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Abstract.
Conformal surface parameterization is useful in graphics, imaging and visualization, with applications

to texture mapping, atlas construction, registration, remeshing and so on. With the increasing capability
in scanning and storing data, dense 3D surface meshes are common nowadays. While meshes with higher
resolution better resemble smooth surfaces, they pose computational difficulties for the existing parameterization
algorithms. In this work, we propose a novel parallelizable algorithm for computing the global conformal
parameterization of simply-connected surfaces via partial welding maps. A given simply-connected surface
is first partitioned into smaller subdomains. The local conformal parameterizations of all subdomains are
then computed in parallel. The boundaries of the parameterized subdomains are subsequently integrated
consistently using a novel technique called partial welding, which is developed based on conformal welding
theory. Finally, by solving the Laplace equation for each subdomain using the updated boundary conditions, we
obtain a global conformal parameterization of the given surface, with bijectivity guaranteed by quasi-conformal
theory. By including additional shape constraints, our method can be easily extended to achieve disk conformal
parameterization for simply-connected open surfaces and spherical conformal parameterization for genus-0
closed surfaces. Experimental results are presented to demonstrate the effectiveness of our proposed algorithm.
When compared to the state-of-the-art conformal parameterization methods, our method achieves a significant
improvement in both computational time and accuracy.
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1. Introduction. From mobile games to high-resolution movies, from small 3D printed
desk toys to large aircraft engines, 3D geometric models are everywhere nowadays. With
the advancement of computing technologies and scanning devices, 3D geometric data can be
created or acquired easily. However, at the same time, the scale of the data grows rapidly. In
many situations, it is necessary to handle dense geometric data with hundreds of thousands,
or even millions of vertices.

In geometry processing, a common representation of 3D objects is triangulated 3D surfaces.
To simplify various tasks that are to be performed on the 3D surfaces, one possible way is to
transform the 3D surfaces into a simpler 3D shape or a 2D shape. This process is known as
surface parameterization. With the aid of surface parameterization, we can perform the tasks
on the simpler domain and transform the results back to the original 3D surfaces instead of
working on them directly. For instance, under surface parameterization, PDEs on complicated
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Figure 1. An overview of our proposed parallelizable global conformal parameterization (PGCP) algorithm.
A simply-connected surface is first partitioned into small subdomains. The subdomains are then conformally
flattened onto the plane in parallel. The flattened subdomains are subsequently stitched seamlessly by a novel
partial welding technique along the common boundary arcs, thereby producing a global conformal parameterization
of the surface. Note that the partial welding step only involves the boundary points of the subdomains but not
their interior. The mesh structures of the subdomains are shown only for visualization purpose.

surfaces can be reduced to PDEs on the parameter domain, which are much easier to solve.
Also, texture mapping on a 3D surface can be done by parameterizing it onto the 2D plane, in
which textures can be easily designed. Among all surface parameterizations, one special type
of parameterization is called conformal parameterization, which preserves angle and hence
the local geometry of the surfaces. This is particularly important for applications such as
texture mapping and remeshing, in which the angle structure plays an important role in the
computation. To avoid creating computational burdens or introducing distortions, a fast and
accurate method for computing conformal parameterization of surfaces is desired.

In this work, we propose a novel parallelizable global conformal parameterization method
(abbreviated as PGCP) for simply-connected surfaces. Unlike the existing methods, our method
uses a divide and conquer approach and exploits the nature of conformal parameterization,
making the computation highly parallelizable. Figure 1 gives an overview of our proposed
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method. We begin with partitioning a given surface into smaller subdomains. Then, the
local conformal parameterizations of the subdomains are computed in parallel. Note that the
local parameterization results are not necessarily consistent along their boundaries. Motivated
by the theory of conformal welding in complex analysis, we develop a method called partial
welding to update the boundaries of the flattened subdomains for enforcing the consistency
between them. Finally, we solve the Laplace equation with the updated boundary constraints
to find conformal parameterizations of the subdomains such that all of them can be glued
seamlessly, ultimately forming a global conformal parameterization of the given dense surface.
The bijectivity of the parameterization is guaranteed by quasi-conformal theory.

The rest of the paper is organized as follows. In Section 2, we review the related works in
surface parameterization. In Section 3, we introduce the mathematical concepts involved in
our work. In Section 4, we describe our proposed method for computing a global conformal
parameterization of simply-connected surfaces via partial welding. Experimental results and
applications are presented in Section 5 for demonstrating the effectiveness of our proposed
method. In Section 6, we discuss the conformality improvement achieved by our method,
an extension of our work for reducing the area distortion, and alternative approaches for
accelerating the computation. We conclude our work and discuss possible future works in
Section 7.

2. Related works. Surface parameterization has been widely studied in geometry process-
ing. For an overview of the subject, readers are referred to the surveys [1–3]. It is well-known
that only developable surfaces can be isometrically flattened without any distortions in area and
angle. For general surfaces, it is unavoidable to introduce distortions in area or angle (or both)
under parameterization. This limitation leads to two major classes of surface parameterization
algorithms, namely the area-preserving parameterizations and angle-preserving (conformal)
parameterizations.

Existing methods for area-preserving parameterizations include the locally authalic map [4],
Lie advection [5], optimal mass transport (OMT) [6,7], density-equalizing map (DEM) [8,9]
and stretch energy minimization (SEM) [10]. While the area elements can be preserved under
area-preserving parameterizations, the angular distortion is uncontrolled. Since the angular
distortion is related to the local geometry of the surfaces, it is important to minimize the
angular distortion in many applications such as remeshing, texture mapping and cartography.
In those cases, it is preferable to use conformal parameterization.

Existing conformal parameterization methods for simply-connected open surfaces include
the discrete natural conformal parameterization (DNCP) [4]/least-square conformal mapping
(LSCM) [11], Yamabe flow [12], angle-based flattening (ABF) [13–15], circle patterns [16],
spectral conformal mapping (SCP) [17], conformal equivalence of triangle meshes (CETM) [18],
discrete Ricci flow [19–21], quasi-conformal compositions [22–25] and conformal energy min-
imization (CEM) [26]. There are also some notable works on the spherical conformal pa-
rameterization of genus-0 closed surfaces, including linearization of Laplace equation [27,28],
Dirichlet energy minimization [29], folding-free global conformal mapping [30], FLASH [31]
and north-south iterative scheme [32]. More recently, Sawhney and Crane [56] proposed
the boundary first flattening (BFF) method, which is capable of computing free-boundary,
fixed-boundary and spherical conformal parameterizations for simply-connected surfaces.
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Note that all the above-mentioned methods compute a global conformal parameterization
of a given surface by handling the entire surface directly. In case the given surface mesh is
dense, the computation may be expensive. Also, in case the geometry of the input mesh
is complicated, performing a global computation may lead to inaccuracy. Our work aims
to overcome these problems by decomposing the input surface mesh into smaller domains
and parameterizing them in parallel. The consistency between the domains is ensured by a
novel technique called partial welding, thereby forming a global conformal parameterization
efficiently.

3. Mathematical background.

3.1. Harmonic map and conformal map. Following [33,34], we introduce the following
definitions of harmonic map and conformal map. Let D and Ω be simply-connected regions in
R2.

Definition 3.1 (Harmonic map). A map ϕ : D → Ω is said to be harmonic if it minimizes
the Dirichlet energy

(3.1) ED(ϕ) =
1

2

∫
D
|∇ϕ|2.

Definition 3.2 (Conformal map). A map ϕ : D → Ω is said to be conformal if it satisfies

(3.2) J
∂ϕ

∂x
=
∂ϕ

∂y
,

where J is a rotation by π
2 in the tangent plane. If we write ϕ = (ϕx, ϕy), the above equation

can be reformulated as the following equations, known as the Cauchy-Riemann equations:

(3.3)

{
∂ϕx
∂x −

∂ϕy
∂y = 0,

∂ϕx
∂y +

∂ϕy
∂x = 0.

To achieve conformality, we could minimize the conformal energy

(3.4) EC(ϕ) =
1

2

∫
D

[(
∂ϕx
∂x
− ∂ϕy

∂y

)2

+

(
∂ϕx
∂y

+
∂ϕy
∂x

)2
]
.

As shown by Hutchinson [33], if we define the area A(ϕ) by

(3.5) A(ϕ) =

∫
D

∥∥∥∥∂ϕ∂x × ∂ϕ

∂y

∥∥∥∥ ,
then the conformal energy can be expressed in terms of the Dirichlet energy and area:

(3.6) EC(ϕ) = ED(ϕ)−A(ϕ).

Since the conformal energy is nonnegative, it follows that the Dirichlet energy is always
bounded below by the area. In particular, the equality holds if and only if ϕ is conformal.

Moreover, given the area term A(ϕ), minimizing the conformal energy is equivalent to
minimizing the Dirichlet energy. Note that the area depends on how ϕ maps the boundary. In
other words, given a “good” boundary condition, a conformal map can be obtained by simply
finding the harmonic map under the given boundary condition.
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Figure 2. An illustration of the closed welding problem. The entire boundaries of the two parts are glued
consistently.

3.2. Möbius transformation. A special type of conformal maps on the extended complex
plane C are the Möbius transformations, also known as the linear fractional transformations:

Definition 3.3 (Möbius transformation). A function f : C→ C is said to be Möbius trans-
formation if it is of the form

(3.7) f(z) =
az + b

cz + d
,

where a, b, c, d are complex numbers with ab− bc 6= 0.

Given two sets of distinct points {z1, z2, z3} and {w1, w2, w3}, there exists a unique Möbius
transformation satisfying f(zi) = wi, i = 1, 2, 3. Therefore, Möbius transformations provides
us with a simple way of fixing three points conformally.

3.3. Conformal welding. Conformal welding, also known as sewing or simply welding, is
a problem in complex analysis which concerns with gluing two surfaces in a conformal way so
that they fit together consistently according to certain correspondence.

Given a diffeomorphism f from a curve (e.g. the unit circle) to itself, we want to find two
Jordan domains D,Ω ⊂ C and two conformal maps φ : D → Ω and φ∗ : D∗ → Ω∗ such that
φ = φ∗ ◦ f on the curve [35]. Here, D∗ and Ω∗ are the exterior of D and Ω respectively. Since
C ∼= S2, the two domains D,Ω can be regarded as two disk-like surfaces on S2. Intuitively,
given a correspondence between the boundaries of the two surfaces, the problem of conformal
welding is to find two conformal deformations such that the surfaces are stitched together
seamlessly (see Figure 2). We refer this classical welding problem as a closed welding problem.

For a general homeomorphism f , the closed welding problem may not have any solution.
However, if f satisfies certain conditions, the problem is solvable. We introduce the concept of
quasisymmetric function below:

Definition 3.4 (Quasisymmetric function [36]). Let f be a continuous, strictly increasing
function defined on an interval I of the x-axis. We call f k-quasisymmetric (or simply
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Figure 3. An illustration of the opening map and the closing map. The top part shows the processes involved
in the opening map z 7→

√
z2 − 1, which ultimately map {0, 1} to {i, 0} or {−i, 0}, depending on the choice of

branching. The closing map z 7→
√
z2 + 1 reverses the processes such that ±i will be mapped back to 0.

quasisymmetric) on I if there exists a positive constant k such that

(3.8)
1

k
≤ f(x+ t)− f(x)

f(x)− f(x− t)
≤ k

for all x, x− t, x+ t ∈ I with t > 0.

One can show that the closed welding problem is solvable if f is a quasisymmetric function
from the real axis to itself:

Theorem 3.5 (Sewing theorem [36]). Let f be a quasisymmetric function on the real axis.
Then the upper and lower half-planes can be mapped conformally onto disjoint Jordan domains
D,Ω by two maps φ, φ∗, with φ(x) = φ∗(f(x)) for all x ∈ R.

The theorem was first proven by Pfluger based on the existence of solutions to the Beltrami
equation [37]. Another way to prove the result is to use some approximation techniques on the
quasisymmetric function [36].

3.4. Geodesic algorithm. A conformal mapping method called the zipper algorithm was
proposed independently by Kühnau [38] and Marshall and Morrow [39] in the 1980s. In
particular, Marshall and Rohde [40] proved the convergence of a variant of it called the geodesic
algorithm. The geodesic algorithm computes a conformal map from a region in the complex
plane to the upper half-plane H. Below, we briefly describe the geodesic algorithm.

The key ingredients of the geodesic algorithm are two maps: the opening map z 7→
√
z2 − 1

and the closing map z 7→
√
z2 + 1. Intuitively, they are operations analogous to opening and

closing a slit, behaving like a zipper (see Figure 3). Suppose we have a simple closed region
Ω, and a sequence of boundary points {z0, z1, . . . , zk} on ∂Ω. To initiate the process, define a
map g1 : Ω→ C by

(3.9) g1(z) =

√
z − z1
z − z0

,
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Figure 4. In the geodesic algorithm, the first map g1 maps z0 to ∞ and z1 to 0. It initiates the process so
that we can apply the opening maps for the remaining data points.

assuming the branching (−1)1/2 = i. This maps Ω to the right half-plane. In particular, the
line segment between z0 and z1 is mapped onto the imaginary axis, with z0 mapped to ∞ and
z1 mapped to 0 (see Figure 4).

Analogously, one can define a map g2 such that the line segment between g1(z1) = 0 and
ξ2 := g1(z2) is mapped to the imaginary axis, while the remaining points are still in the right
half-plane. By further repeating the above process, all the boundary points can be pushed
onto the imaginary axis one by one. More explicitly, suppose the point zj has already been
transformed to the position ξj after applying the opening maps g1, g2, . . . , gj−1, i.e.

(3.10) ξj = gj−1 ◦ gj−2 ◦ · · · ◦ g1(zj).

Consider a Möbius transformation

(3.11) Lξj (z) :=

Re(ξj)
|ξj |2 z

1 +
Im(ξj)
|ξj |2 zi

.

It can be easily checked that Lξj maps {0, ξj , ρ} to {0, 1,∞}, where ρ is a point on the imaginary
axis at which the orthogonal circular arc from 0 to ξk extends to. Now, as Lξj (ξj) = 1, we
can map the segment between Lξj (gj−1 ◦ gj−2 ◦ · · · ◦ g1(zj−1)) = 0 and Lξj (ξj) = 1 onto the
imaginary axis as illustrated in Figure 3. Define gj as the composition of Lξj with the opening

map f(z) =
√
z2 − 1:

(3.12) gj(z) :=
√
Lξj (z)

2 − 1.

Note that gj((gj−1 ◦ · · · ◦ g1(zj−1)) =
√

0− 1 = i (assuming the branching (−1)1/2 = i),

gj(ξj) =
√
Lξj (ξj)

2 − 1 =
√

1− 1 = 0, and the entire region will remain in the right half-plane.

Therefore, the requirements for gj are satisfied.
After obtaining the maps g1, g2, . . . , gk such that gk ◦ gk−1 ◦ · · · ◦ g1 maps all boundary

points {z0, z1, . . . , zk} onto the imaginary axis, define a final map

(3.13) gk+1(z) =

(
z

1− z
gk◦gk−1◦···◦g1(z0)

)2

.
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gk+1 maps the transformed region gk ◦ gk−1 ◦ · · · ◦ g1(Ω) onto the upper half-plane H. Since all
the above maps are analytic and, in particular, a square and a square root map are applied in
each step, the composition map (gk+1 ◦ gk ◦ · · · ◦ g1) : Ω→ H is conformal.

3.5. Quasi-conformal map. Quasi-conformal map is an extension of conformal map in
the sense that it allows for bounded conformal distortion. Intuitively, conformal maps map
infinitesimal circles to infinitesimal circles , while quasi-conformal maps map infinitesimal circles
to infinitesimal ellipses with bounded eccentricity. The formal definition of quasi-conformal
map is given below.

Definition 3.6 (Quasi-conformal map [41]). A map ϕ : D → Ω is said to be quasi-conformal
if it satisfies the Beltrami equation

(3.14)
∂ϕ

∂z̄
= µϕ(z)

∂ϕ

∂z

for some complex-valued function µϕ with ‖µϕ‖∞ < 1. µϕ is said to be the Beltrami coefficient
of ϕ.

The Beltrami coefficient µϕ captures the conformal distortion of ϕ. In particular, if µϕ = 0,
then the Beltrami equation becomes the Cauchy-Riemann equations and hence ϕ is conformal.
Also, the Jacobian Jϕ of ϕ is given by

(3.15) Jϕ =

∣∣∣∣∂ϕ∂z
∣∣∣∣2 (1− |µϕ|2).

Therefore, a map is folding-free if and only if its Beltrami coefficient is with sup norm less
than 1.

Moreover, one can correct the conformal distortion and non-bijectivity of a map by
composing it with another map. If ϕ1 : C→ C and ϕ2 : C→ C are two maps with Beltrami
coefficients µϕ1 and µϕ2 , then ϕ2 ◦ ϕ1 is a quasi-conformal map with Beltrami coefficient

(3.16) µϕ2◦ϕ1(z) =
µϕ1(z) + ϕ1z

ϕ1z
µϕ2(ϕ1(z))

1 + ϕ1z
ϕ1z

µϕ1(z)µϕ2(ϕ1(z))
.

In particular, if µϕ2 = µϕ−1
1

, then µϕ2◦ϕ1 = 0 and hence the composition map ϕ2◦ϕ1 is conformal

and folding-free. This idea of quasi-conformal composition has been used in [24,25,31], and
the details of the theory and computation of it can be found therein.

4. Proposed method. Let S be a simply-connected surface in R3, with a triangle mesh
representation (V,F) where V is the vertex set and F is the face set. Our goal is to compute
a global conformal parameterization of S = (V,F) in an efficient and accurate way.

4.1. Surface partition. The first step is to partition S into submeshes based on a prescribed
set of edges Ẽ . Here, Ẽ can either be defined manually by the user or computed automatically
using some existing partitioning methods. This allows the user to have full control of the
number of subdomains to be used and how the surface is to be partitioned. More specifically,
denote the edge set of S by E , and the set of boundary edges of S by Ebdy. Consider the set
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E = E \
(
Ẽ ∪ Ebdy

)
. We construct a graph G using E and find all connected components

in G. Suppose there are K connected components in G, where each of them consists of a
sub-face set Fi, i = 1, . . . ,K. By tracking all vertices that are contained in Fi, we obtain
a sub-vertex set Vi. In other words, we have obtained K simply-connected open submeshes
S1 = (V1,F1),S2 = (V2,F2), . . . ,SK = (Vk,FK) that satisfy the following properties:

(i) The union of the vertex sets of all submeshes is exactly V:

(4.1)

K⋃
i=1

Vi = V.

(ii) The union of the face sets of all submeshes is exactly F :

(4.2)
K⋃
i=1

Fi = F .

(iii) The intersection of any two different sub-vertex sets is the intersection of the boundary
sets, which is either an empty set or a boundary segment:

(4.3) Vi ∩ Vj = ∂Si ∩ ∂Sj for all i, j.

(iv) The intersection of any two different sub-face sets is empty:

(4.4) Fi ∩ Fj = ∅ for all i 6= j.

4.2. Local conformal parameterization of submeshes. The next step is to compute a
conformal parameterization of every Si. To find a conformal parameterization ϕi : Si → R2,
the DNCP method [4] is used. In short, DNCP minimizes the Dirichlet energy ED(ϕ) and
maximizes the area A(ϕ), based on the fact that the Dirichlet energy is bounded below by the
area and conformality is attained when equality holds. We briefly describe the method below.

Let Vi = {vi1 , vi2 , . . . , vini} be the vertices in Si, and ϕi : Si → R2 be a flattening

map. Denote u = [u1,u2, . . . ,uni ]
t =

[
ϕi(vi1), ϕi(vi2), . . . , ϕi(vini )

]t
. The Dirichlet energy is

discretized using the cotangent formula [34]:

(4.5) ED(u) =
1

2

∑
(vip ,viq ) adjacent

(cotαpq + cotβpq)|up − uq|2 = utLcotanu,

where αpq, βpq are the two angles opposite to the edge [vip , viq ] in Si, and Lcotan is a |Vi| × |Vi|
sparse symmetric positive definite matrix also known as the cotangent Laplacian:

(4.6) Lcotan
p,q =


1
2(cotαpq + cotβpq) if (vip , viq) are adjacent,
−
∑

r 6=p L
cotan
p,r if p = q,

0 otherwise.

The area is discretized using the boundary vertices of Si:

(4.7) A(u) =
1

2

∑
[vip ,viq ]⊂∂Si

(xpyq − ypxq) =
(
xt yt

)
Marea

(
x
y

)
,
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where uj = (xj , yj) for all j, x = [x1, x2, . . . , xni ]
t is the collection of all x-coordinates of u,

x = [y1, y2, . . . , yni ]
t is the collection of all y-coordinates of u, and Marea is a 2|Vi| × 2|Vi|

sparse symmetric matrix. More explicitly, if [vip , viq ] ⊂ ∂Si, we have

(4.8) Marea
p,q+|V|i = Marea

q+|V|i,p = 1 and Marea
q,p+|V|i = Marea

p+|V|i,q = −1.

DNCP minimizes the discrete conformal energy

(4.9) EC(u) = ED(u)−A(u)

subject to the prescribed positions of two boundary vertices that remove the freedom of rigid
motion and scaling. It suffices to solve a 2|Vi| × 2|Vi| sparse linear system

(4.10)

((
Lcotan 0

0 Lcotan

)
−Marea

)(
x
y

)
= 0

subject to four boundary constraints (two in x and two in y for the two pinned boundary
vertices). The resultant map ϕi satisfying ϕi(Vi) = u = [x,y] is the desired conformal
parameterization of Si.

DNCP is suitable for our framework since it is a free-boundary linear method. As discussed
above, obtaining each ϕi only requires solving a 2|Vi| × 2|Vi| sparse matrix equation, which
is highly efficient. Also, the free-boundary condition ensures that no additional conformal
distortion will be introduced at the boundaries. This is particularly important in our subsequent
welding step.

It is noteworthy that the parameterization of each submesh is independent, and hence this
step of computing local conformal parameterizations is highly parallelizable.

4.3. Partial welding. Note that the local parameterizations we obtained via DNCP are
not necessarily consistent along the boundaries. Therefore, we need a step for gluing the
boundaries of them consistently. To preserve the conformality of the parameterization, the
gluing step should be conformal. This problem of gluing subdomains is different from the closed
welding problem introduced in Section 3. More explicitly, the closed welding problem considers
gluing the entire boundaries of two domains, while in general only a portion of the boundaries
of two neighboring subdomains in our case should be glued. In other words, the problem that
we need to tackle is a partial welding problem that involves gluing two subdomains along only
a pair of boundary arcs.

Below, we first rigorously derive a theoretical construction for solving the partial welding
problem. Then, we devise an efficient algorithm for solving it.

4.3.1. Theoretical construction. We formulate the problem mathematically. Given two
Jordan regions A,B ⊂ C, let γA ⊂ ∂A and γB ⊂ ∂B be some arcs of the boundaries of A and
B respectively. Suppose we have a correspondence function f : γA → γB that relates points on
γA and points on γB . The partial welding problem is to find two conformal maps ΦA : A→ A′

and ΦB : B → B′, with A′ and B′ being disjoint, such that

(4.11) ΦA(γA) = (ΦB ◦ f)(γA).

Recall that the closed welding problem is solvable for quasisymmetric function on the real
axis. For the partial welding problem, we make use of the following lemma.
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Figure 5. Construction of Â and the mapping from it to the upper half plane.

Lemma 4.1 (Lehto and Virtanen [36]). Every function f which is k-quasisymmetric on an
interval I = [a, b] can be extended to a k̃-quasisymmetric function on the entire x-axis, where
the constant k̃ is less than a number depending only on k.

To make use of the above lemma, we further suppose that Â is a larger domain that
contains A while sharing the boundary segment γA, i.e. A ⊂ Â and γA ⊂ ∂Â (see Figure 5
left). Denote the endpoints of γA by xA and yA. Similarly, let B̂ be a domain such that B ⊂ B̂
and γB ⊂ ∂B̂, and denote the endpoints of γB by xB and yB.

By the Riemann mapping theorem, Â and B̂ can be mapped to the upper and lower
half plane respectively by some conformal maps ψA and ψB. Now, we fix xA and yA at the
endpoints of some interval I on the x-axis. For simplicity, we take I = [−1, 1] and fix xA and
yA at −1 and 1 respectively (see Figure 5 right). Similarly, we fix xB at −1 and yB at 1. The
homeomorphic extensions to the closures define a map g : I → I by g = ψB ◦ f ◦ ψ−1A . In
other words, we have f = ψ−1B ◦ g ◦ ψA by construction. Assuming that g is a quasisymmetric
function from I to itself, we get a quasisymmetric extension ĝ : R→ R of g using Lemma 4.1.

Then, we apply Theorem 3.5 with this ĝ, which gives us two conformal maps φA : Â→ Â′

and φB : B̂ → B̂′ with Â′ and B̂′ being disjoint, such that the boundary values satisfy
φA(x) = φB(ĝ(x)) for all x ∈ R. In particular, φA(x) = φB(g(x)) for all x ∈ I. Figure 6 shows
an illustration of the construction.

Since the composition of conformal maps is conformal, we have constructed two conformal
maps ΦA = φA ◦ ψA and ΦB = φB ◦ ψB, which respectively map A to some A′ ⊂ Â′ and B to
some B′ ⊂ B̂′. Note that f = ψ−1B ◦ g ◦ ψA when we restrict f on γA. Also,

(4.12) (φB ◦ ψB) ◦ f = φB ◦ ψB ◦ ψ−1B ◦ g ◦ ψA = φB ◦ g ◦ ψA = φA ◦ ψA,

where the last equality follows from Theorem 3.5. This solves the partial welding problem.

4.3.2. Algorithmic construction. The theoretical construction above provides us with
a continuous approach for solving the partial welding problem. We proceed to develop
an algorithm to solve the problem over discrete boundary data points. Suppose we have
two sequences of boundary points ∂A = {a0, . . . , ak, . . . , am} and ∂B = {b0, . . . , bk, . . . , bn},
where aj corresponds to bj (i.e. aj should be glued with bj) for j = 0, . . . , k. This gives
a correspondence function f : γA ⊂ ∂A → γB ⊂ ∂B, where γA = {a0, . . . , ak} and γB =
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Figure 6. The construction of conformal maps for solving the partial welding problem.

{b0, . . . , bk}, with f(aj) = bj for j = 0, . . . , k. Our goal is to construct the two maps ΦA,ΦB

for gluing the two boundary curves conformally along the corresponding points. As discussed
in the theoretical construction, a good way for the construction of ΦA,ΦB is to make use
of two maps ψA, ψB that map A,B onto the upper and lower half-planes respectively. We
propose an algorithm that makes use of a variant of the geodesic algorithm [40].

We begin with designing an algorithm that maps a sequence of boundary points to a
standard shape. The algorithm is based on a key observation that the geodesic algorithm can be
paused halfway. Suppose we have a sequence of boundary points {z0, . . . , zk, . . . , zn}. Consider
applying the first k maps g1, g2, . . . , gk in the geodesic algorithm on {z0, . . . , zk, . . . , zn} with
branching (−1)1/2 = i. The composition gk ◦ · · · ◦ g1 maps the first k + 1 points {z0, . . . , zk}
onto the imaginary axis, with zk mapped to 0, while the remaining boundary data points
{zk+1, . . . , zn} are all mapped onto the right half-plane. Note that each of g2, . . . , gk is a
composition of a Möbius transformation, a square map and a square root map. Therefore,
they are all conformal.

Now, instead of the final map (3.13) in the geodesic algorithm, we apply the following
Möbius transformation:

(4.13) gk+1(z) =
z

1− z
gk◦gk−1◦···◦g1(z0)

.

It is easy to check that gk+1(gk ◦ · · · ◦ g1(z0)) = ∞ and g(0) = 0. In other words, the new
composition gk+1 ◦ gk ◦ · · · g1 maps the first data point z0 to ∞ and the (k + 1)-th data point
zk to 0. Note that the first k + 1 data points are on the upper half of the imaginary axis, and
the remaining boundary data points {zk+1, . . . , zn} are on the right half-plane. We call such
a half-opened (i.e. half-unzipped) shape an intermediate form. Note that by using another
branching (−1)1/2 = −i throughout the maps above, we have an alternative way to transform
a sequence of boundary data points onto the right half-plane, with the first k + 1 data points
mapped onto the lower half of the imaginary axis. Algorithm 1 summarizes the proposed
intermediate form transformation procedure.
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Algorithm 1: Intermediate form transformation

Input: A sequence of boundary points {z0, . . . , zk, . . . , zn} and a choice of branching.
Output: A sequence of transformed boundary points {Z0, . . . , Zk, . . . , Zn}, where

Z0, . . . , Zk are on the imaginary axis.

1 Set g1(z) =
√

z−z1
z−z0 with the choice of branching;

2 for j = 2, . . . , k do
3 Compute ξj = (gj−1 ◦ · · · ◦ g1)(zj);

4 Set gj(z) =
√
Lξj (z)

2 − 1 with the choice of branching, where Lξj (z) :=

Re(ξj)

|ξj |2
z

1+
Im(ξj)

|ξj |2
zi

;

5 Set gk+1(z) = z
1− z

gk◦gk−1◦···◦g1(z0)
;

6 Compute Pl = (gk+1 ◦ · · · ◦ g1)(zl) for l = 0, . . . , k, . . . , n;

Coming back to the problem of aligning the two sequences of boundary points ∂A =
{a0, . . . , ak, . . . , am} and ∂B = {b0, . . . , bk, . . . , bn}, we define auxiliary data points am+1 =
bn+1 = 0, am+2 = bn+2 = ∞ to keep track of the transformation. Now, using Algo-
rithm 1 with two different choices of branching (−1)1/2 = i and (−1)1/2 = −i, we map
{a0, . . . , ak, . . . , am, am+1, am+2} and {b0, . . . , bk, . . . , bn, bn+1, bn+2} onto the right half-plane.
Denote the transformed data points by {A0, . . . , Ak, . . . , Am, Am+1, Am+2} and {B0, . . . , Bk, . . .
, Bn, Bn+1, Bn+2}. Note that {A0, . . . , Ak} are all on the upper half of the imaginary axis with
A0 =∞ and Ak = 0, while {B0, . . . , Bk} are all on the lower half of the imaginary axis with
B0 = ∞ and Bk = 0. The next step is to align Aj with Bj for all j = 0, . . . , k conformally,
such that the two boundary curves ∂A and ∂B are welded based on the partial correspondence
between γA and γB.

Suppose α = ai and β = bi are two corresponding points originally on γA and γB under
the intermediate form transformations, where a > 0 > b. A Möbius transformation that takes
{α, 0, β} to {i, 0,−i} is explicitly given by

(4.14) Tαβ (z) =
z

−2ab
a−b −

a+b
a−bzi

.

This transformation provides us with a simple way to align each pair of corresponding points.
Note that Ak = 0 = Bk is automatically aligned, and so we start with aligning Ak−1 and Bk−1.

Applying the Möbius transformation T
Ak−1

Bk−1
onto the two sets of boundary data points, we map

Ak−1 to i and Bk−1 to −i. Then, we compose the map with the closing map z 7→
√
z2 + 1 so

that i and −i are both mapped to 0. More explicitly, we define

(4.15) hk−1(z) :=
√
T
Ak−1

Bk−1
(z)2 + 1

and apply it to all data points. The branching for the computation of each point is determined
using the previous choice in the intermediate form transformation. Then, we repeat the above
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process for j = k − 2, . . . , 1 by defining

(4.16) hj(z) :=
√
T
αj
βj

(z)2 + 1,

where

(4.17) αj = (hj+1 ◦ · · · ◦ hk−1)(Aj)

and

(4.18) βj = (hj+1 ◦ · · · ◦ hk−1)(Bj).

Now, all pairs of corresponding points (A1, B1), . . . , (Ak, Bk) have been consistently aligned
under the composition map h1 ◦ h2 ◦ · · · ◦ hk−1. The first pair of corresponding points
A0 =∞ = B0 are also automatically aligned. Note that each of hk−1, · · · , h1 is a composition
of a Möbius transformation, a square map and a square root map. Hence, they are all
conformal.

Then, we define a closing map h0 similar to (3.13) in the geodesic algorithm:

(4.19) h0(z) :=

(
z

1− z
(h1◦···◦hk)(∞)

)2

.

Note that h0 maps all points onto the upper half plane H, with 0 mapped to 0 and (h1 ◦ · · · ◦
hk−1)(∞) (i.e. (h1 ◦ · · · ◦ hk−1)(A0)) mapped to ∞. We obtain the transformed data points

(4.20) ãl = (h0 ◦ · · · ◦ hk−1)(Al)

for l = 0, . . . ,m+ 2 with branching (−1)1/2 = i, and

(4.21) b̃l = (h0 ◦ · · · ◦ hk−1)(Bl)

for l = 0, . . . , n+ 2 with branching (−1)1/2 = −i.
Considering the entire composition h0◦h1◦· · ·hk−1◦gk+1◦· · · g1 starting from the beginning

to here, it can be observed that g2, · · · , gk+1, hk−1, · · · , h2 are all conformal, while g2 is a
square root map and h0 is a square map. Therefore, the entire composition is conformal. In
other words, we have conformally transformed the two sequences of boundary data points
{a0, . . . , ak, . . . , am} and {b0, . . . , bk, . . . , bn} into {ã0, . . . , ãk, . . . , ãm} and {b̃0, . . . , b̃k, . . . , b̃n}
such that the partial correspondence between them is satisfied, i.e. ãj = b̃j for j = 0, . . . , k.

Finally, we perform a normalization by tracking the transformation of the auxiliary data
points am+1 = bn+1 = 0, am+2 = bn+2 =∞. More explicitly, we apply a Möbius transformation
T that takes {ãm+1, b̃n+1,

1
2(ãm+2 + ãn+2)} to {−1, 1,∞} on all the transformed points. This

regularizes the transformation and prevents the boundary data points from being mapped
far away. Note that Möbius transformations are conformal and hence the conformality of the
composition map is preserved. This completes the process of gluing two boundary curves based
on a partial correspondence between them. Algorithm 2 summarizes the proposed partial
welding algorithm.
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Algorithm 2: Partial welding

Input: Two sequences of boundary data points {a0, . . . , ak, . . . , am} and
{b0, . . . , bk, . . . , bn}, where aj should be glued with bj for j = 0, . . . , k.

Output: Conformally transformed data points {ã0, . . . , ãk, . . . , ãm} and
{b̃0, . . . , b̃k, . . . , b̃n} such that ãj = b̃j for j = 0, . . . , k.

1 Define auxiliary points am+1 = bn+1 = 0, am+2 = bn+2 =∞;

2 Apply Algorithm 1 on {a0, . . . , ak, . . . , am, am+1, am+2} with branching (−1)1/2 = i and
obtain the transformed boundary data points {A0, . . . , Ak, . . . , Am, Am+1, Am+2};

3 Apply Algorithm 1 on {b0, . . . , bk, . . . , bn, bn+1, bn+2} with branching (−1)1/2 = −i and
obtain the transformed boundary data points {B0, . . . , Bk, . . . , Bn, Bn+1, Bn+2};

4 Set hk−1(z) :=
√
T
Ak−1

Bk−1
(z)2 + 1;

5 for j = k − 2, . . . , 1 do

6 Compute αj = (hj+1 ◦ · · · ◦ hk−1)(Aj) with branching (−1)1/2 = i;

7 Compute βj = (hj+1 ◦ · · · ◦ hk−1)(Bj) with branching (−1)1/2 = −i;
8 Set hj(z) :=

√
T
αj
βj

(z)2 + 1;

9 Set h0(z) :=

(
z

1− z
(h1◦···◦hk−1)(∞)

)2

;

10 Compute ãl = (h0 ◦ · · · ◦ hk−1)(Al) for l = 0, . . . ,m+ 2, with branching (−1)1/2 = i;

11 Compute b̃l = (h0 ◦ · · · ◦ hk−1)(Bl) for l = 0, . . . , n+ 2, with branching (−1)1/2 = −i;
12 Apply a Möbius transformation T that takes {ãm+1, b̃n+1,

1
2(ãm+2 + ãn+2)} to

{−1, 1,∞} on all the transformed points;

An illustration of the partial welding algorithm is given in Figure 7. As a remark, to
weld two subdomains obtained by the local parameterization step partially, we only need to
extract their boundary points on C and apply Algorithm 2. The interior points of the two
flattened subdomains are not needed. With the updated coordinates of the boundary points of
the subdomains, we can then easily obtain the desired global conformal parameterization by
solving a number of sparse linear systems. The details will be described in Section 4.5.

4.4. Enforcing additional constraints. Before moving on to the step of obtaining the final
global parameterization, it is possible for us to include an optional step here and enforce
additional constraints for achieving disk conformal parameterization and spherical conformal
parameterization.

4.4.1. Constraints for disk conformal parameterization. If the input simply-connected
surface S is open, one can further restrict the target parameter domain to be the unit disk
in the proposed method, thereby achieving a disk conformal parameterization. This is done
by adding an extra step of applying the geodesic algorithm introduced in Section 3.4 to the
global boundary ∂S. Note that the points on ∂S are distributed into various subdomains.
Therefore, we first extract the coordinates of those boundary points from the partial welding
result. Once the mapping that takes those points to the unit circle is determined, we apply
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Figure 7. An illustration of partial welding. Suppose we are given a pyramid-like surface with three triangular
faces (colored in blue, red, yellow). Each of them have been flattened onto the plane. In order to weld the
boundaries of the three triangles, we apply Algorithm 2 twice. First, we glue the common boundaries of the
blue and red triangles via partial welding. Then, we glue the common boundaries of the yellow triangle and the
other two triangles via partial welding. Note that the interior points and the mesh structure of each triangle are
plotted for a better visualization only. In the actual computation of partial welding, only the boundary points are
involved.

the map for transforming the boundary coordinates of every flattened subdomain onto the
unit disk. This results in boundary coordinates for the subdomains that yield a disk conformal
parameterization upon solving the Laplace equation (details to be described in Section 4.5).

4.4.2. Constraints for spherical conformal parameterization. For genus-0 closed surfaces,
one common choice of the parameter domain is the unit sphere S2. In case the input surface S
is a genus-0 closed surface, we can modify our framework so that the partial welding procedure
is repeated until two large components are left. Then, for the last welding, we use a closed
welding instead of a partial welding to glue the entire boundaries of the two large components.
As all boundaries are glued, the resulting boundary coordinates of the subdomains on the
extended complex plane yield a spherical conformal parameterization upon solving the Laplace
equation (details to be described in Section 4.5).

4.5. Obtaining the global conformal parameterization. After obtaining the new bound-
ary constraints that satisfy the consistency condition, we can compute the global conformal
parameterization of the input surface S by finding a harmonic map ϕ̃i : Si → R2 for each
submesh with the new boundary constraints. More explicitly, it suffices to solve the Laplace
equation

(4.22) ∆ϕ̃i = 0

subject to the new boundary constraints. Again, note that the computations for the K
submeshes are independent and so this step is parallelizable. Because of the consistency
between the boundaries of all subdomains, the new local parameterization results can be glued
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seamlessly, thereby forming a global conformal parameterization. One can further ensure the
bijectivity of each subdomain using the idea of quasi-conformal composition (see Section 3.5).
More specifically, we compute the Beltrami coefficient of the inverse mapping ϕ̃−1i (denoted by
µϕ̃−1

i
). We can then determine whether ϕ̃i is folding-free by checking if ‖µϕ̃−1

i
‖∞ > 1 (or close

to 1 in the discrete case). If so, we compose ϕ̃i with another mapping that is associated with
the Beltrami coefficient µϕ̃−1

i
to fix the fold-overs as guaranteed by quasi-conformal theory.

With this additional step, we can ensure the bijectivity of the resulting global conformal
parameterization.

Note that the resulting global parameterization lies in the extended complex plane. In
case S is a genus-0 closed surface, we add a stereographic projection step to convert it to a
spherical parameterization. Algorithm 3 summarizes the proposed method.

Algorithm 3: Parallelizable global conformal parameterization of simply-connected
surfaces (PGCP)

Input: A simply-connected surface mesh S = (V,F), a set of edges Ẽ for the partition.
Output: A global conformal parameterization ϕ : S → R2 or S2.

1 Partition the mesh into K submeshes based on Ẽ ;
2 for i = 1, . . . ,K do
3 Compute a conformal parameterization of Si = (Vi,Fi) using DNCP. Only the

boundary coordinates of the parameterization are kept;

4 Perform partial welding as described in Algorithm 2 to update the boundary coordinates;
5 (Optional) To achieve disk conformal parameterization, further apply the geodesic

algorithm [40]. To achieve spherical conformal parameterization, perform conformal
welding on the last two components obtained by partial welding;

6 for i = 1, . . . ,K do
7 Solve the Laplace equation ∆ϕ̃i = 0 with the new boundary constraints for each Si;
8 Compute the Beltrami coefficient µϕ̃−1

i
to check whether ϕ̃i is folding-free. If not, fix

the fold-overs in ϕ̃i using quasi-conformal composition;

9 The solutions ϕ̃i for all Si together form a global conformal parameterization ϕ. For
spherical conformal parameterization, further apply the stenographic projection to map
the result onto S2;

As a remark, the novel combination of local parameterization and partial welding in
our proposed method significantly improves the computational efficiency of global conformal
parameterization. Efficient sparse linear system solvers for the Laplace equation for the entire
mesh (2|V| × 2|V|) typically require a complexity of O(|V|1.5) (SOR), O(|V| log |V|) (FFT),
O(|V|) (multigrid) etc. [55]. By contrast, one can see that the interior parts of the submeshes
are not used in the partial welding step in our method. The partial welding step only involves
B, the collection of boundary points of the subdomains, with |B| � |V|. Also, the computation
of the local parameterizations at the beginning and the harmonic maps at the end of our
proposed method can both be parallelized, so that each computation involves Vi only.
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Figure 8. A gallery of simply-connected surface meshes used in our experiments. Our PGCP method
is capable of handling a wide range of simply-connected surfaces with different geometry, mesh quality and
resolution.

5. Experiments. Our proposed PGCP method is implemented in MATLAB, with the
Parallel Computing Toolbox utilized for achieving parallelization. The sparse linear systems
are solved using the backslash operator in MATLAB. All experiments in this section (except
the experiment in Section 5.6) are performed on a Windows PC with Intel i7-6700K quad-core
CPU and 16 GB RAM. To evaluate the performance of our proposed method, we adapt
various simply-connected surface meshes from multiple free 3D model repositories [46–49] (see
Figure 8). As for the distortion measure, we define the angular distortion of an angle [vi, vj , vk]
(in degree) under the conformal parameterization ϕ by

(5.1) d([vi, vj , vk]) = ∠[ϕ(vi), ϕ(vj), ϕ(vk)]− ∠[vi, vj , vk].
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Figure 9. Free-boundary conformal parameterizations of simply-connected open surfaces obtained by our
proposed PGCP method, rendered with normal map shader.

Surface # vertices
SCP [17] CETM [18] PGCP

Time (s) mean(|d|) Time (s) mean(|d|) Time (s) mean(|d|)
Sophie 21K 1.1 0.2 1.2 0.2 0.6 0.2

Niccolò da
Uzzano

25K 1.3 0.6 Failed 0.7 0.6

Mask 32K 1.6 0.2 7.3 0.2 0.9 0.2
Max Planck 50K 2.6 0.5 5.5 0.5 1.5 0.5

Bunny 85K 4.4 0.5 18.8 0.5 2.0 0.5
Julius 220K 14.2 0.1 19.5 0.1 6.6 0.1

Buddha 240K 13.7 0.6 49.0 0.6 9.2 0.6
Face 1M 85.2 < 0.1 98.1 < 0.1 47.6 < 0.1

Table 1
The performance of spectral conformal parameterization (SCP) [17], conformal equivalence of triangle

meshes (CETM) [18] and PGCP for free-boundary conformal parameterization of simply-connected open surfaces.

5.1. Free-boundary conformal parameterization of simply-connected open surfaces.
We first consider computing free-boundary global conformal parameterization of simply-
connected open surfaces using our proposed PGCP method (see Figure 9 for examples). To
assess the performance of our method, we compare it with the spectral conformal parameteri-
zation (SCP) [17] and conformal equivalence of triangle meshes (CETM) [18] in terms of the
computation time and the angular distortion (see Table 1). The MATLAB version of SCP is
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implemented by the authors, and the MATLAB version of CETM can be found at [50]. The
experimental results show that our proposed method is significantly faster than both SCP and
CETM by over 40% and 70% respectively on average, while maintaining comparable accuracy
in terms of the average angular distortion. This demonstrates the effectiveness of our method
for free-boundary global conformal parameterization.

5.2. Disk conformal parameterization of simply-connected open surfaces. Besides free-
boundary global conformal parameterization, our proposed PGCP method can also achieve disk
conformal parameterization of simply-connected open surfaces (see Figure 10 for examples).
To evaluate the performance of our method, we compare it with the state-of-the-art linear disk
conformal map (LDM) method [25] and the conformal energy minimization (CEM) method [26]
(see Table 2). The MATLAB version of LDM can be found at [51], and the MATLAB version
of CEM can be found at [52]. It can be observed that our method is significantly faster than
LDM and CEM by over 50% and 30% on average respectively. Also, our method achieves
comparable or smaller angular distortion when compared to the two other methods. This
shows that our method is advantageous for disk conformal parameterization.

5.3. Spherical conformal parameterization of simply-connected closed surfaces. We
then consider computing spherical conformal parameterization of genus-0 closed surfaces using
our proposed PGCP method (see Figure 11 for examples). To evaluate the performance, we
compare our proposed method with the state-of-the-art folding-free global conformal mapping
(FFGCM) algorithm [30] and the FLASH algorithm [31] (see Table 3). The MATLAB version
of FFGCM is kindly provided by its authors, and the MATLAB version of FLASH can be
found at [53]. Because of the “divide-and-conquer” nature of our method, our method is
capable of producing spherical conformal parameterizations with a smaller angular distortion
when compared to the two state-of-the-art algorithms. In particular, the FLASH algorithm
involves puncturing a triangle from the input surface and flattening the punctured surface onto
a big triangular domain. This step unavoidably creates squeezed regions and produces certain
angular distortions. While the distortions are alleviated in the subsequent step using quasi-
conformal composition, the step again involves a domain where most vertices are squeezed at
the interior, which leads to some distortions. By contrast, our proposed PGCP method flattens
each submesh naturally, with the shape of the submesh boundary taken into consideration.
This effectively reduces the angular distortions, thereby producing a spherical conformal
parameterization with a better accuracy. Moreover, because of the ability of exploiting
parallelism, our method achieves a significant reduction in computational time by over 90%
on average when compared to FFGCM. When compared to FLASH, our method achieves
comparable efficiency for moderate meshes and a notable reduction in computational time
by around 25% for dense meshes. This shows the advantages of our method for spherical
conformal parameterization.

5.4. Comparison with boundary first flattening (BFF). While most of the existing meth-
ods can only handle a single type of global conformal parameterization, the recently proposed
boundary first flattening (BFF) method [56], with code and executable files available at [57],
is capable of computing multiple types of global conformal parameterizations, including free-
boundary conformal parameterization for simply-connected open surfaces, disk conformal
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Figure 10. Disk conformal parameterizations of simply-connected open surfaces obtained by our proposed
PGCP method, rendered with normal map shader.

Surface # vertices
LDM [25] CEM [26] PGCP

Time (s) mean(|d|) Time (s) mean(|d|) Time (s) mean(|d|)
Ogre 20K 1.1 1.5 0.3 2.6 0.5 1.5

Niccolò da
Uzzano

25K 1.6 0.8 1.4 1.3 0.8 0.8

Brain 48K 2.9 1.6 2.9 1.5 1.3 1.5
Gargoyle 50K 3.1 1.9 2.8 2.1 1.4 1.9

Hand 53K 3.4 1.2 3.4 1.2 1.4 1.2
Octopus 150K 15.4 7.2 10.4 24.0 8.9 5.6
Buddha 240K 22.4 0.7 25.1 0.7 11.4 0.7
Nefertiti 1M 87.9 2.9 83.2 4.2 52.7 2.9

Table 2
The performance of linear disk conformal map (LDM) [25], conformal energy minimization (CEM) [26]

and PGCP for disk conformal parameterization of simply-connected open surfaces.

parameterization for simply-connected open surfaces, and spherical conformal parameterization
for genus-0 closed surfaces. It is therefore natural to compare our proposed method and the
BFF method.

Table 4 shows the comparison between the two methods. For free-boundary and disk
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Figure 11. Spherical conformal parameterizations of genus-0 closed surfaces obtained by our proposed PGCP
method, rendered with normal map shader.

Surface # vertices
FFGCM [30] FLASH [31] PGCP

Time (s) mean(d) Time (s) mean(d) Time (s) mean(d)
Horse 20K 12.1 11.0 0.4 3.0 0.4 2.7

Bulldog 50K 22.0 1.0 0.9 1.1 1.0 1.0
Chinese Lion 50K 29.3 1.3 1.1 1.3 1.1 1.3

Duck 100K 100.4 1.1 2.2 0.4 2.4 0.3
David 130K 46.6 0.2 3.5 0.2 3.4 0.2

Octopus 150K 112.3 37.2 10.1 6.9 7.1 2.6
Lion Vase 210K 222.7 14.4 4.5 0.8 4.7 0.7

Asian Dragon 1M Failed 64.4 1.3 48.5 0.9
Table 3

The performance of folding-free global conformal mapping (FFGCM) [30], FLASH [31] and PGCP for
spherical conformal parameterization of genus-0 closed surfaces.

conformal parameterization, it can be observed that our method achieves at least comparable
and sometimes better conformality, with a shorter computational time. For spherical conformal
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Parameterization Surface # vertices
BFF [56] PGCP

Time (s) mean(|d|) Time (s) mean(|d|)

Free-boundary

Sophie 21K 0.9 0.2 0.6 0.2
Niccolò da

Uzzano
25K 1.0 0.5 0.7 0.6

Mask 32K 1.3 0.2 0.9 0.2
Max Planck 50K 3.0 0.5 1.5 0.5

Bunny 85K 4.7 1.2 2.0 0.5
Julius 220K 16.8 0.1 6.6 0.1

Buddha 240K 14.4 0.6 9.2 0.6
Face 1M Failed 47.6 < 0.1

Disk-boundary

Ogre 20K 0.7 1.5 0.5 1.5
Niccolò da

Uzzano
25K 1.0 1.1 0.8 0.8

Brain 48K 2.4 1.6 1.3 1.5
Gargoyle 50K 2.1 1.9 1.4 1.9

Hand 53K 2.6 1.6 1.4 1.2
Octopus 150K 5.5 24.7 8.9 5.6
Buddha 240K 14.5 0.9 11.4 0.7
Nefertiti 1M Failed 52.7 2.9

Spherical

Horse 20K 1.0 74.52 0.4 2.7
Bulldog 50K 3.1 11.5 1.0 1.0

Chinese Lion 50K 3.0 4.4 1.1 1.3
Duck 100K 7.6 5.7 2.4 0.3
David 130K 15.9 2.6 3.4 0.2

Octopus 150K 10.2 74.3 7.1 2.6
Lion Vase 210K 14.2 4.9 4.7 0.7

Asian
Dragon

1M Failed 48.5 0.9

Table 4
Comparison between BFF [56] and PGCP for free-boundary conformal parameterization for simply-connected

open surfaces, disk conformal parameterization for simply-connected open surfaces, and spherical conformal
parameterization for genus-0 closed surfaces.

parameterization, our method is advantageous in both the conformality and efficiency. A
possible reason is that BFF handles genus-0 closed surfaces by removing an arbitrary vertex
star, flattening the punctured surface onto a disk conformally followed by a suitable rescaling,
and finally mapping the disk onto the sphere using stereographic projection and filling the
punctured vertex star at the pole. The choice of the vertex star greatly affects the overall
shape of the disk parameterization of the punctured surface and the final angular distortion
of the spherical parameterization. By contrast, our “divide and conquer” approach enables
us to tackle the conformal flattening problem of subdomains which are obtained from a more
natural partition of the surface, thereby achieving better conformality.

5.5. Robustness of the proposed parameterization method to the choice of cut edges.
In our proposed PGCP method, there is a flexibility for the user to prescribe the cut paths
and supply the set of chosen edges as an input of the parameterization algorithm. This
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Surface Cut paths mean(|d|) sd(|d|) median(|d|) iqr(|d|)

Face

Figure 12 (top, leftmost) 0.25 0.44 0.13 0.23
Figure 12 (top, second left) 0.26 0.44 0.16 0.24

Figure 12 (top, second right) 0.24 0.44 0.12 0.24
Figure 12 (top, rightmost) 0.26 0.44 0.15 0.25

Bunny

Figure 12 (middle, leftmost) 0.49 0.70 0.33 0.48
Figure 12 (middle, second left) 0.49 0.70 0.33 0.48

Figure 12 (middle, second right) 0.49 0.70 0.33 0.48
Figure 12 (middle, rightmost) 0.49 0.70 0.33 0.49

Duck

Figure 12 (bottom, leftmost) 0.27 0.46 0.16 0.27
Figure 12 (bottom, second left) 0.27 0.46 0.16 0.27

Figure 12 (bottom, second right) 0.28 0.48 0.17 0.30
Figure 12 (bottom, rightmost) 0.27 0.47 0.16 0.27

Table 5
The performance of our proposed PGCP method with different choices of cut paths. The mean, standard

deviation, median, and interquartile range of the absolute angular distortion |d| are evaluated.

allows the user to freely choose the number of subdomains to be used and how the surface
is partitioned. It is natural to ask whether the performance of our method is robust to the
choice of the cut edges. As shown in Figure 12, we consider different choices of cut paths on
several surfaces and supplying them as an input of our proposed method. The accuracy of
the resulting parameterizations is recorded in Table 5. It can be observed that the angular
distortions produced by different choices of cut paths are highly consistent, which indicates
that our method is robust to the choice of the cut paths.

5.6. Performance of our proposed PGCP method with different number of subdomains.
By partitioning a given surface into n subdomains evenly, one can reduce the original problem
with size |V| to subproblems each with size |V|n . To check the parallel efficiency of our proposed
method, we consider subdividing the bunny surface into different number of subdomains
(see Figure 13) and apply our PGCP method for conformal parameterization. Since the
maximum number of workers MATLAB creates depends on the number of physical cores, we
use another machine with six physical cores for this experiment and focus on the ratio between
the computational time with different number of subdomains.

Table 6 shows the experimental results with 2, 3, 4, 5, 6 subdomains. Note that 2 is used as
the baseline as the welding algorithm requires at least two subdomains. From the experimental
result, we observe a speedup achieved by exploiting parallelization. To evaluate the parallel
efficiency, we consider the ratio En = Sn

n/2 , where Sn is the speedup achieved by n subdomains

compared to the baseline and n/2 is the subdomain ratio. It can be observed that En is close
to 1 for small n but shows a decreasing trend as n increases. A possible reason is that in the
numerical implementation, there are some technical steps which are not parallelizable and
hence will cost additional time as the number of subdomains increases. For instance, both the
step of partitioning the surface into subdomains and the step of combining the parameterization
results of all subdomains as a large |V| × 2 or |V| × 3 matrix involve non-sliced variables (i.e.
matrices that cannot be broken up into segments by MATLAB), such as face(subdomain id

== i,:) where face is the original |F| × 3 triangulation, subdomain id is the ID of the
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Figure 12. The global conformal parameterizations produced by our PGCP method with different choices
of cut paths. Each subdomain is with a distinct color. Top example: a simply-connected open human face
surface with different cut paths, and the corresponding free-boundary conformal parameterization results. Middle
example: a simply-connected open bunny surface with different cut paths, and the corresponding disk conformal
parameterization results. Bottom example: a genus-0 closed duck surface with different cut paths, and the
corresponding spherical conformal parameterization results.
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Figure 13. The bunny model divided into different number of subdomains for the speedup experiment. Left
to right: 2, 3, 4, 5, 6.

# of subdomains n 2 3 4 5 6
Average mesh size |V|/n 42K 28K 21K 17K 14K

Parallel speedup Sn 1 1.31 1.66 1.91 2.05
n/2 1 1.5 2 2.5 3

Parallel efficiency En 1 0.87 0.83 0.76 0.68
Table 6

The performance of our proposed PGCP method for parameterizing the bunny model, with different number
of subdomains used. Note that the welding algorithm requires at least two subdomains and hence we use n = 2
as the baseline. For this reason, we define the parallel speedup to be Sn = T2

Tn
where Ti is the time taken with i

subdomains used, and the parallel efficiency to be En = Sn
n/2

.

connected component each triangle belongs to (after the mesh is cut along the set of cut
edges E). With the non-sliced variables, those computations are not parallelizable under the
current MATLAB parallel computing (parfor) framework. For this reason, the ideal parallel
efficiency cannot be achieved as n increases. We anticipate that this issue can be alleviated by
performing code optimization or considering alternative implementation languages.

5.7. Applications. The above experiments demonstrate the improvement of our proposed
PGCP method over the state-of-the-art conformal parameterization algorithms. In this section,
we discuss the applications of it.

5.7.1. Texture mapping. One application of our proposed PGCP method is texture
mapping. After conformally flattening a surface onto the plane using our method, we can
design a texture on the parameter domain. Since there is a 1-1 correspondence between the
input surface and the parameter domain, we can then use the inverse mapping to map the
texture back onto the surface, thereby obtaining a surface with the desired texture on it.
Several examples are shown in Figure 14. It is noteworthy that our method is conformal
and hence the local geometry of the texture pattern is well preserved. For instance, the
checkerboard texture shown in Figure 14 can maintain its orthogonality on the Ogre surface.

5.7.2. Surface remeshing. Our proposed PGCP method can also be applied to surface
remeshing, which aims at improving the mesh quality of a given surface. By conformally
parameterizing the surface and constructing a regular mesh structure on the parameter
domain, we can use the inverse mapping to map the mesh structure back onto the surface,
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Figure 14. Texture mapping via our proposed PGCP method. Left: the input mesh. Middle: the pa-
rameterization achieved by PGCP rendered with normal map shader, overlaid with a texture (colored checker-
board/hair/stone). Right: the texture mapping result.

thereby remeshing the surface (see Figure 15 for example). It is noteworthy that since the
parameterization is conformal, the regularity of the mesh structure defined on the parameter
domain is well-preserved on the surface.
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Figure 15. Surface remeshing via our proposed PGCP method. Left: the input surface. Right: the remeshed
surface with improved mesh quality.

Figure 16. Patterns formed on the genus-0 David surface by solving the Ginzburg-Landau equation on the
spherical conformal parameterization. The leftmost is the initialization, and the rightmost is the final result.

5.7.3. Solving PDEs on surfaces. Another notable application of our proposed PGCP
method is solving PDEs on surfaces [42]. While solving PDEs on a general surface is difficult,
solving them on a standard parameter domain such as the unit sphere or the unit disk
is relatively easy. Figure 16 shows an example of patterns formed on the genus-0 David
surface by solving the time-dependent Ginzburg-Landau equation on the spherical conformal
parameterization obtained by our proposed PGCP method. The PDE on the sphere is solved
using Chebfun [54]. The example demonstrates the use of our method for PDE-based surface
decoration.

5.7.4. Other applications. Some other possible applications of conformal parameteriza-
tions include surface registration [31], medical visualization [24] and surface morphing [26].
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As our proposed PGCP method is advantageous over the state-of-the-art algorithms in both
the computational time and the conformal distortion, these tasks can be done with higher
efficiency and accuracy using our method.

6. Discussion.

6.1. Conformality improvement. From our experimental results as shown in Tables 2, 3,
4, it can be observed that the conformality improvement achieved by our method is particularly
significant for meshes with elongated parts, such as the horse model and the octopus model
(see Figure 8). A possible explanation is that unlike the prior methods which compute the
global conformal parameterization of a given surface by directly handling the entire surface,
our method takes advantage of surface splitting. Note that in the step of solving the Laplace
equation for the entire surface, the elongated parts of the surface are extremely squeezed
relative to the boundary of the parameter domain (here the boundary corresponds to either the
actual boundary of an open surface, or a triangle/vertex star of a closed surface), leading to
numerical inaccuracy. Also, all elongated parts have to be taken into account in one single solve.
By contrast, our method divides the meshes into subdomains and solves the Laplace equation
for each subdomain, making the elongated parts less squeezed relative to the boundary of each
flattened subdomain. Also, the number of elongated parts involved in each solve is reduced by
the surface partition.

6.2. Area distortion. Note that one common issue of global conformal parameterizations is
that the area is largely distorted [16]. While we have demonstrated the improvement in efficiency
and conformality by our proposed method for computing global conformal parameterizations,
one may also be interested in the area distortion produced by our method. To quantify the
area distortion, for a surface mesh S = (V,F) and a parameterization mapping ϕ : S → R2 or
S2, we define the area distortion of a triangle T ∈ F by

(6.1) darea(T ) = loge
Area(f(T ))/

(∑
T ′∈F Area(f(T ′))

)
Area(T )/

(∑
T ′∈F Area(T ′)

) .

In other words, darea measures the logged area ratio between the triangle in the original
mesh and the corresponding triangle in the parameter domain, with two normalization factors
removing the global area difference between the original mesh and the parameter domain.
darea ≈ 0 indicates that the area distortion is small, and a large value of |darea| indicates that
the area distortion is large (i.e. the triangle is either shrunk or magnified).

Table 7 shows the area distortion of the BFF method [56] and the proposed PGCP method
for various types of global conformal parameterizations. For spherical conformal parameteriza-
tion, our method achieves a lower area distortion. For disk conformal parameterization, the
two methods achieve similar area distortions. For free-boundary conformal parameterization,
the BFF method possesses a lower area distortion.

The larger area distortion produced by our method in some cases is due to the lack of
area control throughout the algorithm. To reduce the area distortion, one possible way is
to include an extra step of composing the parameterization mapping ϕ with some Möbius
transformations in our method. The conformality of the parameterization will be preserved as
Möbius transformations are conformal, and the area distortion can be reduced by choosing a
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Parameterization Surface BFF [56] PGCP

PGCP with an
additional

Möbius
transformation

Free-boundary

Sophie 0.18 0.21 0.18
Niccolò da

Uzzano
0.60 0.84 0.57

Mask 0.24 0.58 0.32
Max Planck 2.49 2.62 2.50

Bunny 2.68 3.32 2.95
Julius 0.28 1.04 0.52

Buddha 0.78 1.20 1.16

Disk-boundary

Ogre 1.21 1.21 1.21
Niccolò da

Uzzano
0.76 0.86 0.57

Brain 2.17 2.13 2.13
Gargoyle 3.90 3.90 3.87

Hand 5.29 5.25 5.25
Octopus 6.79 8.13 8.13
Buddha 0.78 0.79 0.77

Spherical

Horse 27.03 8.90 6.54
Bulldog 6.74 1.09 1.08

Chinese Lion 4.46 1.93 1.74
Duck 7.92 1.00 0.84
David 0.85 0.85 0.36

Octopus 26.95 26.44 26.19
Lion Vase 7.13 0.92 0.84

Table 7
The area distortion mean(|darea|) of the global conformal parameterizations produced by the boundary first

flattening (BFF) method [56], the proposed PGCP method, and the proposed PGCP method with an additional
step of composing with a Möbius transformation ( (6.2) for free-boundary conformal parameterization, (6.3) for
disk-boundary conformal parameterization, and (6.2) together with the stereographic projection for spherical
conformal parameterization).

suitable Möbius transformation. For instance, for free-boundary conformal parameterization,
one can search for an optimal Möbius transformation

(6.2) f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C with ad − bc 6= 0, such that the composition f ◦ ϕ minimizes the area
distortion. For disk conformal parameterization, one can similarly search for an optimal
automorphism

(6.3) f(z) =
z − α
1− ᾱz

,

where α ∈ C with |α| < 1, such that the composition f ◦ ϕ minimizes the area distortion.
For spherical conformal parameterization, denote the stereographic projection by τ : S2 → C.
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One can search for an optimal Möbius transformation as described in (6.2) such that the
composition τ−1 ◦ f ◦ τ ◦ ϕ minimizes the area distortion.

To verify this simple idea, we solve the above optimization problems using the MATLAB’s
optimization solver fmincon. For free-boundary and spherical conformal parameterizations,
there are eight real parameters to be optimized (the real and imaginary parts of a, b, c, d). For
disk conformal parameterizations, there are two real parameters to be optimized (the modulus
and argument of α). The final results are recorded in the rightmost column of Table 7. It can be
observed that the area distortion is effectively reduced with the aid of Möbius transformations in
many cases, especially for free-boundary conformal parameterizations and spherical conformal
parameterizations. The improvement for disk conformal parameterizations is relatively less
significant, possibly due to the smaller number of free parameters. To achieve an even lower
area distortion may require the composition with some other conformal transformations, which
we plan to explore in the future.

6.3. Alternative numerical approaches for accelerating the computation. While we have
demonstrated the advantages of our proposed method over the prior conformal parameterization
methods in terms of the computational time and conformality using the idea of partial welding,
another path for accelerating the computation is to consider alternative numerical approaches
for the prior methods.

Note that the MATLAB code of CETM [18] solves an unconstrained optimization problem
for the discrete conformal functional in each step using MATLAB’s fminunc function, which is
not parallelizable under the current MATLAB parallel computing framework (MATLAB only
supports using parallel computing to estimate the numerical gradients for fminunc in case they
are not supplied, but in the CETM code the gradients are already supplied). SCP [17] involves
solving a generalized eigenvalue problem which is done in MATLAB using the eigs function.
However, multithreading is currently not supported for this function for sparse matrices.
Replacing these MATLAB functions by external routines is not straightforward and so we
proceed to consider accelerating the CEM method [26] for disk conformal parameterizations.
Note that CEM is an iterative method that solves two Laplace equations (one for the boundary
nodes and one for the interior nodes) for each step, and the Laplacian matrices are unchanged
throughout the iterations. Here we consider combining CEM with the Combinatorial Multigrid
(CMG) method [58], which is a hybrid graph-theoretic algebraic multigrid solver that com-
bines the strengths of multigrid with those of combinatorial preconditioning, with MATLAB
implementation publicly available [59]. We replace the backslash solve (\) in the MATLAB
implementation of CEM [52] by the CMG solver. Table 8 shows the performance of CEM,
CEM combined with CMG, and our proposed method. It can be observed that while CEM
combined with CMG demonstrates an improvement in efficiency for large problems when
compared to the original CEM, our proposed method is still more advantageous in terms of
both the efficiency and conformality.

There are many other numerical approaches and solvers which are worth exploring as
alternative paths toward parallelization, such as the parallel sparse linear system solvers by
Koutis and Miller [60], Peng and Spielman [61] and Kyng et al. [62], the Lean Algebraic
Multigrid (LAMG) method [63] for solving the sparse linear systems involved in the prior
parameterization methods. Incorporating these alternative numerical approaches into the
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Surface # vertices
CEM [26] CEM [26] with CMG PGCP

Time (s) mean(|d|) Time (s) mean(|d|) Time (s) mean(|d|)
Ogre 20K 0.3 2.6 0.3 2.6 0.5 1.5

Niccolò da
Uzzano

25K 1.4 1.3 1.5 1.4 0.8 0.8

Brain 48K 2.9 1.5 2.8 1.5 1.3 1.5
Gargoyle 50K 2.8 2.1 3.2 2.1 1.4 1.9

Hand 53K 3.4 1.2 3.2 1.4 1.4 1.2
Octopus 150K 10.4 24.0 9.3 26.6 8.9 5.6
Buddha 240K 25.1 0.7 18.5 0.9 11.4 0.7
Nefertiti 1M 83.2 4.2 74.4 4.2 52.7 2.9

Table 8
The performance of the conformal energy minimization (CEM) [26] method, CEM combined with the

Combinatorial Multigrid (CMG) [58], and our proposed PGCP method for disk conformal parameterization of
simply-connected open surfaces.

current codes will require a careful consideration of the linkers and the cost of communication
between different software and external libraries. Moreover, even if exploiting parallelization
for solving the sparse linear systems can speed up the computation of the prior conformal
parameterization methods, unlike our proposed partial welding approach, this approach is
unable to improve their conformality or allow them to handle a wider class of surfaces.

7. Conclusion. In this work, we have proposed a novel parallelizable global conformal
parameterization method called PGCP for simply-connected surfaces. Given a triangle mesh,
we partition it into submeshes and conformally flatten each of them using DNCP. As the local
parameterization results do not yield a consistent global parameterization, we extract their
boundary points to integrate them using a novel technique called partial welding. Using the
modified boundaries for all submeshes, harmonic maps can be computed to yield a global
conformal parameterization, with bijectivity guaranteed by quasi-conformal theory. Additional
steps can be included to produce disk conformal parameterizations for surfaces with boundary,
and spherical conformal parameterizations for genus-0 closed surfaces.

Most parts of our proposed method, such as the initial local conformal parameterization
step and the last harmonic mapping step, can be computed independently in a distributed
manner. The only global computation involved in our algorithm takes merely boundary
data points of the submeshes, which are much fewer than the vertices of the entire mesh.
Experimental results have demonstrated the significant improvement in efficiency and accuracy
achieved by our proposed method when compared to the state-of-the-art approaches for
free-boundary conformal parameterization, disk conformal parameterization and spherical
conformal parameterization.

For future work, we plan to explore the possibility of extending our method for quasi-
conformal parameterizations and mappings [43–45]. More specifically, note that the partial
welding step in our proposed method is conformal, and the quasi-conformal dilatation of a
map is preserved under the composition with conformal maps. Therefore, it should be possible
for us to compute quasi-conformal parameterizations and mappings for dense meshes by a
combination of local quasi-conformal maps of submeshes and partial welding. Another possible
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future work is the extension of our method for point clouds. As the partial welding approach
uses only the boundary data points of the flattened submeshes but not the mesh structure of
them, it should also be applicable for subdomains of a point cloud. Combining the partial
welding approach with some existing conformal parameterization methods for disk-type point
clouds will then yield a parallelizable global conformal parameterization method for point
clouds.
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