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Abstract

We describe a new approach to certifying the global nonnegativity of multivariate polynomi-
als by solving hyperbolic optimization problems—a class of convex optimization problems that
generalize semidefinite programs. We show how to produce families of nonnegative polynomials
(which we call hyperbolic certificates of nonnegativity) from any hyperbolic polynomial. We
investigate the pairs (n,d) for which there is a hyperbolic polynomial of degree d in n vari-
ables such that an associated hyperbolic certificate of nonnegativity is not a sum of squares. If
d > 4 we show that this occurs whenever n > 4. In the degree three case, we find an explicit
hyperbolic cubic in 43 variables that gives hyperbolic certificates that are not sums of squares.
As a corollary, we obtain the first known hyperbolic cubic no power of which has a definite
determinantal representation. Our approach also allows us to show that, given a cubic p, and a
direction e, the decision problem “Is p hyperbolic with respect to ¢?” is co-NP hard.

1 Introduction

The problem of deciding nonnegativity of a multivariate polynomial is central to solving optimiza-
tion and feasibility problems expressed in terms of polynomials. These, in turn, arise naturally
in a wide range of applications including control systems and robotics, combinatorial optimiza-
tion, game theory, and quantum information (see Section 1.2 for further discussion, and the edited
volume [BPT12] for an introduction to these ideas).

One of the benefits of a polynomial formulation of an optimization problem is that one can
then construct a hierarchy of more tractable ‘relaxations’ of the problem, based on the fact that
being a sum of squares of polynomials is a sufficient condition for a polynomial to be nonnegative.
Deciding whether a polynomial is a sum of squares can be formulated as a semidefinite programming
feasibility problem [Sho87, Nes00, Par03, Las01]. While such semidefinite programming-based
relaxations of semialgebraic problems have proven very useful for a range of problems, there has
been notable recent progress (both qualitative [Sch18] and quantitative [LRS15]) demonstrating
the limitations of this approach.

Hyperbolic optimization problems (or hyperbolic programs) are a family of convex optimization
problems that generalize semidefinite optimization problems [G{i1l97]. These involve maximizing a
linear functional over the intersection of an affine subspace and a hyperbolicity cone (a convex
cone constructed from a hyperbolic polynomial, which is a multivariate polynomial with certain
real-rootedness properties that we define precisely in Section 2). Hyperbolic programs enjoy many
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of the good algorithmic properties of semidefinite programs [Giil97]. Despite this, algorithms for
hyperbolic programming are less mature than those for semidefinite programming. Indeed, much of
the recent research on hyperbolic programming has focused on trying to reformulate various classes
of hyperbolic programs as semidefinite programs, or on related geometric questions associated with
the ‘generalized Lax conjecture’ and its variants [Amil9, Brald, KPV15, SP15, Saul8]. This lack
of algorithmic development may be the result of not having generic ways to produce hyperbolic
programming-based formulations and/or relaxations of polynomial optimization problems, beyond
those already captured by sums of squares.

This paper introduces ways to construct families of nonnegative polynomials that can be
searched over via hyperbolic optimization. We call these hyperbolic certificates of nonnegativ-
ity. By appropriately choosing the data that specify such a family of nonnegative polynomials, we
can recover sums of squares certificates of nonnegativity. As such, using the ideas in this paper,
we could construct hyperbolic programming-based relaxations of polynomial feasibility and opti-
mization problems by replacing sums of squares relaxations with relaxations based on hyperbolic
certificates of nonnegativity. One significant challenge, not addressed in this paper, is that many
choices need to be made to specify a family of hyperbolic certificates of nonnegativity. Given a
specific structured class of polynomial optimization problems, it is currently unclear which choices
might be appropriate to obtain strong hyperbolic programming-based relaxations using the frame-
work presented in this paper.

A main focus of the paper is the construction of hyperbolic polynomials for which the associ-
ated hyperbolic certificates of nonnegativity are not sums of squares. These are of interest because
they have the potential to form the basis of hyperbolic programming-based relaxations of polyno-
mial optimization problems that are stronger than semidefinite programming-based relaxations of
comparable complexity.

1.1 Contributions

We now discuss the contributions of the paper in more technical detail, and indicate where the
main results appear in the paper.

Hyperbolic certificates of nonnegativity Given a hyperbolic polynomial p of degree d in n
variables and a direction of hyperbolicity e € R™ (see Section 2.2 for the definition of these terms),
we construct a polynomial map

(.%', y) = ¢p7€(x7 y) H
from R™ x R? to linear functionals on R™ such that ¢y (z,y)[u] > 0 for all z,y if, and only if, u is
in the hyperbolicity cone associated with p and e (Theorem 3.7). This slightly extends a related
construction due to Kummer, Plaumann, and Vinzant [KPV15].

If f and g are polynomial maps, then ¢, .(f(2),g(2))[u] is a nonnegative polynomial in z when-
ever u is in the hyperbolicity cone associated with p and e. If a polynomial can be written this way
for a choice of hyperbolic polynomial p, direction of hyperbolicity e, and polynomial maps f and g,
we say it has a hyperbolic certificate of nonnegativity (see Definition 3.12). We can search for such a
description of a polynomial (for fixed p, e, f, and g) by solving a hyperbolic optimization problem.
Moreover, by appropriately specifying these data, we can recover sums of squares certificates of
nonnegativity (Proposition 3.13).

Hyperbolic and SOS-hyperbolic polynomials If all nonnegative polynomials of the form
¢p.e(x,y)[u] are sums of squares, we say that p is SOS-hyperbolic with respect to e (see Defini-
tion 4.2). From the point of view of this paper, we are most interested in hyperbolic polynomials



that are not SOS-hyperbolic, since these give rise to tractable families of nonnegative polynomials
that go beyond sums of squares.

In Sections 4 and 5 we investigate the degrees d, and numbers of variables n, for which there is a
hyperbolic polynomial that is not SOS-hyperbolic. In Section 4 we characterize when this happens
for d > 4 by showing that the specialized Vamos polynomial,

2.9
p(x1, T, k3, 24) = 25275 + 4(T12923 + L1294 + 12374 + Tox324) (1 + T2 + T3 + T4),

is hyperbolic but not SOS-hyperbolic (Proposition 4.9), and showing how to take a hyperbolic but
not SOS-hyperbolic polynomial and increase its number of variables, or its degree, and maintain
this property (Propositions 4.10 and 4.13). Variations of the specialized Vamos polynomial have
been studied by Brandén [Brall], Kummer [Kuml6], Kummer, Plaumann, and Vinzant [KPV15],
Burton, Vinzant, and Youm [BVY14], and Amini and Brandén [AB18]. Notably, [KPV 15, Example
5.11] shows that a closely related quartic in five variables is hyperbolic but not SOS-hyperbolic.

In Section 5 we study the case d = 3, and obtain a partial classification of when hyperbolicity
and SOS-hyperbolicity coincide. We show how to construct, from a simple graph, a one-parameter
family of cubic polynomials that are hyperbolic if, and only if, the parameter is bounded by the
clique number of the graph. This allows us to establish co-NP-hardness of deciding hyperbolicity
of cubic polynomials (Theorem 5.4). By choosing G = (V, £) to be the icosahedral graph, (with 12
vertices and 30 edges), we obtain a hyperbolic cubic

p(zo, z,y) = 2§ — 30 Zx?—{— Z yfj +9 Z TiTYij, (1)
=y {ijye€ {ijyee
in 43 = 1+ 12 + 30 variables that we show is not SOS-hyperbolic.

The known cases where all hyperbolic polynomials are SOS-hyperbolic occur because, if a power
of a polynomial has a definite determinantal representation, then it is SOS-hyperbolic (Propo-
sition 4.7). This is a common generalization of results due to Kummer, Plaumann, and Vin-
zant [KPV15], and Netzer, Plaumann, and Thom [NPT13]. As such, any hyperbolic polynomial
that is not SOS-hyperbolic is a hyperbolic polynomial for which no power has a definite deter-
minantal representation. In particular, the cubic polynomial (1) associated with the icosahedral
graph, appears to be the first reported hyperbolic cubic with this property.

Parameterizing the dual cone The dual cones of hyperbolicity cones are, in general, not well
understood. In Section 7 we show that the polynomial map (z,y) — ¢pc(z,y)[-] almost (i.e., up
to closure) parameterizes the dual of the associated hyperbolicity cone (Theorem 7.2). We then
discuss specific situations in which the map exactly parameterizes the closed dual cone, giving new
‘hidden convexity’ results, where the image of a polynomial map is convex.

1.2 Applications via polynomial optimization

We now discuss, in a little more detail, the connection between certifying nonnegativity of polyno-
mials and polynomial optimization, and touch on some of the myriad applications of polynomial
optimization.

Polynomial optimization problems involve the minimization of a multivariate polynomial over a
set defined by polynomial inequality and equality constraints. By introducing additional variables,
one can reduce to the case of minimization over the real points of an algebraic variety V defined
by polynomial equations, i.e.,

minimize, ¢o(z) subject to z € VNR". (2)



For instance, if qo(2) = ||.A(2) —y||?, for a linear map A, then (2) includes the problem of computing
the nearest point to a given variety [DHO™ 16], or more generally, the distance from an affine space
to a variety. Such problems can often be interpreted as structured linear inverse problems, in which
we seek to estimate a structured object z, € VN R™ (such as a rank one tensor) from noisy linear
measurements, represented by y. Problems as diverse as noisy low-rank tensor completion [BM16]
and simultaneous localization and mapping (SLAM) in robotics [RDL15] can be expressed in this
form. Other cases of (2), in which VN R C {—1,1}", capture combinatorial optimization prob-
lems. For instance, in error correction coding, the problem of decoding binary linear codes can
be formulated as the optimization of a linear functional gy over the real variety defined by the
codewords [FWKO05, GLPT12].

The polynomial optimization problem (2) can be reformulated as the maximization of a lower
bound on gg over the real points of the variety, i.e.,

maximize, v subject to go(z) —v >0 for all z€ VNR".

This leads us to the connection with certificates of nonnegativity. If we can find a globally non-
negative polynomial ¢ such that go(z) — v agrees with ¢ on V N R", it follows that ~y is a lower
bound on the objective value of (2). We can make this computationally tractable by searching over
families of nonnegative polynomials ¢ with tractable certificates of nonnegativity, such as sums of
squares of degree at most 2d. This approach gives rise to semidefinite programming relaxations of
polynomial optimization problems.

Hyperbolic certificates of nonnegativity, introduced in this paper, expand the scope of tractable
relaxations possible for polynomial optimization problems. If we fix a hyperbolic polynomial p, a
direction of hyperbolicity e, and polynomial maps f and g, we can obtain a hyperbolic programming
relaxation of (2) as

10(2) =7 = 6pelf(2), 9())[u] for all z € V
u € hyperbolicity cone associated with p and e.

3)

maximize, , 7y subject to {

Depending how how V is represented, there are different approaches to making the equality con-
straints, which are linear in v and u, explicit. If it is straightforward to sample from the irreducible
components of V, the sampling-based approach of Cifuentes and Parrilo [CP17] could be used. Oth-
erwise one can use methods based on Grébner bases [PP12]. We show, in Proposition 3.13, that
there are ways to choose p, e, f, and g so that (3) recovers a sum-of-squares relaxation. However,
it may be possible to make other choices that are more tailored to the structure of the original
polynomial optimization problem of interest. Such targeted choices may have advantages, such
as giving relaxations that can be solved more efficiently than a semidefinite programming-based
relaxation, and yet give comparable bounds on the optimal value.

2 Preliminaries

2.1 Basic notation

Let R[zy, z9, . . ., x,)q denote polynomials with real coefficients, homogeneous of degree d in the inde-
terminates x1,x2,...,2,. Let S™ denote real symmetric m x m matrices and let S[zq, x2, ..., 2,]7
denote symmetric matrices with entries in Rlz1,x9,...,z,]q. If p € Rlxy,...,2,]q and u € R™,
then Dyp(z) = Lp(z + tu)| 1o 18 the directional derivative of p in the direction u. For brevity we
write D2, p(z) := Dy Dyp(z).



If A€ 8™ is a symmetric matrix, we write A > 0 to mean that A is positive semidefinite. We
use R"™ to denote the n-dimensional real vector space and (R™)* to denote the dual space of linear
functionals on R™. If £ € (R")* and u € R"™, we use the notation {[u] for the image of u under &.
Throughout, we let ey, ea,..., e, € R"™ denote the standard basis vectors, so that e; is zero except
for the ith entry, which is one. Occasionally it is convenient to use eg,eq,..., e, as the standard
basis for R"*L. If x € R", we use ||z := /27 + -+ + 22 to denote the Euchdean norm.

2.2 Hyperbolic polynomials, hyperbolic eigenvalues, and hyperbolicity cones

A homogeneous polynomial p € R[x1,...,x,]|q is hyperbolic with respect to e € R™ if p(e) > 0 and,
for all x € R™, the univariate polynomial p,(t) := p(z + te) has only real zeros. Throughout we let
Hnq(e) denote the set of polynomials homogeneous in n variables of degree d that are hyperbolic
with respect to e € R™. If p € H,, 4(e) and = € R", we denote by Ai(z) > Aa(x) > --- > Aj(z) the
zeros of t — p(te — z), and often refer to these as the hyperbolic eigenvalues of x. These depend
on the choice of e, but we will usually suppress this in our notation. Associated with a hyperbolic
polynomial is the closed hyperbolicity cone

Ar(p,e) ={x € R" : N\j(z) >0 foralli=1,2,...,d}.

This is a convex cone, a result due to Garding [Gar59]. A hyperbolic polynomial p € H,, 4(e) is
complete if {x : A\i(z) = --- = A\g(x) = 0} = {0}. The hyperbolicity cones of complete hyperbolic
polynomials are pointed, in the sense that Ay (p,e) N (—A4(p,e)) = {0}.

The following result describes how the eigenvalue functions change, and appears in a number
of slightly different formulations in the literature [Giil97, HLJ13, ABG70]. Note that the functions
ti(s;z,u) appearing below are just a particular choice of ordering of the eigenvalues of x + su.

Theorem 2.1 ([ABG70, Lemma 3.27)). If p € H, 4(e) and x,u € R", then

d
p(z +te + su) = Ht+tzsxu)
=1

where the functions s — ti(s;x,u) are real analytic functions of s with the property that if u €
Ay(p,e), then ti(s;z,u) > 0 for all s.

The fact that t;(s;z,u) > 0 whenever u is in the hyperbolicity cone is the key property from
which essentially all nonnegativity statements in this paper can be derived.

2.3 Hyperbolic programming

If p is hyperbolic with respect to e, and £ is a linear functional, a convex optimization problem of

the form
Ax =b

UAS AJr(pa 8)

is known as a hyperbolic optimization problem. Giiler [Giil97] showed that —log, p(x) is a self-
concordant barrier function for the cone A4 (p,e). As such, hyperbolic optimization problems can
be solved using interior point methods as long as the polynomial p can be evaluated efficiently. More
recently, other algorithmic approaches to solving hyperbolic optimization problems have been de-
veloped, including primal-dual interior point methods [MT14], affine scaling methods [RS14], first-
order methods based on applying a subgradient method to a transformation of the problem [Ren16]
and accelerated modifications tailored for hyperbolic programs [Renl19].

minimize, &[x] subject to {



2.4 Definite determinantal representations

If Ay,..., A, are d x d symmetric matrices and e € R™ satisfies > " | A;e; > 0, then the polynomial

p(x) = det (3 i, Aixi) (4)

is homogeneous of degree d and is hyperbolic with respect to e. We say that a polynomial p €
Hna(e) has a definite determinantal representation if it can be expressed in the form (4) for some
d x d symmetric matrices Ay, Ag, ..., A, such that Y ;" | A;e; = 0. In this case its hyperbolicity
cone is a spectrahedron, and has the form Ay (p,e) = {z e R™ : Y I | Ajx; = 0}.

2.5 Bézoutians and Hankel matrices

The nonnegative polynomials we construct from hyperbolic polynomials will come from the positive
semidefiniteness of Bézoutians of certain pairs of polynomials, or of Hankel matrices associated with
certain rational functions. In this section we summarize some basic facts about these objects and
the relationships between them. These can be found, for instance, in [BMO™11] or [KN81, Section
2.1]. We give proofs of some of these results in Appendix A to make the paper more self-contained.

If a(t) and b(t) are univariate polynomials with deg(b) < deg(a), define the m x m Hankel

matrix
b b(t) k
Hm <a> = [hi+jfl]z‘lj:1 where T = E hkt

=1
If a(t) and b(t) are univariate polynomials with deg(b) < deg(a) < m, the Bézoutian By,(a,b)
is the m x m matrix defined via the identity

a(t)b(s) — b(t)a(s)  ~— i—1_j—1
= [By,(a, b))t 7. (5)
t—s 'szzl ’

If m > d = deg(a), then the m x m Bézoutian is zero except in the upper left d x d block.
Under appropriate assumptions on a and b, the Bézoutian and the Hankel matrix are related
by a unimodular congruence transformation.

Proposition 2.2. Suppose a is a monic polynomial of degree d and b is a polynomial of degree at
most d— 1. If m > d, there exists an m x m unimodular matriz M,, with entries that are linear in
the coefficients of a, such that Bp,(a,b) = My, (a)Hy, (2) My (a)T.

Proof. See Appendix A. O

Certain linear transformations on polynomials give rise to particularly nice congruence trans-
formations on Bézoutians.

Lemma 2.3. Let a and b be univariate polynomials of degree at most d < m. Let (tp-a)(t) = a(t+to)
and (to - b)(t) = b(t + to) be shifted versions of those polynomials. Then

Bn(to - a,to - b) = K(to)Bu(a,b) K (to)T  where [K(to)]jx = <"f B 1>t§j

with the convention that (’;) =014k <jy.

Proof. Combine Theorem 2.7 of [BMO™11] with the discussion on page 34 of [BMO™11]. O



3 Hyperbolicity cones as sections of nonnegative polynomials

In this section we show how to construct, from a hyperbolic polynomial p € H,, 4(e), a subspace of
polynomials for which the cone of nonnegative polynomials in the subspace is linearly isomorphic
to the hyperbolicity cone Ay (p,e). Consequently, we can optimize over nonnegative polynomials
from this subspace by solving hyperbolic optimization problems.

Our approach is closely related to the following result of Kummer, Plaumann, and Vinzant.

Theorem 3.1 (Kummer, Plaumann, Vinzant [KPV15]). If p € H, q(e) is square-free, then u €
A (pre) if, and only if, Dyp(x) Dep(x) — p(x) Ducp(z) > 0 for all z.

This shows that the hyperbolicity cone A4 (p, e) is linearly isomorphic to the intersection of the
cone of nonnegative polynomials in n variables of degree 2d — 2 with the subspace spanned by the
polynomials D, p(z)Dep(z) — p(x)De,ep(z) for i =1,2,...,n.

Our variation on Theorem 3.1 is expressed in terms of the Bézoutian, or alternatively the
corresponding Hankel matrix, associated with a polynomial and its directional derivative.

Definition 3.2. If p € R[zy,...,z,]) and u € R", let p,(t) = p(x+te) and let Dyp,(t) = Dyp(xz+te).
The parameterized Bézoutian is the d X d symmetric matrix with polynomial entries given by

pre(x)[u] = Bd(pl": Dupm)'

The parameterized Hermite matrix is the d x d symmetric Hankel matrix with polynomial entries

given by
Du X
Hye ()] = Hd< 2 ) .

Note that By, c(z)[u] and Hp(z)[u] are both linear in u. Moreover,

d

Depa(t) _ 1 e R ‘< R
b et 0 Hae@lell = 3 Al

This is (up to a choice of sign) exactly the parameterized Hermite matrix from [NPT13].

Example 3.3 (Parameterized Hermite matrix for the determinant). If p(X) = det(X) is the
determinant restricted to symmetric matrices, e = I, and U is a symmetric matriz, then

Hpo(X)[U];j = [tr(UXT72)];;.
This follows from the fact that

DU det(X + tI)
det(X + tI)

= Dylogdet(X +tI) = tr(U(X +tI)™}) = itr(U(—X)k_l)t_k.
k=1

The following relationship between the parameterized Bézoutian and Hermite matrices allows
positivity statements about parameterized Bézoutians to be transferred to corresponding positivity
statements about parameterized Hermite matrices, and vice versa.

Proposition 3.4. Ifp € Rlx1,...,7,]q and u € R™, then there are matrices My .(z) and M, o(x) ™!,
both with polynomial entries, such that By.e(z)[u] = My (2)Hp e (z)[u] My o (x)T.



Proof. First assume that p(e) = 1 so that p,(¢) is monic. The result then follows from Proposi-
tion 2.2 and the fact that the coefficients of p,(t) are polynomials in x. Moreover, in this case
M) ¢(x) has determinant one. For the general case, write p(z) = p(e)p(x) where p,(t) is monic.
Then Bye(z)[u] = p(e)?Bse(z)[u] and Hy (z)[u] = Hjo(7)[u] so we have M, (x) = p(e)M; ()
from which we see that M, .(z)~ = p(e) "' M .(x) ™! which has polynomial entries. O

The following result (the essence of which goes back to Hermite), gives a characterization of
hyperbolic polynomials in terms of the parameterized Hermite matrix. A statement in this form
can be found, for instance, in [NPT13].

Theorem 3.5. Given p € Rz1,...,2,]q and e € R", we have that p € Hy, 4(e) if, and only if,
H,(z)[e] = 0 for all z € R™.

By using Proposition 3.4, this characterization of hyperbolicity can also be expressed in terms
of the parameterized Bézoutian.

Corollary 3.6. Given p € Rlz1,...,z,]q and e € R™, we have that p € Hy q(e) if, and only if,
By e(x)[e] = 0 for all z € R™.

Our main result for this section shows that these tests for hyperbolicity can be extended to give
a description of the full hyperbolicity cone. We defer the proof until Section 6.

Theorem 3.7. Ifp € H, q4(e), then

Ay(pe) ={ueR" : Hy.(x)u] =0, forall z € R"}
={ueR" : By(zr)[u] =0, forall z € R"}.

Remark 3.8. The (1,1) entry of Bpc(x)u] is Dyp(x)Dep(x) — p(x)Dyep(x). It follows from
Theorem 3.7 that, if p € Hy, 4(e), and u € Ay (p,e), then [By o(x)[u]]11 > 0. This is one direction of
Kummer, Plaumann, and Vinzant’s result (Theorem 3.1).

In what follows, it is sometimes convenient to use the following variations on Theorems 3.5
and 3.7, respectively. In some arguments they allow us to reduce the number of variables in certain
polynomials by one.

Corollary 3.9. Let p € Rlz1,...,x5]q, € € R™, and let W C R"™ be a codimension one subspace
such that e ¢ W. Then p € Hy q(e) if, and only if, Bpe(x)[e] = 0 for all x € W, which holds if,
and only if, Hyc(x)[e] = 0 for all z € W.

Corollary 3.10. Ifp € H, 4(e) and W C R" is a subspace such that codim(W) =1 and e ¢ W,
then

Ar(p,e) ={ueR" : Hy.(x)u] =0, foral ze W}
={ueR" : Bpe(x)[u] =0, forall z € W}.

Corollaries 3.9 and 3.10 follow from the following observation about parameterized Bézoutians.

Proposition 3.11. Suppose that p € R[xq,...,z,]q and u € R™. Then there exists a unimodular
polynomial matriz K (ty) such that Bye(z + toe)[u] = K (to) Bpe(x)[u] K (to)T for all z € R"™ and all
to € R.



Proof. This follows directly from Lemma 2.3 since

Bye(z + toe)[u] = Ba(to - pz,to - Dupz) = K (to) Ba(pz, Dups) K (to)”

for all x € R™ and all ¢y € R. Furthermore, one can directly check from Lemma 2.3 that K (o) is
upper triangular and det(K (tg)) = 1. O

It follows immediately that By .(x)[u] = 0 for all z € R™ if, and only if, By (x)[u] = 0 for all
x € W whenever W is a codimension one subspace of R" and e ¢ W. Corollary 3.9 then follows
from Theorem 3.5 and Corollary 3.6. Similarly Corollary 3.10 then follows from Theorem 3.7.

3.1 Hyperbolic certificates of nonnegativity

One consequence of Theorem 3.7 is that if p € H,, q(e) and v € A4 (p, e), then both of the following
polynomials

dpe(@,y)[u] ==y  By(2)[uly and (6)
¢ge($7y)[u] = yTHp,e@:)[u}ya (7)

are globally nonnegative in z and y. By composing the polynomials qﬁge(w, y)[u] or qﬁge(a;, y)[u]
with other polynomial maps we obtain further nonnegative polynomials.

Definition 3.12. We say that a polynomial ¢ in m variables has a hyperbolic certificate of non-
negativity with respect to (p,e) if there exists u € A1 (p, e) and polynomial maps f : R” — R™ and
g : R™ — R such that

4(2) = dpe(f(2), 9(2)[u] for all z € R™. (8)

Since the parameterized Bézoutian and Hermite matrix are the same up to a unimodular con-
gruence transformation (see Proposition 3.4), there is no difference between using gbﬁe or qbge in
Definition 3.12. We can transform from one representation to another by changing g appropriately.
From now on, we will often write ¢, . instead of gbge unless we specifically want to work with the
Bézoutian formulation.

Any polynomial that has a hyperbolic certificate of nonnegativity is nonnegative due to Theo-
rem 3.7. Moreover, given a polynomial ¢ € R[x1, ..., Zy]24, the problem of searching for a hyper-
bolic certificate of nonnegativity of ¢ can be cast as a hyperbolic feasibility problem:

find u € Ay(p,e) such that ¢(z) = ¢pc(f(2),9(2))[u] for all z € R™

which aims to find a point in the intersection of the hyperbolicity cone and the affine subspace
defined by, for instance, equating coefficients in the polynomial identity (8).

Recovering sums of squares certificates A homogeneous polynomial ¢ € Rlxy,...,Zm]2q
is a sum of squares if there is a positive integer k and homogeneous polynomials p1,...,pr €
R[x1,...,2m]q such that g(x) = Zlepi(x)Q for all x € R™. Clearly any sum of squares is non-

negative. Furthermore, it is well known that if mg(x) is the vector of all monomials that are
homogeneous of degree d in m variables then ¢ is a sum of squares if, and only if,

(")

there exists Q€ S, ¢ such that g(x) = mg(z)T Qma(x).

This allows one to search for a sum of squares certificate of the nonnegativity of ¢ via solving a
semidefinite feasibility problem.



If g is a sum of squares, we can choose the data (p, e, f, and g) in Definition 3.12 to give a
hyperbolic certificate of nonnegativity for q. This shows that our notion of hyperbolic certificates
of nonnegativity captures sums of squares as a special case.

. ("
Proposition 3.13. Let ¢ € R[z1,...,2y]2q be a sum of squares, and let Q € S ¢ 7 be such that
q(z) = mg(x)TQmg(z). Then q has a hyperbolic certificate of nonnegativity as

q(x) = ¢pe(F(2),9(2))[U]
where

p(X) = det(X), e=1, U:[g g] F(x):[md(x) O)T} and  g(z) = es.

Proof. From our choice of p and g, we see that ¢, .(F (), g(z))[U] = el Haer 1 (F(x))[U]es. From (3.3),

F Haees (F(@)Ules = @ F @) = ([ o [ gm0 )

= ma(z)" Qma(z) = q(z).
O

We have now seen that every sum of squares has a hyperbolic certificate of nonnegativity. In
Section 4 we will show that there are polynomials that have hyperbolic certificates of nonnegativity,
but that are not sums of squares.

4 Hyperbolic certificates and sums of squares

In this section we study conditions under which polynomials with hyperbolic certificates of non-
negativity are, or are not, sums of squares. We will often phrase this in terms of sums of squares
certificates of the positive semidefiniteness of the parameterized Bézoutian (and Hermite matrix),
which are matrices with polynomial entries.

Definition 4.1. A d x d symmetric matrix P € S[xy, ..., z,]% with polynomial entries is a matriz
sum of squares if there exists a positive integer £ and a d x £ matrix Q with polynomial entries such

that P(z) = Q(x)Q(x)".

It is well known that P(z) is a matrix sum of squares if and only if the polynomial 37 P(x)y is
a sum of squares in x and y. We will freely pass between these two equivalent definitions.

The following is the central definition of this section and Section 5. It specifies a class of
hyperbolic polynomials for which we have not just a sum of squares certificate of their hyperbolicity,

but also a sum of squares description of the hyperbolicity cone.

Definition 4.2. If p € H,, 4(e), we say that p is SOS-hyperbolic with respect to e if By o(x)u] is a
matrix sum of squares for all u € A4 (p,e).

We use the shorthand notation ’H,S&S(e) C Hpa(e) for the collection of polynomials that are
homogeneous of degree d in n variables and SOS-hyperbolic with respect to e. If p € HE%S(G), and
¢ has a hyperbolic certificate of nonnegativity via an identity of the form ¢(z) = ¢p ( f (2),9(2)),
then ¢ is a sum of squares. As such, we are most interested in hyperbolic polynomials that are not
SOS-hyperbolic, since these give new certificates of nonnegativity.
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Table 1: The (n,d) entry of the table is = if H,a(e) = HEG(e) for all e € R™. The (n,d) entry

of the table is # if H,, 4(e) # Hi%s(e) for some e. The entry is ‘?’ in the cases that are yet to be
resolved. The entries in bold are new results (with the exception of d = 4 and 5 < n < 8 which
follow from [KPV15, Example 5.11]).

n\d |d
n=23
n=4
5<n<42

n > 43

[\V]
IS8

o
w
=Y

O v
S~

Table 1 describes our understanding of the values of n and d for which the sets Hg%s(e) and
Hnq(e) coincide. In this section we develop some preparatory results, establish the equality cases
of the table, and the remainder of the first and third columns of the table (corresponding to d = 2
and d > 4). In Section 5 we focus on the d = 3 case.

Before giving proofs establishing the entries of the table, we give a number of equivalent char-
acterizations for polynomials that are SOS-hyperbolic with respect to some direction e.

Proposition 4.3. Suppose that p € 7—[2’%5(6) and let p,(t) := p(x+te) and Dyp,(t) = Dyp(x+te).
Let W be an n x (n—1) matriz such that the n x n matriz [W e] has full rank. Then the following
are equivalent

1. ue Ay(p,e)

2. Bpe(2)[u] € S[z1,...,2,]¢ is a matriz sum of squares

8. Bpe(W2)[u] € S[z1,. .., 2n-1]% is a matriz sum of squares
e(2)[u] € S[z1,...,2,]? is @ matriz sum of squares

5 Hy (W2)[u] € S[z1, ..., 2n-1]% is a matriz sum of squares

Proof. The equivalence of 1 and 2 is just the definition of p being SOS-hyperbolic with respect to
e. The equivalence of 2 and 4 and of 3 and 5 both follow from Proposition 3.4. The equivalence of
2 and 3 follows from Proposition 3.11. O

Remark 4.4. If p € Higs(e), then A4 (p, e) can be expressed as the projection of a spectrahedron,
i.e., the image of a spectrahedron under a linear map. This is because the cone of matrix sums of
squares in S[z1,...,7,]? is a linear image of the positive semidefinite cone.

To discuss the relationship between our work and that of Kummer, Plaumann, and Vin-
zant [KPV15], we introduce a slight variation on Definition 4.2.

Definition 4.5. If p € H,4(e), we say that p is weakly SOS-hyperbolic with respect to e if
Dep(x) Dyp(z) — p(z)D2.p(x) = [Bpe(x)[u]]11 is a sum of squares for all u € Ay (p,e).

Question 4.6. Clearly, if p is SOS-hyperbolic with respect to e, then it is weakly SOS-hyperbolic
with respect to e. Under what additional assumptions on p (if any) are these two notions actually
equivalent?
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In Proposition 4.7, to follow, we show that if a power of p has a definite determinantal repre-
sentation, then p is SOS-hyperbolic. This is (at least formally) a slight strengthening of a result
of Kummer, Plaumann, and Vinzant [KPV15, Corollary 4.3], which can be rephrased as saying
that if a power of p has a definite determinantal representation, then p is weakly SOS-hyperbolic.
Proposition 4.7 also generalizes result of Netzer, Plaumann, and Thom [NPT13, Theorem 1.6],
which can be rephrased as saying that if a power of p has a definite determinantal representation,
then Hp.(x)[e] is a matrix sum of squares. The proof presented here generalizes the argument of
Netzer, Plaumann, and Thom.

Proposition 4.7. If p € H, q(e) and there is a positive integer ¢ such that p! has a definite
determinantal representation, then p € HE%S(G).

Proof. We will show that H,.(z)[u] is a matrix sum of squares whenever u € Ay(p,e). It then
follows from Proposition 4.3 that B .(x)[u] is a matrix sum of squares whenever v € A (p,e). Let
p(z) = p(x)’, and note that

Dyp(z +te)  Dyp(z+te)p(z +te)*™t  Dyp(z +te)

p(x + te) p(x + te)t 7 pla +te)

In particular, ¢H,,(py, Dupz) = Hpm(De, Dups) for all m > df. As such, it suffices to show that
Hj e (z)[u] is a matrix sum of squares.
Since p(x) has a definite determinantal representation, we can write

p(x) = det(A(x)) where A(z)= ZAixi
i=1

for real symmetric matrices Ay,..., A, such that A(e) = I. If uw € AL (p,e) = A+(p,e), then
A(u) = 0 and so has a positive semidefinite square root A(u)'/2. In Example 3.3 we explicitly
computed the matrix Hp(z)[u] and obtained

Hpe(@)luliy = tr [A@@) ™ A AY ™ = (A@) 2 A@) ™ A@w) 2 AGY .

Here the inner product is (X,Y) = tr(XTY). This is clearly a Gram matrix with factors that are
polynomials in z, and so Hj¢(x)[u] is a matrix sum of squares whenever u € A4 (p, e). O

All of the equality signs in Table 1 follow directly from known results about when powers of
hyperbolic polynomials have definite determinantal representations. In what follows, for the cases
d = 2 and n = 3 we give direct proofs, avoiding arguments about determinantal representations. It
would be interesting to find a similar direct argument if (n,d) = (4, 3).

Proposition 4.8. Ifd =2 orn =3 or (n,d) = (4,3), then H, 4(e) = HTSZ%S(e).

Proof. The case (n,d) = (4,3) follows from a result of Buckley and Kosir [BK07, Theorem 6.4],
which says that the square of any smooth hyperbolic cubic form in 4 variables has a definite
determinantal representation. Combining this with the fact that smooth hyperbolic polynomials
are dense in all hyperbolic polynomials, it follows that the square of any hyperbolic cubic in
four variables has a definite determinantal representation by a limiting argument [PV13, Proof of
Corollary 4.10].

The case n = 3 follows from the celebrated Helton-Vinnikov theorem [HV07] that (in its homo-
geneous form [LPRO5]) says that p has a definite determinantal representation. Here we give an
alternative direct argument. If we choose a basis e, €/, ¢” for R3, then, by Proposition 3.11,

By e(xoe + z1€’ + x0e”)[u] = K(20)Bpe(T1€ + 22€") [u]K(ajo)T

12



for some polynomial matrix K (zg). As such, it suffices to show that if u € A, (p, e), then B, .(z1€'+
x9€”)[u] is a matrix sum of squares. This is a positive semidefinite matrix-valued polynomial for
which each entry is a homogeneous form in z1, 2. From [BSV16, Remark 5.10] it is known that
all such polynomial matrices are matrix sums of squares.

In the case d = 2, we again give a direct argument. First note that if u € Ay (p,e), then
H, .(z)[u] = 0 for all z. Moreover, since d = 2 there is a positive constant c¢p, and polynomials
c1(z) and c2(x) homogeneous of degree one and two respectively, such that

| o alz)| 1 0l [co 0 1 e1(z)/co
Hp.o()lu) = [cl(:c) cz(x)] N [cl(a:)/co 1 [0 co(x) —c1(x)?/co] |0 1 '
As such, Hp(z)[u] is a matrix sum of squares if, and only if, the nonnegative quadratic form

c2(z) — c1(x)?/co is a sum of squares. Since any nonnegative quadratic form is a sum of squares,
we are done. O

4.1 Hyperbolic certificates that are not sums of squares: (n,d) = (4,4)

In this section we give an explicit example of a polynomial p of degree four in four variables that
is hyperbolic, but not SOS-hyperbolic, with respect to e. The example is the specialized Vamos
polynomial

pa, (T1, 22, 23, 4) = x%xz + 4(x120m3 + T1X2T4 + T1T324 + T2x374) (X1 + T2 + T3 + T4), (9)

which is hyperbolic with respect to (1,1,1,1) and has hyperbolicity cone that contains the non-
negative orthant. This is one of a much larger class of hyperbolic polynomials constructed from
k-uniform hypergraphs by Amini and Brandén [AB18, Theorem 9.4]. The name arises because the
basis generating polynomial of the Vamos matroid is

pvs(21,22,...,28) = Z Hzi

BeBieB

where B = (B)\ {{1,2,3,4},{1,2,5,6}, {1,2,7,8},{3,4,5,6},{5,6,7,8} }. The specialized Vamos
polynomial is the restriction pg,(z1, %2, x3, 1) = pvs (1,21, T2, T2, T3, T3, T4, 4) of Py, to a four-
dimensional subspace. It is known that no power of py; has a definite determinantal representa-
tion [Brill] and that the same holds for pg, [Kuml6].

Kummer, Plaumann, and Vinzant [KPV15, Example 5.11] showed that the hyperbolic poly-
nomial of degree four in five variables obtained by restricting py; to the subspace z1 = 29,23 =
24, 25 = 2¢ 18 not SOS-hyperbolic (in our language). The following result shows that the polynomial
is still not SOS-hyperbolic when further restricted to pg,.

Proposition 4.9. Let pg, be the polynomial defined in (9). Then pg, is hyperbolic with respect
to e € (0,0,1,1), and v = (0,0,0,1) € Ay(pg,,e€), and yet Bpgzpe(x)[u] s not a matriz sum of
squares.

Proof. From [ABI18, Theorem 9.4] we know that pg, is hyperbolic with respect to any point in
the nonnegative orthant, so u € A4 (pg,,e). Since pg,(e) > 0 it follows that e is a direction of
hyperbolicity for pg,. We will show that [Bp, (2)[ul]11 is not a sum of squares when restricted to
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the subspace z1 + x9 + x3 + 4 = 0. Explicitly, consider the ternary sextic form

q(x1, 9, 3) = er{BpGZpe(xl,mg,xg, —x1 — o2 — x3)[uler
= 32x103 + 562 woxs + 282 2% 4 64adad + 168x5wies + 16823 wox3+
64z 4+ 322325 + 168xwsrs + 28023 w323 + 176230025 + 462325+
56x1x%x3 + 168z 2522 + 1762123205 + 76x1m2x§ + 122123 + 28x§x§+
64a3x3 + 462325 + 120003 + 245,

We will show that ¢ is not a sum of squares by constructing a separating hyperplane with rational
coefficients. Ordering the monomials of ¢ as above, we write ¢ = Zfil c;x® where

¢ = (32,56, 28, 64,168, 168, 64, 32, 168, 280, 176, 46, 56, 168, 176, 76, 12, 28, 64, 46, 12, 2).

If V' is the Newton polytope of ¢ (the convex hull of the 22 exponent vectors «;), then the ex-
treme points of A/ are the integer points (4,2,0),(2,4,0),(4,0,2),(0,4,2),(0,0,6). As such, if
qg=>, ql-2 is a sum of squares, then the ¢; are in the subspace spanned by the monomials with
exponent vectors in %N, ie., {x%mg,mlzn%,a?%a:g,a:lz%,wlmxg,xlxg,ngg,azg}. Furthermore, since
q(1,—1,0) = ¢(1,0,—1) = ¢(0,1,—1) = 0 it follows that each ¢; must also vanish at these three
points. As such, if ¢ = ), q?, then the ¢; must be in the 5-dimensional subspace spanned by the
entries

T
m(z) = [z1wews (21 +@2)T102 (21 + 3) 3183 (T2 + T3)T2w3 (1 + o + @3) 23]

and so, if ¢ were a sum of squares, then there would be G > 0 such that

22

> cr® = tr(Gm(z)m(z)T). (10)

=1

To show that this is impossible, define a linear functional £ on the span of the % by

(£(z))i—1,..220 = (81, —249, 323,40, 24, —186, 32, 81,24, 233, —89, 15, —249,
— 186, —89, 322, —412, 323, 32,15, —412,1186).
The linear functional £ was obtained by solving a semidefinite feasibility problem numerically and

rounding the solution. It satisfies 21231 cil(x®) = —144. If we apply £ to the entries of m(z)m(z)T
we obtain

)

233 48 275 —275 144
48 242 —178 —178 -84

((m(z)m(x)T) = |—275 —178 402 377 —117| = 0.
—275 —178 377 402 —117
144 -84 —117 —117 212

Applying ¢ to both sides of (10) would give, —144 = Z?il cil(x%) = tr(GL(m(x)m(x)T)) >0, a
contradiction. ]
4.2 Increasing the degree and number of variables

We now describe a particular way to take any hyperbolic polynomial p that is not SOS-hyperbolic
and construct from it a hyperbolic polynomial that has larger degree and/or more variables, that
is not SOS-hyperbolic. We begin by showing how to increase the degree alone.
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Proposition 4.10. Suppose that p € Hy q(e) u € Ay(p,e) is such that By (x)[u] is not a matriz
sum of squares, and £(x) is a linear form such that £(e) > 0 and £(u) = 0. Let p(x) = £(x)*p(x).
Then p € Hy avk(e), u € Ay (p,e), and Bpe(x)[u] is not a matriz sum of squares.

Proof. Since £(x) is linear and £(e) > 0 it follows that ¢ is hyperbolic with respect to e and u €
Ai(l,e). Now Ay (p,e) = Ay (¢,e) N Ay(p,e) so u € Ap(p,e). Furthermore, since D, ¢(z + te) = 0,
Pa(t) = l(x 4+ te)*p(x 4+ te) and Dyp, = L(x + te)*Dyp(z + te).

Then % = %. As such, Hpo(x)[u] contains H), .(z)[u] as the upper-left d x d submatrix. It
follows that if B, (z)[u] is not a matrix sum of squares, then Hy, .(z)[u], and consequently Hj .(z)[u]
and Bj . (z)[u], are not matrix sums of squares. O

Next we discuss one way to take a hyperbolic polynomial that is not SOS-hyperbolic and
construct a new hyperbolic polynomial of the same degree in more variables that is not SOS-
hyperbolic. We begin with a simple preliminary result.

Proposition 4.11. If p € Hiods(e) and L is a subspace of R™ such that e € L, then p|; (the
restriction of p to L) is SOS-hyperbolic with respect to e.

Proof. If u € L, then it is straightforward to check that B, .()[u] is the restriction of By ¢(z)[u] to
L. As such, if By ¢(z)[u] is a matrix sum of squares for all u € Ay (p, e), it follows that By .(z)[u]
is a matrix sum of squares for all u € A, (p|; ,e) = Ar(p,e) N L.

The following simple construction of hyperbolic polynomials is a special case of, e.g., the additive
convolution (or finite free convolution) of hyperbolic polynomials [MSS15]. It involves two disjoint
sets of n and n’ variables, respectively denoted by x and z’.

Lemma 4.12. If p € Hy q(e) and q € Hyr1(€'), then
5,27) = g(€)p(x) + 4() Dep() € Hopow al(er )
and Ay (p, (e,€')) 2 {(z,2") i x € A (p,e), ' € Ay(q,€)}.

Proof. 1f w(x,2") = p(x)q(x’) then w is hyperbolic with respect to (e, €’) and its hyperbolicy cone
is the Cartesian product of A4 (p,e) and A1 (g,e’). Furthermore

;5(.%, x,) = D(e,e’)w(xv m,)
and so A4 (p, (e,€')) 2 Ay (w, (e,€')) [Ren06]. O

Proposition 4.13. If p € H,.q(e) is not SOS-hyperbolic with respect to e and q € Hyr 1(e’), then
plx,z') = q(e)p(z) + q(z")Dep(x) € Hpgnr a((€,0)) is not SOS-hyperbolic with respect to (e, 0).

Proof. First we note that (/6,0) € A1 (p, (e, €)) because p(e,0) = q(e)p(e) > 0 and (e,0) €
Ay (p,(e,€)). If L C R™™ is the subspace spanned by the first n coordinate directions, then
pl; =pand (e,0) € L. Hence, if p ¢ Hg%s(e), it follows that p ¢ Hggi,,d((e, 0)). O

We now construct, when n > 4 and d > 4, an explicit hyperbolic polynomial and direction of
hyperbolicity that is not SOS-hyperbolic with respect to that direction.

Theorem 4.14. Ifn > 4 and d > 4 and é = (0,0,1,1,0,...,0), there ezists a polynomial p €
Hn.a(€) that is not SOS-hyperbolic with respect to €.
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Proof. From Proposition 4.9, we know that if e = (0,0,1,1) and v = (0,0,0,1), then the spe-
cialized Vamos polynomial pg, is hyperbolic, but not SOS-hyperbolic, with respect to e. Let
é=1(0,0,1,1,0,...,0) and @ = (0,0,0,1,0,...,0).

We can then use Propositions 4.13 and 4.10 to construct p. Explicitly, we let ¢(2') = x5+ - -+,
and ¢ = (1,1,...,1)/(n — 4) in Proposition 4.13, and let ¢(x) = x3 in Proposition 4.10 (which
satisfies £(é) = 1 and ¢(a) = 0) to obtain

pa1,.. . xn) = 2§ (pa, (21, w2, 33, 24) + (25 + - -+ + 2n) Depa, (11, 22, 23, 74)).
This is hyperbolic with respect to € but is not SOS-hyperbolic with respect to € because By, &(x)[]
is not a matrix sum of squares. O

We conclude the section with a natural question raised by one of the referees. We know that
if p is hyperbolic with respect to e, then it is hyperbolic with respect to any ¢’ in the associated
open hyperbolicity cone.

Question 4.15. Is there a polynomial p, together with directions e and €', such that p is SOS-
hyperbolic with respect to e and €' is in the associated open hyperbolicity cone, and yet p is not
SOS-hyperbolic with respect to €' ?

If such a polynomial were to exist, it would also be an example of an SOS-hyperbolic polynomial
for which no power has a definite determinantal representation.

5 Cubic hyperbolic polynomials

In this section, we focus on hyperbolic cubics. The simple structure of the discriminant of a
univariate cubic means that there is an explicit connection between hyperbolicity of cubic forms
and the maximum value of general cubic forms on the unit sphere. Using this connection, in
Section 5.2 we show that, given a cubic form p and a direction e, both with rational coefficients, it
is co-NP hard to decide whether p is hyperbolic with respect to e. In Section 5.3 we construct an
explicit cubic form in 43 variables and a direction of hyperbolicity e, so that p is not SOS-hyperbolic
with respect to e. This gives a hyperbolic cubic for which no power has a definite determinantal
representation.

5.1 Hyperbolicity and extreme values of cubics on the sphere
In this section we focus on cubic polynomials of the form
plwo, ) = @ — 3zo(a] + -+ +ap) + 2q(x) (11)

for some ¢ € Rxq,...,z,]3, and fix the candidate direction of hyperbolicity to be eq.
The next result gives a characterization of when a cubic polynomial in the form (11) is hyperbolic
with respect to eg, and a necessary condition for it to be SOS-hyperbolic with respect to eg.

Proposition 5.1. If p(zo,z) = 2§ — 3xo||z|? + 2¢(x), where ¢ € Rlx1, ..., z,]3, then

p € Hny13(e0) <= (8, lq(z)| <1 (12)
x|l4=
— |lz||* = 2zq(z) + 2%[|z|* > 0 for all (z,2) € R" x R. (13)

Moreover, if p € 7—[751933(60), then ||z||* — 2zq(x) + 2%||z||? is a sum of squares.
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Proof. Let W = {x € R""! : 5 = 0} and note that ey ¢ W. By Corollary 3.9, p is hyperbolic with
respect to eg if, and only if, By ¢, (0, 2)[eo] = 0 for all x € R”. An explicit computation shows that

Yz —6g(z) —3|z|?
Bpeo(0,z)[eq] = | —6g(x) 6|z 0
—3||z||? 0 3

By taking a Schur complement and dividing by 6,

1" —q(x)
—q(x) |||

Similarly (14) holds for all z € R™ if, and only if,

[ 2] [Hﬂcll4 —q(ﬁf)} H = |||t — 22q(x) + 22|l2]|> > 0

Bpe(0,2)[ep] = 0 <= [ } =0 <= max |¢(x)| < 1. (14)

[l]?=1

—q(@) |l=[* ] |=
for all (z,2) e R" xR. If p € H,SL??,g(eo), then By (0, x)[eo] is a matrix sum of squares, and
(1= Jlzl®] [ 9llz*  —6q(z) —3|l=l*] [ 1

~6q(x) 6| 0 2= 6(|z(|* — 22q(z) + 2*||z]|?)
=3z 0 3 ]

is a sum of squares. ]

This connection between (SOS-)hyperbolicity and (sum of squares relaxations of) the extreme
values of cubic forms on the unit sphere, is central to the remaining discussion in this section.

5.2 Hardness of testing hyperbolicity of cubics

We have seen that for cubics in the form (11), to test hyperbolicity we need to be able to compute
the extreme values of a cubic form on the unit sphere. This connection will allow us to establish
NP-hardness of deciding hyperbolicity of cubic forms. We begin with a result of Nesterov [Nes03,
Theorem 4] stating that we can compute the size of the largest clique in a graph by maximizing an
associated cubic form over the unit sphere.

Theorem 5.2 (Nesterov). Let G = (V, &) be a simple graph (i.e., without loops and multiple edges)
and let w(G) be the size of a largest clique in G. Define

w6(x,y) = > mwyy. (15)
(3,7)€€

Then
( ) 2 1 1
max  qg(z,y) =1/ =—=4/1— —.
el +ligliz=1 "7 V 27 w(G)

Moreover, if C C V is a clique with |C| = w(G), then qg is mazimized whenever

9 . 1
= ifieC m

3;22 = { 3w(9) ‘ and y% = {3(*9) '
0 otherwise 0 otherwise

ifi,j7€C

and sign(y;;) = sign(x;)sign(x;).
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Nesterov obtained this by reformulating Motzkin and Straus’ celebrated formula for the max-
imum size of a clique in a graph in terms of the maximum value of a certain quadratic form over
the unit simplex [MS65]. Combining Nesterov’s result and Proposition 5.1 allows us to construct a
family of hyperbolic cubic forms from any simple graph.

Proposition 5.3. Given a simple graph G = (V,€) and an integer k > 2, define a cubic form in
V| + |E] + 1 variables by

pg k (@0, @, y) = =75 — zo(ll=|* + lyll*) + ag (. ).

—1
Then pg i, is hyperbolic with respect to eq if, and only if, w(G) < k.

Proof. We make the change of variables &g = ,/k6—_klx0 to obtain

(Jg x y
PG,k (T0, T, Y) \/>\/ = 3Zo(||lzlI” + [lyII*) \/»\/—
11

which is hyperbolic with respect to eq if, and only if, pg . is hyperbolic with respect to eg. The
result then follows immediately from Proposition 5.1 and Theorem 5.2. O

Given a positive integer k and a simple graph G = (V, ), the problem of deciding whether
w(G) > k+ 1 is NP-hard [Kar72]. This immediately gives the following hardness result.

Theorem 5.4. Given a homogeneous cubic polynomial p and a direction e, both with rational
coefficients, the decision problem “Is p hyperbolic with respect to e?” is co-NP hard.

This result is strong evidence that hyperbolic cubics that are not SOS-hyperbolic should exist.
Indeed, if all hyperbolic cubics were SOS-hyperbolic, we could check hyperbolicity of cubics (and
so maximize cubic forms over the unit sphere) by solving semidefinite programs of size polynomial
in the input.

5.3 A cubic that is hyperbolic but not SOS-hyperbolic

In this section we construct an explicit hyperbolic cubic that is not SOS-hyperbolic. In light of
Proposition 5.1, the basic approach will be to construct a cubic polynomial ¢ for which [|z|/* —
2zq(x) + 2?||z||* is nonnegative but not a sum of squares. Drawing on the results of the previous
section, we consider graphs G with maximum clique of size w(G) and polynomials of the form

Qwa

Vo)

By Proposition 5.1, if pg ,,g) is SOS-hyperbolic with respect to eg, then

PG w(6) (0, %, y) = — 3zo(||z[|* + lylI*) (16)

qgajy

\Vayi-m)

rg(z,y,2) = (z]* + [ly|*)? 2(l® + llyl*)

is a sum of squares.
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The following result tells us that, if rg is a sum of squares, then there exists a (|[V|+|E|) x (|V|+
|€]) correlation matrix (positive semidefinite matrix with unit diagonal) with nullspace containing
a set of vectors (z¢,yc) corresponding to each of the maximum cliques of the graph. (A scaled
version of one such vector, for a particular graph, is illustrated in Figure 1a.)

Proposition 5.5. Let G = (V,&) be a simple graph with mazimum clique size w(G). For each
mazimum cligue C' of G, let

2 1

- > T e RY x R.

(xC7yC) 3w(g)€ ) 3(0.)(9)) e{vﬂv} = X
veV(C) {v,w}e&(C) 2

If rg is a sum of squares, then there exists a (|V|+ |E]) x (|V| + |&]|) positive semidefinite matric
X such that X = 1 for alli = 1,2,...,|V| + |&| and (zc,yc) is in the nullspace of X for all
mazximum cliques C' of G.

T
Proof. Let mo(z,y) = [({E%)ng (yl?j){i’j}eg] and

T
mi(z,y,2) = [(z2i)iev  (20ij)jree (@ij)ijev  Wihne)figyeree (Eilin)iev {jrree)

If rg were a sum of squares, then there would exist G = {g%ﬁ g(ﬁ} = 0 such that

rg(x,y,2) = mo(z,y) Goomo(z,y) + 2mo(z,y) Gorma (2,9, 2) + mi(z,y, 2)  Grima (2, y, 2).

This holds because there is no term of the form z* in 7g and so the monomial 22 has zero coefficient

in any polynomial appearing in a sum of squares decomposition. By comparing coefficients of xf
and yfj, we see that [Goolis = 1 for i =1,2,..., V| + |€].

The group ZQAH acts on RIVITIEIFT 1y

(€0s €15+ -5 €)= ((Ti)iev, Wij) 1igyees 2) = ((€imi)iev, (0€i€Vij) (i j}es €02)

where ¢, € {—1,1} for ¢ = 0,1,...,]V|. This induces an action on polynomials which leaves
rg(z,y, z) invariant. Averaging over this action, we can see that if r¢g is a sum of squares, then it
must have a Gram matrix with Go; = 0. This is because every monomial in mg is fixed by the
action, and no monomial in m; is fixed by the action. As such, there must be positive semidefinite
matrices Gog and G171 such that

rg(xvya Z) = mO(xvy)TGOOmU(x7y) + ml(ﬁU, y,Z)TG11m1($, Y, Z)

and [Gooli; = 1 for all i = 1,2,...,|V| + |&|. From Nesterov’s result (Theorem 5.2), one can check
that if C' is a maximum clique, then rg(x,y,2) = 0 whenever z = 1 and mg(z,y)? = [35]. It
follows that [2¢]7 Goo [£S] = 0 for all maximum cliques C. Since Ggg = 0 it follows that, in fact,

Goo [3&] = 0 for all maximum cliques C. Taking X = Gy completes the proof. O

We now focus on the case in which G is the icosahedral graph. This graph has 12 vertices, 30
edges, and 20 triangles, all of which are maximum cliques. As such, the polynomial

pg.s3(wo, z,y) = xg — 3zo([l2[* + [[y1*) + 9gg () (17)

has 12+ 30+ 1 = 43 variables and is hyperbolic with respect to eg. In the proof of Theorem 5.6, we
call a pair of vertices of the icosahedral graph antipodal if they are at distance three in the graph.
The twelve vertices can be partitioned into six pairs of antipodal vertices.
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Figure 1: The diagrams illustrate certain vectors in R*? = RVl x RI¢l thought of as vertex and
edge labellings of the icosahedral graph. The labels specify the nonzero coordinates. Unlabeled
vertices or edges (in gray) correspond to zero coordinates. Figure (a) is (z¢,yc) for a particular
maximum clique in the icosahedral graph. Figures (b), (c), and (d) show certain vectors that are
orthogonal to (z¢, yo) for all maximum cliques.

Theorem 5.6. If G = (V, &) is the icosahedral graph, then pg 3, defined in (17), is hyperbolic, but
not SOS-hyperbolic, with respect to eg.

Proof. By Proposition 5.5 it suffices to show that there is no 42 x 42 correlation matrix with all of
the vectors (z¢, yc), ranging over maximum cliques C, in its nullspace.

The 22-dimensional orthogonal complement of the 20-dimensional span of the (z¢,yc) has a
basis given by the twelve vectors (one for each vertex) shown in Figure 1b, any five of the six vectors
(one for each pair of antipodal vertices), shown in Figure lc, and any five of the six vectors (one
for each pair of antipodal vertices), shown in Figure 1d. Let V' be the 42 x 22 matrix with these
vectors as columns. One can check (e.g., by computing a rational LDL decomposition) that

VT [—11112x12 0
0 413030

]VEO.

If there were a correlation matrix with all of the (z¢,yc) in its nullspace, then it could be written
in the form VMVT where M = 0 and [VMV7T]; =1 foralli=1,2,...,42. But then

—11112x12 0 ] T> < T |:11]12><12 0 } >
—12 =tr VMV* | =tr [ (V VM),
<[ 0 413030 ( 0 4T30%30 )

and so M cannot be positive semidefinite, and no such correlation matrix can exist. O

The following is an immediate corollary of Theorem 5.6 and Proposition 4.7. We state it
explicitly because this appears to be the first known example of a cubic hyperbolic polynomial such
that no power has a definite determinantal representation.

Corollary 5.7. If G is the icosahedral graph, then no power of pgs, defined in (16), has a definite
determinantal representation.

By using Proposition 4.13 together with our example of a hyperbolic, but not SOS-hyperbolic,
cubic in 43 variables (Theorem 5.6), we can construct such cubics whenever the number of variables
is at least 43.
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Corollary 5.8. If n > 43 and e € R", then H,%%S(e) G Hnsle).

Although we have only been able to construct a hyperbolic cubic in 43 variables that is not
SOS-hyperbolic, it has been conjectured by Mario Kummer (personal communication), and seems
likely, that such examples should already exist with five variables.

Conjecture 5.9. Ifn > 5 and e € R", then 'HE%S(C) C Hps(e).

One way to resolve this conjecture, would be to find an explicit cubic form ¢ in four variables
such that ||x||3 — 22q(z) + 2%||z||3 is nonnegative but is not a sum of squares. Then p(xg,z) =
x3 — 3x0/|z||? + 2¢(z) would be hyperbolic, but not SOS-hyperbolic, with respect to eo.

6 Canonical linear functionals and the proof of Theorem 3.7

This section is devoted to developing tools used in the proof of Theorem 3.7 (and in Section 7 to
follow), and then presenting the proof of Theorem 3.7 itself. We begin by showing how a hyperbolic
polynomial p € H,, 4(e), and a point z € R", define a set of linear functionals that generalize the
orthogonal projectors onto the eigenspaces of a symmetric matrix. This construction may be of
independent interest.

6.1 Canonical linear functionals

Given p € H,, 4(e) and a fixed x € R", we define a collection of linear functionals associated with
the eigenvalues of . These are a generalization of the orthogonal projectors onto the eigenspaces
of a symmetric matrix, as we shall see in Example 6.3. If x has simple eigenvalues, these canonical
linear functionals are the directional derivatives of the eigenvalues. If u € R", recall that

d
p(x + te 4+ su) = Ht+t (s;x,u))
i=1

where the t;(s;z,u) are defined in Theorem 2.1. Let x have eigenvalues Aj(z) > ... > A\g(x) with
multiplicities mq,...,mg. Let Iy,...,I; be a partition of {1,2,...,d} such that |I;] = m; and
tj(0;z,u) = \i(x) for all j € I;. Define the canonical linear functionals to be

= Zt&(o;x,u) fori=1,2,...,k.
J€El;

The following result summarizes the main properties of the ;(x)[u] that we will need.

Lemma 6.1. If p € H, 4(e) and x € R", then the maps R™ 3 u — N,(x)[u] satisfy:

1, Domnlt) _ 5~ il
pa(t) = di(x) +t
2. u N(x)[u] is linear;
3. A(z)[e] = mi, the multiplicity of the ith eigenvalue of x;
4. Ny(@)[a] = midi(@);
5. u e A (p,e) if, and only if, N;(z)[u] >0 for all x € R™ and all i.
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Proof. The first statement follows from the following straightforward computation

d /
Dype(t) d ' (0 x,u)
() 15 og(p(x + te + su))|,_, g§=:1 t5(0; ¢, u) Z )\

For the second statement, note that the numerator of Dup ég) is linear in u, so the numerators,

X, (x)[u], of the partial fraction expansion in the first statement are also linear in w.

The third statement follows from the fact that ¢;(s;z,e) = A\i(z) + s for all i € I; so that
Xi(x)[e] = |I;] = m;. The fourth statement follows from the fact that t;(s;z,z) = A;(z)(1 + s) for
all i € I; so that A,(z)[z] = |L|\i(x) = miAi(z).

For the final statement, on the one hand, if u € Ay (p,e), then t}(O; x,u) > 0 (by Theorem 2.1),
and so \;(x)[u] > 0. On the other hand, if \,(z)[u] > 0 for all z € R™ and all ¢, then m%)\;(u)[u} =
Ai(u) > 0 for all 4, and so u € Ay (p, e). O

Remark 6.2. We could have defined \(z)[u] via the first property in Lemma 6.1, as the residue of
Dypx(t)/pz(t) corresponding to the simple pole at —\;(z). Then we would need to show, directly,
that these are nonnegative if, and only if, u € A; (p, e), rather than relying on Theorem 2.1.

Example 6.3 (Canonical linear functionals for the determinant). Let p(X) = det(X) where X
is a symmetric matriz and e = I. Suppose X has k distinct eigenvalues A1 (X), ..., \p(X) with
corresponding multiplicities my, ..., mg. Then X = Zle Xi(X)P;(X) where Pi(X) is the orthog-
onal projector onto the eigenspace of X corresponding to \i(X). The associated canonical linear
functionals are the maps U — tr(Py(X)U). To see why, note that

Dy det(X +tI) _ (UK + t1)- it Py(X))

det(X + t1) = t+>\ (X)

These satisfy tr(P;(X)I) = m; and tr(P;(X)X) = mi\(X) and tr(P(X)U) > 0 for all i and all X
if, and only if, U = 0.

6.2 Proof of Theorem 3.7

By Proposition 3.4, it is enough to show that v € A4 (p,e) if, and only if, H,.(z)[u] = 0 for all
x. To achieve this, our main task is to express the parameterized Hermite matrix in terms of the
canonical linear functionals.

Lemma 6.4. Let p € Hy,q(e) and u € R*. With y € R? define a univariate polynomial q,(t) =
y1 + yot + - - + ygt® L. Then, using the notation of Section 6.1, we have that

k

y" Hye(@)[uly =Y lay(=Xi(2))PNi(x)[u].

=1

Proof. We expand the rational function ¢ — Dup, ég ) as a Laurent series via

k oo
)[u] / Z 1=t
Dupnl) = M _ 5 ) 5o
i=1 i=1 /=1
It then follows that [Hp.(x)[ul];¢ = Zf L A(@)[u] (= Ni()) T2, The result follows because, for
any 1 <i <k, >, 1@/;1/5( Xi(2)) T2 = [gy (= Ni(@)] O
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Specialized to the determinant, this agrees with the explicit computation from Example 3.3.

Example 6.5 (Hankel matrix for the determinant). Using the notation of Example 6.3, the
quadratic form defined by the Hankel matriz is

y" Hyo(X)[UTy = S8 ay(-N(X))2x(P(X)D)
= tr | (X5 ay (= M(X))PR(X) ) U] = tr((qy(~ X))

where qy(=X) = y1 +y2(=X) +y3(=X)* + -+ + ya(—= X))
We are now in a position to complete the proof of Theorem 3.7.
Corollary 6.6. If p € H, q(e), then u € Ay (p,e) if, and only if, Hp(x)[u] = 0 for all x.

Proof. If uw € Ay(p,e), then N (x)[u] > 0 for all ¢ and all z. From Lemma 6.4 it follows that
yTHye(z)[u]ly > 0 for all x and all y. Conversely, suppose that \;(u) < 0 for some i. Define y
so that the polynomial g, satisfies g,(—Aj(z)) = 0 if j # i and ¢y(—Aj(z)) = 1if j = 4. Such a
polynomial can be constructed via Lagrange interpolation, for instance. Then

yTHpve(u) [uly = Ni(u)[u] = m;\i(u) < 0.

7 View from the dual cone

In this section we consider the results obtained so far from the point of view of the dual cone
Ar(pe) = {E € ®R")" : €] >0 forall 2 € A (p,e)},

the (closed convex) cone of linear functionals that take nonnegative values on Ay (p, e). In particular,
we study the image of the polynomial map ¢, . = gbge, defined in (7). We will see that this image
contains the interior of the dual cone and is contained in the dual cone. Moreover, we give examples
in which the image of ¢, . is precisely the dual cone Ay (p,e)*.

The image of ¢, . can be expressed using the canonical linear functionals of Section 6.1.

Proposition 7.1. If p € H, 4(e) and x € R™ has k < d distinct hyperbolic eigenvalues, then
(z)p,e(x? Rd) = Cone{/\ll(x)[']v SRR )‘;c(x)[]}

Proof. From Lemma 6.4 we know that ¢p,.(z,y) = Zle(qy(—ki(m)))%\;(m)[-] which is clearly
a nonnegative combination of the linear functionals X;(x)[-]. Conversely, given any nonnegative
scalars 71,72, . .., s, we can choose y € R? so that the polynomial qy (of degreee d — 1) satisfies
qy(=Xi(z)) = /n; (by interpolation). This shows that any nonnegative combination of the X;(z)[]
is in the set ¢p¢(z, RY). O

7.1 Parameterization of the dual cone up to closure

The following result shows that the map ¢, . almost parameterizes the dual of the hyperbolicity
cone. Omne inclusion follows directly from Theorem 3.7. The other direction follows, for instance,
from the (well-known) fact that the gradient of log p(x) maps the interior of the hyperbolicity cone
onto the relative interior of its dual cone. In the statement of the theorem we use the notation
int(S) to denote the interior of the set S and relint(.S) to denote the relative interior.

23



Theorem 7.2. If p € H,.q(e), then relint(A (p,e)*) C ¢, (R™, RY) C Ay (p,e)*.
Proof. The right hand inclusion follows from Theorem 3.7. Indeed if u € A4 (p,e), then
bpe(r,y)[u] >0 for all z € R" and all y € R?

which implies that ¢, (R, R?) C A (p,e)*. For the left-hand inclusion, let ¢ be an arbitrary linear
functional in the relative interior of A4 (p,e)*. Let z be any optimal point (which exists because £
is in the relative interior of the dual cone) of the convex optimization problem

min —logp(z) subject to &[z] = d.
zE€A L (pe)

Then = € int(A;(p,e)) (because the objective function goes to infinity on the boundary) and so
Ai(z) > 0 for all i. From the optimality conditions

() [u] n
— D, 1 - for all u € R™.
&lu] og p(z) ; Ni(2) or all u €
It follows that £[-] € cone{\|(z)[],..., N, (2)[]} C ¢pe(x,R?) (by Proposition 7.1). O

Remark 7.3. If p is a complete hyperbolic polynomial, the gradient of logp(z) gives a rational
bijection between the interior of a hyperbolicity cone and the interior of its dual cone. A key
difference between ¢, . and the gradient of log p(x) is that the former maps all of R™ x R? into the
dual cone A (p,e)*, where as the latter only maps the hyperbolicity cone itself into the dual cone.
This difference allows us to construct polynomials that are globally nonnegative, rather than just
nonnegative restricted to the open hyperbolicity cone.

We have seen that the image of ¢, . is sandwiched between the interior of the dual cone and
the dual cone itself. The following example shows that the image of ¢, . may not contain all of the
boundary of the dual cone.

Example 7.4 (Singular cubic curve). Consider the hyperbolic cubic

T3 0 T
p(z1,x2,x3) = det A(x) where A(x)= |0 z1+2x3 x2
231 T2 3

taken from [Henl0, Section 4.1]. From the definite determinantal representation we can see that p
is hyperbolic with respect to e = (0,0,1). Its dual cone can be parameterized by

Ap(p,e)* = {A*(22T) = (23 + 22123, 22023, 25 + 25 + 23) : z € R3}

as discussed in [Henl10]. The intersection of the hyperbolicity cone with the affine hyperplane
{z : (e,z) = 1} and the intersection of ¢p(R3,R3) with the affine hyperplane {z : (e, z) = 1} are
shown in Figure 2. The intersection of Ay (p,e)* with the same affine hyperplane is the closure of
the set shown on the right in Figure 2. The dual cone Ay (p,e)* and the image of ¢y differ in
one has a two-dimensional face given by the conic hull of (1,1/v/2,1) and (1, —-1/+/2,1), and in the
other this face is replaced by the single ray generated by (1,0,1).
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(—=1,0,1)

(1, 75.1)

Figure 2: On the left is A4 (p,e)N{x : {e,x) = 1}, and on the right is ¢, (R*, R3)N{z : (z,¢e) = 1},
where p is the cubic from Example 7.4.

7.2 Exact parameterizations of the dual cone

We now study certain situations in which the image of ¢, . is precisely the closed dual cone. From
Example 7.4, we know that this does not always occur. In this section we show that the image of
¢p,e 1s the closed dual cone Ay (p,e)* when, for instance, p is strictly hyperbolic (see below for a
definition), p is a product of linear forms, or p is the determinant restricted to symmetric matrices.

If p e Hya(e) and x € R™, we define the multiplicity of x to be the multiplicity of the root ¢t = 0
of py(t). If p(0) # 0, then we define the multiplicity of z to be zero. A polynomial p € H,, 4(e)
is strictly hyperbolic if every element x € R™ that is not a multiple of e has n distinct hyperbolic
eigenvalues. It follows that if p is strictly hyperbolic and x is nonzero and satisfies p(z) = 0, then
x has multiplicity 1, the gradient of p at x is non-zero, and z is a smooth point of the boundary of
the hyperbolicity cone.

Proposition 7.5. If p € H, a(e) is strictly hyperbolic, then ¢, (R™,RY) = Ay (p,e)*.

Proof. From Theorem 7.2 we know that Ay (p,e)* D ¢, (R",R?) D int(Ay(p,e)*). It suffices to
show that for any ¢ € OA (p,e)* there exists € R" such that & € ¢, .(x, RY).

Any non-zero £ € OA4(p,e)* must vanish at some z¢ € OAy(p,e) \ {0} (since otherwise &
would be in the interior of the dual cone). Since ¢ is a non-zero element of the boundary of
the hyperbolicity cone, it is a smooth point. As such, there is a unique supporting hyperplane
to the cone at xz¢. Since x is in the boundary of the hyperbolicity cone, Amin(z¢) = 0 and so

Ao (@e)[ze] = 0. Both & and A, (z¢) define supporting hyperplanes at z¢, so one must be a
nonnegative multiple of the other. In particular £ is in the cone over the canonical linear functionals
at x¢ and so is an element of the image of ¢y, . O

In the case where our hyperbolic polynomial is a product of distinct linear forms, so that the
resulting hyperbolicity cone is polyhedral, the image of ¢, . is the closed dual cone.

Proposition 7.6. If p € H, 4(e) is a product of distinct linear forms, i.e., p(x) = Hle a;x] with
aile] > 0 for all i and a; # a; for alli,j, then ¢p(R",R?) = A, (p,e)*.

Proof. Let = be a generic point in R™, so that x has d distinct eigenvalues which are \;(z) =
a;[x]/a;le] fori =1,2,...,d. Since the eigenvalue functions are linear, the canonical linear functions
are simply A,(z)[u] = a;[u]/a;[e] for i =1,2,...,d. From Proposition 7.1 we know that

bpe(x, RY) = cone{ | (x),..., \y(z)}.
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This is the cone generated by the linear forms ay, ..., aq, which is just A4 (p,e)*. O

Another case in which the image of ¢, . is the dual cone is when p is the determinant restricted
to symmetric matrices.

Proposition 7.7. Let p(X) = det(X) be the determinant restricted to d x d real symmetric ma-
trices. Then ¢, 1(S4,RY) = Ay (p, I)*.

Proof. Since the positive semidefinite cone is self-dual it follows that an arbitrary element of
Ay (p,I)* has the form U — tr(ZU) where Z = 0. Let y = ex = (0,1,0,...,0) so that ¢,(t) = ¢
in the notation of Example 6.5. Let X = Z/2 be the positive semidefinite square root of Z. If
U € 8% from Example 6.5 we have that

op.1(X,y) = tr((—X)?U) = tr(X?U) = tr(ZU).

Since Z was an arbitrary positive semidefinite matrix, we are done. O

8 Connections with interlacers

To conclude, we discuss the connection between our work and interlacing polynomials. If p €
Hna(e) and g € Hy, q4-1(€), we say that q interlaces p with respect to e if the hyperbolic eigenvalues
of any x € R™ with respect to p and ¢ satisfy

M(x) > M(z) > Mo(z) > - > M (a) > My(a).

For a fixed hyperbolic polynomial p € H,, 4(e) the cone Int.(p) of polynomials ¢ that interlace p
with respect to e is a convex cone. In [KPV15, KNP18] it is shown that the cone of interlacers of
p € Hyd(e) can be described by

Int.(p) = {¢ € R[z]g—1 : B(pz,qz) = 0 forall z € R"}.

Much of the development of Sections 3 and 6 could have been presented from the point of view of
interlacers. This is because D,p(x) € Int.(p) if, and only if, u € Ay (p, ), so the hyperbolicity cone
is a section of the cone of interlacers [KPV15].

The argument we used to show that every ternary hyperbolic polynomial is SOS-hyperbolic
actually generalizes to give a projected spectrahedral description of the cone of interlacers of any
ternary hyperbolic polynomial. This was first observed by Kummer, Naldi, and Plaumann [KNP18]
via a seemingly quite different proof.

Proposition 8.1 ([KNP18, Page 17]). If p € Hz 4(e), then
Inte(p) = {q € Rlz1, 22, 23]4—1 : B(ps,qz) is a matrix sum of squares}.

Proof. Recall that B(ps,q.) is a matrix sum of squares if, and only if, the restriction to a two-
dimensional subspace not containing e is a matrix sum of squares. But, after choosing appropriate
coordinates, this is a matrix with entries that are each homogeneous forms in two variables, and so
is a matrix sum of squares via [BSV16, Remark 5.10]. O

If p is hyperbolic and has degree two, then the cone of interlacers of p with respect to e is simply
the set of linear forms that are nonnegative on the cone A (p,e). This is the dual cone, A4 (p,e)*,
which is again a quadratic cone, and so is a spectrahedron. Another case where we might expect
the cone of interlacers to have a nice description is the case of hyperbolic polynomials of degree
three in four variables.

Question 8.2. If p € Haz(e), is the cone of interlacers Int.(p) a projected spectrahedron?
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A Relating Bézoutians and Hankel matrices

In this appendix we prove Proposition 2.2. Before doing so, we establish a slightly simpler statement
in which the dimension of the Bézoutian and Hankel matrices is the same as deg(a).

Proposition A.1. If a(t) = ag + ayt + --- + t¢ is a monic polynomial of degree d and b is a
polynomial of degree strictly less than d, then

Qjtj—1 1f1§Z—|—]—1§d—1

By(a,b) = B(a, 1)Hd<b> B(a,1) where [B(a,1)];; =41 ifi+j—-1=d

a
0 otherwise
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is the (symmetric and unimodular) Bézoutian of a and the constant polynomial 1.

Proof. This result is established in [BMO™ 11, Proposition 7.15]. We reproduce the proof here be-
cause there are some confusing typographic errors in [BMO ™11, page 75]. The argument presented
there uses the fact that the Hankel matrix Hd(g) satisfies the identity

b(t

—

7)

‘
&)

Z hp+q 1t pS q,

a
—t
p,g=1

Combining this with the defining identity of the Bézoutian (5) we obtain

d () b(s d oo
E [B(a,b)]i;t ™l = a(t )ﬁa(s) = g E amhpq-1aet pgt=p,
7‘7.7:1 m’Z:0p7q:1

Changing variables via i =m —p+ 1 and j = /¢ — ¢+ 1, and defining a; = 0 for i > d, gives

d d oo

§ : i—1_7—1 § : § : i—1_j—1
[B(a,b)]i]‘t s7 = ai+p_1hp+q_1aj+q_a t s

1,j=1 t,j=1 | p,g=1

from which the matrix identity follows.

The fact that B(a,1) is unimodular follows directly from the fact that, if we reverse the order
of the rows of B(a,1) (which either preserves the determinant or changes its sign), we obtain a
lower triangular matrix with unit diagonal. O

We now consider the case in which the dimension of the Bézoutian and Hankel matrices is
possibly larger than the degree of the polynomial a.

Proof of Proposition 2.2. Let a(t) = t™ %a(t) and b(t) = ™ %(t). First note that

B, (a.b) = _
(,5) Odm—da  Bala,b) Ij  Ogm—d|| Om—dd Om—am—al|l 1a  Odm—d

T
Om—dd Im—da ] |:0md d  Tm—q ]

_ : B,,(a.b ! :
[ Ij  Ogm-—da m(a,0) Ig  Ogm-—a

T
N [Omd,md Omd,d:| - [Omd,d I—g ] [Bd(a, b)  Ogm—d :||:Omd,d I g ]

By Proposition A.1, and the fact that g = %, we see that
- b _ . b .
B(a,1)H,,| = | B(a,1) = B(a,1)H,,| — ) B(a, 1)
a a

T
- Od,m—d 1, } |:Odmd I, ]

= B,,(a,b) = ’ B, (a,b ’ .
m (@) [Im—d Orm—d,d m(a,b) Im—a Om—da

Since B(a,1) is symmetric and unimodular and has entries that are linear in the coefficients of a,
we see that

-1
M(a) = {Odvmd la ] B(a,1)
Iyi—a Om—ad
is unimodular and has entries that are linear in the coefficients of a, completing the proof. O
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