˆ

Ω

Gwǫ =

ˆ

Ω

Aǫ∇ρǫ · ∇wǫ +

ˆ

Γ

αρǫwǫ.

Split ρǫ into three parts ρǫ = ρ+ǫNlSǫ(∂lρ)+(ρǫ − ρ− ǫNlSǫ(∂lρ)) =: ρ+ψǫ+ηǫ. From theorem 5.6,
we will have ‖∇ηǫ‖0,Ω ≤ ǫ1/2 ‖ρ‖2,Ω and ‖ηǫ‖0,Γ ≤ ǫ1/2 ‖ρ‖2,Ω. Then,

ˆ

Ω

Gwǫ =

ˆ

Ω

Aǫ∇ρ · ∇wǫ +

ˆ

Γ

αρwǫ

+

ˆ

Ω

Aǫ∇ψǫ · ∇wǫ +

ˆ

Γ

αψǫwǫ

+

ˆ

Ω

Aǫ∇ηǫ · ∇wǫ +

ˆ

Γ

αηǫwǫ

:=J1 + J2 + J3.
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For J3, we have |J3| ≤ Cǫ ‖ρ‖2,Ω ‖u0‖2,Ω. Use lemma 5.5, we obtain:

|J1| ≤ C ‖u0‖2,Ω

(

ǫ1/2 ‖∇ρ‖0,Ω2ǫ
+ ǫ ‖∇ρ‖0,Ω + ǫ ‖ρ‖0,Γ

)

≤ C ‖u0‖2,Ω

(

ǫ ‖ρ‖2,Ω + ǫ ‖∇ρ‖0,Ω + ǫ ‖ρ‖0,Γ

)

≤ Cǫ ‖ρ‖2,Ω ‖u0‖2,Ω

.

Similarly, |J2| ≤ Cǫ ‖ρ‖2,Ω ‖u0‖2,Ω. Together, we have

ˆ

Ω

Gwǫ ≤ Cǫ ‖ρ‖2,Ω ‖u0‖2,Ω ≤ Cǫ ‖G‖0,Ω ‖u0‖2,Ω

.

6 Computational Method

After the completing of O(ǫ1/2) estimation, (2.2) will be computable because u0 + ǫN ǫ
l Sǫ(∂lu0)

can approximate well to original high oscillating uǫ. However, obtain u0 and perform smoothing
action Sǫ is impractical in real computation. Instead, we should calculate ∂iu0 + (∂iNl)

ǫ∂lu0 as an
approximation for ∂iuǫ. Here is a lemma for the error analysis.

Lemma 6.1. Let uǫ and u0 be the solution of (2.2) and (3.2) respectively, and assumptions (2.3)-
(2.6) be satisfied, and assume u0 ∈ H2(Ω), Nl ∈W 1,∞

♯ (Q). Then:

∑

i

ˆ

Ω

|∂iuǫ − ∂iu0 − (∂iNl)
ǫ∂lu0|

2 ≤ ǫC(Ω, κ1, κ2,∆, ‖Nl‖W 1,∞(Q)) ‖u0‖
2
2,Ω .

Proof. Directly calculate the error ∂iwǫ = ∂iuǫ − ∂iu0 − (∂iNl)
ǫSǫ(∂lu0) − ǫN ǫ

l Sǫ(∂
2
ilu0), lemma 4.2

tells us
∥

∥N ǫ
l Sǫ(∂

2
ilu0)

∥

∥

0,Ω
≤ C ‖u0‖2,Ω. By Hölder inequality, we have

ˆ

Ω

|(∂iNl)
ǫ|
2
|Sǫ(∂lu0) − ∂lu0|

2
≤C

∑

l

ˆ

Rd

|Sǫ(∂lu0) − ∂lu0|
2
≤ Cǫ2

ˆ

Rd

∣

∣∇2u0
∣

∣

2

≤Cǫ2 ‖u0‖
2
2,Ω

.

Then the conclusion holds because ‖∇wǫ‖0,Ω dominates the error:

∑

i

ˆ

Ω

|∂iuǫ − ∂iu0 − (∂iNl)
ǫ∂lu0|

2

≤

ˆ

Ω

|∇wǫ|
2

+
∑

i

ǫ2
ˆ

Ω

∣

∣N ǫ
l Sǫ(∂

2
ilu0)

∣

∣

2
+
∑

i

ˆ

Ω

|(∂iNl)
ǫ|
2
|Sǫ(∂lu0) − ∂lu0|

2

.

Remark 6.2. It seems that we can not weaken the regularity assumption for Nl(y) because we can
not prove a strengthened version of lemma 4.2, that is:

Let f ∈ L2
loc(R

d) be a 1-periodic function, Then for any u ∈ H1(Rd),

‖f ǫ (Sǫu− u)‖0,Rd ≤ Cǫ ‖f‖0,Q ‖∇u‖0,Rd .

We also mention that when the coefficients A(y) is piecewise smooth, which is a suitable assumption
in application, and the W 1,∞ proposition can be verified by the works in [26].
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We can implement finite element method (FEM) to obtain the numerical solution of u0. Let Vh
be the finite element space (see [6]), then







Find u0,h ∈ Vh, s.t. ∀vh ∈ V
ˆ

Ω

Â∇u0,h · ∇vh + j0(γju0,h; γjvh) ≥
〈

f̃ , vh

〉. (6.1)

The existence and uniqueness of this problem were also shown by utilizing the framework in [18].
Then the computational method is direct:

Algorithm 1 Computation framework for contact problem in small periodic setting

1: Solve the equations on correctors (3.1) and obtain numerical solutionN⋆
l (y). Calculate numerical

homogenized coefficients Â⋆. In this step, the cost of computation is independent with original
problem, thus we can implement high accuracy method.

2: Choose grid size h to mesh the domain Ω. Solve (6.1) and obtain u0,h.
3: Construct numerical gradient value (∂iuǫ)

⋆ by

(∂iuǫ)
⋆(x) := ∂iu0,h(x) + ∂iN

⋆
l (x/ǫ)∂lu0,h(x).

Rewrite the error analysis lemma 6.1 in FEM framework, we derive following numerical error
expression:

‖∇uǫ − (∇uǫ)
⋆‖0,Ω ≤ C

(

ǫ1/2 ‖u0‖2,Ω + |u0 − u0,h|1,Ω

)

,

here (∇uǫ)
⋆ = [(∂iuǫ)

⋆]1≤i≤d = [∂iu0,h(x) + ∂iN
⋆
l (x/ǫ)∂lu0,h(x)]1≤i≤d. The estimation for |u0 − u0,h|1,Ω

merely involves the theory of FEM. Fortunately, a Céa’s inequality has been proved in [18] sect. 4.2,
and combine their works, we have following theorem:

Theorem 6.3. Assume u0(x) ∈ H2(Ω) and Nl(y) ∈ W 1,∞
♯ (Q). Neglect the error brought by

calculating numerical correctors N⋆
l (y) and homogenized coefficients Â⋆. Use Lagrange FEM to

Solve (6.1) with h grid size. Recall γju0 ∈ H3/2(ΓC) and ‖γju0‖3/2,ΓC
≤ C ‖u0‖2,Ω. Then error

between numerical gradient (∇uǫ)
⋆ and ∇uǫ satisfies the relation:

‖∇uǫ − (∇uǫ)
⋆‖0,Ω ≤ C

[

(ǫ1/2 + h) ‖u0‖2,Ω + h3/4
√

‖u0‖2,Ω

]

.

If γju0 ∈ H2(ΓC), there exists optimal numerical error order:

‖∇uǫ − (∇uǫ)
⋆‖0,Ω ≤ C(h+ ǫ1/2)

(

‖u0‖2,Ω +
√

‖γju0‖2,ΓC

)

,

here the constant C depends on Ω, κ1, κ2,∆, ‖Nl‖W 1,∞(Q) and quality of the mesh (see [6] for detail

description).

Remark 6.4. For Robin problem, the conclusion is more elegant:
Assume u0(x) ∈ H2(Ω) and Nl(y) ∈W 1,∞

♯ (Q). Neglect the error brought by calculating numer-

ical correctors N⋆
l (y) and homogenized coefficients Â⋆. Use Lagrange FEM to Solve (5.5) with h

grid size. The numerical error is:

‖∇uǫ − (∇uǫ)
⋆‖0,Ω ≤ C(h+ ǫ1/2) ‖u0‖2,Ω ,

here the constant C depends on Ω, κ1, κ2, α1, α2, ‖Nl‖W 1,∞(Q) and quality of the mesh.
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7 Numerical Experiments

Generally, when to solve contact problems described by hemivariational inequalities (for examples,
(3.2) and (2.2)), we need to convert the original problems to an optimization problem and use
optimizaiton algorithm. Inspired by [4], we discover an iterative method to solve simplified problem
(5.1), and it performs effectively in our numerical experiment.

Algorithm 2 Iterative method for solving simplified contact problem (5.1)

1: Mesh the domain Ω and construct FEM space Vh. Then set tolerance tol and initial solutions

u
(0)
h .

2: Solve a variational problem:











Find u
(n+1)
h ∈ V, s.t. ∀vh ∈ Vh

ˆ

Ω

A∇u
(n+1)
h · ∇vh = 〈f, vh〉 +

ˆ

ΓN

gvh −

ˆ

ΓC

B
(

u
(n)
h

)

vh
,

which is equivalent to solve a linear system:

Ahu
(n+1) = bh + rh

(

u(n)
)

.

3: Loop until
∥

∥

∥
u
(n+1)
h − u(n)

∥

∥

∥
< tol

∥

∥u(n)
∥

∥.

Actually, One can prove if proposition 5.1 holds, the algorithm above will converge linearly to the
real solution. The technique used here is to elucidate nonlinear map u(n) 7→ u(n+1) is contractive,
and we omit the details here.

Now, we can set up our experiment problem:
Take Ω as square (0, 1) × (0, 1), and partition Ω into N × N whole cells. Hence, in this case

ǫ = 1/N . We set Aǫ(x) = κǫ(x)I, I is identity matrix, and κǫ(x) can merely take two values
respectively in different subdomains on each cell. Here a figure to illustrate those relations:

x

y

ΓC′ ΓC′′

ΓN ΓN

ΓD

ρ

ρ

κ(y) ≡ κ2

κ(y) ≡ κ1

y = x/ǫΩ

Figure 2: In this figure, Ω is composed by 4 × 4 whole cells, a parameter ρ indicates the geometric
relation between the two subdomains of cell, here we set ρ = 0.25.

Boundary Γ is divided into four parts ΓD,ΓN ,ΓC′ ,ΓC′′ , and the boundary conditions are ex-
pressed in following variational problem:











Find uǫ ∈ V = {v ∈ H1(Ω) : v ≡ 0 on ΓD}, s.t. ∀v ∈ V
ˆ

Ω

κǫ(x)∇uǫ · ∇v + α

ˆ

ΓC′

uǫv + α

ˆ

ΓC′′

(uǫ)
+
v = g

ˆ

ΓN

v + f

ˆ

Ω

v
. (7.1)
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Here for simplicity, we set α, g, f as constants. To guarantee that this problem is solvable, we give
following proposition:

Proposition 7.1. If κ1 > |α|, then the solution of (7.1) exists.

Proof. According to (2.6), we are left to show cj ≤ 1. Use the fact that u(x, 1) ≡ 0, we have

ˆ 1

0

|u(x, 0)|
2

dx =

ˆ 1

0

∣

∣

∣

∣

ˆ 1

0

∂yu(x, y)dy

∣

∣

∣

∣

2

dx ≤

ˆ 1

0

ˆ 1

0

|∂yu(x, y)|
2

dxdy ,

and this gives cj ≤ 1.

We slice each cell equally into M ×M elements, therefore, we actually solve the original problem
7.1 and its homogenized version on a NM ×NM grid. Our numerical experiment focus on verifying
the homogenization error, we use following notation to measure the errors:

ERR0 := ‖uǫ − u0‖0,Ω / ‖u0‖0,Ω

ERR1 :=

[

∑

i

‖∂iuǫ − ∂iu0 − (∂iNl)
ǫ∂lu0‖

2
0,Ω

]1/2

/ |u0|1,Ω

ERR2 := |uǫ − u0|1,Ω / |u0|1,Ω

.

We set α = 0.5, f = 1.0, g = 1.0, κ1 = 1.0, κ2 = 2.0 and list the results in table 1. From this table,

Table 1: The results of numerical experiments

ERR0 ERR1 ERR2

N = 16,M = 128 0.00328 0.00737 0.21898
N = 32,M = 64 0.00164 0.00480 0.21899
N = 64,M = 32 0.00082 0.00331 0.21886
N = 128,M = 16 0.00049 0.00233 0.21843
Convergence rate 0.92 0.55 -

N = 32,M = 128 0.00164 0.00480 0.21904

the numerical convergence rate is actually close to its theoretical value 1.0 and 0.5, some differences
may credit to that grid get coarser as heterogeneity or 1/ǫ increase. In the last row of the table,
we show the case N = 32,M = 128 as a compare to N = 32,M = 64, and the difference is few.
This means that the ERR0,ERR1 and ERR2 we compute are accurate enough when M is not
small. Because of the limitation on computation resource, further and refined experiments such as
N = 64,M = 128 or N = 128,M = 128 do not get conducted. We also notice that ERR2 do not
decrease, This observation convinces the necessity of using First-order asymptotic solution.

8 Conclusions

To model real scientific or engineering problems, Only studying the Dirichlet or Neumann boundary
conditions is not completely adequate, and the situation has been encountered commonly in contact
problems. Hence, the study on more suitable boundary condition is needed. A hemivariational
inequalities framework for contact problems has been developed and also proved to be effective.
Many physical and mechanical phenomena occur in highly heterogeneous media, and the simplified
occasion is setting the coefficients of governing PDEs to have small periodicity. Contact problems in
small periodicity setting have two major difficulties: one comes from nonlinearity in hemivariational
inequalities, and the other originates from high oscillation due to multiscale property.

In this paper, several relatively reasonable assumptions are postulated to make the problems
well posed, and a homogenization theorem is obtained by div-curl lemma. The key part is to
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derive O(ǫ1/2) estimation, and this result quantifies the convergence rate for first order expansion.
Then, a computational method is proposed, and its numerical accuracy is also analyzed in FEM
framework. We examine the special case— Rubin problem and find out that an optimal L2 estimation
is obtainable.

It should be emphasized that, direct computational methods will cost enormous resources because
of nonlinearity and high heterogeneity in this problem. It leads to the development of specialized
computational methods. A thorough comparison of these two approaches and nontrivial numerical
experiments will be more persuasive, and it will be provided in the future work.

Lemma .1. Let Ω be a Lipschitz domain and Γ its boundary. Then there exists a constant C(Ω),
such that ∀ψ ∈ H1(Ω):

C(Ω) ‖ψ‖
2
1,Ω ≤

ˆ

Ω

|∇ψ|
2

+

ˆ

Γ

ψ2.

Proof. If not, we have a sequence of {ψn} with ‖ψn‖1,Ω = 1 and
´

Ω |∇ψn|
2

+
´

Γ ψ
2
n ≤ 1/n. Up to a

subsequence, we will have:
{

ψn → ψ0 in L2(Ω)

∇ψn ⇀ ∇ψ0 in L2(Ω)d
.

Since
´

Ω
|∇ψn|

2
≤ 1/n, we obtain ∇ψn → 0 in L2(Ω)d. We now have ∇ψ0 ≡ 0, and ψ0 ≡ C. By

´

Ω
ψ2
0 = lim

n

´

Ω
ψ2
n = 1 − lim

n

´

Ω
|∇ψn|

2
= 1, we know C 6= 0. Due to trace theorem, 〈u, φ〉 =

´

Γ
uφ

is a bounded functional on H1(Ω) for any u ∈ H1(Ω). Use weak convergence we have
´

Γ
ψ2
0 =

lim
n

´

Γ ψ0ψn ≤ ‖ψ0‖0,Γ lim infn ‖ψn‖0,Γ, and

0 = lim
n

|∇ψn|
2

+

ˆ

Γ

ψ2
n ≥ lim inf

n

ˆ

Γ

ψ2
n ≥

ˆ

Γ

ψ2
0 =

ˆ

Γ

C2,

and this contradicts C 6= 0.

Proposition .2. Suppose that Ω has C1,1 boundary. In addition to uniformly ellipticity, coefficients
A(x) = [Aij ]1≤i,j≤d are in C0,1(Ω), and α(x) is C0,1(Γ) (in the sense of local coordinate). Then

∀f ∈ L2(Ω), u is the solution of Robin problem:

{

−div(A∇u) = f

n · A∇u+ α(x)u = 0
. (.1)

Then u ∈ H2(Ω) with estimation ‖u‖2,Ω ≤ C ‖f‖0,Ω, here C depends on Ω, ‖Aij‖C0,1(Ω) , ‖α‖C0,1(Γ)

and κ1, κ2.

Proof. By flatting boundary technique, we only need to consider a half sphere B+
1 in R

d
+ as domain,

and plane T = {x ∈ R
d : xd = 0} as boundary where Robin condition imposed. The original problem

can locally transfer to following form:

ˆ

B+

1

A∇u · ∇v +

ˆ

T

αuv =

ˆ

B+

1

fv ∀v ∈ C∞(B+
1 ) s.t. dist

(

supp(v), ∂B+
1 ∩R

d
+

)

> 0.

Take differential quotient ∆h = ∆h
k , and by a similar process we will get a result as in [15] sect. 8.3,

here k 6= d:

ˆ

B+

1

A(x + hek)∇(∆hu) · ∇v +

ˆ

T

α(x + hek)(∆hu)v

≤
(

‖f‖0,B+

1

+ ‖A‖C0,1(B+

1
) ‖∇u‖0,B+

1

)

‖∇v‖0,B+

1

+ ‖α‖C0,1(T ) ‖u‖0,T ‖v‖0,T

.
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Take η as cut-off function which η ≡ 1 in B+
1/2 and η ≡ 0 in B+

1 \B+
3/4, then substitute η2∆hu for v

into above inequality. We have:
ˆ

B+

1

∣

∣η∇∆hu
∣

∣

2
+

ˆ

T

∣

∣η∆hu
∣

∣

2
≤ C

(

‖u‖1,B+

1

+ ‖f‖0,B+

1

)

.

This implies ‖∂iju‖0,B+

1/2
≤ C

(

‖u‖1,B+

1

+ ‖f‖0,B+

1

)

for i 6= d or j 6= d. Recall

f = −add∂ddu−
∑

i6=d or j 6=d

aij∂iju−
∑

ij

∂iaij∂ju

It then follows ‖∂ddu‖0,B+

1/2
≤ C

(

‖u‖1,B+

1

+ ‖f‖0,B+

1

)

. Finally, we have ‖u‖2,B+

1/2
≤ C ‖f‖0,B+

1

.
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