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Rationality of the locus of singularities of the

general Gough-Stewart platform

Michel Coste∗and Seydou Moussa†

April 2, 2019

Abstract

We prove that the set of singular configurations of a general Gough
Stewart platform has a rational parametrization. We introduce a recipro-
cal twist mapping which, for a general orientation of the platform, realizes
the cubic surface of singularities as the blowing up of a quadric surface in
five points.

Keywords: parallel robot, singularities, cubic surface
AMS classification: 70B15, 14E08, 14J26

Introduction

Gough-Stewart platform is the most well-known parallel robot with six
degrees of freedom. It consists in a platform linked to a fixed base via
six limbs whose lengths are controlled by actuated prismatic joints ; each
limb is attached to the base by a universal joint and to the platform by a
spherical joint (6-UPS in the standard notation [8]).

Figure 1: A Gough-Stewart platform

The problem of avoidance of singular configurations (in which one
loses control on at least one degree of freedom) is crucial for parallel
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robots, and many papers have been devoted to the study of the set Sing
of singular configurations of the Gough-Stewart platform. A basic fact
is the characterization of singular configurations as those for which the
systems of Plücker coordinates of the six limbs of the platform are linearly
dependant (see [8]). This leads to a description of Sing by a polynomial
equation in terms of position variables and orientation variables. This
equation is of degree 3 in the position variables for a general architecture
(this degree may drop for special architectures, see [7, 10]). Hence, for
a generic (in the sense of algebraic geometry) orientation, the singular
configurations form a cubic surface Σ in 3-dimensional space.

A way to describe the set of singular configurations of a robot is to give
a rational parametrization of this set, when this is possible; this has been
done for 3-RPR planar robots in [6], which stresses the advantage of ratio-
nality. In the case of the Gough-Stewart platform, a rational parametriza-
tion has been found for special architecture in [1], and the rationality of
Sing has been proved for the general case of planar base and platform base
in [3]. The rationality in this case follows from the existence of a singular
point at infinity of the cubic surface Σ. This argument cannot be used
for the general Gough-Stewart platform : the projective closure Σh of Σ
is in general a nonsingular cubic surface. It is known (see [11]) that the
rationality of a nonsingular cubic projective surface is related to special
features of the set of the 27 lines on this surface. Experiments using exact
computations over rational numbers show that the polynomial of degree
27 whose roots corresponds to the lines splits in factors of degrees 2, 5, 10,
10, where the lines corresponding to the factor of degree 2 are skew. This
gives an evidence for rationality, which has to be confirmed by a proof.
The key to the proof is given by a consideration from kinematics: to each
singular configuration of the platform one can associate a line of reciprocal
twists, which expresses the infinitesimal rigid motion which can no longer
be controlled in the singular configuration. We prove that, for a general
architecture, this reciprocal twist mapping is a regular mapping from the
projective cubic surface Σh to a quadric surface Q (in the 5-dimensional
projective space of twists). We prove moreover that the reciprocal twist
mapping is the blowing-up of the quadric surface Q in five points, and the
five exceptional divisor in the cubic surface Σh are the lines correspond-
ing to the factor of degree 5 mentioned above. The singularities which
form these five exceptional divisors are those for which all six limbs of the
platform have a common secant line, and the reciprocal twist is a twist of
rotation about this secant line.

We have proved in this way the rationality of the locus of singularities
of the general Gough-Stewart platform. But, more than that, the infor-
mation obtained about the reciprocal twist mapping may be of interest
for the kinematics of this robot.

The paper is organized as follows. In Section 1 we describe the singu-
larity locus and explain how the problem of its rational parametrization
reduces to the problem of the rationality of the cubic surface Σ defined
over the field of functions of the rotation group SO(3); we recall the rela-
tion between the rationality of this surface and the structure of the set of
lines on this surface, and give the example of a computation about these
lines which shows an evidence for rationality. In section 2 we introduce
the reciprocal twist mapping and show that it gives a birational equiva-
lence between Σ and a quadric surface Q, which proves the rationality of
Σ. In section 3 we extend the reciprocal twist mapping to the projective
closure Σh of Σ and show that the extended mapping is the blowing-up of
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Q in five points; we make precise the kinematic significance of the excep-
tional divisors of this blowing-up. We conclude by collecting some open
questions raised by our approach.

1 The singularity locus of a Gough-Stewart
platform, and the question of its rational
parametrization

We consider a Gough-Stewart platform with an arbitrary architecture.
For i = 1, . . . , 6, we denote by Ai the vector of coordinates of the center
of the universal joint of the i-th limb on the base, in the fixed orthonormal
frame, and by bi the vector of coordinates of the center of the spherical
joint on the mobile platform in the orthonormal frame attached to this
platform. We may assume A1 = b1 = (0, 0, 0)T and use it whenever it is
convenient.

1.1 Equation of the singularity locus in SE(3)

We recall the derivation of the equation of the singularity hypersurface,
mainly in order to fix notation. The computation is very similar to the
one in [4].

The group SE(3) of rigid motions in 3-space acts on the mobile plat-
form by the transformation X 7→ RX+P where R is the rotation matrix
and P = (x, y, z)T is the translation vector. So the coordinates of the
joints on the mobile platform are, in the fixed frame, Rbi+P for i = 1 . . . 6
; we set Bi = Rbi and Ci = Bi −Ai.

The Plücker coordinates of the limbs w.r.t. the fixed frame are 6-
dimensional vectors whose first three coordinates are Ci + P and last
three coordinates (the moment w.r.t. the origin) Ai × (Ci + P ). It is
well known and explained in [8] that the Gough-Stewart platform is in
a singular configuration if and only if the Plücker coordinates of the six
limbs are linearly dependant. This is expressed by the vanishing of the
determinant of the 6 × 6 matrix whose rows are the Plücker coordinates
of the limbs:

Jac =

(
Ci + P

Ai × (Ci + P )

)T

i=1,...,6

. (1)

We denote by Sing ⊂ SE(3) the hypersurface of singular configurations,
whose equation is det(Jac) = 0. The following result is well known.

Theorem 1 For a generic Gough-Stewart platform, the singularity locus
Sing in SE(3) has an equation which is of degree 3 with respect to P .

Proof: We compute det(Jac) using the generalized Laplace expansion
w.r.t. the first three rows of Jac. We use the notation [U, V,W ] to denote
the mixed product of the three 3-dimensional vectors U, V,W (i.e. the
determinant whose columns are U, V,W ).

det(Jac) =
∑

1≤i1<i2<i3≤6

(−1)i1+i2+i3 [Ci1 + P,Ci2 + P,Ci3 + P ]

[Aj1 × (Cj1 + P ), Aj2 × (Cj2 + P ), Aj3 × (Cj3 + P )] ,
(2)

where j1 < j2 < j3 are the integers between 1 and 6 different from i1, i2, i3.
The mixed products [Ci1 +P,Ci2 +P,Ci3 +P ] have degree at most 1 w.r.t.
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P , while the mixed products [Aj1×(Cj1 +P ), Aj2×(Cj2 +P ), Aj3×(Cj3 +
P )] have degree at most 2, because the vectors Aj1 × P,Aj2 × P,Aj3 × P
are linearly dependant. So the degree of det(Jac) w.r.t. P is at most 3.
The computation in a example (see later) shows that it is actually 3 for a
generic Gough-Stewart platform. �

1.2 Cayley parametrization for rotation matrices

Let

U =

 0 −r q
r 0 −p
−q p 0


be a skew-symmetric matrix. Since 1 is not an eigenvalue of U , I − U is
invertible. The matrix R = (I + U)(I − U)−1 is a rotation matrix

R(p, q, r) =
1

∆

1 + p2 − q2 − r2 2(p q − r) 2(p r + q)
2(p q + r) 1− p2 + q2 − r2 2(q r − p)
2(p r − q) 2(q r + p) 1− p2 − q2 + r2

 ,

(3)
where ∆ = 1+p2 +q2 +r2. If the vector (p, q, r)T is not the zero vector, it
spans the axis of the rotation R. The tangent of the half-angle of the rota-
tion is

√
∆− 1. The Cayley parametrization is a rational parametrization

of all rotation matrices, except the half-turns. These half-turns are ob-
tained as limits as p2 + q2 + r2 tends to infinity; alternatively, one can use
the homogeneous Euler-Rodrigues parametrization (that is, parametriza-
tion with quaternions) with one more variable.

Note that we can recover rationally p, q, r from the rotation matrix
R(p, q, r). Indeed

p =
R3,2 −R2,3

1 + tr(R)
, q =

R1,3 −R3,1

1 + tr(R)
, r =

R2,1 −R1,2

1 + tr(R)
, (4)

where tr(R) = R1,1 +R2,2 +R3,3. This shows:

Proposition 2 The Cayley parametrization induces an isomorphism be-
tween the field R(SO(3)) of rational functions on SO(3) and the field of
rational functions in three independent variables R(p, q, r).

The preceding result says, in terms of algebraic geometry, that the variety
SO(3) is a rational variety over R.

1.3 The cubic surface Σ

The equation det(Jac) = 0 defines the algebraic variety of singular config-
urations Sing ⊂ SE(3). For a fixed R ∈ SO(3), the equation det(Jac) = 0
in the variables x, y, z defines a cubic surface SingR ⊂ R3, and Sing may
be viewed as the family of these cubic surfaces parametrized by SO(3). We
can also view the equation det(Jac) = 0 as an equation in the three vari-
ables x, y, z with coefficients in the field R(SO(3)) (or the field R(p, q, r),
according to Proposition 2). As such, this is the equation of a cubic sur-
face Σ defined over R(SO(3)). This surface Σ will be the main object of
study in the rest of this article. In the language of algebraic geometry, Σ
is the generic fibre of the family of surfaces SingR parametrized by SO(3).

In order to prove that the algebraic variety Sing is rational over R,
it suffices to prove that Σ is rational over R(SO(3)), since SO(3) itself is
rational over R, as shown in Proposition 2. This will be the aim of the
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next section. So we shall work over the field R(SO(3)). We shall feel free
to use the classical formulas of vector algebra relating dot product, cross
product, mixed product over R(SO(3)) as if we were in R3.

A general criterion for rationality of a cubic surface over a field k is
due to Swinnerton-Dyer. It is related to the geometry of lines on the cubic
surface. A very classical result of algebraic geometry says that a smooth
projective cubic surface over a field k has 27 lines, which are defined over
the algebraic closure of k (see for instance [5], Theorem 4.9 p.402).

Theorem 3 ([11]) Let Γ be a smooth projective cubic surface over a field
k (of characteristic 0). Call Sn a set of n of the 27 lines on Γ, mutually
skew, which is stable under conjugation over k; i.e., the union of these
lines is defined over k. Then Γ is k-rational iff it has a k-rational point
and a S2, or a S3, or a S6.

We shall first investigate experimentally whether the projective closure
Σh of the cubic surface Σ may satisfy this criterion. The existence of a
R(SO(3))-rational point on Σ is certain, since P = (0, 0, 0)T is clearly
always on Σ (when we assume A1 = b1 = (0, 0, 0)T). So the problem is
only the splitting of the set of 27 lines over R(SO(3)).

In principle, we could do the computation leaving the geometry of the
Gough-Stewart platform free and the orientation R free. This would be
a too heavy computation. Instead, we fix the geometry of the platform
by choosing rational coordinates and pick a rotation matrix R also with
rational coefficients, so that all the computations will be exact computa-
tions over Q, concerning the surface SingR defined over Q. If the set of
lines on Σ splits over R(SO(3) then the set of lines on SingR will split
accordingly over Q. Experiments show the presence of a S2 defined over
Q on SingR, with the same pattern of splitting for different choices of R
and different geometries of the platform. Note that for a general cubic
surface defined over Q, the set of 27 lines does not split over Q.

1.4 A case study

We fix the geometry of the Gough-Stewart platform as follows:

A1 =

0
0
0

A2 =

2
0
0

A3 =

 0
2
−1

A4 =

0
1
2

A5 =

1
0
1

A6 =

6
3
0



b1 =

0
0
0

 b2 =

 2
3
−1

 b3 =

0
1
4

 b4 =

1
3
1

 b5 =

 1
3
−1

 b6 =

 2
4
−3


We also choose Cayley parameters p = 0, q = 0, r = 0 for the rotation
matrix R(p, q, r), so that R is the identity matrix and Bi = bi for i =
1, . . . , 6

The set of singular configurations for the chosen rotation R is the cubic
surface SingR with equation

80x3 − 107yx2 − 47zx2 − 376x2 − 9y2x− 301yx+ 95zxy − 1392x

− 96z2x+ 643zx− 68y3 + 98zy2 − 78y2 + 426y + 708zy

+ 78z2y + 234z2 − 24z3 + 1410z

(5)

In order to check that the projective closure (SingR)h of this cubic surface
is nonsingular, we homogenize the cubic equation with homogeneization
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variable w and verify that the ideal generated by the partial derivatives
of the homogenized equation w.r.t. w, x, y, z contains the fifth power of
the ideal generated by w, x, y, z.

There are 27 lines on this cubic surface; it happens that they are all real
for the present example, but this is not the case for other choices. These
lines can be computed in the following way: we write a parametrization
of a line with parameter t and indeterminate coefficients a, b, c, d

x = t, y = a+ b t, z = c+ d t .

Substituting this parametrization in the equation of the cubic surface
yields a degree 3 polynomial in t whose coefficients depend on a, b, c, d.
The ideal generated by these four coefficients is the ideal of lines on the
surface (assuming that no line is contained in the plane at infinity nor
parallel to the (y, z)-plane). We check that the quotient of Q[a, b, c, d] by
this ideal is indeed a finite extension of degree 27. The Groebner basis
of the ideal with respect to the lexicographic order on a, b, c, d contains a
polynomial of degree 27 in d, and a, b, c are rational polynomials in d in
the quotient. This polynomial is the product of four irreducible factors
over Q, of degrees respectively 2, 5, 10 and 10. The factors of degree 2
and 5 are

F2 = 2796d2 + 4137d− 56

F5 = 14853594d5 + 160133255d4 − 6870509d3

− 1145865348d2 + 1491086416d− 515006656

(6)

We explore the coplanarity relations between the lines corresponding to
the different factors. In order to do this, we make computations over the
quadratic extension of Q given by F2 and we use the fact that the lines
with coeffcients a, b, c, d and a′, b′, c′, d′ are coplanar if and only if

(a− a′)(d− d′)− (b− b′)(c− c′) = 0 .

It can be checked that

• the two lines corresponding to the factor F2 are skew,

• the five lines corresponding to the factor F5 are those among the 27
which meet both lines of F2,

• the ten lines corresponding to one of the factor of degree 10 are those
which meet exactly one of the lines of F2 (five each),

• the ten lines corresponding to the remaining factor are those which
meet none of the lines of F2.

The same factorization pattern appears for generic choices of archi-
tecture and orientation (with rational parameters). The two lines corre-
sponding to factor F2 form a S2 over Q. This is a strong indication that
Σ itself has a S2 over R(SO(3)), and hence is rational over this field. We
shall prove this fact in the following section.

It is well-known how to obtain a rational parametrization from a S2.
Pick a point on the cubic surface ; there is a unique line through this point
meeting the two lines of the S2, intersection of the planes containing the
point and a line of the S2. The set of lines meeting the two lines of the
S2 can be seen as a quadric surface, and we obtain in this way a regular
mapping from the cubic surface to a quadric surface; this regular mapping
is a birational isomorphism, actually the blowing-up of the quadric surface
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Figure 2: The cubic surface SingR, the two lines corresponding to F2 in black,
the five lines corresponding to F5 in red

in the five points corresponding to the five lines contained in the cubic
surface and meeting the two lines of the S2. For more detail on this,
see for instance [9]. We shall in the next section show how kinematics
provides a regular birational morphism from Σ to a quadric surface, and
we shall prove in Section 2 That the projective closure Σh is indeed the
blowing up of this quadric surface in five points.

2 The reciprocal twist at a singular con-
figuration

2.1 Solutions of homogeneous systems of corank
1

Recall that a twist

(
Ω
V

)
is said to be reciprocal to a screw

(
F
M

)
when

their reciprocal product F ·V +Ω ·M is zero. If a Gough Stewart platform
is in a singular configuration such that the rank of the family of systems

of Plücker coordinates

(
Fi(P )
Mi(P )

)
of the six limbs is equal to five, then

there is a line of twists reciprocal to all

(
Fi(P )
Mi(P )

)
.

Let A = (ai,j)i,j=1,...,n be a square matrix of size n whose entries are
polynomials in X = (x1, . . . , xd) with coefficients in the field k.

Lemma 4 If det(A) = 0 is a nonsingular hypersurface in d-dimensional
affine space kd, then the matrix A has rank n − 1 at every point of this
hypersurface. Moreover, if sol(A) denotes the line of solutions S of AS = 0
for every A such that det(A) = 0, then A 7→ sol(A) is a regular mapping
from the hypersurface det(A) = 0 to the projective space Pn−1(k).

Proof. The derivative of det(A) with respect to x` can be expressed as

∂ det(A)

∂x`
=

n∑
j=1

n∑
i=1

cof(A)i,j
∂ai,j
∂x`

, (7)
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where cof(A)i,j is the cofactor of ai,j in matrix A. Assume that there is
a point in the affine space of dimension d where the rank of A is < n− 1.
Then all minors of dimension n − 1 of the matrix A vanish at this point
and the formula above shows that all partial derivatives of det(A) also
vanish at this point. This contradicts the assumption that det(A) = 0 is
a nonsingular hypersurface.

Let Ui be the Zariski open subset of the nonsingular hypersurface
det(A) = 0 where all rows of A but the i-th are linearly independent.
By the first part of the lemma, (Ui)i=1,...,n is a Zariski open cover of
det(A) = 0. For any A in Ui, the line of solutions of AS = 0 is spanned
by the vector with coordinates cof(A)i,j for j = 1, . . . , n; these cofactors
are polynomial in the coefficients of A, hence also polynomials in X. In
the end, we obtain a regular mapping from the hypersurface det(A) = 0
in kd to Pn−1(k). �

The aim of this paper is to prove the rationality of Sing for a general
Gough-Stewart platform, without assuming planarity of the base or of the
platform.

Proposition 5 Assume that Σ is a nonsingular hypersurface of R(SO(3))3.
Then, for every singular configuration in Σ, the system of Plücker coor-
dinates of the six limbs is of rank 5 in the space of screws. The mapping
which associates, to each singular configuration, the line of twists recipro-
cal to the Plücker coordinates of the six limbs is a regular mapping from
Σ to P5(R(SO(3))), which we denote by Rec.

Proof. Lemma 4 shows that the rank of the matrix Jac of the Plücker
coordinates of the six limbs is indeed 5 for each singular configuration P .
The matrix Jac is the matrix of the system expressing the reciprocity of

the twist

(
Ω
V

)
to the systems of Plücker coordinates

(
Fi(P )
Mi(P )

)
of the

six limbs. The second part of Lemma 4 shows that the mapping Rec
associating to each singular configuration P the line of screws reciprocal
the the Plücker coordinates of the six limbs is indeed a regular mapping
from Σ to P5R(SO(3)). �

We are going to show in the following that the image of Rec is contained
in a quadric surface in a 3-dimensional subspace of P5(R(SO(3))) and that
Rec is a birational equivalence with this quadric surface.

2.2 The image of Rec is contained in a quadric
surface

The equations expressing that the twist

(
Ω
V

)
is reciprocal to the systems

of Plücker coordinates of the limbs are

(Ci + P ) · V + (Ai × (Ci + P )) · Ω = 0, i = 1, . . . , 6. (8)

This is equivalent to:

V · Ci + [Ω, Ai, Ci] + (Ω×Ai + V ) · P = 0, i = 1, . . . , 6, (9)

where [Ω, Ai, Ci] is the mixed product of vectors Ω, Ai, Ci.
We are going to eliminate P from this system of equations. The first

step is to obtain two linear equations in V,Ω where P does not appear.
In equation (9)1, A1 = C1 = 0 so (9)1 is V · P = 0. Subtracting this first
equation from the other ones we get:

V · Ci + [Ω, Ai, Ci] + (Ω×Ai) · P = 0, i = 2, . . . , 6. (10)
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The family of vectors Ai, i = 2, . . . , 6 has rank at most 3. Up to reordering
the indices, we may assume that A5 and A6 are linear combinations of
A2, A3 and A4. Set A5 = α2A2 + α3A3 + α4A4 and A6 = β2A2 + β3A3 +
β4A4. Computing (10)5−

∑4
i=2 αi(10)i and (10)6−

∑4
i=2 βi(10)i we obtain

respectively

V · (C5 −
4∑
i=2

αiCi) + [Ω, A5, C5]−
4∑
i=2

αi[Ω, Ai, Ci] = 0 (11)

and

V · (C6 −
4∑
i=2

βiCi) + [Ω, A6, C6]−
4∑
i=2

βi[Ω, Ai, Ci] = 0 (12)

which are linear homogeneous equations in Ω, V.
The second step in the elimination of P is to obtain a quadratic equa-

tion in V,Ω without P . Set `2 = [Ω, A3, A4], `3 = [Ω, A4, A2], `4 =
[Ω, A2, A3].

Lemma 6 `2(Ω×A2) + `3(Ω×A3) + `4(Ω×A4) = 0.

Proof. It suffices to check this formula of vector algebra assumingA2, A3, A4

linearly independent. The dot product of the left handside with any of
A2, A3, A4 is easily seen to be zero, hence, it is the zero vector. �

The linear combination of (10)2, (10)3, (10)4 with coefficients `2, `3, `4
yields the following homogeneous quadratic equation in Ω, V :

[Ω, A3, A4](V · C2 + [Ω, A2, C2]) + [Ω, A4, A2](V · C3 + [Ω, A3, C3])

+ [Ω, A2, A3](V · C4 + [Ω, A4, C4]) = 0 . (13)

Equations (11), (12) and (13) are the homogeneous equations of a quadric
surface Q in P5(R(SO(3))), the projectivisation of the space of twists.
We shall check in the case study that this projective quadric surface is
nonsingular for a generic Gough-Stewart platform. We have proved

Proposition 7 The image of the regular mapping Rec is contained in the
quadric surface Q given by equations (11), (12) and (13).

2.3 The birational equivalence

We obtained the system of equations (11), (12) and (13) from the system

of equations in P , V and Ω expressing that the screw

(
Ω
V

)
is reciprocal

to the Plücker coordinates of the six limbs for the singular configuration
P . Let Ω, V be the homogeneous coordinates of a point on the quadric
surface Q such that [V,Ω×A2,Ω×A3] 6= 0. Generically, the quadric Q is
nonsingular and the set of Ω, V such that [V,Ω×A2,Ω×A3] 6= 0 is a dense
Zariski open subset of Q. The condition [V,Ω × A2,Ω × A3] 6= 0 implies
that `4 = [Ω, A2, A3] 6= 0 ; indeed [Ω, A2, A3] = 0 implies that Ω×A2 and
Ω × A3 are colinear. Since `4 6= 0, the system of equations (9i) for i =
1, . . . , 6 is equivalent to the system of equations (91, 102, 103, 11, 12, 13).
The variables P appear only in the first three equations of this system
and these equation can be rewritten as

V · P = 0

(Ω×A2) · P = −V · C2 − [Ω, A2, C2]

(Ω×A3) · P = −V · C3 − [Ω, A3, C3] .

(14)
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This is a linear system in P which is a Cramer system since we have taken
(Ω, V ) in the quadric surfaceQ such that its determinant [V,Ω×A2,Ω×A3]
does not vanish. Hence there is a unique P satisfying the system (14),
and this P is given by the Cramer formulas, i.e. as a rational function
(of degree 3) in Ω, V . This P is on the surface Σ, since P, V,Ω satisfy the
reciprocity equations, which implies that the rank of the system of Plücker
coordinates of the limbs for P is < 6. So we get a rational mapping,
which we denote by Pos, from Q to Σ. The uniqueness of the solution
for the Cramer system (14) implies that the composition Pos ◦Rec is the
identity of Σ. The fact that there is only a line of screws reciprocal to the
Plücker coordinates of the limbs for a configuration P in Σ shows that the
composition Rec ◦ Pos is the identity on Q.

In conclusion, we have proved the following theorem.

Theorem 8 The regular mapping Rec : Σ→ Q is a birational equivalence
to the quadric surface Q ∈ P5(R(SO(3))), defined over R(SO(3)).

Corollary 9 The cubic surface Σ is rational over R(SO(3)).

Proof. The cubic surface Σ has the R(SO(3))-rational point P = 0. Hence,
the quadric surface Q has the R(SO(3))-rational point Rec(0). It follows
that Q is rational over R(SO(3)) and since Σ is R(SO(3))-birational to Q,
it is also rational over R(SO(3)). �

Theorem 10 For a generic Gough-Stewart platform, the hypersurface
Sing ⊂ SE(3) of singular configurations is rational over R.

Proof. As already mentioned, this is a consequence of Corollary 9 and of
the fact that SO(3) is rational over R. �

2.4 Case study continued

We continue here the computations for the cubic surface SingR where the
geometry of the Gough-Stewart platform and the orientation are those of
section 1.4. Let us denote by (ω1, ω2, ω3, v1, v2, v3) the coordinates of a
twist. We compute the variety of reciprocal twists as follows: we form
the ideal Rec generated by the reciprocal products of the twist with the
Plûcker coordinates of the limbs and the Jacobian determinant, then we
eliminate the variables x, y, z. The ideal obtained is the homogeneous
ideal generated by

72ω1 − 42ω2 + 16 v1 + 21 v3 + 35 v2,

18ω3 + 30ω2 − 26 v1 − 15 v3 + 5 v2,

168ω2
2 + 80ω2 v1 + 522ω2 v3 − 296 v1 v3 − 159 v23

− 518ω2 v2 + 264 v1 v2 + 212 v3 v2 − 165 v22

(15)

There are two linear equations and one quadratic: this is the ideal of a
quadric surface in P5(R).

We compute formulas for the reciprocal twist (only defined up to a
scalar factor, as a point in P5(R)) in the following way: eliminating vari-
ables ω1, ω2, ω3, v3 from the ideal Rec, we obtain an ideal which contains a
polynomial which is linear homogeneous in v1, v2 and quadratic in x, y, z.
This gives v2/v1 as a rational function of degree 2 in x, y, z. Proceed-
ing in the same way to compute v3/v1, ω1/v1, ω2/v1, ω3/v1 and chasing
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denominator (the same for all expressions), we arrive at

v1 = −80x2 + 55x y − 109x z + 140 y2 − 14 y z − 84 z2

+ 376x+ 774 y + 20 z + 1392

v2 = 52x2 − 131x y + 164x z + 68 y2 − 62 y z + 24 z2

− 473x+ 78 y − 130 z − 426

v3 = 156x2 − 245x y + 180x z − 36 y2 − 102 y z + 24 z2

− 663x− 578 y − 234 z − 1410

ω1 = −53x2 + 92x y − 108x z + 338x+ 248 y − 48 z + 736

ω2 = −53x y + 92 y2 − 108 y z − 3x+ 496 y − 300 z + 732

ω3 = −53x z + 92 y z − 108 z2 + 127x− 212 y + 370 z − 266

(16)

These formulas are degree 2 polynomials in x, y, z. The formulas define
a point in P5(R) except when they all vanish. We compute the ideal
generated by these quadratic polynomials in x, y, z and the cubic equation
of the surface of singularities. We find that this ideal is precisely the ideal
of the two lines corresponding to factor F2.

Nevertheless, the regular mapping which associates to a point (x, y, z)
of the cubic singularity surface, a point of P5(R) representing the line
of reciprocal twists is also well defined on these two lines. Indeed, at
every point in the surface of singularities there is a nonzero cofactor in
the Jacobian matrix, and the cofactors on the same row as this nonzero
cofactor are the coordinates of a nonzero reciprocal twist. These cofactors
are polynomials of degree 3 in x, y, z. We shall explain in section 3.2 why
we obtain degree 2 in the formulas above instead of degree 3.

We next compute the image of the five lines corresponding to factor
F5 by the reciprocal twist mapping. This is again the computation of an
elimination ideal, and the computed ideal is zero-dimensional, of degree 5.
It is actually the ideal of five distinct points of the quadric, all real in the
case under consideration. The reciprocal twists corresponding to these five
points are self-reciprocal. The figure 2.4 is in the 3-space containing the
quadric, in its affine chart given by ω2 = 1, using coordinates v1, v2, v3.
The quadric image of the reciprocal twist mapping is in blue, the five
points in red, and the intersection of the quadric of self-reciprocal twists
with the 3-space is in green.

It is also possible to compute formulas for the inverse rational mapping
from the quadric surface in P5(R) to SingR: for instance, eliminating the
variables y, z in the ideal Rec, we obtain x as a rational function of degree 2
in the V,Ω. Actually we compute formulas for the rational mapping to the
projective closure (SingR)h in P3(R). We use homogeneous coordinates
(w : x : y : z) for P3(R), with w = 0 as plane at infinity.

w = 60v23 + 83v1v3 + 42ω2v1 − 20v3v2 − 35v1v2 + 72ω2v2 − 120ω2v3 − 16v21

x = 162ω2v3 + 54ω2v2 − 48v1v3 − 48v1v2 − 213v22 + 63v23 − 42v3v2

y = − 54ω2v1 + 48v21 + 288ω2v3 − 357v1v3 − 144v23 + 213v1v2 − 48v3v2

z = − 162ω2v1 − 288ω2v2 − 63v1v3 + 399v1v2 + 48v22 + 48v21 + 144v3v2
(17)

Note that these formulas are of degree 2, whereas the Cramer formulas in-
voked in the argument for birationality would give degree 3. It is possible
to check that formulas (16) and (17) give actually a birational isomor-
phism between (SingR)h and the quadric surface in P5(R). One can also
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Figure 3: The quadric surface of reciprocal twists in blue

compute the indetermination points of formulas (17) on the quadric sur-
face: one finds five points, which are precisely the image of the five lines
corresponding to F5. This indicates that the “reciprocal twist” regular
mapping from Σ to Q may be extended to a regular mapping from the
projective closure Σh to Q, which is the blowing-up of Q in five points.
We shall prove this in the following section after investigating the points
at infinity of the singularity locus, i.e. Σh \ Σ.

3 The projective closure of the singular-
ity surface

We already know that the projective closure Σh of Σ in P3(R(SO(3))) is a
nonsingular projective cubic surface for a generic Gough-Stewart platform.
Indeed, we checked in section 1.4 that (SingR)h is nonsingular.

3.1 Singularity condition at infinity

The formula (2) can be rewritten as a sum indexed by the symmetric
group S6, with ε(σ) denoting the signature of a permutation σ:

det(Jac) =
1

36

∑
σ∈S6

ε(σ) [Cσ(1) + P,Cσ(2) + P,Cσ(3) + P ]

[Aσ(4) × (Cσ(4) + P ), Aσ(5) × (Cσ(5) + P ), Aσ(6) × (Cσ(6) + P )] .
(18)

The equation of the projective closure Σh is the homogeneization of
det(Jac), say with homogenization variable w. The equation of its inter-
section with the plane at infinity w = 0 is the homogeneous part of degree
3 of det(Jac). Using multilinearity in (18), we find that this homogeneous
part is
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H3 =
1

4

∑
σ∈S6

ε(σ) [Cσ(1), Cσ(2), P ] [Aσ(4) × Cσ(4), Aσ(5) × P,Aσ(6) × P ] .

(19)
Since

[Aσ(4) × Cσ(4), Aσ(5) × P,Aσ(6) × P ] = [Aσ(4), Cσ(4), P ][Aσ(5), Aσ(6), P ] ,
(20)

we arrive to

H3 =
1

4

∑
σ∈S6

ε(σ) [Cσ(1), Cσ(2), P ] [Aσ(4), Cσ(4), P ] [Aσ(5), Aσ(6), P ]

=
−1

4

∑
σ∈S6

ε(σ)[Aσ(1), Aσ(2), P ] [Aσ(3), Cσ(3), P ] [Cσ(4), Cσ(5), P ]

(21)
In this formula we can replace the C with the B:

H3 =
−1

4

∑
σ∈S6

ε(σ)[Aσ(1), Aσ(2), P ][Aσ(3), Bσ(3), P ][Bσ(4), Bσ(5), P ] (22)

The equality is proved using Ci = Bi − Ai and Grassmann-Plücker
relations such as:

[Aσ(1), Aσ(2), P ][Aσ(4), Aσ(5), P ]− [Aσ(1), Aσ(4), P ][Aσ(2), Aσ(5), P ]

+ [Aσ(1), Aσ(5), P ][Aσ(2), Aσ(4), P ] = 0
(23)

We summarize what we have seen in the following

Proposition 11 The singularities at infinity of the Gough-Stewart plat-

form in the orientation R are the directions of P =
(
x y z

)T
satisfying∑

σ∈S6

ε(σ)[Aσ(1), Aσ(2), P ][Aσ(3), Bσ(3), P ][Bσ(4), Bσ(5), P ] = 0 ,

where Bi = Rbi.

We can reformulate this condition as a condition concerning two planar
hexagons. Let πP the orthogonal projection in the direction of P. Then
for i = 1, . . . , 6, we denote πP (Ai) = αi the projection of the vertices of
the base and πP (Bi) = βi the projection of the vertices of the platform
after rotation R. So we have two hexagons in the plane orthogonal to P.
The condition of singularity at infinity is given by:∑

σ∈S6

ε(σ)[ασ(1), ασ(2)][βσ(3), βσ(4)][ασ(5), βσ(5)] = 0 , (24)

where the bracket denotes here 2 × 2 determinants. This condition is
invariant under the following transformations:

1. The same affine transformation applied to all αi’s and βi’s. The
determinants are multiplied by the determinant of linear part of the
transformation.

2. A homothety (of ratio k 6= 0 ) on one of the hexagons. The product
of determinants are multiplied by k3.

3. A translation (of vector u) on one of the hexagons. The invariance
follows from Plücker relations.
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4. Replace the β′i s by any linear combination of βi and αi.

In addition, when the hexagons have three distinct vertices in common
(α1 = β1, α2 = β2, α3 = β3), the condition is satisfied if and only if the
three lines (αi, βi) for i = 4, 5, 6 are concurrent or parallel.

3.2 Reciprocal twist at infinity

Recall that the twist

(
Ω
V

)
is reciprocal to the system of Plücker coordi-

nates of the six limbs if and only if

(Ci + P ) · V + (Ai × (Ci + P )) · Ω = 0, i = 1, . . . , 6. (25)

The matrix of this system is Jac. In a singular configuration, the rank of
this system is generically 5. In this case, if the rows of Jac with index 6= i
are linearly independant, the line of solutions of the system of equations is
spanned by the vector whose coordinates are cof(Jac)i,j for j = 1, . . . , 6.
This gives formulas of degree 3 in P . The line of solutions is also spanned
by the vector whose coordinates are

∑6
i=1 cof(Jac)i,j for j = 1, . . . , 6,

if this vector is nonzero. It turns out that these sums of cofactors are
polynomials of degree 2 in P ; this explains what we have seen in the case
study in formulas (16).

The sum by columns of the cofactors in the first three columns is the
vector

T1 =
∑

1≤i1<i2<i3≤6

(−1)i1+i2+i3

(∑
cyc

(Ci2 + P )× (Ci3 + P )

)
[(Aj1 × (Cj1 + P ), Aj2 × (Cj2 + P ), Aj3 × (Cj3 + P )]

(26)

where j1 < j2 < j3 are the integers between 1 and 6 different from i1, i2, i3
and the cyclic sum is taken over the powers of the cycle (i1, i2, i3). It will
be more convenient to write the sum T1 as a sum over all permutations
in S6.

T1 =
1

12

∑
σ∈S6

(
ε(σ) (Cσ(2) + P )× (Cσ(3) + P )

[Aσ(4) × (Cσ(4) + P ), Aσ(5) × (Cσ(5) + P ), Aσ(6) × (Cσ(6) + P )]

)
(27)

We develop this expression using multilinearity in the cross-product and
in the mixed product. We remark that all terms containing only four
among the six indices σ(i) disappear in the sum over all permutations
(due to the transposition on the missing indices). We remark also that
the mixed product

[Aσ(4) × P,Aσ(5) × P,Aσ(6) × P ]

is zero because the three vectors are linearly dependant. This explains why
all terms of degree 3 disappear in the sum and why the only remaining
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terms of degree 2 are

V∞ =
1

4

∑
σ∈S6

ε(σ) [Aσ(4) × Cσ(4), Aσ(5) × P,Aσ(6) × P ] Cσ(2) × Cσ(3)

=
1

4

∑
σ∈S6

ε(σ) [Aσ(4), Cσ(4), P ] [Aσ(5), Aσ(6), P ] Cσ(2) × Cσ(3)

=
−1

4

∑
σ∈S6

ε(σ) [Aσ(1), Aσ(2), P ] [Aσ(3), Cσ(3), P ] Cσ(4) × Cσ(5)

(28)

The sum by columns of the cofactors in the last three columns is the
vector

T2 =
∑

1≤i1<i2<i3≤6

(−1)i1+i2+i3
(

[Ci1 + P,Ci2 + P,Ci3 + P ]

∑
cyc

(Aj1 × (Cj1 + P ))× (Aj2 × (Cj2) + P )

) (29)

where j1 < j2 < j3 are the integers between 1 and 6 different from i1, i2, i3
and the cyclic sum is taken over the powers of the cycle (j1, j2, j3). Here
also it will be more convenient to write the sum T2 as a sum over all
permutations in S6.

T2 =
1

12

∑
σ∈S6

ε(σ)[Cσ(1) + P,Cσ(2) + P,Cσ(3) + P ]

(Aσ(4) × (Cσ(4) + P ))× (Aσ(5) × (Cσ(5) + P )

(30)

We develop this expression using multilinearity in the mixed product
and in the cross-product. Here also, terms where only four indices among
the σ(i) are present disappear in the sum over all permutations. This
explains why all terms of degree 3 in P disappear, and why the terms of
degree 2 in P which remain are only:

Ω∞ =
1

12

( ∑
σ∈S6

ε(σ)[Cσ(1), Cσ(2), Cσ(3)] (Aσ(4) × P )× (Aσ(5) × P )

)

=
1

12

(∑
σ∈S6

ε(σ)[Cσ(1), Cσ(2), Cσ(3)][Aσ(4), Aσ(5), P ]

)
P

(31)
Note that Ω∞ is the product of the vector P by a linear form in P ; this
confirms the result of the computation in case study 2.4.

The notations V∞ and Ω∞ are explained by the fact that

(
Ω∞
V∞

)
is

actually the reciprocal twist at infinity, as explained in the following

Proposition 12 For a generic Gough-Stewart platform, the reciprocal
twist mapping Rec : Σ → Q can be extended to a regular mapping Rech :
Σh → Q. The image by Rech of a point at infinity in the direction P in
Σh is given by the homogeneous second degree formulas (28) for V∞ and
(31) for Ω∞, provided that V∞ and Ω∞ do not both vanish at P .
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Proof. We know that

(
T2

T1

)
give degree 2 formulas for Rec at points of Σ

where T1 and T2 do not both vanish. Hence, the homogeneous quadratic

part

(
Ω∞
V∞

)
give a regular extension of Rec at points at infinity of Σh

in the direction of P , when Ω∞ and V∞ do not both vanish. We note
that, in the plane at infinity, Ω∞ vanish on a line (whose equation is the
linear form L(P ) such that Ω∞ = L(P )P ), while each component of V∞
vanishes on a conic. We check in the case study 3.4 that these curves
have two points in common which are on the cubic curve of the points
at infinity of Σh; these two points are, of course, the points at infinity
of the two lines on SinghR corresponding to F2. We check also that the
formulas for the reciprocal twist at infinity given by the homogeneous part
of degree 3 of the cofactors of Jac on the first line do not vanish at these
two points. This shows that for a generic Gough-Stewart platform, the
regular extension Rech is well defined at every point at infinity of Σh:
when both Ω∞ and V∞ vanish, it is given by the homogeneous part of
degree 3 of the cofactors of Jac on the first line. �

Proposition 13 For a generic Gough-Stewart platform, the reciprocal
twists at points at infinity of Σh in the direction P are all self-reciprocal.
They are the twists of a rotation with axis parallel to P , or of a translation
orthogonal to P .

Proof. From formulas (28) for V∞ and Proposition (11), we obtain V∞·P =
0 for all point at infinity of Σh in direction P . Since Ω∞ = L(P )P , the
statements of the Proposition follow. �

3.3 Σh as the blowing-up in five points of a quadric
surface

Theorem 14 For a generic Gough-Stewart platform, the reciprocal twist
regular mapping Rech : Σh → Q is the blowing-up of the projective quadric
surface Q in five points. The five exceptional divisors are five lines on Σh,
forming a S5 intersecting both lines of a S2 (using notations of Theorem
3), both S5 and S2 being defined over R(SO(3)). A point of Σ belongs to
one of the lines of the S5 if and only if its reciprocal twist is the twist of
a pure rotation; the axis of this rotation is then a line intersecting the six
limbs of the platform.

Proof. We know from Proposition 12 that Rech : Σh → Q is a regular
on the whole of Σh, and we know from Theorem 8 that it is a birational
equivalence. From this we deduce that Rech is the composition of a se-
quence of blowing-ups at points (see for instance [5], corollary 5.4 p.411).
Since the divisor class group of a nonsingular projective cubic surface is
Z7 ([5] Proposition 4.8 p.401) and the divisor class group of a nonsingular
projective quadric surface is Z2, Rech is the blowing-up of Q in five points.
These five points are distinct points of Q, as checked in the case study,
so the five exceptional divisors have self-intersection equal to −1 and are
mutually skew lines on Σh. Since Rech is defined over R(SO(3)), the five
exceptional divisors form a S5 over R(SO(3)). There are two possible
types of S5, one of them characterized as the five lines intersecting both
lines of an S2 (see [11]). Actually, the five exceptional divisors obtained
by blowing up five points in a quadric form a S5 of this type; we defer the
proof of this fact to Lemma 15 below.
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Since the reciprocal twist is constant along each line of the S5, it is
equal to the reciprocal twist of the point at infinity of this line. Hence,
by Proposition 13, it is the twist of a rotation or of a translation. If

the reciprocal twist at P ∈ Σ were the twist

(
0
V

)
of a translation in

the direction of vector V then, for every vector U orthogonal to V , the

twist

(
0
V

)
would be reciprocal to the systems of Plücker coordinates of

all limbs in position P +U and hence P +U would be in Σ. This cannot
be since Σ contains no plane. This shows that the reciprocal twist at each
point of Σ belonging to a line of the S5 is the twist of a pure rotation; the
reciprocity conditions means that every limb of the platform intersects (or
is parallel to) the axis of this rotation.

Reciprocally, suppose that the reciprocal twist at a point P ∈ Σ is the

twist

(
Ω
V

)
of a pure rotation, i.e. Ω 6= 0 and Ω · V = 0. Then, for all

scalars λ, P + λΩ is still in Σ, with reciprocal twist

(
Ω
V

)
. Hence the line

of P + λΩ is one of the exceptional divisors in the S5. �

Lemma 15 The five exceptional divisors obtained by blowing up a quadric
surface in five distinct points form an S5 with two transversals forming
an S2.

Proof. Let p1, . . . , p4, q be the five distinct points on the quadric surface.
Let d5, d6 be the two lines on the quadric through q. Blow up q; the strict
transforms of d5 and d6 (which we still denote by d5 and d6) have self-
intersection −1 and one can blow them down to obtain a projective plane
with six distinct points p1, . . . , p4, d5, d6 (abusing notation, we denote with
the same letter points and the exceptional divisors above them). The five
exceptional divisors of the blowing up of the quadric are, in the blowing up
of the plane at the six points p1, p2, p3, p4, d5, d6, the exceptional divisors
above p1, p2, p3, p4 and the strict transform of the line (d5d6). The S5 so
obtained has to transversals, which are the strict transforms of two con-
ics in the plane through p1, p2, p3, p4, d5 and p1, p2, p3, p4, d6, respectively.
�

Figure 4: Blowing up the quadric vs blowing up the plane
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3.4 Case study, the end

The part at infinity of the cubic surface, which is Sing∞R = SinghR \SingR,
is the nonsingular cubic curve in the projective plane with homogeneous
coordinates x, y, z given by the equation

80x3−107yx2−47zx2−9y2x+95zxy−96z2x−68y3+98zy2+78z2y−24z3

(32)
The formulas (16) for the reciprocal twist extend to the following homo-
geneous quadratic formulas:

Ω∞ = (−53x+ 92 y − 108 z)

xy
z


V∞ =

−80x2 + 55x y − 109x z + 140 y2 − 14 y z − 84 z2

52x2 − 131x y + 164x z + 68 y2 − 62 y z + 24 z2

156x2 − 245x y + 180x z − 36 y2 − 102 y z + 24 z2

 (33)

These formulas have two points of indetermination on Sing∞R which are,
of course, the points at infinity of the two lines of indetermination for the
formulas (16) on SingR corresponding to F2.

The figure 3.4 shows the two points of indetermination in the affine
part of the plane at infinity given by x = 1. The solid black curve is the
cubic Sing∞R , the dashed brown line is the line whose equation is the linear
form factor of Ω∞, and the dotted conics in red, green and blue are those
whose equations are the components of V∞. All these curves concur to
the indetermination points marked with diamonds.

Figure 5: Points of indetermination at infinity of the quadratic formulas for the
reciprocal twist

We now check that the reciprocal twist mapping is also defined at the
indetermination points by other formulas: precisely, we use the degree 3
homogeneous part of the cofactors of the coefficients in the last line of the
Jacobian matrix Jac:
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Ω∞ = (−x2 + 7yx− 12zx− 6z2 + 7y2 − 7zy)

xy
z


V∞ =

−4yx2 − 12zx2 + 17y2x+ zxy − 18z2x+ 4y3 + 7zy2 − 5z2y − 6z3

4x3 − 17yx2 + 14zx2 − 4y2x+ 11zxy + 6z2x+ 2zy2 + 4z2y
12x3 − 15yx2 + 18zx2 − 18y2x− zxy + 6z2x− 2y3 − 4zy2


(34)

The homogeneous ideal generated by the ideal of indetermination of
the quadratic formulas (33) and the quadratic form −x2 + 7yx− 12zx−
6z2 + 7y2 − 7zy factor of Ω∞ in (34) contains the third power of the
maximal ideal generated by x, y, z. This shows that the reciprocal twist
mapping is well defined as a regular map on the whole of SinghR.

Conclusion

We have proved the rationality of the locus of singular configurations of
the general Gough-Stewart platform. We have moreover related the ratio-
nality with the reciprocal twist mapping, which has a kinematic relevance;
the lines of reciprocal twists form a quadric surface, and this fact may be
useful for further studies on the singularities of a Gough-Stewart plat-
form. We have also related a group of five lines on the cubic surface of
singularities with special singular configurations for which the reciprocal
twist is the twist of a pure rotation. This interplay between the classical
algebraic geometry of cubic surfaces and kinematic properties of a parallel
robot is rather fascinating.

We conclude with two questions encountered in this paper for which
we have no satisfactory answer.

The first question concerns the characterization of singularities at in-
finity in section 3.1. We have seen that it can be expressed in terms of a
relation between two planar hexagons (Equation 24). We have not been
able to uncover the geometric significance of this relation. In the case of
the planar 3-RPR, the singularities at infinity may be characterized by
the fact that two triples of aligned points can be transformed one into
another by an affine mapping [2].

The second question is related to the fact that the reciprocal twist
mapping extends to a regular mapping defined on the whole projective
closure of the surface of singularities. We have followed a rather cumber-
some way, with the help of a computation in a specific example, to show
that this is indeed generically the case. It would be much nicer if the
following assertion were true.

Let A(t)X = 0 be a homogeneous linear system of n equations
in n unknowns with coeffcients ai,j(t) polynomials of degree
1 in parameters t = (t1, . . . , tp). Assume that the projective
closure Sh (in the p-dimensional projective space) of the set S
of parameters t such that det(A(t)) = 0 is a smooth projective
hypersurface. Then the mapping which associates to t ∈ S the
line of solutions of A(t)X = 0 extends to a regular mapping
from Sh to the n− 1-dimensional projective space.

This assertion is not obvious when the degree of det(A(t)) is strictly
smaller than n, which happens in our case since the degree of the equation
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of the surface of singularities w.r.t. the position variables is 3 instead of
6. We have no idea whether this assertion holds true.
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