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TENSOR REPRESENTATION OF RANK-METRIC CODES

EIMEAR BYRNE, ALESSANDRO NERI∗, ALBERTO RAVAGNANI∗, AND JOHN SHEEKEY

Abstract. We present the theory of rank-metric codes with respect to the 3-tensors that
generate them. We define the generator tensor and the parity check tensor of a matrix code,
and describe the properties of a code through these objects. We define the tensor rank of
a code to be the tensor rank of its generating tensors, and propose that this quantity is a
significant coding theoretic parameter. By a result on the tensor rank of Kruskal from the
1970s, the tensor rank of a rank-metric code of dimension k and minimum rank distance d

is at least k + d − 1. We call codes that meet this bound minimal tensor rank (MTR)
codes. It is known from results in algebraic complexity theory that an MTR code implies
the existence of an MDS code. In this paper, we also address the converse problem, that
of the existence of an MTR code, given an MDS code. We identify several parameters for
which the converse holds and give explicit constructions of MTR codes using MDS codes.
We furthermore define generalized tensor ranks, which give a refinement of the tensor rank
as a code invariant. Moreover, we use these to distinguish inequivalent rank-metric codes.

1. Introduction

The theory of rank-metric codes is an important topic in coding theory, which has seen a
resurgence of interest in the last decade. Any linear space of matrices can be viewed as a rank-
metric code, where the rank distance between a pair of matrices is the rank of their difference
and indeed the most general class of (linear) rank-metric codes are the Fq-subspaces of F

n×m
q ,

which we refer to as matrix codes. Much of the initial focus of the theory was on subspaces
of Fn

qm, the so-called Fqm-linear vector rank-metric codes, where the rank of a vector in F
n
qm is

the dimension of the span of its coordinates as an Fq-linear space. Given a basis of Fqm over
Fq, any vector rank-metric code can be represented as a linear space of matrices in F

n×m
q .

The most prominent family in this class of codes are the Delsarte-Gabidulin codes [6, 8, 21],
which can be conveniently described in terms of generator and parity check matrices that are
q-analogues of those for the well-studied Reed-Solomon codes of classical coding theory.

The role of matrices in classical (Hamming metric) coding theory is crucial. Efficient en-
coding and decoding rely on generator and parity check matrices. Several properties of a code
are characterized by such matrices, including duality, equivalence, and minimum distance.
These matrices also yield connections between coding theory and finite geometry, from which
optimal codes have been constructed from sets of points in projective space.

In this paper, we present rank-metric codes in the framework of 3-tensors. More precisely,
we define the generator tensor and parity check tensor of an Fq-linear space of matrices and
describe the properties of such codes in relation to these objects.

An important and well-studied parameter of a tensor is given by its tensor rank. This
aspect of bilinear forms is central to algebraic complexity theory [3, 4, 15]. The definition
of tensor rank considered here is the minimum number of simple tensors that appear in the
expression of a tensor as a sum of simple tensors. It extends the notion of matrix rank and
gives a measure of the complexity of tensor multiplication. Precise computation of tensor

Key words and phrases. rank metric, tensor, tensor rank, tensor extremal code, minimal tensor rank, MTR
code, MRD code, Delsarte-Gabidulin code, generator tensor.
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rank is elusive for an arbitrary tensor; indeed computing the rank of a 3-tensor over a finite
field is NP-complete [12]. We propose that tensor rank is a significant parameter in the
theory of rank-metric codes. This extends the notion of the tensor rank of a rank-metric
code corresponding to a finite semifield [16]. A rank-metric code in F

n×m
q is a slice space of

an associated generator tensor, just as a code in F
n
q is the row-space of a generator matrix.

The smaller the tensor rank of the generating tensor, the more efficient the encoding. It is
therefore of interest to obtain codes whose generating tensors have minimum tensor rank.

Lower bounds on tensor rank have been known for some time [15]. If X is a generating
tensor for an Fq-linear code in F

n×m
q of dimension k and minimum rank distance d then this

lower bound on trk(X), the tensor rank of X, can be expressed as:

trk(X) ≥ k + d− 1. (1)

Coding theorists will immediately notice the similarity of this inequality to the Singleton
bound. We will refer to a code having a generating tensor meeting this bound as a minimum
tensor rank (MTR) code. It is known that any (nondegenerate) tensor of rank R gives rise to a
linear block code of length R, and in particular that any lower bound on the length of a linear
block code provides an immediate lower bound on the tensor rank [3, 4]. It can therefore be
deduced that any MTR code gives a construction of an MDS block code. A central problem
posed in this paper is to address the inverse problem: given an MDS block code of length R,
find a construction of an MTR code with tensor rank R. We solve this problem for a range
of parameter sets.

We introduce the generalized ranks of a matrix code, which turn out to be an invariant
of code equivalence. In particular, such values can be used to distinguish between inequiva-
lent codes and, remarkably, even between MRD codes that otherwise share many invariants.
Moreover, generalized tensor ranks lead to a refinement of the tensor rank bound, from which
the existing tensor rank bound (1) can be deduced. The coding theoretic arguments used in
these proofs are very simple and compact.

A further aspect of the tensor description of a matrix code is that many of its coding
theoretic parameters are encoded in its generating and parity check tensors. For example, the
minimum rank distance of a matrix code can be characterized by the dimensions of its slice
spaces, in direct analogy with relation of the minimum Hamming distance of a block code in
relation to its parity check matrix.

Outline. In Section 2 we cover preliminary results on rank-metric codes and in Section 3 we
recall basic results on 3-tensors and characterize tensor rank. In Section 4 we relate matrix
codes and tensors and introduce the generator tensor of a code. We define optimality of a
code with respect to tensor rank and describe a connection between matrix codes of a fixed
tensor rank and linear block codes, which allows the construction of one code, given the other.
In Section 5 we define the notion of an extremal triple (C, V,W ). It consists of an optimal
Fq-code C, which is a code with smallest possible length for given dimension and minimum
distance, and full-rank matrices V ∈ F

n×R
q ,W ∈ F

m×R
q ; such a triple yields a tensor rank

extremal code. In the special case where C is an MDS code, the extremal triple yields an
MTR code. We identify parameters m,n,R for which (C, V,W ) is always an extremal triple
via a characterization theorem. For some values outside these parameter sets, we give an
explicit construction of an extremal triple using Cauchy codes. We furthermore consider the
Delsarte-Gabidulin codes and obtain an upper bound on their tensor rank. We apply these
results to give constructions of matrix codes with upper-bounded tensor rank. In Section 6 we
define the r-th generalized tensor rank of a matrix code and establish their main properties.
We show that the r-th generalized tensor rank is an invariant of equivalent matrix codes and
use this to distinguish between codes. We also show that these ranks are not an invariant of
duality. Finally, in Section 7, we define the parity check tensor of a matrix code. We consider
the standard coding theoretic operations of shortening and puncturing of matrix codes, and
use these as a tool to relate the parameters of a code to its generator and parity check tensors.
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2. Rank-Metric Codes

Throughout this paper, q is a prime power and m,n are positive integers. In this section,
we assume m ≥ n to simplify the presentation. Analogous results hold for n ≤ m. We denote
by F

n×m
q the Fq-linear space of n ×m matrices with entries in Fq. For an integer i ≥ 0, we

let [i] := {1, . . . , i}. All dimensions are computed over Fq, unless otherwise stated.
The main objects studied in this paper are rank-metric codes. They were introduced in by

Delsarte [6] for combinatorial interest.

Definition 2.1. The rank distance between X,Y ∈ F
n×m
q is d(X,Y ) := rk(X − Y ). A

(rank-metric) code is an Fq-linear subspace C ⊆ F
n×m
q . If C 6= {0}, then the minimum

distance of C is the integer

d(C) := min{rk(X) : X ∈ C, X 6= 0} = min{d(X,Y ) : X,Y ∈ C, X 6= Y }.

From now on, we will refer to a rank-metric code C ⊆ F
n×m
q of dimension k as an Fq-[n×m,k]

code. When the minimum distance d is known, we will call it an Fq-[n×m,k, d] code.
In this paper we adopt the following definition of code equivalence.

Definition 2.2. Codes C, C′ ⊆ F
n×m
q are equivalent if there exists an Fq-linear isometry

ϕ : (Fn×m
q , d) → (Fn×m

q , d) such that ϕ(C) = C′.

As a linear isometry of Fn×m
q is necessarily bijective, equivalent codes have the same di-

mension and minimum distance. According to [13, 23], in which all the Fq-linear isometries
are classified, codes C, C′ ⊆ F

n×m
q are equivalent if and only if there exist invertible matrices

A ∈ GL(n, q), B ∈ GL(m, q) such that

C′ = ACB := {AXB : X ∈ C} ,

or, when m = n,

C′ = AC⊤B :=
{

AX⊤B : X ∈ C
}

.

The following result is the rank-metric analogue of the Singleton bound for codes with the
Hamming metric.

Theorem 2.3 (Theorem 5.4 of [6]). Let C ⊆ F
n×m
q be a non-zero code. Then

dim(C) ≤ m(n− d(C) + 1).

Definition 2.4. A code C is maximum rank distance (MRD) if it meets the bound of
Theorem 2.3, or if it is the zero code.

Recall that the trace-product ofX,Y ∈ F
n×m
q is 〈X,Y 〉 := Tr(XY ⊤). It is well-known and

easy to see that the map (X,Y ) 7→ Tr(XY ⊤) defines a bilinear, symmetric and nondegenerate
form on F

n×m
q .

Definition 2.5. The dual of an Fq-[n×m,k] code is

C⊥ := {X ∈ F
n×m
q : 〈X,Y 〉 = 0 for all Y ∈ C}.

Note that C⊥ is an Fq[n×m,nm− k] code.

In [8], Gabidulin introduces a class of rank-metric codes that are linear over the extension
field Fqm. They are defined as follows.

Definition 2.6. A vector rank-metric code is an Fqm-subspace C ⊆ F
n
qm.

To obtain a matrix code from a vector code, it suffices to use that fact that F
n
qm and

F
n×m
q are isomorphic as Fq-linear spaces. An isomorphism can be constructed as follows. Let

Γ = {γ1, . . . , γm} be a basis of Fqm/Fq. For v ∈ Fqm, denote by Γ(v) ∈ F
n×m
q the matrix

whose (i, j) entry is the j-th coordinate of vi over the basis Γ. Then the map v 7→ Γ(v) is
an Fq-isomorphism. We denote by Γ(C) the image of a vector rank-metric code C ⊆ F

n
qm

under Γ, i.e., we let Γ(C) = {Γ(v) : v ∈ C}.
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Lemma 2.7 (see e.g. [11]). Let C ⊆ F
n
qm be a non-zero vector code. The minimum distance

of Γ(C) does not depend on the choice of the basis Γ for Fqm/Fq. Moreover, for any such
basis we have

dimFq
(Γ(C)) = m · dimFqm

(C).

Definition 2.8. Theminimum distance of a non-zero vector code C ⊆ F
n
qm is the minimum

distance of Γ(C), where Γ is any basis of Fqm/Fq. It is denoted by d(C).

With these definitions, it is easy to see that a vector code C ⊆ F
n
qm is MRD if and only if

d(C) = n− dimFqm
(C) + 1.

MRD vector codes (and therefore MRD matrix codes) exist for every set of parameters. The
first construction was found by Delsarte [6] and independently by Gabidulin [8] and Roth [21].
It was then generalized in [9].

Let K, s,m be positive integers such that 1 ≤ K ≤ m and 1 ≤ s < m. Define the set GK,s

of linearized polynomials as

GK,s :=

{

K−1
∑

i=0

fix
qsi : fi ∈ Fqm for i = 0, . . . ,K − 1

}

.

Definition 2.9. Let α = (α1, . . . , αn) ∈ F
n
qm be a vector such that α1, . . . , αn ∈ Fqm are

linearly independent over Fq. Let moreover K,n, s,m be positive integers such that 1 ≤ K ≤
n ≤ m, 1 ≤ s < m and gcd(s,m) = 1. The generalized Delsarte-Gabidulin code GK,s(α)
is defined as

GK,s(α) := {(f(α1), . . . , f(αn)) : f ∈ GK,s} .

When s = 1, we will simply refer to GK,1(α) as a Delsarte-Gabidulin code.

Another property on vector codes that we will need is the following, that is different matrix
representations of the same vector code lead to equivalent rank-metric codes.

Remark 2.10. Let C ⊆ F
n
qm be a vector code, and let Γ = {γ1, . . . , γm}, Γ′ = {γ′1, . . . , γ

′
m}

be bases of Fqm/Fq. Note that the matrix codes Γ(C) and Γ′(C) are equivalent.

We also define the column support and row support of a rank-metric code. See [10] for a
detailed analysis of the various definitions of rank-support proposed in the literature.

Definition 2.11. Let C be a rank-metric code. The column support and the row support

of C are defined to be the Fq-subspaces of F
n
q and F

m
q , respectively, defined by

csupp(C) :=
∑

M∈C

colsp(M), rsupp(C) :=
∑

M∈C

rowsp(M),

where the sums are sums of vector subspaces. The code C ⊆ F
n×m
q is said to be nondegen-

erate if csupp(C) = F
n
q and rsupp(C) = F

m
q .

3. 3-Tensors

We recall some definitions and results from tensor algebra. The interested reader is referred
to [4, 5] for more details. In this section, F denotes an arbitrary field.

Recall that a tensor product of F-spaces U and V , denote by U ⊗ V , is defined as a pair
(T, ϕ), where ϕ : U × V → T is a bilinear map to the F-space T such that for any bilinear

map f : U × V → W to an F-space W , there exists a unique F-linear map f̂ : T → W
satisfying f = f̂ ◦ ϕ. We say that (T, ϕ) satisfies the universal mapping property. The
existence and uniqueness of (T, ϕ), and hence the well-definedness of U ⊗V , can be shown by
its construction as a quotient space of the free F-linear space on U × V (see, for example, [5,
Chapter 10]). Tensors of the form u⊗ v are called simple tensors (also called fundamental

or pure tensors in the literature). Arbitrary elements of U⊗V are expressed as sums of simple

tensors:
∑ℓ

i=1 ui ⊗ vi, with ui ∈ U and vi ∈ V . Since the tensor product of a pair of spaces
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is itself a vector space, we may construct the tensor product (U ⊗ V ) ⊗W = U ⊗ (V ⊗W ),
for F-spaces U, V,W , which we therefore express as U ⊗ V ⊗ W . The corresponding map
associated with such a tensor product is a trilinear map ϕ : U × V ×W → U ⊗ V ⊗W .

If {u1, . . . , uk}, {v1, . . . , vn} and {w1, . . . , wm} are bases of U , V and W , respectively, then
a basis of U ⊗ V ⊗W is given by

{ui ⊗ vj ⊗ wℓ : 1 ≤ i ≤ k, 1 ≤ j ≤ n, 1 ≤ ℓ ≤ m}.

In particular, dimF(U ⊗ V ⊗W ) = dimF(U) dimF(V ) dimF(W ).
In this paper we shall be mainly interested in tensor products of the form

F
k ⊗ F

n ⊗ F
m,

whose elements are called 3-tensors, 3rd-order tensors, or triads. The elements of this space
can be represented as 3-dimensional arrays. As with matrices (2nd-order tensors), one can
define a 3-dimensional array of size k × n×m as a function

X : {1, . . . , k} × {1, . . . , n} × {1, . . . ,m} → F,

which we represent as

X = (Xijℓ : 1 ≤ i ≤ k, 1 ≤ j ≤ n, 1 ≤ ℓ ≤ m).

These representations of the tensor X =
∑R

r=1 ur ⊗ vr ⊗ wr are related by

Xijℓ =
R
∑

r=1

uirvjrwℓr,

where ur = (uir : 1 ≤ i ≤ k), vr = (vjr : 1 ≤ j ≤ n), and wr = (wℓr : 1 ≤ ℓ ≤ m). We

hence identify F
k ⊗ F

n ⊗ F
m with the space F

k×n×m. The representation of X as an element
of Fk×n×m is called its coordinate tensor.

For the remainder of the paper, given vectors zr ∈ F
N , we will write zjr to denote the jth

coefficient of zr for each r. That is, zr := (zjr : 1 ≤ j ≤ N).
We introduce the following maps, which defines multiplication of 3-tensors with vectors

(corresponding to s = 1) and matrices (s > 1).

m1 : F
s×k × F

k×n×m → F
s×n×m : (A,X) 7→ m1(A,X) =

∑

i

(Aui)⊗ vi ⊗ wi,

m2 : F
s×n × F

k×n×m → F
s×k×m : (B,X) 7→ m2(B,X) =

∑

i

ui ⊗ (Bvi)⊗ wi,

m3 : F
s×m × F

k×n×m → F
s×k×n : (C,X) 7→ m3(C,X) =

∑

i

ui ⊗ vi ⊗ (Cwi),

for any X =
∑

i ui ⊗ vi ⊗ wi ∈ F
k×n×m.

Let X ∈ F
N1×N2×N3 . For each i ∈ {1, 2, 3} and for any A ∈ F

s×ℓ, B ∈ F
ℓ×Ni it is easy to

see that

mi(AB,X) = mi(A,mi(B,X)). (2)

Indeed, GL(Ni, q) acts on the set of tensors FN1×N2×N3 .

Remark 3.1. Notice that, in the case that s = 1, the operation m1 yields a 3-tensor of
the form

∑

i λi ⊗ vi ⊗ wi, for some scalars λi ∈ F, which can be identified with the 2-tensor
∑

i(λivi) ⊗ wi ∈ F
n×m (F ⊗ V and V are isomorphic). Similarly, m2 and m3 yield 2-tensors

for the case s = 1. With abuse of notation, in this case we will consider the images of the mi

to be in the space of matrices over F.

Definition 3.2. Let X ∈ F
N1×N2×N3 . For each i ∈ {1, 2, 3}, we define the i-th slice space

of X to be the F-span of {mi(ej ,X) : 1 ≤ j ≤ Ni}, that is,

ssi(X) := 〈mi(e1,X), . . . ,mi(eNi
,X)〉.
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We write dimi(X) to denote the dimension of ssi(X) as an F-vector space. We say that ssi(X)
is nondegenerate if dimi(X) = Ni, in which case we say that X is i-nondegenerate.

If X =
∑R

r=1 ur ⊗ vr ⊗wr ∈ F
k×n×m, then clearly

ss1(X) =

〈

R
∑

r=1

ujrvr ⊗ wr : 1 ≤ j ≤ k

〉

,

where for each r, ur = (ujr : 1 ≤ j ≤ k) ∈ F
k. In particular, ss1(X) is the F-span of k matrices

Aj =
∑

r

ujrvr ⊗ wr = m1(ej ,X) ∈ F
n×m,

of rank at most R, which form a basis of ss1(X) if X is 1-nondegenerate.
We also point out the simple fact that for every basis g1, . . . , gNi

of FNi we have

ssi(X) = 〈mi(g1,X), . . . ,mi(gNi
,X)〉.

In particular, for every G ∈ GL(Ni, q) we have

ssi(X) = ssi(mi(G,X)).

Of particular interest in this paper, is the 1st slice space ss1(X) of a nondegenerate 3-tensor
X ∈ F

k×n×m
q , which will be a k-dimensional subspace of matrices in F

n×m
q .

A notable parameter of a tensor that relates to algebraic complexity is its tensor rank,
which we now define.

Definition 3.3. Let X ∈ F
k×n×m. The tensor rank of X is the minimum integer R such

that there exists ur ∈ F
k, vr ∈ F

n, wr ∈ F
m such that

X =

R
∑

r=1

ur ⊗ vr ⊗ wr.

We write trk(X) to denote the tensor rank of X. A representation of the X as sum of
R = trk(X) simple tensors is called a minimal rank form of X.

The reader will easily verify that

trk(m1(A,X)) ≤ trk(X), (3)

for any A ∈ F
s×k (with analogous statements for elements in the image of m2 and m3). More-

over, it is straightforward to check that the tensor rank is invariant under any permutation
of the spaces Fk,Fn,Fm.

The following result gives various characterizations of the tensor rank; see for example [4,
Proposition 14.45]. As we will use the construction of these characterizations in Lemma 4.13,
we include a proof.

Proposition 3.4. Let X ∈ F
k×n×m and let R > 0 be an integer. The following are equivalent.

(1) trk(X) ≤ R.
(2) There exist A1, . . . , AR ∈ F

n×m of rank 1 such that ss1(X) ⊆ 〈A1, . . . , AR〉.
(3) There exist diagonal matrices D1, . . . ,Dk ∈ F

R×R, and matrices P ∈ F
n×R, Q ∈ F

m×R

such that

ss1(X) = P 〈D1, . . . ,Dk〉Q
⊤ := 〈PD1Q

⊤, . . . , PDkQ
⊤〉.

Proof. Suppose that trk(X) ≤ R. Then X =
∑R

r=1 ur ⊗ vr ⊗ wr for some vectors ur ∈ F
k,

vr ∈ F
n, wr ∈ F

m and

ss1(X) =

〈

∑

r

ujrvr ⊗ wr : 1 ≤ j ≤ k

〉

⊆ 〈vr ⊗ wr : 1 ≤ r ≤ R〉.
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Conversely, if ss1(X) is contained in the span of R rank 1 matrices Ar = vr ⊗ wr, then

for all 1 ≤ j ≤ k there exist ujr ∈ F satisfying m1(ej ,X) =
∑R

r=1 ujrvr ⊗ wr. Therefore

X =
∑R

r=1 ur ⊗ vr ⊗ wr and trk(X) ≤ R.

Again suppose that X =
∑R

r=1 ur ⊗ vr ⊗ wr for some ur ∈ F
k, vr ∈ F

n, wr ∈ F
m. Let

Dj = diag(ujr, 1 ≤ r ≤ R).

So the diagonal elements of Dj are the jth coefficents of the ur. Set

P = (vjr : 1 ≤ j ≤ n, 1 ≤ r ≤ R), Q = (wjr : 1 ≤ j ≤ m, 1 ≤ r ≤ R).

Then PDjQ
⊤ =

∑R
r=1 ujrvr ⊗ wr for each j and hence ss1(X) = P 〈D1, . . . ,Dk〉Q

⊤. Con-
versely, given the existence of matrices P,Q,Di satisfying (3), the tensor X can be constructed

as
∑R

r=1 ur ⊗ vr ⊗wr, where vr is the rth column of P , wr is the rth column of Q and ujr is
the rth element of the main diagonal of Dj for each j. �

Example 3.5. The following example, adapted from [18], illustrates the preceding definitions
and propositions. Consider the tensor X = e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3)
in F

2 ⊗ F
2 ⊗ F

3, where F is any field of characteristic not two. Then

ss1(X) =

〈(

1 0 0
0 1 0

)

,

(

0 1 0
0 0 1

)〉

.

Then X can be written as the sum of the three rank one tensors

X1 = e1 ⊗ e1 ⊗ (e1 − e3)

X2 =
1

2
(e1 + e2)⊗ (e1 + e2)⊗ (e2 + e3)

X3 =
1

2
(−e1 + e2)⊗ (e1 − e2)⊗ (e2 − e3),

which corresponds to the fact that ss1(X) is contained in
〈(

1 0 −1
0 0 0

)

,

(

0 1 1
0 1 1

)

,

(

0 1 −1
0 −1 1

)〉

.

The matrices P,Q are given by

P =

(

1 1 1
0 1 −1

)

; Q =





1 0 −1
0 1 1
0 1 −1



 ,

and D1 = diag(1, 1/2,−1/2), D2 = diag(0, 1/2, 1/2).

It was shown in [12] that computing the tensor rank of a 3-tensor over a finite field is
NP-complete. However we have the following bound on the tensor rank, which was proved by
Kruskal; see [15, Corollary 1].

Theorem 3.6. Let X ∈ F
k×n×m be 1-nondegenerate. Then

trk(X) ≥ dim1(X) + min{trk(m1(u,X)) : u ∈ F
k \ {0}} − 1.

In the language of rank-metric codes, for X ∈ F
k×n×m satisfying dim1(X) = k, this in-

equality is equivalently expressed as

trk(X) ≥ k + d(ss1(X)) − 1. (4)

Another operation that is important in the context of tensors, is the so-called contraction
with respect to some indices. Since in this work we will only need one particular contraction,
we will not define this concept in general, but only for the following case.
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Definition 3.7. Let k, k′, n,m ∈ N, and let

X =
∑

i

ui ⊗ vi ⊗ wi ∈ F
k×n×m, Y =

∑

j

u′j ⊗ v′j ⊗w′
j ∈ F

k′×n×m

be tensors. We define the double-dot product between X and Y , as the 2-tensor (i.e., the

matrix) X : Y ∈ F
k×k′

q given by

X : Y =
∑

i,j

(vi · v
′
j)(wi · w

′
j)ui ⊗ u′j .

In terms of their coordinate tensor representations, if we write X = (Xijℓ) and Y = (Ysjℓ),
then it is straightforward to see that the double-dot product X : Y will have coordinate
representation defined by

(X : Y )is =
∑

j,ℓ

XijℓYsjℓ, for 1 ≤ i ≤ k, 1 ≤ s ≤ k′.

The definition also extends when one (or even both) of the tensors is a 2-tensor, i.e. a
matrix, considering A ∈ F

n×m as an element in F
1×n×m. In particular, for two matrices

A,B ∈ F
n×m, we have

A : B = Tr(AB⊤),

that is, the double-dot product between two matrices corresponds to their trace-product.
Moreover, it is straightforward to prove that, for A ∈ F

s×k, B ∈ F
s×k′, X ∈ F

k×n×m, and
Y ∈ F

k′×n×m we have

m1(A,X) : Y = A(X : Y ),

X : m1(B,Y ) = (X : Y )B⊤.
(5)

We now turn to the connection between tensors and rank-metric codes.

4. Codes and Tensors

In the theory of rank-metric codes, a natural representation of the code is with respect
to a generating tensor for it. It will become evident that this representation offers greater
efficiency in terms of complexity of encoding and storage of the encoder.

The generator tensor essentially determines an encoding from the information space F
k
q to

the ambient matrix space Fn×m
q . More specifically, for a given Fq-[n×m,k] code C, an encoder

is a an Fq-monomorphism

E : Fk
q :→ F

n×m
q .

The space of all such encoding maps is contained in the space HomFq
(Fk

q ,F
n×m
q ), which is an

Fq-vector space of dimension knm. Moreover, we have that

HomFq
(Fk

q ,F
n×m
q ) ∼= F

k×n×m
q

as Fq-vector spaces. The isomorphism is explicitly given by:

E : Fk×n×m
q → HomFq

(Fk
q ,F

n×m
q ) : X 7→ EX ,

where

EX : Fk
q → F

n×m
q : g 7→ m1(g,X).

This yields an analogue of the notion of a generator matrix for rank-metric codes, in the
form of a 3-tensor.

Definition 4.1. Let C be an Fq-[n×m,k] code. A generator tensor for code C is an element

X ∈ F
k×n×m
q such that ss1(X) = C.



TENSOR REPRESENTATION OF RANK-METRIC CODES 9

Clearly, with respect to this definition, any generator tensor for a code is necessarily 1-
nondegenerate. The complexity of realizing a code C as the slice space of a tensor X depends
on the tensor rank of X and hence it is of interest to give expressions of generating tensors
as minimal sums of simple tensors, and moreover to obtain constructions of codes whose
generating tensors have least possible tensor rank.

Let C ⊆ F
n×m
q be a non-zero code, and let X1,X2 be generating tensors for C. By Propo-

sition 3.4 we have

trk(X1) = min{R : there are rank 1 matrices A1, . . . , AR with C ⊆ 〈A1, . . . , AR〉} = trk(X2).

Therefore the following hold.

Proposition 4.2. Let X1 and X2 be two generator tensors for the same rank-metric code C.
Then

trk(X1) = trk(X2).

Furthermore, if C is not the zero code, then this numbers equals the minimum R > 0 such
that C is contained in the span of R rank 1 matrices.

Definition 4.3. Let C be an Fq-[n ×m,k] code. The tensor rank of C, denoted by trk(C),
is defined to be the tensor rank of any generator tensor of C. We say that C is minimum

tensor rank, or MTR in short, if it meets the bound of Theorem 3.6, that is, if

trk(C) = k + d(C) − 1.

If C and C′ are a pair of codes satisfying C′ = ϕ(C) for an isometry ϕ, then any R-base A
for C yields the R-base ϕ(A) for C′. Therefore, Proposition 4.2 also implies that the tensor
rank is invariant under code equivalence.

Proposition 4.4. Let C, C′ ∈ F
n×m
q be equivalent codes. Then trk(C) = trk(C′).

Let C be an Fq-[n ×m,k] code with generator tensor X ∈ F
k×n×m. By the definition of

a generator tensor, we have that dim1(X) = dimFq
(C). However, dim2(X) and dim3(X) also

have an important role, as explained by the following result.

Proposition 4.5. Let C be an Fq-[n×m,k] code with generator tensor X ∈ F
k×n×m
q . Then

dim2(X) = dim(csupp(C)), dim3(X) = dim(rsupp(C)).

Proof. Let A1, . . . , Ak be a basis of C. Then Y =
∑k

i=1 ei ⊗ Ai is a generator tensor for C.

For any y ∈ F
n
q , we have that m2(y, Y ) =

∑k
i=1 ei ⊗ (yAi) = 0 if and only if yAi = 0 for each

i = 1, . . . , k. This is true if and only if

y ∈

k
⋂

i=1

colsp(Ai)
⊥ =

(

∑

i=k

colsp(Ai)

)⊥

= csupp(C)⊥.

In particular csupp(C)⊥ is the kernel of the map

m2(·, Y ) : Fn
q → F

k×m
q : y 7→ m2(y, Y ),

hence dim(csupp(C)) = dim2(Y ) = dim ss2(C) = dim2(X). �

Remark 4.6. As a consequence, the property of a rank-metric code C of being nondegenerate
can be read from its generator tensor. Indeed, C is nondegenerate if and only if any of its
generator tensors is both 2-nondegenerate and 3-nondegenerate.

Remark 4.7. We note that some of the results of this section have been previously considered
in the case of m = n = k, due to the fact that MRD codes in this situation are in one-to-
one correspondence with finite semifields; that is, nonassociative division algebras. Indeed,
tensors and rank-metric codes in this case correspond to algebras which are not necessarily
associative. Knuth [14] considered the cubical array of a semifield, which is precisely the
co-ordinate tensor introduced in Section 3. The explicit tensor correspondence was outlined
in [19] and developed in [16], where the tensor rank was proposed as an interesting invariant
of a finite semifield, or equivalently its corresponding slice space.
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4.1. A Connection with Linear Block Codes. In [3], the authors draw a connection
between tensor rank and linear block codes. See also [4, Chapter 18] for an exposition. This
connection provides a lower bound on the tensor rank in terms of the length of a block code
hence one can apply coding theoretic bounds to get an estimate for trk(X). First, we define
the following number from coding theory.

Definition 4.8. For positive integers k, d we define

Nq(k, d) := min{N | there exists an Fq-[N, k, d] code}.

We will associate a linear block code with a rank-metric codes as follows. Let C be an
Fq-[n×m,k] code with tensor rank R. By Proposition 3.4, we can define the following.

Definition 4.9. Let C be an Fq-[n × m,k] code with k ≥ 1 and tensor rank R. A set
A = {A1, . . . , AR} ⊂ F

n×m
q of rank 1 matrices such that C ⊆ 〈A〉 is called an R-basis for C.

Let A = {A1, . . . , AR} ⊂ F
n×m
q be a linearly independent set of matrices of rank 1. We

define an Fq-linear isomorphism (c.f. [4, Theorem 18.4]):

ψA : 〈A〉 → FR
q :

R
∑

i=1
µiAi 7→

R
∑

i=1
µiei.

Definition 4.10. Let C be an Fq-[n×m,k] code with tensor rank R and let A be an R-basis
for C. We define the linear block code CA to be the image of C under ψA:

CA := ψA(C).

For a generator tensor X =
∑R

r=1 ur ⊗ vr ⊗ wr of an Fq-[n×m,k] code C, any element M
of C can be expressed as

M = m1(a,X) =
R
∑

r=1

(a · ur)(vr ⊗ wr)

for some a ∈ F
k
q . For Ar = vr ⊗wr, the image of M element under ψA is (a · ur : 1 ≤ r ≤ R).

In other words, we have that CA is simply the Fq-[R, k] block code with k × R generator
matrix (ur : 1 ≤ r ≤ R).

Theorem 4.11 ([3]). Let C be an Fq-[n × m,k, d] code with tensor rank R. Let A =
{A1, ..., AR} be an R-basis for C. Then the following hold.

(1) For every M ∈ C, rk(M) ≤ wtH(ψA(M)).
(2) CA is an Fq-[R, k,≥ d] code.
(3) trk(C) ≥ Nq(k, d).

Proof. LetM ∈ C, and let s = rk(M). Then any expression of M as sum of rank one matrices

requires at least s such matrices in the sum. In particular, M =
∑R

i=1 λiAi for some λi ∈ Fq

with at least s of the values λi non-zero. Then clearly s ≤ wH(ψA(M)) ≤ R, proving the first
statement. The next two statements follow immediately. �

Definition 4.12. Let C be an Fq-[n×m,k, d] code. We say that C is tensor rank extremal

if trk(C) = Nq(k, d).

Indeed any lower bound on Nq(k, d) provides a lower bound on the tensor rank so the
connection to linear block codes can be exploited. In particular, if C meets the tensor-rank
bound, that is, if R = k+d−1, then code CA is an Fq-[R, k,R−k+1] code and is thus MDS.

For any pair of full-rank matrices V ∈ F
n×R and W ∈ F

m×R, define the Fq-linear map

φV,W : FR
q → F

n×m
q : x 7→ V diag(x)W⊤,

Let vr, wr denote the rth columns of V and W , respectively and let A = {Ar : 1 ≤ r ≤ R},
with Ar = vr ⊗ wr for each r. Then

φV,W (ψA(M)) =M, (6)
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for each M in the span of A. This is easy to see, for if M =
∑R

r=1 λrAr for some λr ∈ Fq,
then we have

φV,W (ψA(M)) = φV,W

(

R
∑

r=1

λrer

)

= φV,W (λ)

= V diag(λ)W⊤

=
R
∑

r=1

λrvr ⊗ wr

=

R
∑

r=1

λrAr =M.

This yields the following result.

Lemma 4.13. Let C be an Fq-[n × m,k] code. Suppose that C = V 〈D〉W⊤ for some set
D = {D1, . . . ,Dk} of diagonal matrices and matrices V ∈ F

n×R
q and W ∈ F

m×R
q of ranks

n,m respectively. Let vr, wr denote the rth columns of V and W , respectively, and define
A = {Ar : 1 ≤ r ≤ R} such that Ar = vr ⊗ wr for each r. Then φV,W (ψA(C)) = C.

In the next section, we shall be concerned with tensor rank extremal codes (those meeting
the bound of Theorem 4.11) and in particular with constructions of codes meeting Kruskal’s
tensor rank bound of (Theorem 3.6). One approach will be to view a rank-metric code C in
F
n×m as the image of an Fq-linear block code under φV,W . Then

φ−1
V,W (C) :=

{

c ∈ F
R
q : V diag(c)W⊤ ∈ C

}

,

is an Fq-[R, k] code C and in fact we have C = ψA(C) where A = {Ar : 1 ≤ r ≤ R} such that
Ar = vr ⊗ wr for each r.

We therefore have, using (6) and/or Lemma 4.13, the following rewriting of Theorem 4.11.

Corollary 4.14. Let C ⊆ F
n×m
q be a rank-metric code of dimension k, minimum distance d

and tensor rank R. Let D = {D1, . . . ,Dk} be a k-set of R × R diagonal matrices and let
C = V 〈D〉W⊤ for matrices V,W ∈ F

n×R
q ,Fm×R

q of ranks n,m respectively. The following hold

(1) For every M ∈ C, rk(M) ≤ wtH(φ−1
V,W (M)).

(2) φ−1
V,W (C) is an [R, k,≥ d] code.

(3) If C is tensor rank extremal, then the code φ−1
V,W (C) is an Fq-[R, k, d] code of length

Nq(k, d). In particular, if C is MTR then the code φ−1
V,W (C) is an MDS code.

We have also obtained a new proof of the tensor-rank bound.

Corollary 4.15 (Tensor-rank bound). Let C ⊆ F
n×m
q be a rank-metric code. Then

trk(C) ≥ dim(C) + d(C)− 1. (7)

4.2. Complexity. We have demonstrated how the encoding map from F
k
q to the ambient

space F
n×m
q is represented for a rank metric code by a 3-tensor, namely its generator tensor.

Let X =
∑R

r=1 ur ⊗ vr ⊗ wr be a generator tensor for an Fq-[n × m,k, d] code C of tensor

rank R. The message a ∈ F
k
q is encoded via

a 7→ m1(a,X) =
R
∑

r=1

(x · ur)vr ⊗ wr = V diag(xU)W T ,

where U = (ur : 1 ≤ r ≤ R), V = (vr : 1 ≤ r ≤ R) and (wr : 1 ≤ r ≤ R). We say that X is
in standard form if U = [Ik|U

′], V = [In|V
′] and W = [Im|W ′] for matrices U ′, V ′,W ′ of the

required sizes.
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X has storage complexity R(k + n + m) in the general case and requires storing up to
R(k+n+m)−k2−n2−m2 symbols in Fq if X is in standard from. Note that the expression
of the codeword c = m1(a,X) as an Fq-linear combination of r rank one matrices vr ⊗ wr is
unique and as we outlined before, C and CA are isomorphic. Thus is is sufficient to compute
(cr) = xU in order to represent elements of C, once the generator tensor X is known. The
tensor encoding therefore requires kR multiplications and (k − 1)R additions over Fq for
arbitrary U of rank k and k(R − k) multiplications and (k − 1)(R − k) additions if U is in
standard form.

Of course, being an Fq-space, we could also choose to use a generator matrix to represent
the encoding map. This can be achieved by representing each element of Fn×m

q as a vector of
length F

nm
q by the obvious Fq-isomorphism

(Mij) 7→ (M11 · · ·M1n| · · · |Mm1 · · ·Mmn).

Then choose a k×nm generator matrix G as the encoder. The storage complexity of G is knm
and if G is in systematic form it requires k(nm− k) symbols in Fq. The encoding complexity
of the computation x 7→ xG for G in standard form then requires k(nm− k) multiplications
and (k− 1)(nm− k) additions. We remark that the k×nm matrix G can simply be obtained
from the coordinate tensor representation of X via Git := Xijℓ where t = (i − 1)j + ℓ for
1 ≤ j ≤ n, 1 ≤ ℓ ≤ m.

We summarize these observations in Table 1.

k × nm Generator Matrix k × n×m Generator Tensor
Storage k(mn− k) R(k + n+m)− k2 − n2 −m2

Encoding Additions (k − 1)(nm− k) (k − 1)(R − k)
Encoding Multiplications k(nm− k) k(R − k)

Table 1. Complexities

Since R ≤ nm, the generator tensor approach in most cases offers complexity lower than
that required by the generator matrix encoder. The number of symbols in Fq required to
store the standard form generator matrix G exceeds that of the standard generator tensor X
if and only if

R <
knm+ n2 +m2

k + n+m
.

We now study codes that meet the tensor-rank bound.

5. Tensor Rank Extremal Codes

In this section we consider existence questions on tensor rank extremal and MTR codes.
Let k, d, be positive integers. We wish to determine for which n, m ∈ N there exists an
Fq-[n × m,k, d] code C of tensor rank R = Nq(k, d) and in particular, those for which R =
k + d− 1.

Our approach to this problem is relies on Lemma 4.14, which gives a way to obtain tensor
rank extremal codes from block codes of minimal length and hence MDS codes from MTR
codes. A natural problem is to determine in which cases we can do the converse.

Problem 1. Let n,m be positive integers and let R, k, d be positive integers satisfying R =
Nq(k, d). Find an Fq-[R, k, d] code C and a pair of matrices V ∈ F

n×R
q ,W ∈ F

m×R
q such that

the code φV,W (C) is a rank-metric code of dimension k, minimum distance d and tensor rank
R (i.e., is a tensor rank extremal code).

An interesting special case is given by the following.

Problem 2. Let n,m be positive integers and let R, k, d be positive integers satisfying R =
k + d− 1. Find an Fq-[R, k] MDS code C and a pair of matrices V ∈ F

n×R
q ,W ∈ F

m×R
q such

that the code φV,W (C) is a rank-metric code of dimension k, minimum distance d and tensor
rank R (i.e. is an MTR code).
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The answer to these problems clearly depends on n and m. Indeed, one immediately
observes that both n and m can not be smaller than d. Moreover, we can use the Singleton-
like bound of Theorem 2.3 to deduce that n,m have to satisfy

k ≤ min{n(m− d+ 1),m(n − d+ 1)}.

Definition 5.1. Let C be an Fq-[R, k, d] of length R = Nq(k, d). Let V ∈ F
n×R
q and let

W ∈ F
m×R
q . We say that (C, V,W ) is an extremal triple if it is a solution to Problem 1, i.e.

if φV,W (C) is a tensor rank extremal code.

With this notation, given positive integers k, d, we wish to determine for which n,m ∈ N

there exist matrices V ∈ F
n×R
q ,W ∈ F

m×R
q and an Fq-[R = Nq(k, d), k, d] code C such that

(C, V,W ) is an extremal triple. It is clear from the definition that this happens if and only if

rk(V diag(c)W⊤) ≥ d, (8)

for every c ∈ C \ {0}.
The following result will be useful to us in addressing this problem.

Lemma 5.2. Let V ∈ F
n×R
q ,W ∈ F

m×R
q and let c ∈ F

R
q . Let CV and CWc

denote the
row-spaces of V and Wdiag(c), respectively. Then

rk(V diag(c)W T ) = rk(V )− dim(C⊥
V ∩ CWc

) = rk(W )− dim(CWc
∩ C⊥

V ).

Proof. Suppose first that V and W both have full rank. For any c ∈ C, the rank of
V diag(c)W⊤ is the rank of the associated bilinear form on

ϕ : Fn
q × F

m
q : (x, y) 7→ xV diag(c)W⊤y⊤,

which is
n− dimkerL ϕ = m− dimkerR ϕ.

Now V has full rank, and so F
n
q and CV are isomorphic.

kerL ϕ = {x ∈ F
n
q : xV diag(c)W⊤y⊤ = 0∀ y ∈ F

m
q } ∼= {v ∈ CV : vdiag(c)W⊤ = 0} = CV ∩C

⊥
Wc
.

Similarly, kerR ϕ ∼= CWc
∩C⊥

V . Now consider the case rkV = s ≤ n and rkW = t ≤ m. There
exist full rank matrices A ∈ F

s×R
q and B ∈ F

t×R
q such that AV and BW are full rank matrices

with the same row-spaces as V and W , respectively. Then apply the above argument with
AV in place of V and with BW in place of W to complete the proof. �

We fix some further notation. For an arbitrary matrix Y ∈ F
ℓ×R
q and element c ∈ F

R
q , we

write CY to denote the row-space of Y and write CYc
to denote the row-space of Y diag(c).

It is clear that if for given parameters k, d we have a tensor rank extremal code in F
n×m
q ,

then we can construct a tensor rank extremal code in a larger ambient space for the same
parameters k, d. In terms of extremal triples, we can express this observation as follows.

Lemma 5.3. Let C be an Fq-[R = Nq(k, d), k, d] code. Let V ∈ F
n×R
q and W ∈ F

m×R
q

such that (C, V,W ) is an extremal triple. Then for all integers n′ ≥ n, m′ ≥ m and for all

the matrices V ′ ∈ F
n′×R
q ,W ′ ∈ F

m′×R
q such that rowsp(W ) ⊆ rowsp(V ′) and rowsp(W ) ⊆

rowsp(W ′), (C, V ′,W ′) is an extremal triple.

Proof. Let (C, V,W ) be an extremal triple. Let V ′ ∈ F
n′×R
q ,W ′ ∈ F

m′×R
q such that rowsp(W ) ⊆

rowsp(V ′) and rowsp(W ) ⊆ rowsp(W ′). Then, there exist A ∈ GL(n′, q), B ∈ GL(m′, q) such
that

AV ′ =

(

V
0

)

, BW ′ =

(

W
0

)

,

Therefore, for every v ∈ C \ {0}

rk(V ′diag(v)W ′⊤) = rk(AV ′diag(v)W ′⊤B⊤) = rk

(

V diag(v)W⊤ 0
0 0

)

≥ rk(V diag(v)W⊤) = d.

�
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In particular, this means that in our analysis of Problem 1 we may assume without loss of
generality V and W are full rank matrices.

First we observe that in the case that at least one integer among n and m is greater or
equal than R, then it is easy to construct an extremal triple. Suppose that n ≥ R. Let C be a
Fq-[R = Nq(k, d), k, d] code and let V,W be any full-rank matrices. By Sylvester’s inequality,
we get that for every c ∈ C \ {0},

rk(V diag(c)W⊤) ≥ rk(V ) + rk(Wdiag(c)) −R = rk(Wdiag(c))

For the case m ≥ R, all columns of W are linearly independent and so rk(Wdiag(c)) =
wH(c) ≥ d. For the case R < m, rk(Wdiag(c)) ≥ rk(W ) − (R − wH(c)) = wH(c) ≥ d. In
either case the inequality of (8) is satisfied and clearly holds similarly with the assumption
m ≥ R. It therefore only remains to consider the case m,n < R.

Proposition 5.4. Let C be an Fq-[R = Nq(k, d), k, d] code. Let n,m ∈ N such that d ≤
n,m < R and V ∈ Fn×R

q ,W ∈ Fm×R
q .

(1) (C, V,W ) is an extremal triple.
(2) For every c ∈ C \ {0}, dim(C⊥

V ∩ CWc
) ≤ rk(W )− d

(3) For every c ∈ C \ {0}, dim(CV ∩ C⊥
Wc

) ≤ rk(V )− d

(4) For every c ∈ C \ {0}, dim(C⊥
V + CWc

) ≥ R− rk(V ) + d

(5) For every c ∈ C \ {0}, dim(CV + C⊥
Wc

) ≥ R− rk(W ) + d

Proof. As we observed before, φV,W (C) has tensor rank at most R and dimension k and
so is tensor rank extremal if and only if it has minimum rank distance d. Therefore, from
Lemma 5.2, the equivalence of the first three statements is immediate. The equivalences
between (2) and (4) and between (3) and (5) are a direct consequence of the dimension formula
for the sum of two subspaces, which is dim(X + Y ) + dim(X ∩ Y ) = dim(X) + dim(Y ).

The equivalences between (2) and (5) and between (3) and (4) follow from the fact that
(X ∩ Y )⊥ = X⊥ + Y ⊥ and that dim(X⊥) = R− dim(X), for every X,Y subspace of FR

q . �

Proposition 5.5. Let k, d, n,m,R be positive integers satisfying d ≤ n,m < R and R =
Nq(k, d). Let C be an Fq-[R, k, d] code and let V ∈ F

n×R
q ,W ∈ F

m×R
q such that CV and CW

are MDS codes. If n+m ≥ R+ d, then (C, V,W ) is an extremal triple.

Proof. Let c ∈ C \ {0}, with wtH(v) = w ≥ d. Since CV and CW are MDS codes, we
have rk(V diag(v)) = min{n,w} and rk(diag(v)W⊤) = min{m,w}. By the Frobenius rank
inequality, we have

rk(V diag(c)W⊤) ≥ rk(V diag(c))+rk(diag(c)W⊤)−rk(diag(c)) = min{n,w}+min{m,w}−w.

It is easy to check that in all cases, under the assumption that m+n ≥ R+ d, the right hand
side of this inequality is at least d. �

We conclude this section with particular construction of an extremal triple involving doubly-
extended generalized Reed-Solomon codes or Cauchy codes [7, 22], which hence is a partial
solution to Problem 2. Before doing this, we briefly recall some notation. For each s ∈ N, let
Fq[x, y]<s denote the Fq-space of homogeneous polynomials with degree strictly less than s.

Let Fq = Fq ∪ {∞} denote the projective line over Fq. For any

f(x, y) =
s−1
∑

j=0

fjx
jys−1−j ∈ Fq[x, y]<s

we define the map

f : Fq → Fq : θ 7→ f(θ) :=

{

f(θ, 1) if θ ∈ Fq,
f(1, 0) if θ = ∞.

Let N ∈ N. For any α = (α1, . . . , αN ) ∈ F
N

q define the evaluation map

evα : Fq[x, y]<s → F
N
q : f(x, y) 7→ (f(α1), . . . , f(αN )),
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and similarly for elements of Fq[x]<s

Definition 5.6 (see [7]). Let 1 ≤ k ≤ N−1 and let β = (β1, . . . , βN ) ∈ F
N
q and let α1, . . . , αN

be pairwise distinct elements of Fq. The Cauchy code Ck(α, β) is defined to be the set

Ck(α, β) := {(β1f(α1), . . . , βNf(αN )) : f ∈ Fq[x, y]<k} .

Observe that in our definition we allow the coefficients of β to be zero, while the standard
definition requires each β ∈ (F∗

q)
N . In particular, the Cauchy code as defined here is MDS

if β ∈ (F∗
q)

N . However, for our purposes, we will sometimes require β to have some zero
coefficients.

Let ∗ denote the Schur product (or Hadamard product) of two vectors, which is the vector
obtained after component-wise multiplication of two vectors of the same length. Then we
have the expression

Ck(α, β) = {β ∗ evα(f) : f ∈ Fq[x, y]<k} .

The following result gives a construction of MTR codes of dimension k and minimum rank
distance d, provided that d < k. We will see later that in the case d ≥ k we can always find
a construction of MTR codes for every m,n ≥ d. Therefore, the case analyzed here is the
non-trivial one.

Theorem 5.7. Let 0 < d < k < R be positive integers satisfying R = k + d− 1 and let α =

(α1, . . . , αR) ∈ F
R

q be a vector such that αi ∈ Fq are pairwise distinct. Let f(x, y) ∈ Fq[x, y]

be an irreducible homogeneous polynomial of degree k. Let C = Ck(α,1), let V ∈ F
k×R
q be a

parity check matrix of CR−k(α, evα(f)) and let W ∈ F
d×R
q be a generator matrix of Cd(α,1).

Then (C, V,W ) is an extremal triple.

Proof. In order to prove that (C, V,W ) is an extremal triple, we use the characterization given
in Proposition 5.4, showing that for every c ∈ C\{0} we have dim(C⊥

V ∩CWc
) ≤ dim(CWc

)−d.
Let c ∈ C \ {0}. Since C is an MDS code with minimum distance d, then wtH(v) ≥ d.
Moreover, the code CWc

is obtained from CW by multiplying the i-th coordinate of every
codeword by ci, that is, CWc

= Cd(α, c). Since CW is an MDS code of dimension d, we have
dim(CWc

) = d. We therefore need to show that

C⊥
V ∩ CWc

= {0}.

Now c = evα(g) for some non-zero g(x, y) ∈ Fq[x, y]<k, and so CWv
= Cd(α, evα(g)). Let

b ∈ C⊥
V ∩ CWc

. There exist µ ∈ Fq[x, y]<R−k, λ ∈ Fq[x, y]<d such that b = evα(f) ∗ evα(µ) =
evα(g) ∗ evα(λ), i.e.

bi = f(αi)µ(αi) = g(αi)λ(αi), for i = 1, . . . , R.

From the fact that deg fµ < R and deg gλ < R, we obtain fµ = gλ. Therefore, since f is
irreducible, f divides g or λ. But deg g < k and deg λ < d. This implies λ = 0 and b = 0. �

Example 5.8. Let q = 8, R = 7, k = 5 and let d = R − k + 1 = 3. Let ω be a generator of
F
×
8 and let α = (1, ω, ..., ω6). The polynomial f(x) = x5 + x2 + 1 is irreducible in F8[x]. Let
C be the F8-[7, 5, 3] Reed-Solomon code C5(α,1). Let

V =













1 0 0 0 0 ω6 ω2

0 1 0 0 0 ω3 ω5

0 0 1 0 0 ω6 ω3

0 0 0 1 0 ω5 ω4

0 0 0 0 1 ω4 ω2













, W =





1 0 0 ω3 ω 1 ω2

0 1 0 ω6 ω6 1 ω2

0 0 1 ω5 ω4 1 ω4



 .

V is a parity check matrix of C2(α, evα(f)) = C2(α, (1, ω, ω
2, ω4, ω4, ω2, ω)), and W is a

generator matrix of C3(α,1). It can be checked that for each c ∈ C, we have C2(α, evα(f)) ∩
C3(α, c) = {0}. (C, V,W ) is an extremal triple and the rank-metric code C = φV,W (C) is an
MTR F8-[5× 3, 5, 3] code of tensor rank 7 and is in fact MRD.
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Remark 5.9. The storage complexity cost of the generator tensor for this class of MTR
codes is at most 3kd− 2k − d. This bound is exceeded by the bound on the cost of encoding
using a generator matrix as described in Section 4.2 (which is k2(d − 1)) for all k > d. The
generator tensor encoding cost requires at most k(d − 1) multiplications and (k − 1)(d − 1)
additions, while the encoding costs required by a generator matrix requires up to k2(d − 1)
multiplications and (k − 1)k(d − 1) additions.

Remark 5.10. The figure below gives a graphical description of the parameters for which
Problem 2 is solved. That is, it represents the parameters for which we do have constructions
of MTR codes, the parameters for which we know no MTR codes exist, and the parameters for
which the problem is still open. We suppose that d < k are fixed integers, and the axis show
increasing n and m (the number of rows and the number of columns of the ambient matrix
space). The black hyperbolae represent the Singleton-like bounds, and therefore below them
there does not exist any MTR codes. The blue shading represent the construction of MTR
codes described in Theorem 5.7 and its transpose. Moreover, by Lemma 5.3, the right-upper
quarter-planes having those points as corner points have also a construction of MTR codes.
The red line represents the solutions provided by Proposition 5.5, and again by Lemma 5.3;
for each point on it, the right-upper quarter-plane starting from it has solution. As we can see,
the area in between the Singleton-like bounds, the red line and the two upper-right quarter-
planes starting from the blue dots is not solved yet. For this reason, in the following we will
investigate codes which are not necessarily MTR, but have “small” tensor rank relative to
their dimension and minimum distance.

?

k

d
d k

n

m

Existence of MTR Codes

5.1. Tensor rank of Delsarte-Gabidulin codes. In this subsection, we study the tensor
rank of Delsarte-Gabidulin codes, which form the best understood family of rank-metric codes.
We will give a precise computation of their tensor rank when the dimension of the code
over the extension field is 1, and a non-trivial upper bound when this dimension is strictly
greater than 1. In order to do this, we recall some well-known results on tensors over finite
fields. In the literature, the computation of tensor rank of tensors over finite field was mainly
studied for complexity purposes. Indeed, the tensor rank of some special tensors reveals the
lowest complexity of some operations, such as multiplication between polynomials or between
matrices. The interested reader is referred to [4] for a more complete exposition.
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First, we need the following result, which ensures that the tensor rank of a vector code is
well defined.

Proposition 5.11. Let C ⊆ F
n
qm be a vector code, and let Γ = {γ1, . . . , γm}, Γ′ = {γ′1, . . . , γ

′
m}

be two bases of Fqm/Fq. Then trk(Γ(C)) = trk(Γ′(C)).

Proof. By Remark 2.10, we have that Γ(C) and Γ′(C) are equivalent codes in F
n×m
q , so the

result follows by Proposition 4.4. �

Therefore, by Proposition 5.11, the notion of tensor rank of a vector code is well-defined,
and we will denote by trk(C) the tensor rank of any of its matrix representations.

Let f ∈ Fq[x] be a fixed polynomial of degree k. The map

Fq[x]<m × Fq[x]<n → Fq[x]<k : (g, h) 7→ gh mod f,

is clearly bilinear, and so can be represented by a tensor, which we denote by Tm,n,k ∈ F
m×n×k
q .

We have the following result on the tensor rank of Tm,n,ℓ.

Proposition 5.12 ([4, Propositions 14.47, 14.48]). Tm,n,k over Fq has tensor rank at least
m+ n− 1, and has tensor rank exactly m+ n− 1 if and only if q ≥ m+ n− 2.

Lemma 5.13. Let f ∈ Fq[x] be an irreducible polynomial of degree m, and let α be a root
of f . Let C = 〈(1, α, . . . , αm−1)〉Fqm

and let Γ =
{

1, α, . . . , αm−1
}

. The tensor Tm,m,m is the
generator tensor of the m-dimensional code Γ(C).

Proof. Let Mf denote the companion matrix of the polynomial f . Then the map h 7→ gh
mod f has an associated matrix g(Mf ) with respect to the basis {1, x, . . . , xm−1}. Thus,

ss1(Tm,m,m) = {g(Mf ) : g ∈ Fq[x]<m} = 〈I,Mf , . . . ,M
m−1
f 〉 = Γ(C). �

As an immediate corollary, we have a similar statement for the one-dimensional Delsarte-
Gabidulin codes in F

n
qm.

Corollary 5.14. Let n ≤ m be positive integers. The tensor Tm,n,m is the generating tensor
of a one-dimensional Delsarte-Gabidulin code in F

n
qm.

Proof. Denote by X the matrix associated to the map from Fq[x]<m to Fq[x]<n defined by

m−1
∑

i=0

aix
i 7→

n−1
∑

i=0

aix
i,

with respect to the basis {1, x, . . . , xm−1} and {1, x, . . . , xn−1}. Then it is clear by defini-
tion that ss1(Tm,n,m) = ss1(Tm,m,m)X = Γ(C)X, where C is the one-dimensional Delsarte-
Gabidulin code in (Fqm)

m generated by the vector (1, α, . . . , αm−1), and Γ :=
{

1, α, . . . , αm−1
}

.

Now, for every v ∈ C and every i = 0, . . . ,m − 1, Γ(αiv) ∈ C. Therefore, for every
β ∈ Fqm , v ∈ C, we have Γ(βv)X ∈ Γ(C)X, which means that Γ(C)X is equivalent to
an Fqm-linear code in F

n
qm of dimension 1. All such codes are Delsarte-Gabidulin codes. �

Using the results above, we give an upper bound on the tensor rank of some special Delsarte-
Gabidulin codes.

Proposition 5.15. Let n ≤ m and let q ≥ m+ n − 2. For every K ≤ m, there exists a K-
dimensional Delsarte-Gabidulin code in F

n
qm of tensor rank at most min{mn,K(m+ n− 1)}.

Proof. It is clear that every code in F
n
qm has tensor rank at most mn. Choose as a K-

dimensional Delsarte-Gabidulin code the code C ⊆ F
n
qm defined as an evaluation code on

the points 1, α, . . . , αn−1, where α is a primitive element of Fqm over Fq. Therefore, the
code C is the Fq-span of K one-dimensional Delsarte-Gabidulin codes of the form Ci =

〈(1, αqi , α2qi , . . . , α(n−1)qi )〉. For each i = 1, . . . ,K, consider the basis

Γi = {1, αqi , α2qi , . . . , α(n−1)qi}.
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Then, Γi(Ci) = ss1(Tm,n,m), which by Proposition 5.12, has tensor rank exactly m + n − 1,
and the result follows. �

Remark 5.16. The rank of the tensor Tm,m,m for q < 2n− 1 has been studied in connection
with the algebraic complexity of multiplication in Fqm . This problem remains open in general.
We refer to [17] for the case n = 3, and [1] for bounds in the case q = 2.

5.2. Codes with small tensor rank. In this subsection we give some constructions of codes
with tensor rank bounded by above. In order to do that, we rely on the results given in the
previous subsection about the tensor rank of Delsarte-Gabidulin codes. Before proceeding
with these constructions, we give an auxiliary lemma.

Lemma 5.17. Let C be an Fq-[n × m,k, d] code with tensor rank R. Then there exists a
subcode D ⊂ C such that dim(D) = k − 1, d(D) ≥ d and trk(D) ≤ R− 1.

Proof. Let C be a rank-metric code with tensor rank R, and let A = {A1, . . . , AR} be an
R-basis for C. Consider the code CA. Without loss of generality we may assume that CA is
systematic in the first k coordinates and so it has a generator matrix of the form

G = (Ik |M).

Now let D̃ be the subcode of CA generated by all but the first row of G. The code

D := φ−1
A (D̃)

clearly has dimension k− 1 and minimum distance ≥ d. Moreover, since D̃ ⊂ 〈e2, . . . , eR〉, we
have D ⊆ 〈A2, . . . , AR〉. Therefore trk(D) ≤ R− 1. �

Proposition 5.18. Let k, d, n,m be positive integers with d ≤ n ≤ m and let ρ = min{s ∈
N : s(s− d+ 1) ≥ k}. If ρ ≤ n then there exists an Fq-[n×m,k,≥ d] code C such that

trk(C) ≤ k +min{ρ(d− 1), (ρ − d+ 1)(ρ− 1)},

provided that q ≥ 2ρ− 2.

Proof. Let K = ρ − d + 1. There exists a Delsarte-Gabidulin code C ⊆ F
ρ
qρ of dimension

K, minimum distance d, and by Proposition 5.15, tensor rank at most min{ρ2,K(2ρ− 1)} =
min{ρ2, (ρ − d + 1)(2ρ − 1)}. Let Γ′ be a basis for Fqρ/Fq. Then, the code Γ′(C) is an Fq-
[ρ× ρ,Kρ] code and can be embedded in F

n×m
q . Applying Lemma 5.17 Kρ− k times, we get

an Fq-[n×m,k,≥ d] code C with trk(C) ≤ k +min{ρ(d− 1), (ρ − d+ 1)(ρ− 1)}. �

We now present a refinement of the previous construction, which yields a better upper
bound.

Theorem 5.19. Let k, d, n,m be positive integers with d ≤ n ≤ m, and k ≤ m(n − d + 1).
Then there exists an Fq-[n×m,k,≥ d] code C such that

trk(C) ≤ k +min

{(⌈

k

m

⌉

+ d− 1

)

(d− 1),

⌈

k

m

⌉(⌈

k

m

⌉

+ d− 2

)}

,

provided q ≥ m+
⌈

k
m

⌉

+ d− 3.

Proof. Let µ = min{s ∈ N : m(s − d + 1) ≥ k} = ⌈ k
m
⌉ + d − 1. By hypothesis, µ ≤ n.

Let K = µ − d + 1. There exists a Delsarte-Gabidulin code C ⊆ F
µ
qm of dimension K,

minimum distance d and, by Proposition 5.15, tensor rank at most min{mµ,K(m+µ−1)} =
min{mµ, (µ− d+1)(m+µ− 1)}. Let Γ be a basis for Fqm/Fq. Then the code Γ(C) is an Fq-
[µ×m,Km] code, which can be embedded in F

n×m
q . Again, we iteratively apply Lemma 5.17

Km− k times to get aFq-[n×m,k,≥ d] code C such that

trk(C) ≤ min{mµ, (µ − d+ 1)(m + µ− 1)} − (µ− d+ 1)m+ k

= k +min{µ(d− 1), (µ − d+ 1)(µ − 1)}

= k +min

{(⌈

k

m

⌉

+ d− 1

)

(d− 1),

⌈

k

m

⌉(⌈

k

m

⌉

+ d− 2

)}

. �
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Remark 5.20. In Proposition 5.18, the essential idea was to take a Delsarte-Gabidulin code
whose elements are representable as square matrices, embed it in F

n×m
q and iteratively obtain

subcodes with decreasing tensor rank. In Theorem 5.19 we applied the same principle, but
this time chose a Delsarte-Gabidulin code whose elements are representable as rectangular
matrices. In the first case the initial code is a subspace of Fρ×ρ

q , while in the second the code

is a subspace of Fµ×m
q . The fact that the latter construction gives a smaller upper bound on

the tensor rank can be easily verified since
⌈

k
m

⌉

= µ− d+ 1 and µ ≤ ρ.

Remark 5.21. In fact we stated this result in the most general case, even though we are
more interested in the those parameters k, d, n,m that are not covered by the constructions
of MTR codes given at the beginning of this section. As a consequence of this result, we get
the existence of MTR codes for the same parameters as those arising in Theorem 5.7, even
though the constructions are quite different.

Corollary 5.22. Let d, k, n,m be positive integers with d ≤ n ≤ m and k ≤ m. Then there
exists an Fq-[n×m,k, d] MTR code C, provided that q ≥ m+ d− 2

Proof. If k ≤ m, then by Theorem 5.19 we get an Fq-[n ×m,k, d]-code C such that trk(C) ≤
k + d− 1 and we deduce the result by the tensor rank bound. �

Remark 5.23. Observe in Corollary 5.22 we require q ≥ m+d−2, whereas the construction
provided by Theorem 5.7 depends on the existence of a Cauchy code of length k+d−1, which
we always have for q ≥ k + d− 2.

6. Generalized Ranks of a Code

In the sequel, we denote by U the set of subspaces of Fn×m
q that are generated by matrices

of rank one.

Definition 6.1. Let C be an Fq-[n×m,k] code with k ≥ 1, and let 1 ≤ r ≤ k be an integer.
The r-th generalized tensor rank of C is

dr(C) = min{dim(U) : U ∈ U , dim(C ∩ U) ≥ r}.

It is easy to check that the set of generalized tensor ranks form a code invariant.

Proposition 6.2. Equivalent codes have the same generalized tensor ranks.

The next result summarizes the main properties of the generalized ranks and explains the
terminology. It also gives a new proof of the tensor rank bound (Corollary 4.15).

Theorem 6.3. Let C ⊆ F
n×m
q be a k-dimensional code with k ≥ 1. The following hold.

(1) d1(C) = d(C).
(2) dk(C) = trk(C).
(3) For all 1 ≤ r ≤ min{k,mn − 1} we have dr(C) < dr+1(C).
(4) For all 1 ≤ r ≤ k we have dr(C) ≥ d(C) + r− 1. In particular, trk(C) ≥ d(C) + k− 1.
(5) For all 1 ≤ r ≤ k we have dr(C) ≤ trk(C)− k + r.

Proof. (1) Let M ∈ C be a matrix with d = d(C) = rk(M). Write M = M1 + · · · +Md,
where each Mi ∈ F

n×m
q has rank one. Then U = 〈M1, . . . ,Md〉 attains the minimum

in the definition of d1(C).
(2) This follows from Proposition 4.2.
(3) Let U ∈ U with dim(C ∩ U) ≥ r + 1 and dim(U) = dr+1(C). Let U ′ ⊆ U be a

hyperplane of U with U ′ ∈ U . Since U ′ + (U ∩ C) ⊆ U , we have

dim(U ′ ∩ C) = dim(U ′ ∩ (U ∩ C))

= dim(U ′) + dim(U ∩ C)− dim(U ′ + (U ∩ C))

≥ dim(U ′) + (r + 1)− dim(U)

= dim(U)− 1 + (r + 1)− dim(U)

= r.
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By definition, this implies that dr(C) ≤ dim(U ′) = dr+1(C)− 1.
(4) This follows combining (1), (2), and (3).
(5) This follows from (2) and (3). �

An interesting application of generalized tensor ranks is the distinction of inequivalent
codes, as the following example shows.

Example 6.4. Let q = 2 and n = m = 4. Let C1be the F2-[4 × 4] code generated by the
matrices









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









0 1 0 0
0 1 1 0
0 0 1 1
1 0 1 0









,









0 0 1 0
0 0 1 1
1 0 1 0
1 1 0 1









,









0 0 0 1
1 0 1 0
1 1 0 1
0 1 0 1









,

and let C2 be the F2-[4× 4] code generated by the matrices








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









0 1 0 0
1 1 0 1
0 0 1 1
1 1 1 1









,









0 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0









,









0 0 0 1
0 1 1 1
1 1 0 1
1 0 0 1









.

It can be checked that both C1 and C2 are MRD codes of dimension 4, and that their generalized
tensor ranks are (4, 6, 8, 9) and (4, 6, 7, 9), respectively. In particular, C1 and C2 are not
equivalent.

A natural question is whether generalized tensor ranks satisfy a duality property analogous
to that of generalized tensor rank weights [20, Corollary 38]. More generally, one may ask if
the generalized tensor ranks of a code C determine those of the dual code C⊥. The answer to
this question is negative in general. In the following example, we exhibit two codes that have
the same generalized tensor ranks, but whose duals have different generalized tensor ranks.

Example 6.5. Let q = 2 and n = m = 4. Let C2 be the F2-[4×4] code defined in Example 6.4,
and let C3 be the F2-[4× 4] code generated by the matrices









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









0 1 0 0
0 1 1 1
1 0 0 0
1 0 0 1









,









0 0 1 0
1 0 0 0
1 0 0 1
0 1 0 0









,









0 0 0 1
0 1 0 1
1 1 1 0
0 1 1 0









.

Then C2 and C3 have the same dimension, the same minimum distance, and the same
generalized tensor ranks, namely, (4, 6, 7, 9). However, the tensor rank of C⊥

2 is 14, and that
of C⊥

3 is 13.

7. Operations on Codes

As we have already seen in Section 4, the tensor representation of a rank-metric code is
the analogue of the generator matrix in the linear block case. We now study the properties
of the generator tensor of a code and what information can be read from it. In particular, we
focus on operations on rank-metric codes and the corresponding operations on their generator
tensors.

Let M ∈ F
n×m
q . For any I ⊂ [n], J ⊆ [m] satisfying 0 < |I| < n, 0 < |J | < m, respectively,

we denote by MI ∈ F
|I|×m
q the matrix whose rows are those of M indexed by I and by

MJ ∈ F
n×|J |
q the submatrix whose columns are those of M indexed by J .

Definition 7.1. Let C ⊆ F
n×m
q be a rank-metric code and A ∈ GL(n, q) and let B ∈ GL(m, q).

Let I ⊂ [n], J ⊆ [m] satisfy 0 < |I| < n, 0 < |J | < m. We define the row-punctured and
row-shortened codes of C with respect to A and I by

Πr(C, A, I) := {(AM)Ī :M ∈ C} , Σr(C, A, I) := {(AM)Ī :M ∈ C, (AM)I = 0} .
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We define the column-punctured and column-shortened codes of C with respect to B
and J by

Πc(C, B, J) :=
{

(MB)J̄ :M ∈ C
}

, Σc(C, B, J) :=
{

(MB)J̄ :M ∈ C, (MB)J = 0
}

.

Clearly,

Πr(C, A, I) = AĪC and Πc(C, B, J) = CBJ̄ . (9)

In particular every row-punctured code of C has the form AC for some ℓ×n matrix A of rank ℓ
and every column-punctured code has the form CB for some m× s matrix B of rank s.

Let X be a generator tensor for C ∈ F
n×m
q and let M ∈ C. Then M = m1(α,X) for unique

α ∈ F
k
q . Let I ⊂ [n] and let A ∈ GL(n, q). Then

(AM)I = AIM = m2(AI ,M) = m2(AI ,m1(α,X)) = m1(α,m2(AI ,X)).

In particular,

Πr(C, A, I) = ss1(m2(AĪ ,X)). (10)

Similarly, for any J ⊂ [m] and B ∈ GL(m, q), we have

Πc(C, B, J) = ss1(m3((B
J̄)⊤,X)). (11)

Clearly, m2(AĪ ,X) is a generator tensor for Πr(C, A, I) (respectively m3((B
J̄)⊤,X) is a gen-

erator tensor for Πc(C, B, J)) if and only if it is 1-nondegenerate.

Proposition 7.2. Let C be an Fq-[n×m,k] code, and let 2 ≤ d ≤ min{n,m}. The following
are equivalent.

(1) d(C) ≥ d.
(2) For every A ∈ GL(n, q) and I ⊆ [n] satisfying |I| ≤ d − 1, the row-punctured code

Πr(C, A, I) has dimension k.
(3) For every B ∈ GL(m, q) and J ⊆ [m] satisfying |J | ≤ d − 1, the column-punctured

code Πc(C, B, J) has dimension k.

Proof. Let A ∈ GL(n, q) and let I ⊆ [n] such that |I| ≤ d− 1. The Fq-linear epimorphism

f : C → Πr(C, A, I) :M 7→ (AM)Ī ,

has non-trivial kernel if and only if rk(AM)Ī > 0 for every non-zero M ∈ C. Since

rk(AM)Ī ≥ rk(M)− |I| ≥ rk(M)− d+ 1,

f is an isomorphism if and only if dR(C) ≥ d. This establishes the equivalence of (1) and (2).
Similarly, (1) and (3) are equivalent. �

Proposition 7.2, combined with (9), (10) and (11) immediately yield the following result.

Corollary 7.3. Let X ∈ F
k×n×m
q be the generator tensor of an Fq-[n×m,k] code C, and let

2 ≤ d ≤ min{n,m}. The following are equivalent.

(1) d(C) ≥ d.
(2) For every A ∈ GL(n, q) and I ⊆ [n] satisfying |I| ≤ d− 1, m2(AĪ ,X) is the generator

tensor of Πr(C, A, I).

(3) For every B ∈ GL(m, q) and J ⊆ [m] satisfying |J | ≤ d − 1, m3((B
J̄)⊤,X) is the

generator tensor of Πc(C, B, J).

(4) For every A ∈ F
(n−d+1)×n
q of rank n− d+ 1, dim1(m2(A,X)) = k.

(5) For every B ∈ F
(m−d+1)×m
q of rank m− d+ 1, dim1(m3(B,X)) = k.
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7.1. The Parity Check Tensor. We define a parity check tensor of a rank-metric code.

Definition 7.4. Let C be an Fq-[n×m,k] code and let Y ∈ F
(mn−k)×n×m
q . We say that Y is

a parity check tensor for C if

C =
{

M ∈ F
n×m | Y :M = 0

}

.

Recall that for a pair of matrices M = (mij) and N = (nij) in F
n×m
q ,

〈M,N〉 = Tr(AB⊤) =
∑

i,j

mijnij.

This operation coincides with the tensor double-dot product when applied to matrices, i.e.
M : N = 〈M,N〉.

Proposition 7.5. Let Y ∈ F
(mn−k)×n×m, and let C be an Fq-[n ×m,k] code. Then, Y is a

generator tensor for C⊥ if and only if it is a parity check tensor for C.

Proof. Y is a parity check tensor for C if and only if Y :M = 0 for all M ∈ C. From (5), this
holds if and only if

0 = g(Y :M) = m1(g, Y ) :M

for all g ∈ F
nm−k
q and M ∈ C, which holds if and only if C⊥ = {m1(g, Y ) : g ∈ F

nm−k
q }. �

Corollary 7.6. Let X ∈ F
k×n×m be the generator tensor for an Fq-[n × m,k] code C. A

1-nondegenerate tensor Y ∈ F
(mn−k)×n×m is a parity check tensor for C if and only if

X : Y = 0.

Let C ⊆ F
n×m
q be a rank-metric code. We now express the shortened code of a rank-metric

code in terms of its parity check tensor. It will be convenient to use the following duality
result.

Theorem 7.7 (see [2, Theorem 3.5]). Let C ⊆ F
n×m
q be a rank-metric code, A ∈ GL(n, q),

B ∈ GL(m, q). Let I ⊆ [n] with 0 < |I| < n and let J ⊆ [m] with 0 < |J | < m.

Πr(C, A, I)⊥ = Σr(C⊥, (A⊤)−1, I), Πc(C, B, J)⊥ = Σc(C⊥, (B⊤)−1, J).

Corollary 7.8. Let Y ∈ F
(nm−k)×n×m
q be the parity check tensor of an Fq-[n×m,k] code C,

let A ∈ GL(n, q) and let B ∈ GL(m, q). Let I ⊆ [n] and J ⊆ [m]. Then

(1) ss1((m2(((A
⊤)−1)Ī , Y )) = Σr(C, A, I)⊥.

(2) ss1(m3((B
−1)J̄ , Y )) = Σc(C, (B⊤)−1, J)⊥.

Proof. By the duality statement of Theorem 7.7, we have

Σr(C, A, I) = Πr(C⊥, (A⊤)−1, I)⊥.

By Proposition 7.5, Y is a generator tensor for C and so by Eq. (10) we have

ss1(m2(((A
⊤)−1)Ī , Y )) = Πr(C⊥, (A⊤)−1, I),

showing that (1) holds. The proof that (2) holds is similar. �

Proposition 7.9. Let C ⊆ F
n×m
q be a rank-metric code and let 2 ≤ d ≤ min{n,m}. The

following are equivalent.

(1) d(C) ≥ d.
(2) For every I ⊆ [n] with |I| = n− d+ 1, for every A ∈ GL(n, q), Σr(C, A, I) = {0}.
(3) For every J ⊆ [m] with |J | = m− d+ 1, for every B ∈ GL(m, q), Σc(C, B, J) = {0}.

Proof. From Proposition 7.2, dR(C) ≥ d if and only if Πr(C, A, Ī) and C are isomorphic under
the map : M 7→ (AM)I . The kernel of this map is Σr(C, A, I), which shows the equivalence
of (1) and (2). The equivalence of (1) and (3) follows similarly. �

As a direct consequence of Corollary 7.8 and Proposition 7.9, we get the following result
that relates the minimum distance of a rank-metric code with any of its parity check tensors.
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Corollary 7.10. Let Y ∈ F
(nm−k)×n×m
q be the parity check tensor of an Fq-[n×m,k] code C,

and let 2 ≤ d ≤ min{n,m}. The following are equivalent.

(1) d(C) ≥ d.

(2) for every A ∈ F
(d−1)×n
q of full rank, ss1(m2(A,Y )) = F

(d−1)×m
q .

(3) for every B ∈ F
(d−1)×m
q of full rank, ss1(m3(B,Y )) = F

n×(d−1)
q .
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