
3
4-discrete optimal transport

Frédéric de Gournay Jonas Kahn Léo Lebrat

July 26, 2021

Abstract

This paper deals with the 3
4
-discrete 2-Wasserstein optimal transport between two measures, where one is

supported by a set of segment and the other one is supported by a set of Dirac masses. We select the most suitable
optimization procedure that computes the optimal transport and provide numerical examples of approximation
of cloud data by segments.

Introduction

The numerical computation of optimal transport in the sense of the 2-Wasserstein distance has known several break-
throughs in the last decade. One can distinguish three kinds of methods : The first method is based on underlying
PDEs [2] and is only available when the measures are absolutely continuous with respect to the Lebesgue measure.
The second method deals with discrete measures and is known as the Sinkhorn algorithm [7, 3]. The main idea of this
method is to add an entropic regularization in the Kantorovitch formulation. The third method is known as semi-
discrete [19, 18, 8] optimal transport and is limited to the case where one measure is atomic and the other is absolutely
continuous. This method uses tools of computational geometry, the Laguerre tessellation which is an extension of
the Voronoi diagram. The aim of this paper is to develop an efficient method to approximate a discrete measure
(a point cloud) by a measure carried by a curve. This requires a novel way to compute an optimal transportation
distance between two such measures, none of the methods quoted above comply fully to this framework.

Pre-existing methods. The first method, the PDEs formulation, requires the measures to be absolutely continuous,
which is not the case.

The Sinkhorn algorithm can be applied to this problem if the curve is sampled by points. But to the best of
our knowledge [10], taking Dirac masses along anisotropic ”objects”, here, a curve may dwindle the efficiency of this
algorithm. Indeed, in this particular case the parameter of regularization of the Sinkhorn algorithm has to be chosen
smaller than the curve-sampling precision, which causes numerical issues.

The semi-discrete optimal transport is the more favorable setting for such problem. In a previous paper [11] we
described method to approximate an image by a curve. The method developed in [11] relies on a sampling of the
curve by points and computes the Wasserstein distance between a density and a point cloud. This approach suffers
from several drawbacks, the first one is that solving the optimal transport problem is more and more difficult as
discretization step decreases. Indeed the closest the Dirac masses are taken along the curve the more stretched the
Laguerre tessellation is. The second flaw is the poor quality of approximation of a curve by a sum of Dirac masses.
The third problem is the need to transform the discrete measure into a measure with regular density.

Using ideas from the semi-discrete optimal transport, a solution to the above objections is to compute the
optimal transport between an absolutely continuous measure and a measure carried by segments. The main tool
of such computations is an extension of the Laguerre tessellation with conic boundaries. The difficulty arises when
it comes to integrates the continuous density over theses Laguerre cells. In fact, a robust algorithm with exact
integration is complex to develop. This is the reason why computer graphic community [16, 15] implements numerical
approximations for those Voronoi cells (Laguerre cells with equals weights) using shape primitives and rasterisation

1

ar
X

iv
:1

80
6.

09
53

7v
1

 [
m

at
h.

N
A

]
 2

5
Ju

n
20

18

with graphic hardware. However numeric precision is intrinsically tied to grid (pixel). Hence, refinement for this
method scales badly when the dimension increases.

Based on these observations we prefer to approximate the measure supported by curve by a measure supported
by segments and to compute the optimal transport between an atomic measure and a measure supported on a set of
segments. We coined this problem the 3

4 -discrete optimal transport.

Contributions. This paper provides and studies an efficient algorithm to compute the 2-Wasserstein distance
between a discrete measure and a measure supported by a set of segments. This algorithm is scalable in 2D and
3D and is parallelized. We also study the problem of optimizing the parameter of the measure carried by the set
of segments and provide the formula of the gradient with respect to the parameter of the measure. The 3

4 -discrete
optimal transport benefits from the strength of Laguerre tessellation. Moreover it avoids the integration of the
density over convex polygons (2D) or polyhedrons (3D), a common difficulty of semi-discrete optimal transport.
Indeed the integrations needed for the computation of the cost function boils down to computing intersections
between polyhedrons and to integrate the moments of ν over segments.

The ideas of this paper owes a much to [8, 19, 18] and the semi-discrete approach but it considers a measure sup-
ported by a set of segments instead of a measure with regular density. This modification annihilates the convergence
theory developed in [17]. The optimal transport plan is no longer unique and Kantorovitch functional is no longer
C2. But under slight geometric condition (see (H)) one can show that the dual functional is C1 with respect to the
dual variables.

Outline of the paper. Section 1 is devoted to set up the notations and the known results used in this paper. In
Section 2 we compute the different derivatives of the cost function, in Section 3 we discuss the effective numerical
implementation of the algorithm. In Section 4 we settle for the optimization procedure that solves the optimal
transport, and in Section 5 we showcase numerical approximations of cloud data by segments.

1 Setting

1.1 Reminders on 2-Wasserstein distance

The 2-Wasserstein distance is a special instance of the optimal transport distance between two probabilities measures.
It is defined as follow:

Given Ω ⊂ Rd, µ ∈ P(Ω) and ν ∈ P(Ω), the 2-Wasserstein distance between µ and ν, W2(ν, µ) is given by:

W 2
2 (ν, µ) = inf

γ∈Π(ν,µ)

∫
Ω2

‖x− y‖22 dγ(x, y), (MK)

where Π(ν, µ) is the set of coupling between µ and ν, that is, the set of measures whose marginals are µ and ν :

γ ∈ Π(ν, µ)⇔



∫
Ω

ψ(x)dν(x) =

∫
Ω2

ψ(x)dγ(x, y) ∀ψ ∈ L1(ν)

and∫
Ω

φ(y)dµ(y) =

∫
Ω2

φ(y)dγ(x, y) ∀φ ∈ L1(µ)

(1)

If both (Ω, µ), (Ω, ν) are Polish spaces, an elegant way [25] to solve (MK) is via its dual

sup
ψ∈L1(ν),φ∈L1(µ)

∫
Ω

ψdν +

∫
Ω

φdµ (2)

s.t ∀(x, y) ∈ Ω2 : ψ(x) + φ(y) ≤ ‖x− y‖22,

2

where φ and ψ are the Lagrange multipliers for (1), the marginals constraints of (MK). Introducing the c-transform
of φ as :

φc(x) = inf
y∈Ω
‖x− y‖22 − φ(y).

The problem (2) can be rewritten as :

sup
φ∈Φc(Ω)

∫
Ω

φcdν +

∫
Ω

φdµ, (3)

where Φc(Ω) is the set of c-concave function on Ω, see [25]. Consider now the case where the measure µ is atomic :
µ(x) =

∑n
i=1miδxi ,xi ∈ Rd,mi ∈ R. In this case φ belongs to Rn, and φc(x) = mini∈J1,nK ‖x − xi‖22 − φi. This

naturally leads to the definition of the i-th Laguerre cell [1] :

Li(x, φ) = {x ∈ Ω such that ‖x− xi‖22 − φi ≤ ‖x− xj‖22 − φj ∀j ∈ J1, nK}. (4)

Provided that ν(Li ∩ Lj) = 0 for every i 6= j, the final problem states as :

W 2
2 (µ, ν) = sup

φ∈Rn
g(φ,x), with g(φ,x) =

∑
i

∫
Li(x,φ)

(
‖x− xi‖22 − φi

)
dν +

∑
i

miφi. (5)

Denoting φ? as the solution of maximization problem (5) the physical interpretation of the Laguerre cell Li(x, φ?)
is that the Dirac mass located at xi is transported to supp(ν) ∩ Li. There is equality between problem (MK) and
problem (5) since the quadratic cost is continuous and (Ω, ν),(Ω, µ) are two Polish spaces [25].

1.2 Setting

In this paper µ will denote a n-atomic probability measure on Rd :

µ(x) =

n∑
i=1

miδxi , s.t
∑
i

mi = 1 with xi ∈ Rd,mi ∈ R+, for all 1 ≤ i ≤ n.

By contrast, ν will be a probability measure supported by a polyline,

ν =

p∑
α=1

ραl
α
#λ[0,1] s.t. lα : [0, 1] → Rd

t 7→ (1− t)Pα + tPα+1

, ρα ∈ R+, Pα ∈ Rd, (6)

where the measure lα#λ[0,1] is the push-forward through lα of λ[0,1], the [0, 1]−Lebesgue measure. The measure lα#λ[0,1]

is defined as :
lα#λ[0,1](A) := λ[0,1]

(
(lα)−1(A)

)
for every Borelian set A.

The fact that ν is a probability measure translates into
∑
α ρα = 1. Notice that ρα = 0 is admissible and in this

case the support of the resulting probability ν will be composed of disjoint polylines.
In order to ensure the regularity of function g defined in (5) we enforce hypothesis (H) throughout the paper.

∀α ∈ J1, pK, ∀(i, j) ∈ J1, nK2, i 6= j : 〈Pα+1 − Pα,xi − xj〉 6= 0. (H)

Under (H), for all φ we have ν(Li(x, φ) ∩ Lj(x, φ)) = 0. Indeed if Li and Lj are two Laguerre cells with a common
boundary Li ∩ Lj , the boundary has to be orthogonal to xi − xj . Hypothesis (H) prevents tiny perturbation of
φ to harshly shift the affectation of the segment’s mass from one Dirac mass to another, see Figure 1. Under this
assumption g is a C1 function of φ, see [9].

Let I be the set of indices (i, α) such that the ith Laguerre cell meets the αth segment, that is:

I = {(i, α) s.t. Li(x, φ) ∩ [Pα, Pα+1] 6= ∅} .

3

xi

xj

Pα

Pα+1

Figure 1: When the hypothesis (H) is violated one can cook up a φ such that the functional g in (5) is no longer C1

with respect to φ. Here a small perturbation on φi or φj induces a discontinuity on ∇φg.

If the space Ω is convex then the Laguerre cells defined in (4) are convex and Li ∩ [Pα, Pα+1] is a segment. For every
(i, α) ∈ I denote tiαs , t

iα
e the starting (respectively ending) time of the αth segment [Pα, Pα+1] in the ith Laguerre cell

:
0 ≤ tiαs ≤ tiαe ≤ 1 and Li ∩ [Pα, Pα+1] = [lα(tiαs), lα(tiαe)]. (7)

Then the cost function g(φ,x) defined in (5) can be re-written as :

g(φ,x) =
∑

(i,α)∈I

∫ tiαe

tiαs

riα(t)dt+

n∑
i=1

φimi (8)

with riα(t) = (‖lα(t)− xi‖22 − φi)ρα

2 Derivatives of the cost function

2.1 First order derivative with respect to φ

Hypothesis (H) ensures that ν(Li(x, φ)∩Lj(x, φ)) = 0,∀i 6= j. A direct application of [9] shows that g is differentiable
with respect to φ and :

∂g

∂φi
(φ,x) = mi −

∫
Li(x,φ)

dν. (9)

2.2 Computation of the second order derivative with respect to φ

If there exists a segment [Pα, Pα+1] that passes through the intersection of at least three Laguerre cells then the
functional g fails to be twice differentiable. On the one hand it is impossible to design an hypothesis in the spirit
of hypothesis (H) that can prevent such a pathological case to happen during the optimization in φ. On the other
hand such a baneful case almost surely never happens. Hence in this section the Hessian is computed without proof
of existence by following a cumbersome calculus.

Denote (ei)i the canonical basis. Following the computation of the first derivative given in (9), the second order
derivative is given by :

∂2g

∂φiφj
= − lim

εi→0

∫
Li(x,φ+εej)

dν −
∫
Li(x,φ)

dν

ε
. (10)

4

Denote nil the outer normal of Li on the facet Li∩Ll, that is nil = xl−xi
‖xl−xi‖ . Denote by δil the first order approximation

of the evolution of the facet Li ∩ Ll in the normal direction nil when we change the Lagrange multiplier of the j-th
cell, that is, when we change φ into φ + εej , see Figure 2 (left). If both i and l are different from j then δil = 0
otherwise δij is given by :

y + εδijnij + o(ε) ∈ (Li ∩ Lj) (x, φ+ εej)

⇔‖y + εδijnij − xj‖22 − φj − ε+ o(ε) = ‖y + εδijnij − xi‖22 − φi (11)

⇒δij =
1

2‖xj − xi‖
.

xj

xl

xk

xm
δjk

δjl δjm
Lm

Lj

Lk

Ll

Pα+1

Pα Pα−1

njk δjk

∂g
∂φj∂φm

∂g
∂φj∂φk

θjkα

δjm

njm

θjmk−1

Lm

Lj

Lk

Figure 2: (Left) Normal displacements (δil, δik, δim) of the boundary of the Laguerre cell when φi increases and
(φl, φk, φm) remain constant. (Right) geometrical interpretation of the Hessian

Denote Θij the indices of the segments that intersect the facet Li ∩ Lj , it is given by

Θij = {α such that, (i, α) ∈ I and (j, α) ∈ I} .

For every α in Θij denote θijα the angle between the segment [Pα, Pα+1] and the outer normal nij . See Figure 2
(right), simple geometrical consideration shows that the Hessian formula boils down to :

∂g

∂φiφj
(φ,x) =


−
∑
θ∈Θij

ρα

2‖xj − xi‖ cos(θijα)
if i 6= j,

−
∑
k 6=i

∂g

∂φiφk
otherwise.

(12)

2.3 Computation of the first order derivative with respect to P and ρ

In this section we compute the derivatives of the 2-Wasserstein distance with respect to the parameters of the measure
ν. We denote generically as ∂ν the derivative with respect to one of the parameters that define ν, that is either one
of the positions Pα or one of the densities ρα. Let φ? be the optimal Lagrange multiplier in (5)

G(ν) := g(φ?, ν) = W 2
2 (µ, ν)

The derivative of g(φ?, ν) with respect to the parameters of ν are given using the chain rule formula.

dG

dν
=
∂g

∂φ

∂φ

∂ν
+
∂g

∂ν
(13)

5

Since φ? is a solution of (5), the derivative of g with respect to φ is zero at φ?. Hence computing the differential of
G consists in differentiating the cost function g while keeping φ fixed at φ?. Differentiating (8) with respect to ν we
obtain :

∂νG =
∑

(i,α)∈I

(∂νt
iα
e)riα(tiαe)− (∂νt

iα
s)riα(tiαs) +

∫ tiαe

tiαs

∂νr
iα(t)dt

When considering ∂νt
iα only three cases can occur :

1. If Pα belongs to the interior of the ith Laguerre cell then, tiαs = 0 and ∂νt
iα
s = 0.

2. If Pα+1 belongs to the interior of the ith Laguerre cell then, tiαe = 1 and ∂νt
iα
e = 0.

3. For all i there exists exactly one j such that tiαs = tjαe . The segment [Pα, Pα+1] intersects Li ∩ Lj at point
lα(tiαs). For all x in Li ∩Lj , by definition of the Laguerre cell (4), the following equality holds ‖x−xi‖22−φi =
‖x− xj‖22 − φj then riα(tiαe) = rjα(tjαs).

It follows that

∂νG =
∑

(i,α)∈I

∫ tiαe

tiαs

∂νr
iα(t)dt (14)

2.3.1 Derivative with respect to P

We are first interested in differentiating the Wasserstein distance with respect to the position of the endpoints
(Pα)α∈J1,pK of the polyline. A direct application of (14) yields :

∂G

∂Pα
=

∫ ti(α−1)
e

t
i(α−1)
s

∂Pαr
i(α−1)(t)dt+

∫ tiαe

tiαs

∂Pαr
iα(t)dt

The differential of riα(t) with respect to Pα amounts to differentiate ‖lα(t)− xi‖2, we recall that :
∂‖lα(t)− xi‖2

∂Pα
= 2(1− t) (lα(t)− xi)

∂‖l(α−1)(t)− xi‖2

∂Pα
= 2t

(
l(α−1)(t)− xi

)
.

Let K(α) the set of indices i such that the i-th Laguerre cell has a non-empty intersection with the α-th segment:

K(α) = {i s.t. Li(x, φ) ∩ [Pα, Pα+1] 6= ∅} = {i such that (i, α) ∈ I}.

A straightforward computation yields

∂G

∂Pα
=

Pα +
Pα−1 − Pα

3
−

∑
i∈K(α−1)

∫ ti(α−1)
e

t
i(α−1)
s

txidt

 ρα−1

+

Pα +
Pα+1 − Pα

3
−
∑

i∈K(α)

∫ †tiαe
†
tiαs

txidt

 ρα (15)

where †t is the reverse parameterization of the segment [Pα, Pα+1], that is

†
tiαs = 1− tiαe and

†
tiαe = 1− tiαs .

We may interpret (15) as the sum of the torques of the surrounding segments [Pα−1, Pα] and [Pα, Pα+1] around
the point Pα.

6

2.3.2 Derivative with respect to ρ

The functional g (8) is linear in ρα, and its derivative is therefore trivial. Throughout this paper, we consider that
the density is constant by segment. As a consequence

ρα =
‖Pα − Pα+1‖∑
α ‖Pα − Pα+1‖

, (16)

hence the derivative of ρ with respect to P is easily computed.

2.3.3 Optimization algorithm

The aim of this section is to describe the algorithm which optimizes the Wasserstein distance G with respect to the
position of the endpoints Pα of the polyline. The proposed algorithm is a gradient descent method with a metric Σ,
we recall that the gradient of G with respect to P is given by :

∇PG =
∂G

∂P
+
∂G

∂ρ

∂ρ

∂P
, (17)

The differential of G with respect to P and ρ are discussed in Section 2.3.1 and Section 2.3.2 respectively. The
main goal of this section is to discuss the choice of the metric Σ.

Let us consider an isolated segment [Pα, Pα+1], that is ρα−1 = ρα+1 = 0. The average of the gradient for the
segment [Pα, Pα+1] is given by :

1

2

(
∂G

∂Pα
+

∂G

∂Pα+1

)
=

(
1

2
Pα +

1

2
Pα+1 −

∑
i∈Kα

∫ tiαe

tiαs

xidt

)
ρα = ρα(cα − x̄α) (18)

where cα is the center of the α-th segment and x̄α is the weighted average of points xi seen by the α-th segment :

cα =
Pα + Pα+1

2
and x̄α =

∑
i∈Kα

∫ tiαe

tiαs

xidt.

Equation (18) is reminiscent of the formula of the derivative of G in the semi-discrete setting, see [18, 8, 19]. In this
setting, µ is a measure with density and the approximating measure ν is a sum of Diracs :

ν =

p∑
α=1

mαδyα

In this case, the derivative of G with respect to the position of the points is given by :

∂G

∂yα
= mα(yα − bα), (19)

where bα = 1
mα

∫
Lα xdµ is the barycenter of the αth Laguerre cell.

In the semi-discrete setting, the most commonly used algorithm when minimizing G with respect to y is to update
the point position yα to their barycenters bα. This procedure is known as Lloyd’s algorithm [8, 19, 18]. In view
of the formula of the gradient (19), this method is a gradient descent with metric Σ = diag(mα). In our case it is
natural to consider a metric Σ defined via ρα as an analogy to the semi-discrete setting. We define :

Σ = diag(
ρα−1 + ρα

2
). (20)

The main algorithm that minimizes G with respect to P is given by algorithm 1 below

7

Algorithm 1 Optimization polyline position

1: procedure Optimization in P
2: ∇PG← 0
3: do
4: P ← P − Σ−1 · ∇PG . with Σ defined in (20), ∇PG defined in (17)
5: ρ← normalizedDensity(P) . as in (16)
6: φ∗,∇PG← computeOptimalTransport(x,m, P, ρ) . see Algorithm 2
7: while ‖∇P‖∞ ≥ 10−3

8: end procedure

3 Numerical implementation

The Laguerre cells are computed using the computational geometry library CGAL [6]. In 2D the algorithm is fast
and scalable, the average complexity for n sites randomly drawn is linear in time and memory. For 3D triangulation
the worst case complexity is quadratic, but for random point configurations the complexity is observed to be almost
linear [12]. In this section we discuss the computation of g and its parallelization.

3.1 Integration computation

The main issue when computing g and its derivative is to evaluate the intersections (7) between the polylines and
the Laguerre cells. The intersections are computed by following each segment lα(t) with t increasing. We first focus
our attention on computing the exit time of the Laguerre cell j knowing the starting time tiαs . To clarify things
suppose that at the known time tiαe = tjαs the segment exits the Laguerre cell Li and enters the Laguerre cell Lj .
The objective is to compute the time tjαe = tkαs and the index k such that the segment exits the Laguerre cell Lj at
time tjαe and enters the Laguerre cell Lk. Such a time is computed by solving the following minimization problem

k = argmin
m s.t. m 6=i, tjαs <tm≤1

tm, with tm =
2〈Pα,xj − xm〉+ ‖xm‖2 − φm + φj − ‖xj‖22

2〈Pα − Pα+1,xj − xm〉
. (21)

The exit time tjαe is now equal to tk. Note that the choice of m can be restricted to the indexes of adjacent
Laguerre cells, which is a small set in practice (a dozen of indexes). If the set {m 6= i, tjαs < tm ≤ 1} is empty, the
segment ends in the Laguerre cell Lj and we set tjαe = 1 and we stop the procedure for the segment.

In the case when tjαs = 0, that is the segment starts in the Laguerre cell Lj , we consider the same minimization
problem as (21) where the constraint set is replaced with {m, 0 ≤ tm ≤ 1} .

We still have to compute the index of the Laguerre cell where the segment [Pα, Pα+1] begins. If α > 0, it is
obviously the index of the ending Laguerre cell of [Pα−1, Pα]. For the case α = 0, we add a dummy segment [xl, Pα],
where xl is the position of the l-th Dirac mass corresponding to the largest multiplier φl = maxk φk. By definition
of the Laguerre diagram (4) the point xl belongs to Ll.

Given the starting and ending times, the computation of g(φ,x) and its derivative abridge to integrate polynomials
within [tjαs , t

jα
e] using Gaussian quadrature.

There might exist several solutions k to the minimization problem (21). In this case, the segment encounters
a corner, the intersection of at least 3 Laguerre cells. In practice this case never occurs thanks to floating point
arithmetic but the rounding error can elect a non-suitable candidate. In this case, the algorithm assigns a segment
of negligible length to the candidate, see Figure 3.

3.2 Parallelism

The evaluation of g(φ,x) and its derivative with respect to φ are discussed in Section 3.1. For each segment of the
polyline the intersection times are computed sequentially by (21) and the integration is performed on the fly. The

8

Li Ll

Lj

Pα

Pα+1

Li Ll

Lj

ε

Li Ll

Lj

Figure 3: Example of non-uniqueness to the minimization problem (21). At the left the polyline [Pα, Pα+1] intersects
the junction of 3 Laguerre cells (i, j, l). In the center k = l chosen as expected. At the right k = j chosen and
tjαe − tjαs = ε, a small error occurs assigning a bit of the segment to the jth Laguerre cell.

parallelism is unfurled at the highest level of the algorithm for the segments. Remember that the computation of
the intersection of the polyline and the Laguerre tessellation requires for each segment the knowledge of the cell
of its starting point. This cell can be inferred from the calculation of the previous segment. Hence, we slice the
polyline into contiguous chunks of segments with equivalent size, each worker dealing with one chunk. For each of
these chunks the sequential integration procedure is launched and then the results are merged. We carry out both
OpenMP and c++11 thread class implementation. For a standard chunk size and for a regular processor the c++11

performance overtakes the OpenMP’s one. We suppose that this difference of performance (up to a factor two) is
due to OpenMP overhead.

In Figure 4, the evolution of the computation time of the cost function g and its gradient with respect to φ is
benchmarked. The speedup unit is defined as the ratio of the execution time of the non-parallelized task over the
parallelized task. OpenMP and c++11 thread class are both implementations of shared memory parallelization, the
memory is simultaneously accessible for every thread. The performance of a process depends intrinsically on how
close the data is. If the data is on processor cache the latency is a dozens of CPU cycles, if the data is located on
RAM, the latency is 40ns. In our experiment, for large number of threads, 30% of the data was not located on cache.
This explains why performance drops as the number of threads increases.

4 Computation of the optimal transport

The goal of this section is to compare the available methods to optimize g with respect to φ (5). The functional g is
concave with respect to φ since it is a dual formulation of the problem (MK) see [25]. Under the hypothesis (H) the
functional g is C1 with respect to φ. Note that a higher level of regularity cannot be established as argued in Figure
5. This lack of regularity precludes the use of the convergence framework for second order methods established by
Mérigot et al. [17].

However, we may apply classical convergence results of concave analysis to functional the g. To trigger those
arguments, the Lipschitz constant of the gradient L has to be bounded. Under Hypothesis (H), using the notation of
Section 2.2 summarized in Figure 2 and the expression of the Hessian matrix (12), we establish a finite upper bound
for L using the Gershgorin circle theorem :

|L| ≤ 2 max
i

∑
j 6=i

∣∣∣∣ ∂2g

∂φi∂φj

∣∣∣∣ ≤ p2 max
α

(ρα)

min
l 6=m

(‖xl − xm‖2) min
i,j,α,i 6=j

| cos((θijα))|
, (22)

9

2 3 4 6 8 10 12 14
0

1

2

3

4

1.829

2.269
2.448

2.989

3.543
3.718

3.934

4.261

Number of threads

S
p

ee
d

u
p

Figure 4: Speedup for the computation of the cost function g with c++11 thread class. The parallelism is placed
over the segment integration for n = 200K points and p = 80K segments for an increasing number of threads with a
super-calculator equipped with Intel Xeon R© E5-2680

xi

Pα−2

Pα−1

Pα+2

Pα+1

Pα

φi

∇g(φi)

Figure 5: Counter-example to the smoothness of ∇g. Consider the a Laguerre tessellation and a set of segment as
displayed in the left and increase φi. The Laguerre cell Li increases and the gradient of g with respect to φ exhibits
kinks. Those kinks happen each time a Laguerre cell meets a segment for the first time. Note that under Hypothesis
(H), the boundary of the Laguerre cell can only cross transversally the segment. If Hypothesis (H) is not met ∇g
may fail to exist.

where p is the number of segments composing the polyline, ρα is the density associated to each segment and θijα is
the angle between the vector Pα+1 −Pα and (xj − xi). For fixed measures ν and µ the evaluation of the bound (22)
is costly as it involves combinatorial quantities and is not evaluated in practice.

The gradient Lipschitz condition (22) is sufficient to ensure convergence of ascent methods. Note that g is bounded
from above as µ and ν are compactly supported measures. The gradient method with step s < 2

L converges to a
stationary point φ? see [21, 4, 20]. The same holds for variant step-size method with line search such as Global

10

Brazalai Borwein algorithm [22, 13].
Because of the counter-example in Figure 5, and the lack of regularity of the gradient of g, quadratic convergence

cannot be guaranteed for second order methods. Note also that in a generic setting, the Newton method is impractical
since the Hessian matrix defined in equation (12) fails to be invertible, see Section 4.1.3.

4.1 Choice of optimization method

The different methods are tested against the same benchmark. It consists in drawing uniformly 10K points and 500
segments in 2D. Several realization of the optimization procedure are performed and plotted in the corresponding
figures. The methods are benchmarked in Table 1.

4.1.1 First order method

We first implement a gradient ascent method. The generic convergence history is displayed in Figure 6. As explained
in Section 4, the Lipschitz constant of the gradient cannot be satisfactorily computed, so the step-size is chosen
according to strong Wolfe conditions. In practice the algorithm settles for a constant step of 0.05. As it can be
observed in Figure 6 the rate of convergence of the gradient towards zero is too slow for this method to be used in
practice.

0 1000 2000 3000 4000 5000 6000 7000
iterations

0.000

0.002

0.004

0.006

0.008

0.010

0 1000 2000 3000 4000 5000 6000 7000
iterations

10 2

3 × 10 3

4 × 10 3

6 × 10 3

Figure 6: Gradient ascent method : cost function history (left) and norm of the gradient (right). Method stopped
by the max iteration criterion.

We have tried other first order methods including Polak-Ribire, Fletcher-Reeves, Barzalai Borwein and Nesterov
acceleration. Only Nesterov acceleration has behaved differently from the other methods and it is displayed in
Figure 7. Note however, that Nesterov acceleration requires an estimation of L, the Lipschitz constant of the
gradient. Figure 7 was obtained with an estimation of L that promotes quick decreases of gradient norm at the
beginning of the algorithm. Note however that the estimation of L seems too optimistic since the Nesterov algorithm
does not converge. A more pessimistic choice of L leads to a convergence rate similar to the gradient algorithm, at
least during the first 7K iterations.

4.1.2 Quasi-Newton Method

The main idea behind quasi-Newton methods is to build at the iteration k an approximation of the Hessian matrix
of g. We choose the limited memory BFGS method, which only stores a limited amount of vectors determined by
the user. The result is displayed in Figure 8. This method converges faster than first order method, the L-BFGS

11

0 1000 2000 3000 4000 5000 6000 7000
iterations

0.000

0.002

0.004

0.006

0.008

0.010

0 1000 2000 3000 4000 5000 6000 7000
iterations

10 2

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Figure 7: Nesterov acceleration of gradient ascent : cost function history (left) and norm of the gradient (right).
Method stopped by the max iteration criterion.

algorithm reaches the desired gradient tolerance 5.10−5 within 1500 iterations. By contrast first order methods failed
to converge in 7000 iterations. However when the method is close to a critical point the convergence speed tends to
decrease.

0 250 500 750 1000 1250 1500 1750
iterations

0.000

0.002

0.004

0.006

0.008

0.010

0 250 500 750 1000 1250 1500 1750
iterations

10 4

10 3

10 2

Figure 8: L-BFGS method : cost function history (left) and norm of the gradient (right). Method converges to the
targeted gradient norm 5.10−5 in a average of 1500 iterations.

4.1.3 Newton and quasi-Newton hybridization

In the light of the previous section, the flaw of the quasi-Newton method is its lack of briskness when it reaches the
vicinity of a maximizer. Second-order methods are known to converge quadratically in the basin of attraction of a
maximizer. The idea of the hybrid algorithm is to start with a quasi-Newton method, and then switch to a second
order Newton algorithm when the basin of attraction is reached. The quandary is to determine when to start the
Newton method in preference to the L-BFGS method. Indeed far from the basin of attraction the direction given by

12

the Newton method is poor and the natural step 1 is truncated by the line search which causes extra computation
time.

We propose to switch from the L-BFGS algorithm to the Newton algorithm as soon as there is no empty Laguerre
cell. A Laguerre cell Li is called empty as long as there is no mass assigned to its centroid xi that is ν(Li) = 0.
This criterion is informally motivated by the fact that the second order information relates the competition and
the connectivity between Laguerre cells, hence if one of them is empty its information is inconsequential. From a
practical point of view, this condition ensures the Hessian on being a full rank matrix and hence invertible. This
procedure is described in Algorithm 2 and the result are displayed in Figure 9.

Algorithm 2 Computation of optimal transport

Input: Dirac positions x and masses m.
Input: Nodes P and density ρ of the polyline.
Require: φinit a starting φ for the computation of g
Require: gradTol L2 tolerance on the gradient norm
Require: outerMax maximum number of iterations
Require: wolfeProcedure standard line search with strong Wolfe condition and initial step s = 1. [4]
1: function computeOptimalTransport(x,m,P ,ρ)
2: bf← LBFGS(memSize) . Initialization of L-BFGS
3: φ← φinit

4: ∇φ,cost,hiddenNumber ← computeIntegration(φ)
5: i← 0
6: while i < outerMax & gradTol < ‖∇φ‖2 do
7: if hiddenNumber 6= 0 then
8: d ← bf.findDirection(∇φ)
9: else

10: H ← computeHessian(φ)
11: d ← −H−1∇φ . The Hessian is definite so Newton direction is taken
12: end if
13: s← wolfeProcedure(cost, φ, s, d)
14: ∇φold ← ∇φ
15: ∇φ,cost,hiddenNumber ← computeIntegration(φ+ sd)
16: bf.addDirection(∇φold −∇φ, sd) . Actualize memory of the L-BFGS algorithm
17: φ← φ+ sd
18: end while
19: end function

In the numerical tests, the switch between the two Newton method happens approximatively 30 iterations before
termination of the algorithm. During the Newton phase of the hybrid algorithm, the algorithm undergoes two stages.
During the twenty first iteration of the Newton method the algorithm stabilizes around the maximum and the Wolfe
line-search prevents picking s = 1. During the second stage, quadratic convergence is achieved in few iterations.

Levenberg-Marquartdt’s method was also implemented with a regularization parameter that tends to zero when
approaching the basin of convergence, however in large scale optimization problems the lightweight hybrid method
is preferable since it requires the inversion of the Hessian only in the last iterations.

13

0 100 200 300 400 500 600
iterations

0.000

0.002

0.004

0.006

0.008

0.010

0 100 200 300 400 500 600
iterations

10 11

10 9

10 7

10 5

10 3

10 1

Figure 9: Hybrid Newton method : cost function history (left) and norm of the gradient (right). The method
converges to the targeted gradient norm 10−6 in 600 iterations on average.

BBG Nesterov BFGS BFGS/Newt LM

Time/iteration 36.4ms 36.7ms 49.4ms 186ms 649ms
gradient norm 5.5 10−3 1.2 10−3 1.5 10−4 10−15 5.4 10−5

Table 1: Comparison of algorithms for solving the optimal transport problem for 104 points and 500 lines. Time
required for an iteration in millisecond and the gradient norm after 1000 iterations. The BFGS/Newton method
converges up to numerical error.

5 Numerical examples

5.1 Representation of picture

The approximation of a measure by a curve has multiple applications of which some are described in [11]. In this
section we discuss the representation of a picture by a polyline. The first step is the discretization of the picture,
here a landscape, by a sum of Dirac masses of weights m. Several approaches are possible but the most intuitive is to
take the Dirac positions x on a Cartesian grid and their weights equal to the pixels intensities. The polyline is then
initialized randomly, and Algorithm 1 is launched. With no speed or curvature constraints, the gradient method in
P described in Algorithm 1 empirically gives a stationary point. This solution is highly non-smooth, the length of
the segments and the angle between them are disparate see Figure 10 top right.

This scribbled solution is, in practice, difficult to carry out with laser engravers. Indeed for the same number of
segments p, the engraving time of uncontrolled trajectories can be up to five times longer. In order to get around this
problem, we follow the method described in [11], that is projecting the polyline after the gradient step of Algorithm 1
on a set of kinematic constraints. The constraints imposed on the speed and the acceleration polyline read as :

K(K1,K2) =

{
(Pα)α∈J1,pK s.t

∣∣∣∣ ‖Pα+1 − Pα‖ ≤ K1, ∀α ∈ J1, p− 1K
‖2Pα − Pα−1 − Pα+1‖ ≤ K2, ∀α ∈ J2, p− 1K

}
, (23)

with K1 the constant controlling the speed of the polyline and K2 its acceleration. The projection on the set
K(K1,K2) is performed using the Alternating Direction Method of Multipliers (ADMM) [14].

The authors wish to thank Andrew Gibson for letting them use the original picture and Alban Gossard for his
priceless help in realizing the wood engraving.

14

Figure 10: Curvling by 3
4 -discrete optimal transport. Original image (top left), approximation by a polyline with

400K segments without any constraints (top right), approximation by a polyline with kinematic constraints and 250K
segments (bottom left), final rendering after wood engraving, the polyline is composed of 80K segments (bottom
right). In all tests measure µ is represented by 320K Dirac masses.

5.1.1 Galaxy filaments

Galaxies are known to cluster along filaments and other low dimensional structures [23, 5]. However mathematical
extraction of these filaments is a challenging task. We might try to apply refinements of our algorithm to find those
filaments. As a naive proof of concept, we have applied our method while setting ρ2k+1 = 0 for all k, so that the
lines are disjoint. We use the data of [24] available at : https://github.com/etempel/bisous. The galaxies are
represented by Dirac masses. Note that in our tests their masses m are arbitrarily set to 1

n but the code enables
other values. In Figure 11, computations are performed for n = 180K galaxies and a decreasing number of filaments
8K,1K,500.

15

https://github.com/etempel/bisous

Figure 11: A thin slice of the global solution for locating Bisous filaments (white), and galaxies (yellow).

References

[1] Aurenhammer, F. Power diagrams: properties, algorithms and applications. SIAM Journal on Computing
16, 1 (1987), 78–96.

[2] Benamou, J.-D., and Brenier, Y. A computational fluid mechanics solution to the monge-kantorovich mass
transfer problem. Numerische Mathematik 84, 3 (2000), 375–393.

[3] Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G. Iterative bregman projections for
regularized transportation problems. SIAM Journal on Scientific Computing 37, 2 (2015), A1111–A1138.

[4] Bertsekas, D. P. Nonlinear programming. Athena scientific Belmont, 1999.

[5] Beygu, B., Kreckel, K., van de Weygaert, R., van der Hulst, J., and Van Gorkom, J. An
interacting galaxy system along a filament in a void. The Astronomical Journal 145, 5 (2013), 120.

[6] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[7] Cuturi, M. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in neural infor-
mation processing systems (2013), pp. 2292–2300.

[8] De Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. Blue noise through optimal transport.
ACM Transactions on Graphics (TOG) 31, 6 (2012), 171.

[9] de Gournay, F., Kahn, J., and Lebrat, L. Differentiation and regularity of semi-discrete optimal transport
with respect to the parameters of the discrete measure. arXiv preprint arXiv:1803.00827 (2018).

[10] de Gournay, F., Kahn, J., Lebrat, L., and Pierre, W. Approches variationnelles pour le stippling:
distances l2 ou transport optimal ? In GRETSI 2017 XXVI (Sept. 2017).

[11] de Gournay, F., Kahn, J., Lebrat, L., and Pierre, W. Optimal transport approximation of measures.
arXiv preprint arXiv:1804.08356 (2018).

[12] Dwyer, R. A. Higher-dimensional voronoi diagrams in linear expected time. Discrete & Computational
Geometry 6, 3 (1991), 343–367.

16

[13] Fletcher, R. On the barzilai-borwein method. In Optimization and control with applications. Springer, 2005,
pp. 235–256.

[14] Glowinski, R. On alternating direction methods of multipliers: a historical perspective. In Modeling, simulation
and optimization for science and technology. Springer, 2014, pp. 59–82.

[15] Hiller, S., Hellwig, H., and Deussen, O. Beyond stipplingmethods for distributing objects on the plane.
In Computer Graphics Forum (2003), vol. 22, Wiley Online Library, pp. 515–522.

[16] Hoff III, K. E., Keyser, J., Lin, M., Manocha, D., and Culver, T. Fast computation of generalized
voronoi diagrams using graphics hardware. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques (1999), ACM Press/Addison-Wesley Publishing Co., pp. 277–286.

[17] Kitagawa, J., Mérigot, Q., and Thibert, B. Convergence of a newton algorithm for semi-discrete optimal
transport. arXiv preprint arXiv:1603.05579 (2016).

[18] Lévy, B. A numerical algorithm for l2 semi-discrete optimal transport in 3d. ESAIM: Mathematical Modelling
and Numerical Analysis 49, 6 (2015), 1693–1715.

[19] Mérigot, Q. A multiscale approach to optimal transport. In Computer Graphics Forum (2011), vol. 30, Wiley
Online Library, pp. 1583–1592.

[20] Nesterov, Y. Introductory lectures on convex optimization: A basic course, vol. 87. Springer Science &
Business Media, 2013.

[21] Polyak, B. T. Introduction to optimization. translations series in mathematics and engineering. Optimization
Software (1987).

[22] Raydan, M. The barzilai and borwein gradient method for the large scale unconstrained minimization problem.
SIAM Journal on Optimization 7, 1 (1997), 26–33.

[23] Tempel, E., Kipper, R., Saar, E., Bussov, M., Hektor, A., and Pelt, J. Galaxy filaments as pearl
necklaces. Astronomy & Astrophysics 572 (2014), A8.

[24] Tempel, E., Stoica, R. S., Kipper, R., and Saar, E. Bisous modeldetecting filamentary patterns in point
processes. Astronomy and Computing 16 (2016), 17–25.

[25] Villani, C. Optimal transport: old and new, vol. 338. Springer Science & Business Media, 2008.

17

	1 Setting
	1.1 Reminders on 2-Wasserstein distance
	1.2 Setting

	2 Derivatives of the cost function
	2.1 First order derivative with respect to
	2.2 Computation of the second order derivative with respect to
	2.3 Computation of the first order derivative with respect to P and
	2.3.1 Derivative with respect to P
	2.3.2 Derivative with respect to
	2.3.3 Optimization algorithm

	3 Numerical implementation
	3.1 Integration computation
	3.2 Parallelism

	4 Computation of the optimal transport
	4.1 Choice of optimization method
	4.1.1 First order method
	4.1.2 Quasi-Newton Method
	4.1.3 Newton and quasi-Newton hybridization

	5 Numerical examples
	5.1 Representation of picture
	5.1.1 Galaxy filaments

