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Abstract

In this paper, we are interested in studying the modulational dynamics of interfacial waves
rising buoyantly along a conduit of a viscous liquid. Formally, the behavior of modulated
periodic waves on large space and time scales may be described through the use of Whitham
modulation theory. The application of Whitham theory, however, is based on formal asymptotic
(WKB) methods, thus removing a layer of rigor that would otherwise support their predictions.
In this study, we aim at rigorously verifying the predictions of the Whitham theory, as it
pertains to the modulational stability of periodic waves, in the context of the so-called conduit
equation, a nonlinear dispersive PDE governing the evolution of the circular interface separating
a light, viscous fluid rising buoyantly through a heavy, more viscous, miscible fluid at small
Reynolds numbers. In particular, using rigorous spectral perturbation theory, we connect the
predictions of Whitham theory to the rigorous spectral (in particular, modulational) stability of
the underlying wave trains. This makes rigorous recent formal results on the conduit equation
obtained by Maiden and Hoefer.

1 Introduction

In this paper, we consider the modulation of periodic traveling wave solutions to the conduit
equation

(1.1) ug + (u?) e — (WP (u ™ ug)y)e = 0,

which was derived in [19] to model the evolution of a circular interface separating a light, viscous
fluid rising buoyantly through a heavy, more viscous, miscible fluid at small Reynolds numbers. In
(1.1), u = u(z,t) denotes a nondimensional cross-sectional area of the interface at nondimensional
vertical coordinate x and nondimensional time ¢: see Figure 1(a). The conduit equation (1.1)
has also been studied in the geological context, where it is known to describe, under appropriate
assumptions, the vertical transport of molten rock up a viscously deformable pipe (for example,
narrow conduits and dykes) in the earth’s crust. In that context, (1.1) is a special case of the more
general “magma’ equations [22, 23]

(1.2) up 4+ (u")g — (W (u " up)z)s =0
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Figure 1: (a) A schematic drawing for the conduit equation. In the physical system, denoting
the densities and viscosities of the heavy (outer) and light (inner) fluids as pg,vy and pr, v,
respectively, the conduit equation holds under the assumption that pg > pr and vy > v. The
arrows represent rising due to buoyancy. (b) The formation of periodic wave trains propagating in a
physical experiment. Reprinted figure with permission from [18] Copyright (2019) by the American
Physical Society.

where here the parameters n and m correspond to permeability of the rock and the bulk viscosity,
respectively. The physical regime for these exponents is 2 < n < 5 and 0 < m < 1: see [22].
Clearly, the conduit equation corresponds to (1.2) with (n,m) = (2,1).

In contrast to magma, however, viscous fluid conduits are easily accessible in a laboratory set-
ting: see, for example, [18] and references therein. Consequently, there has been quite a bit of
study recently into the dynamics of solutions of the conduit equation (1.1) and their comparison to
laboratory experiments. As described in [17], early experimental studies of viscous fluid conduits
concentrated primarily on the formation of the conduit itself via the continuous injection of an
intrusive viscous fluid into an exterior, miscible, much more viscous fluid[19]. Since then, a consid-
erable amount of effort has been spent studying the dynamics and stability of solitary waves, as
well as soliton-soliton interactions [19, 9, 26, 15]. More recently, it has been observed experimen-
tally that the competition of dispersive effects due to buoyancy and the nonlinear self-steepening
effects of the surrounding media may result in the formation of dispersive shock waves (DSWs):
see, for example, [18]. As described there, by adjusting the injection rate of the intrusive viscous
fluid appropriately it was found that interfacial wave oscillations form behind a sharp, soliton-like
leading edge, with the wider regions moving faster than narrower regions: see Figure 1(b). Such
patterns correspond to dispersively regularized shock waves and have been the subject of much
recent study due to their experimental realization [23, 1, 28]. Consequently, spatially modulated
oscillations seem to form a fundamental building block regarding the long-time dynamics of the
physical experiment. It is thus reasonable to expect that any reasonable mathematical model de-
scribing these physical experiments should admit oscillatory wave forms that are persistent (i.e.
stable) when subject to slow wave modulations. Motivated by these observations, in this paper
we aim at studying the rigorous modulational, i.e. side-band, stability of periodic traveling wave
forms in the conduit equation (1.1).

While the stability and dynamics of solitary waves of the magma and conduit equations has



been studied extensively, as described above, a rigorous analysis of the local dynamics of periodic
traveling waves seems lacking. Note this problem is complicated by the fact that while these
equations are dispersive, they generally lack a Hamiltonian structure!. Most existing analyses
seem to appeal to Whitham’s theory of wave modulations: see, for example, [6, 14, 17, 20]. This
theory proceeds by rewriting the governing PDE in slow coordinates (X, S) = (ex, et) then uses a
multiple scale (WKB) approximation of the solution and seeks a homogenized system, known as
the Whitham modulation equations, describing the mean behavior of the resulting approximation.
This approach is widely used to describe the behavior of modulated periodic waves on large space
and time scales, and in particular, is expected to predict the stability of periodic wavetrains to slow
modulations. Specifically, hyperbolicity (i.e. local well-posedness) of the Whitham system about a
periodic solution ¢ of the governing PDE is expected to be a necessary condition for the stability
to slow modulations of ¢: see, for example, [30].

Whitham modulation theory has recently been applied to the conduit equation (1.1), where
the authors, by coupling their analysis to numerical time evolution studies and numerical analysis
of the Whitham system, identify an amplitude-dependent region of parameter space where such
periodic wave trains are expected to be stable to slow modulations. However, we note the formal
asymptotic methods used in Whitham theory are not, in general rigorously justified, thus removing
a layer of rigor that would otherwise support their predictions. The primary goal of this paper is to
(rigorously) connect the predictions from Whitham modulation theory to the rigorous dynamical
stability of the underlying periodic wave train solutions of the conduit equation (1.1). Specifically,
our main result, Theorem 3.1, establishes that hyperbolicity of the Whitham modulation equations
about a periodic wave ¢ of (1.1) is indeed a necessary condition for the stability of ¢ to slow
modulations. This will be accomplished in Section 4 by performing a rigorous analysis of the
spectrum of the linearization of (1.1) about such periodic traveling waves ¢. Specifically, using
Floquet-Bloch theory and spectral perturbation theory we show that the spectrum near the origin
of the linearization of (1.1) about ¢ consists of three C'' curves which, locally, satisfy

(&) =ia;€ + o(§)

where the «a; are precisely the characteristic speeds associated with the Whitham modulation
equations about ¢. Consequently, a necessary condition for spectral stability of ¢ is that all the
a; are real, which is equivalent to the associated Whitham system being weakly hyperbolic at ¢.
Such a rigorous connection between the stability of periodic waves and the Whitham modulation
equations has been established previously in a number of contexts: see, for example, [4, 11, 3, 2, 24]
and references therein. The specific approach here follows more closely the analysis in [2], which is
based off the work of Serre in [24].

The organization of the paper is as follows. In Section 2 we begin by recalling some basic
facts about the conduit equation (1.1). Specifically, we discuss the conservation laws associated to
(1.1) as well as the existence analysis for periodic traveling wave solutions. In Section 3 we derive
the Whitham moduation equations associated with (1.1) and state our main result Theorem 3.1.
We begin the proof of Theorem 3.1 in Section 4, where we perform a rigorous spectral stability
calculation using spectral perturbation theory. Specifically, there we derive a 3 x 3 matrix which

'We note the magma equations (1.2) admit a Hamiltonian formulation only when n + m = 0, which is outside
the parameter regime relevant to magma dynamics. See [27] for a nonlinear stability analysis in this seemingly
nonphysical case.



rigorously encodes the spectrum of the linearized operator associated with (1.1) about a periodic
traveling wave near the origin in the spectral plane. The proof of our main result, providing a
rigorous connection between the Whitham modulation equations and the rigorous spectral analysis
in Section 4, is then given in Section 5. Finally, we end by analyzing our results for waves with
asymptotically small oscillations in Section 6.

Acknowledgments: The authors would like to thank Mark Hoefer for several helpful orienting
discussions regarding the dynamics of viscous fluid conduits. The work of both authors was partially
supported by the NSF under grant DMS-1614895.

2 Basic Properties of the Conduit Equation

In this section, we collect some important basic facts about the conduit equation (1.1).

2.1 Conservation Laws & Conserved Quantities

First, we note that it is shown in [25, Corollary 5.7] that the conduit equation is globally well-
posed for initial data u(x,0) — 1 € H'(R), so long as u(x,0) satisfies the physically reasonable
requirement of being bounded away from zero. Further, even though the conduit equation admits
nearly elastic solitonic collisions, it is shown through the failure of the Painlevé test to not be
completely integrable [8]. Nevertheless, (1.1) admits (at least) the following two conservation laws:

(2.1) ug + (u? — v (u ug)z)e = 0
' (u™ w2 (ug)D)e + (U gy — uPupuy — 2Injul), = 0
Notice (2.1)(i) is simply a restatement of (1.1), showing that the conduit equation itself corresponds
to conservation of mass. The existence of more conservation laws for the general magma equations
(1.2) was studied by Harris in [7]. There it was shown that (1.2) generally only admits two conser-
vation laws?. However, this analysis was shown to be inconclusive in a couple of cases, one of which
occurs when m = 1, n # 0, which the conduit equation (1.1) clearly falls into®. Consequently, it
seems to be currently unknown if (1.1) admits more conservation laws or not, though Harris seems
to think the existence of additional conservation laws unlikely.

Restricting to solutions that are T-periodic in the spatial variable x, the conservation laws (2.1)
give rise to the following two conserved quantities:

T T+ (uy)?
(2.2) M (u) ::/0 udz, Q(u) ::/0 —Flfz)d:c.

As we will see, these conserved quantities will play an important part in our forthcoming analysis.
Note that the conserved quantity M corresponds to conservation of mass, while the conservation
of @ does not seem to have a clear physical meaning [14].

2One conservation law is always the magma equation (1.2) itself, while the structure for the other law varies
depending on the parameters (n,m).
3The other case is given by m = n + 1, n # 0, where a third conservation is shown to exist.



2.2 Existence of Periodic Traveling Waves

Traveling wave solutions of (1.1) correspond to solutions of the form u(x,t) = ¢(x — ct) for some
wave profile ¢(-) and wave speed ¢ > 0. The profile ¢(z) is readily seen to be a stationary solution
of the evolutionary equation

(2.3) ug — cu, + (u?), — (u?(u ™ ug — cuy)).). =0,

written here in the traveling coordinate z = x — ct. After a single integration, stationary solutions
of (2.3) are seen to satisfy the second-order ODE

(2.4) —2cE = —ch + ¢* + cp* (¢~ ¢),

where here ’ denotes differentiation with respect to z and E € R is a constant of integration.
Multiplying (2.4) by ¢—3¢’, the profile equation can be rewritten* as

—26E¢_3¢’ — _c¢—2¢/ + ¢—1¢/ + % [¢—2(¢/>2]
and hence may be reduced by quadrature to
(2.5) 3(0)? = E— (30’ In|¢| + ad® + ),

where here a € R is a second constant of integration. By standard phase plane analysis, the
existence and non-existence of bounded solutions of (2.4) is determined entirely by the effective
potential

/

V(gsa,c) == 1¢*In|¢| + ag® + ¢.

Indeed, for a given a, ¢ € R, a necessary and sufficient condition for the existence of periodic solu-
tions of (2.5) is that V'(+; a, ¢) has a local minima. Furthermore, since (in the physical modeling) the
dependent variable ¢ represents the cross-sectional area of the viscous fluid conduit, we additionally
require that the local minima occur for ¢ > 0.

To characterize the parameters (a,c) for which V(-;a,c) has a strictly positive local minima,
we study the critical points of V'(-;a,c). Noting that

Vo(pra,c) = 2ol g + to + 200 +1, Vig(¢ia,c) = 2 (In]é] + 3 + ac)

and 5
V. ; = —
so0 (3 a,c) s
we see that, since ¢ > 0, the derivative Vy4(-; a, c) has a local maximum at ¢_ := —e(act3/2) gnd a

ac+3/2)

local minimum at ¢, = e~ . Since Vg(; a, c) additionally satisfies

].' V ya, = 17 V y Ay - 1 -2 7(a0+3/2) < 17 d 1 V )
¢i)rél+ »(d5a,c) »(d43a,c) Ze an ¢_I>I}_l »(P5a,c) = +00

for all a € R, ¢ > 0, it follows that the number of positive roots of V,(+; a, ¢) for ¢ > 0 is determined
by the sign of the quantity a — ((c), where here

1 2 3
C(c) := Eln <c> ~ 5

*Alternatively, one can use the identity 2(¢'¢") = ¢(¢') "' (¢ %(¢)?)".
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Figure 2: (a) A plot of {(c) for ¢ > 0. Strictly positive periodic traveling wave solutions of (2.4)
exist for a < {(c). (b) A plot of the effective potential V(¢;a,c) for c =1 and a = =1 < {(1).

See Figure 2(a) for a plot of a = ((c). Indeed, if a > ((c), then V,(¢4;a,c) is positive and hence
V(5 a, ¢) has no positive roots, while a < ((c) implies V4(¢;a,c) is negative and hence Vy(+; a, ¢)
has exactly two positive roots 0 < ¢1 < ¢2. In the latter case, it is clear from the above analysis
that ¢; and ¢o are local maxima and minima, respectively, of the effective potential® V (-;a,c): see
Figure 2(b).

Remark 2.1. We collect here some easily verifiable properties of the function ((c). First, {(c)
only has one root, which occurs at ¢ = 26_%, and one critical point (an absolute minimum), which
occurs at ¢ = 2e~ Y2, Furthermore, lim,_,o+ ((¢) = 400 and lim,_, o ((c) = 0. See Figure 2(a)
for a numerical plot.

Returning to (2.5), it follows that if we define the set
B:= {(a,E, c) € R3:c> 0, a<((c), Ee€(V(ga(a,c);a,c),V(ei(a,c);a, C))} ,

then for each (a, E, c) € B the profile equation (2.4) admits a one-parameter family, parameterized
by translation invariance, of strictly positive periodic solutions ¢(z;a, E, ¢) with period

Qsmax
T =T(a,E,c) =2 do :ﬁ% do ,
¢min E - V(qb) a? C) 2 Y E - V ¢7 a7 c

where here ¢min € (¢1,02) and Pmax € (P2,00) are roots of E — V(-;a,c) corresponding to the
minimum and maximum values of the profile ¢, respectively, and integration over - represents
a complete integration from ¢umin t0 @Gmax, and then back to ¢min again. Naturally, one must
appropriately choose the branch of the square root in each direction. Alternatively, one could
interpret the contour 7 as a closed (Jordan) curve in the complex plane C that encloses a bounded
set containing both ¢y and ¢pax. Since the values ¢, i, /max are smooth functions of the traveling
wave parameters (a, F, ¢), a standard procedure shows the above integrals may be regularized at
the square root branch points and hence represent C'' functions of a, E, and c. In this way, we

5In the border case a = ¢(e), it follows that V4 (d4;a,c) = 0. Using the above analysis, we may then conclude ¢
is a saddle point of the effective potential V(+;a,c).



have proven the existence of a 4-parameter family (in fact, a C' manifold) of periodic traveling
wave solutions of (2.4):

¢(x —ct +xo5a,F,c), ©g€R, (a,F,c)eB

with period T'= T'(a, E, ¢). Notice as E \, V (¢2; a, ¢) the profile ¢(-; a, F, c) converges to a constant
solution, while T'(a, E,c) — +oo0 as E  V(¢1,a,c) which corresponds to a solitary wave limit.
Without loss of generality, we may choose x(y such that ¢ is an even function, which we will do
throughout the rest of the paper.

Remark 2.2. In [26], the authors study the existence and nonlinear stability of traveling solitary
waves of the more general class of magma equations (1.2). In the context of the conduit equation
(1.1), the authors considered solitary waves satisfying ¢ — 1 as |x| — oo, which they show to exist
for all ¢ > 2. Taking |x| — oo in (2.4) and requiring that ¢ = 1 be a local mazimum of V(-;a,c),
we see these waves correspond to the choice 2cE =c—1,a=FE — 1, and ¢ > 2. See also Remark

4.4 below.

By a similar procedure as above, the conserved quantities M and @ defined in (2.2) can be
restricted to the manifold of periodic traveling wave solutions of (1.1). Indeed, given a T-periodic
traveling wave ¢(-;a, F, ¢) of (2.3), we can define the functions M,Q : B — R via
(2.6)

T(a,E,c) 2 d
M(a, E,c) ::/0 d(z;a,E,¢)dz = \57{ = (bV?d) ™)
- T(@Be) ¢(zya, B, c) + (¢ (z;a, E, ) \f ¢+2 (E—V(¢;a,c)))de
Q(a, E,c) .—/0 b(za, E, ) VE -V(g;a,c)

where the contour integral over « is defined as before. Following previous arguments, the above
integrals can be regularized near their square root singularities and hence represent C'' functions
on B. As we will see, the gradients of these conserved quantities along the manifold of periodic
traveling wave solutions of (1.1) will play an important role in our analysis.

3 The Whitham Modulation Equations

In this section, we begin our study of the long-time dynamics of an arbitrary amplitude, slowly
modulated periodic traveling wave solution of the conduit equation (1.1). An often used, yet
completely formal, approach to study the dynamics of such slowly modulated periodic waves is to
analyze the associated Whitham modulation equations [30]. While Whitham originally formulated
this approach in terms of averaged conservation laws[29], it was later shown to be equivalent
to an asymptotic reduction derived through formal multiple-scales (WKB) expansions [16]. For
completeness, we recall the derivation in the context of the conduit equation (1.1): see also the
description in [17, Appendix C].

To provide an asymptotic description of the slow modulation of periodic traveling wave solutions
of (1.1), we separate both space and time into separate fast and slow scales. For ¢ > 0 sufficiently
small, we introduce the “slow” variables (X, S) := (ex,et) and note that, in the slow coordinates,
(1.1) can be written as

(3.1) cug + 2euuy — Suuxxs + uxxug =0



Following Whitham [29, 30], we seek solutions of (3.1) of the form
u(X,S;e) =u’ (X, 8, 1y(X,9)) +eu' (X,8,29(X,9)) + O(?)

where here the phase 9 is chosen to ensure that the functions u’ are 1-periodic functions of the
third coordinate 6 = (X, S)/e. Substituting this ansatz into (3.1) yields a hierarchy of equations
in algebraic orders of £ that must all be simultaneously satisfied. At the lowest order in ¢, which
here corresponds to O(1), we find the relation

(3.2) vsug + ¥x ((u”))g — vx s ((u®)*((u®) "ug)e)e = 0.

After the identification k := ¢x and w := —g as the spatial and temporal frequencies of the
modulation, respectively, and ¢ := ¢ as the wave speed, (3.2) is recognized, up to a global factor of
—k, as the derivative with respect to the “fast” variable 6 of the nonlinear profile equation (2.4),
rescaled for 1-periodic functions. Note that, here, k, w and ¢ are now functions of the slow variables
X and S. Consequently, for a fixed X and S we may choose u’ to be a periodic traveling wave
solution of (1.1), and hence of the form

u(0,X,8) = ¢0,a(X,S),E(X,S),c(X,S))

for some even solution ¢ of (2.4) with (a(X,S), E(X,S),c(X,S)) € B. Notice the consistency
condition (¢x)s = (1g)x implies the local wave number k£ and wave speed ¢ must slowly evolve
according to the relation

(3.3) ks + (ke)x =0,

which is sometimes referred to as “conservation of waves”. Note that (3.3) effectively serves as
a nonlinear dispersion relation. Indeed, in the case of linear waves one would have ¥(X,S) =
k(X — ¢S), which clearly satisfies (3.3).

Continuing to study the above hierarchy of equations, at O(e) we find

(3.4) kdpLlu'lu! = Gu'lul + F(u),
where here £[u"] and G[u’] are linear differential operators defined via

Lu°] == (c—2u® — k*cugy) + 2k*cuydy — k*cu’dp,
Gu°] == (1 + k*ugy) — k*u’9j

supplemented with 1-periodic boundary conditions, and

3 1
F(®) = () + 5 () xen’ufy — 5 () xe(u)?
+ 2k%exuludy 4 2k culuS gy — k2e((u))?) x

contains all the nonlinear terms in u° and its derivatives. Treating (3.4) as a forced linear equation
for the unknown u!, it follows by the Fredholm alternative that (3.4) is solvable in the class of
1-periodic functions if and only if

Glu’Jud + F(u®) L kerz_ (o) (ﬂ[uo]a(,) ,

8



where here
L] = (c —2u® — KPcugy) — 2k*cOp (ugy - ) — k*cdy (u° -)
denotes the adjoint operator of £[u] on L?,.(0,1). In particular, noting the identity®

per

(3.5) LYf(F7%9) = f2LIfg,

a straightforward calculation” shows that

kerpz (0,1) (CT [u0]89> = span {1, (u0)72} .
Thus, our two solvability conditions become

(L GLuTug + F(”) s o109 =0 and ()7 Glulug + F(u”)) 3 01,40 = 0-

per per

To put the above solvability conditions in a more useful form, we note that since
Gu'] = (1 + k?ugy) — k295 (u"),

integration by parts (in #) and the identity GT[uo]1 = 1 imply that the first equation above can be
rewritten as

OsM(u”) = — (1,((")?)x — 2(k )XC(Ue) — 2k%ex (ug)® — 2k?c((up)*)x)

= Oy <1, 2k2c(ud)? — >L2 (0,1;d0)

per

where here M(u®) = 0 u®(0)do is simply the conserved quantity M in (2.2) evaluated at the
1-periodic traveling wave u°(-). Similarly, using the identities

()72, uPugg) = ()72, (ug)?) ()72, u ulgp) = ((u®) 2, uguXy) ,
which follow from integration by parts, the second solvability condition can be rewritten as
(G100 2 = = ()2 (0P + S0t = S xe(ul)?)
— <(u0 -2 2k26X(u9) + 2k20u9uX9 k2c ((u )2)X>
= — ()7, (")) x) = 2k (ke)x ((u®)72, (up)?).
Using (3.3) and the fact that

05Qu’) = — (G (") 2, us ) + 2kks ()72, (uf)?),

where here Q(u®) = fol “ (+ (7;") df is the conserved quantity @ in (2.2) evaluated at the 1-periodic

traveling wave u’(-), the above can be rewritten as

9sQ(u’) = {(u®) 7%, ((u°)?)x) = 9x (1,2In[u’]) .

SAlthough you can verify the identity using the forms listed above, this identity immediately follows from the
alternative form for £[f] given in (4.3) below.

"Here, we are using that differentiating (3.2) with respect to § gives L[u’]uy = 0. Further, we note the third
linearly independent solution of ET[uo}vg = 0 is not periodic in 6.




Taken together, (3.3) and the above solvability conditions yield the first order, 3 x 3 system

ks + 0x(kc) =0
(3.6) Mg = 0x (1, 2k%c(ug)? — (“0)2>Lger(o,1)
Qs =0x (1,2In |“0|>L§er(0,1)

which, by the above formal arguments, is expected to govern (at least to leading order) the slow
evolution of the wave number k£ and the conserved quantities M and Q of a slow modulation of the
periodic traveling wave u°.

System (3.6) is referred to as the Whitham modulation system associated to the conduit equa-
tion (1.1). Heuristically, it is expected that the Whitham modulation equations (3.6) relate to
the dynamical stability of periodic traveling wave solutions of (1.1) in the following way. Suppose
(ao, Eo,co) € B so that ¢(-; a0, Eo,co) is an even, T' = 1/k-periodic solution of (2.4). From the
above formal analysis, we see that (2.4) has a modulated periodic traveling wave of the form

u(z, t;e) = ¢ (%w(ax, et);a(ex, et), E(ex, et), c(ex, Et)) + o(e),

where the parameters (a(cx, et), E(ex, et), c(ex, et)) evolve near (ag, Eo, ¢p) in B in such a way that
k, M, and @Q satisfy the Whitham system (3.6). Note this requires that the nonlinear mapping

R? > (a,E,c) — (k,M,Q) € R

be locally invertible near (ag, Fo,co). By the implicit function theorem, it is sufficient to assume
the Jacobian of this mapping at (ag, Eo, ¢p) is non-zero®. In particular, any 1-periodic solution ¢g
of (2.4), being independent of the slow variables X and S, is necessarily a constant solution of
(3.6). The stability of ¢y to slow modulations is thus expected to be governed (to leading order, at
least) by the linearization of (3.6) about ¢g. Specifically, using the chain rule to rewrite (3.6) in
the quasilinear form

k k
(3.7) M | =D [ M :
Q /s Q/x
where here
—(C+ k‘Ck) —key —/{CQ
D(u) = <1, 2k2cu§ - u2>k <1, 2k20u3 — u2>M <1, 2k2cu§ - u2>Q ,
(1,21n |ul), (1,21n |ul),, <1,21n|u]>Q

it is natural to expect the stability of ¢y to slow modulations to be governed by the eigenvalues of
the 3 x 3 matrix D(¢y). Indeed, linearizing (3.7) about the constant solution ¢g, we see that the
eigenvalues of the linearization are of the form

X(€) = itay,

8This condition will appear later in our rigorous theory as well: see the discussion following the proof of Theorem
4.6 below. It also appears in the formal work of Maiden & Hoefer [17].
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where {ozj}?zl are the eigenvalues of D(¢g) and £ € R. Consequently, if the Whitham system is
weakly hyperbolic? at ¢g, so that the eigenvalues of D(¢g) are all real, then the eigenvalues of the
linearization of (3.6) are purely imaginary, indicating a marginal (spectral) stability. Conversely,
if D(¢p) has an eigenvalue with non-zero imaginary part, in which case (3.7) is elliptic at ¢g, then
the linearization of (3.6) has eigenvalues with positive real part, indicating (spectral) instability of

®o-

The goal of this paper is to rigorously validate the above predictions of Whitham modulation
theory as they pertain to the stability of periodic traveling wave solutions of (1.1). Following
the works in [11, 3, 2|, this will be accomplished by using rigorous spectral perturbation theory
to analyze the spectrum of the linearization of (2.3) about such a solution and, in particular,
relating the spectrum of the linearization in a neighborhood of the origin in the spectral plane
to the eigenvalues of the matrix D(¢g) defined above. Our main result is the following, which
establishes that weak-hyperbolicity of the Whitham system (3.6) is indeed a necessary condition
for the spectral stability of the underlying wave ¢g.

Theorem 3.1. Suppose ¢ is an even, Ty = 1/kg-periodic, strictly positive traveling wave solution
of (1.1) with wave speed co > 0, and that the set of nearby periodic traveling wave profiles ¢ with
speed close to cg is a 3-dimensional manifold parameterized by (k, M (¢), Q(¢)), where 1/k denotes
the fundamental period of ¢. Then a necessary condition for ¢g to be spectrally stable is that the
Whitham modulation system (3.6) be weakly hyperbolic at (ko, M (o), Q(¢o)), in the sense that all
their characteristic speeds must be real.

To prove Theorem 3.1 we will show that, under appropriate non-degeneracy assumptions, the
spectrum of the linearization of (2.3) about a periodic traveling wave ¢q consists, in a sufficiently
small neighborhood of the origin, of precisely three C! curves which expand as

Xj(€) = Ni(€) + O(8) = ioyE + 0(), e < 1,

where here the «; are precisely the eigenvalues of the matrix D(¢g). Interestingly, this shows
that spectral stability in a neighborhood of the origin of ¢g, otherwise known as “modulational
stability”, cannot be concluded from the weak, or even strong, hyperbolicity of the Whitham
modulation system (3.6). While we do not pursue it here, such information may be able to be
deduced from determining the second-order corrector in £ to the spectral curves A;(§) deduced
above.

4 Rigorous Modulational Stability Theory

We now begin our rigorous mathematical study of the dynamical stability of periodic traveling wave
solutions of (1.1) when subject to localized, i.e. integrable, perturbations on the line. Following [11,
3, 2], we conduct a detailed analysis of the spectral problem associated with the linearization of (1.1)
about a periodic traveling wave solution. The first step in this analysis is to understand the structure
of the generalized kernel of the associated linearized operators when subject to perturbations that
are co-periodic with the underlying wave. With this information in hand, we then use Floquet-
Bloch theory and rigorous spectral perturbation theory to obtain an asymptotic description of the

9Note full hyperbolicity of the system additionally requires the eigenvalues a; are semi-simple, i.e. that their
algebraic and geometric multiplicities agree.
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spectrum of the linearization considered as an operator on L?(R) in a sufficiently small neighborhood
of the origin.
4.1 Linearization & Set Up

To begin, let (a, E,c) € B and denote by ¢ = ¢(+; a, E, ¢) the corresponding even, T' = T'(a, E, ¢)-
periodic equilibrium solution of (2.3). We are now interested in rigorously describing the local
dynamics of (2.3) near ¢. Specifically, we are interested in understanding if ¢ is stable to small
localized, i.e. integrable on R, perturbations. To this end, we note that the linearization of (2.3)
about ¢ is given by

(4.1) Glplor = 0-L[9]v,

where here G[¢] and L[¢] are linear operators on L?(R) defined by
{GMf:f—ofw*ﬁW=f+¢v—¢ﬂ,
LGS = cf —20f — ¢ f +2c' ' — cof".
Note that £]@] can also be written in the form

(4.3) LIf =cf —26f —2c6(¢7'¢) f — co* (671 ).

Observe these are both closed linear operators on L?(R) with densely defined domains H?(R). As
the linear evolution equation (4.1) is autonomous in time, its dynamics can be (at least partly)
understood by studying the associated generalized spectral problem

(4.2)

(4.4) AG[o]o = 8.L[9]o,

posed on L?(R), where here A € C is a spectral parameter corresponding to the temporal frequency
of the perturbation. To put (4.4) in a more standard form, we note the following lemma.

Lemma 4.1. The operator Gl¢] : H'(R) — L*(R) defined in (4.2)(i) is a (weakly) invertible
operator. That is, for every g € L?>(R) the equation

Glolv =g
has a unique weak solution in H(R).

Proof. Observe that by defining

H(glf := Glgl(of) = of — (*f')

we have H[¢](¢~1f) = G[#]f so that, in particular, G[¢] is (weakly) invertible if and only if H][¢]
is (weakly) invertible. Since ¢ > 0 uniformly, it follows that H[¢] is a symmetric, uniformly elliptic
differential operator. Consequently, a standard argument using the Riesz representation theorem
implies that for every g € L?(R) the elliptic equation

Hplf =g

has a unique weak solution in H'(R), i.e. that H[¢] : H'(R) — L?(R) is (weakly) invertible. The
result now follows. O
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Remark 4.2. The (weak) invertibility of G|¢] implies that the bilinear form generated by'® G~1[¢]
is well-defined on L?(R). As we will see, this will be sufficient in order to verify Theorem 3.1.

By Lemma 4.1, the generalized spectral problem (4.4) is equivalent to the spectral problem for
the linear operator

(4.5) Al¢] := G™[]0:L]g]

considered as a closed, densely defined linear operator on L?(R). Motivated by the above consid-
erations, we say that a periodic traveling wave ¢ of (1.1) is said to be spectrally unstable if the
L?(R)-spectrum of A[¢] intersects the open right half plane, i.e. if

012 (A[B]) M {A € C: Re()) > 0} # 0

while it is spectrally stable otherwise. This motivates a detailed study of the spectrum of the linear
operator A[¢].

Remark 4.3. Observe that while (1.1) is a nonlinear dispersive PDE, it does not possess a Hamil-
tonian structure. Consequently, while the spectrum of A[@] is symmetric about the real axis, owing
to the fact that ¢ is real-valued, it is not necessarily symmetric about the imaginary axis.

Remark 4.4. Recall that in [26] the authors considered the stability of solitary traveling wave
solutions of the magma equations (1.2), which corresponds to the conduit equation (1.1) when
(n,m) = (2,1). In that case, the linearization (in [26]) of (2.3) about a solitary wave ¢ is given,
after some manipulation, by

Glplvy = v — (% (¢ 1)) = 0z [—cv + 2(c — 1) v — c?02 (¢ 'v)]
which, using (4.3), is equivalent to our representation (4.4) provided that ¢ satisfies

¢+ch(o7¢) =ct+(1-c)o!

Recalling Remark 2.2, this latter condition follows directly from (2.4) with the choice 2cE = ¢ — 1
associated to the solitary waves considered in [26].

To begin our study of the L?(R)-spectrum of A[¢], we first note that since A[¢] has T-periodic
coefficients, standard results from Floquet theory dictate that non-trivial solutions of the spectral
problem

(4.6) Alglv = M

cannot be integrable!' on R and that, at best, they can be bounded functions on the line: see, for
example, [12, 21]. Further, any bounded solution of (4.6) must be of the form

v(z) = e%w(z)

9Throughout, we denote, with a slight abuse of notation, the operator (G[¢])™" by simply G~'[¢]. The same
abuse of notation will be used when referring to adjoints of operators depending on ¢.
1Tn particular, such solutions can not have finite norm in LP(R) for any 1 < p < oo.
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for some w € L2,.(0,T) and £ € [—m/T,w/T). From these observations, it can be shown that A € C
belongs to the L?(R)-spectrum of A[¢] if and only if there exists a & € [~m/T,7/T) such that the

problem

(47 { Algplv = lv

v(xz+T) = e®To(z),

has a non-trivial solution, or, equivalently, if and only if there exists a £ € [—n/T,7/T) and a
non-trivial w € L2_.(0,T) such that

per
(4.8) w = e 8T A[pleTw =: A¢[plw.

For details, see [12, 21, 10], for example. The one-parameter family of operators A¢[¢] are called
the Bloch operators associated to A[¢], and ¢ is referred to as the Bloch parameter or sometimes as
the Bloch frequency. Since the Bloch operators have compactly embedded domains in L2 (0, T), it

per

follows for each ¢ € [—m/T,m/T) that the L2, (0,T') spectrum of A¢[¢] consists entirely of isolated
eigenvalues with finite algebraic multiplicities. Furthermore, we have the spectral decomposition
(4.9) o) (Ald]) = U or2..01) (Aeld])

§el—n/Tyw/T)

thereby continuously parameterizing the essential L?(R)-spectrum of A[¢] by a one-parameter fam-
ily of T-periodic eigenvalues of the associated Bloch operators. For more details, see [21].

To determine the spectral stability of a periodic traveling wave ¢, one must therefore determine
all of the T-periodic eigenvalues for each Bloch operator for { € [—n/T,n/T). Outside of some
very special cases, one does not expect to be able to do this complete spectral analysis explicitly.
Thankfully, however, for the purposes of modulational stability analysis, we need only consider the
spectrum of the operators A¢[¢] in a neighborhood of the origin in the spectral plane and only
for |¢] < 1. To motivate this, observe from (4.7) that the spectrum of Ag[¢] corresponds to the
spectral stability of ¢ to T-periodic perturbations, i.e. to perturbations with the same period as
the carrier wave. Similarly, |{| < 1 corresponds to long wavelength perturbations of the carrier
wave. Furthermore, slow modulations of ¢ form a special class of long wavelength perturbations in
which the effect of the perturbation is to slowly vary, namely modulate, the wave characteristics
— the parameters a, E/ and ¢ in the present setting — and the translational mode. As we will see,
variations in these parameters naturally provide spectral information about the co-periodic Bloch
operator Ag[¢] at the origin in the spectral plane. From the above considerations, it is natural
to expect that the spectral stability of the underlying wave ¢ to slow modulations corresponds to
the case when the spectrum of the Bloch operators A¢[¢] near (A, &) = (0,0) lie in the closed left
half-plane. For more discussion regarding this motivation, see [3].

In order to prove Theorem 3.1, our program will roughly break down into three steps. First,
we will analyze the structure of the generalized kernel of the unmodulated Bloch operator Ag[¢],
showing that, under certain geometric conditions, this operator has A = 0 as an eigenvalue with
algebraic multiplicity three and geometric multiplicity two. Secondly, we will use rigorous spectral
perturbation theory to examine how the spectrum near the origin of the modulated operators
A¢[o] bifurcates from A = 0 for 0 < [£| < 1. Through this, we will derive a 3 x 3 linear system
that encodes the leading order asymptotics of the spectral curves near A = 0 for 0 < [£] < 1.
Finally, we will see by a direct term by term comparison that this linear system, derived through
rigorous spectral perturbation theory, agrees exactly (up to a harmless shift by the identity) with
the linearized Whitham modulation system (3.6).
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4.2 Analysis of the Unmodulated Operators

As described above, the first main step in our analysis is to understand the T-periodic generalized
kernel of the unmodulated operator Ag[¢] defined in (4.5), as well as its adjoint operator!? Azr) [o].
We begin by characterizing the T-periodic kernel of L[¢] and its adjoint. To this end, note that
differentiating the profile equation (2.4) with respect to z, as well as with respect to the parameters
a, E, and c, yields the identities

(4.10) L[p)¢) = 0= L[p)¢a, LP|or =2¢, L[Plpe =2E — (¢ + (¢)* — 6¢").
Recalling that £[#] and LT[#] are related via (3.5), we have the following result.

Lemma 4.5. Let ¢ be a non-trivial T-periodic solution of the profile equation (2.4). So long as
T, # 0, we have

kerps, (om (£[6]) = span {¢'}  and  kerpa, (om) (£7[6]) = span {67%¢'} .

per

Under the same assumption, we also have

keriz, o) (47[6]) = span {1, G1lglo~?}.

Proof. Recalling ¢ may be chosen to be even, we have that ¢’ and ¢, are odd and even functions of
z, respectively, so it follows from (4.10) that ¢’ and ¢, provide two linearly independent solutions
of the second order differential equation L[¢]f = 0. To identify the kernel of L[¢], we must impose
T-periodic boundary conditions. Since ¢’ is clearly T-periodic, it follows that the T-periodic kernel
of L[¢] has dimension at least one. However, the fact that 7' depends on the parameter a implies
that the function u, is generally not periodic. Indeed, differentiating the obvious relation

(s0a5)- ()

(20)-(&D ) on, (5D

Paz(0) Paz(T) “\ ¢"(T)

which, using that L[¢] is a second order differential equation and that ¢ is non-trivial'®, implies
that ¢, is T-periodic if and only if T, is zero. This yields the characterization of the T-periodic

kernel of £[#], and the kernel of L[¢] follows immediately from (3.5).
Finally, to characterize the T-periodic kernel of Af [¢], observe that

Allg] = —L1[g]0,(G™)T[¢].

with respect to a gives

Since the adjoint of G[¢] is invertible on the space of T-periodic functions, and recalling G'[¢]1 = 1,
the claim now follows from the characterization of the kernel of LT[¢]. O]

2Tnformation about the adjoint is necessary to construct the spectral projections for Ag [¢] at A= 0.

13Note since ¢ satisfies the second order ODE (2.4), vanishing of the vector (¢'(T), ¢'(T))* would imply ¢ is the
the trivial solution by uniqueness. Alternatively, note that while ¢'(7") = 0 by normalization, a direct calculation
from (2.5) shows that ¢" (T') = —V4(pmin; a, ¢), which again is non-zero since ¢ is not an equilibrium solution of (2.4).
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Next, we use Lemma 4.5 along with the Fredholm alternative to identify, under appropriate
genericity conditions, the T-periodic generalized kernels of A[¢] and Af[¢]. To this end, observe
that (4.10) implies that

Alp{¢, ¢a, ¢} =0 and Afp]p. = ¢/,
which, among other things, yields three linearly independent functions satisfying the third order
ODE 0,L[¢]f = 0. In Lemma 4.5 above, we showed that ¢, is not T-periodic provided that Ty, is
non-zero. Using similar arguments, it is readily seen that the functions ¢z and ¢, are not T-periodic
provided that Tr and T, are non-zero, respectively. Indeed, we find that

¢£(0) og(T) ¢'(T)
¢p(0) | = | ¢B(T) | =Te| ¢"(T) |,

with an analogous equation holding for ¢.. Recalling by the above discussion that ¢”(T") is non-
zero, the desired result follows. For notational simplicity, we introduce the following Poisson bracket
style notation for two-by-two Jacobian determinants

— Iy Iy
{F,G}zy = det( G, G, )

and an analogous notation for three-by three Jacobian determinants:

F, F, F.
(F,G,H},y. =det | G, G, G,
H, H, H,

Using the above identities, it follows that, while ¢, and ¢g are not individually T-periodic, the
linear combination

Ta¢E - TE¢a = {T, ¢}a,E
lies in the T-periodic kernel of A[¢]. Similarly, we see that the functions {T’, ¢}, and {T, ¢} g . are
both T-periodic and satisfy

(4'11) A[qb]{Tv ¢}a,c = *Taﬁb/ and A[¢]{T7 ¢}E‘,c = *TEQZ),-

We now state the main result for this section.

Theorem 4.6. Let ¢ = ¢(-;a,E,c) be a T-periodic solution of the profile equation (2.4), and
assume the Jacobians T,, {T, M}, g and {T, M,Q}q £ are non-zero. Then A = 0 is an eigenvalue
of the Bloch operator Ag[¢] with algebraic multiplicity three and geometric multiplicity two. In
particular, defining

(I)l = {T, M}a,E¢/ (I)Q = {T, ¢}G7E (133 = {T, M, ¢}a,E,c
Uy =1 Uy =1 U3 :=—{T, M}, 2G'[¢l¢~2 — {T,Q}uk,
where n € Lger(O, T) is the unique odd function satisfying Ag[gb]n = — W3, we have that {®,}3_, and

{\I/j}?-:l provide a biorthogonal bases for the generalized kernels of of Ag|¢p] and A(T) [¢], respectively.
In particular, we have (¥;, ®¢) = 0 if and only if j # (. Furthermore, the functions ®; and ¥;
satisfy the equations

Ao[g]®1 =0 = Ag[¢]P2, Ao[p]Ps = —y,
and

Allg)W2 =0 = Af[¢]Ts, Al[g]T; = —Ts.
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Proof. Since T, # 0 by assumption, the characterization of the kernel of Ag [¢] follows from Lemma
4.5. Further, note a function f belongs to the T-periodic kernel of Ay[¢] if and only if f is T-periodic
and either L[¢]f = 0 or L[$]f is a non-zero constant. From (4.10), it follows immediately that

kerrz (o) (Aol@]) = span{®1, P2} .

Furthermore, ¢’ is in the range of Ay[¢] by (4.11). Hence, by the Fredholm alternative (or by parity),
we have that (¥g, ®1) = 0= (¥3, ®1). For the periodic element that lies in the Jordan chain above
¢, we take a specific linear combination of {7, ¢}, and {T, ¢} g, namely ®3. Furthermore, by
the Fredholm alternative the Jordan chain above ¢’ terminates at height one if and only if

@y ¢ ker (A3[0])

Since ®3 has zero mean by construction, we clearly have (U5, ®3) = 0 and hence the above condition
is equivalent to showing

(W, ®g) = —{T, M}, (G186 {T, M, 6}ap.c )
is non-zero. To write the above in a more usable form, observe from the definition of @ in (2.6)

that
T (286 — ddu— 28200\ . [H(T) + (¢ (T)IT,
Q“‘/o < P >d“ GOE

Note by integration by parts that

T / T " _ /\2
i ()= [P (S5 o

and hence
_ [T (o200 — 2, [6(T) + (D))
(4.12) “= /o < = >¢“d IR
—— (Glolo2, o) + PRI T,

Similar expressions hold for Qg and ). and hence we find

<\Il37 (I)3> = {Ta M}a,E{T7 Ma Q}a,E,w

which is non-zero by hypotheses. The proves our characterization of the generalized T-periodic
kernel of the operator Ag[¢].

Finally, we consider the generalized kernel of the adjoint operator AE [¢]. Following the method
for calculating (¥3, ®3) above, we immediately find that (¥, ®2) = {T, M}, g, which is assumed
to be non-zero. Hence, by the Fredholm alternative, W5 is not in the range of A;g[gb]. By similar
arguments, we find

(s, @) = —{T, Mo, ((GH[8)6 2 AT, 6}a) +{T, Qar) =0,
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so that, again by the Fredholm alternative, ¥3 belongs in the range of Ag [¢]. Since ®3 is even and
Ap[¢] switches parity, the fact that the kernel of Ag[¢] consists entirely of even functions implies
there exists a unique T-periodic odd function n that satisfies

Allgln = —0s.
Furthermore, we note that U1 = 7 is not in the range of A;r) [¢] since
<\I/17 ¢)1> = - <\I/1, AO[¢]@3> = <\I]3a ‘I)3> = {Ta M}a,E{Ta M7 Q}a,E,c:

which is non-zero by assumption. This completes the characterization of the generalized kernel of
A$[¢]. To finish the proof, we note that (¥, ®2) =0 = (¥, P3) by parity. O

We now make some important comments regarding the assumptions in Theorem 4.6. The above
result was obtained through the observation that infinitesimal variations along the manifold of
periodic traveling wave solutions yield tangent vectors that lie in the generalized kernels. Through
our existence theory in Section 2.2, this manifold was parameterized by the wave speed ¢ and
the integration constants a and F. While this parameterization is natural from the mathematical
perspective, following directly from the Hamiltonian formulation (2.5) of the profile equation (2.4),
it is different than the parameteriztaion that naturally arises in Whitham theory. Indeed, recall
from Section 3 that the Whitham modulation system (3.6) describes the slow evolution of the wave
number k and conserved quantities M and @), thus yielding a parameterization of the manifold of
periodic traveling wave solutions of the conduit equation (1.1) in terms of these physical quantities.
Consequently, a-priori these two approaches work with different parameterizations of the same
manifold.

In order to make comparisons between these two approaches, it is natural to assume that we
can smoothly change between these parameterizations. Specifically, we require that the manifold of
periodic traveling wave solutions of (1.1) constructed in Section 2.2 can be locally reparameterized
in a C'!' manner by the wave number &k and the conserved quantities M and @, i.e. that the mapping

B> (a,E,c)— (k(a,E,c),M(a, E,c),Q(a, E,c)) € R3

is locally C'-invertible at each point. By the Implicit Function Theorem, this is guaranteed by
requiring that the Jacobian determinant

O(k, M, Q)

W ={k, M, Q}a,E,c

of the above map is non-singular at each point in B. Recalling that k(a, E, c) = we see that

__ 1
T(a,E,c)

1
{ka Ma Q}a,E,C = _ﬁ {Ta Mv Q}G,E,Ca

it follows that such a C'l-reparameterization is possible provided {T', M, Q}a,Ec # 0, which is one
of the primary assumptions in Theorem 4.6. Likewise, the requirement that {1, M}, p # 0 is
equivalent to saying that waves with fixed wave speed can be locally reparameterized in a C*
manner by the wave number k£ and mass M.

With the above observations in mind, we now seek a restatement of Theorem 4.6 that is gen-
erated with respect to infinitesimal variations along the k, M, and ) coordinates. To see the
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dependence on the wave number k explicitly, we begin by rescaling the spatial variable as y = kx
and note that T-periodic traveling wave solutions of (1.1) correspond to 1-periodic traveling wave
solutions (with the same period) of the rescaled evolution equation

(4.13) wp + k(u?)y — B (u?(u ™ uy)y)y =0

where k = 1/T. After rescaling the traveling coordinate § = kz = k(z — ct) = y — wt, where
w = ke is temporal frequency, it is readily seen that traveling wave solutions of (4.13) correspond
to solutions of the form u(y,t) = ¢(y — wt). Hence, ¢(0) is a stationary 1-periodic solution of the
evolutionary equation

(4.14) up — kcug + k(u2)9 — kz(uz(u_l(ut — kcug)g)g =0
The rescaled profile equation now reads
(4.15) 2cE = cp — ¢* + k2c(¢)? — k*cod”,

where now ’ denotes differentiation with respect to 6. Through this rescaling, the T-periodic
solutions ¢ of (2.4) now correspond to 1-periodic solutions of (4.15) for some k. Similarly, the
conserved quantities evaluated on the manifold of 1-periodic solutions of (4.15) take the form

1
M= /0 &(0: k, M, Q) df

(1 0:k, M, Q) + k(¢ (6:k, M, Q))?
- | (0(6:F, 01, Q))?

(4.16)
df

while the linearization of (4.14) now reads
Glolve = kOpL[g]v
where, with a slight abuse of notation, G[¢] and L[¢] are defined as in (4.2), albeit with kdy

replacing 0,, i.e.

20 2( A1 Y 21 p 12 el
(4.17) {G[W—f K (62 (67 f)) = f+ K" f — Kof

LIG)f = cf = 20f = Kcd"f +2k%cg' [ — K>cof"

Clearly, the rescaled operator G[¢] is invertible as before, leading us to the consideration of the
spectral problem

(4.18) Alplv = M

posed on L?(R), where now, again with a slight abuse of notation, A[¢] = G™1[¢]kdyL[¢)] is a linear
operator with 1-periodic coefficients and G[¢] and L[¢] are differential operators as in (4.17).

By Theorem 4.6, we know that A = 0 is a 1-periodic eigenvalue of the rescaled operator A[¢]
in (4.18) with algebraic multiplicity three and geometric multiplicity two. In fact, differentiating
(4.15) with respect to z, M, and Q yields

Alple' =0, Alplonm = —kemd',  Alplog = —kegd’
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Observe that since the profiles ¢(+; k, M, Q) are always 1-periodic by construction, it follows the
functions ¢ar and ¢¢ are also 1-periodic. In particular, the functions ¢’ and carég — coénr are
linearly independent and span the 1-periodic kernel of A[¢]. We also mention that, as in Lemma 4.5,
the functions 1 and G'1[¢]¢~2 span the 1-periodic kernel of the rescaled operator Af[¢]. Furthermore,
using similar arguments as in (4.12) we see that

(1,6a1) = 1= = (G'¢o™2 6q)

and

(1.60) = 0= (G[6)6~ 6ar)

We also have

(1,¢) =0= (Gl ')

by parity. Consequently, there is a linear combination of the functions 1 and G'[¢]¢~2 that is
orthogonal to the 1-periodic kernel of A[¢]. It follows there is a 1-periodic function in the generalized
kernel of Af[¢]. Letting A¢[#] denote the Bloch operators associated with A[¢], defined now for
¢ € [—m, ), we have the following result.

Corollary 4.7. Let ¢ = ¢(a, E, c) be a T-periodic solution of the profile equation (2.4), and assume
that the Jacobian determinants T,, {T, M }.r and {T, M,Q}qE . are all non-zero. Then X =0 is
an eigenvalue of Aglp| with algebraic multiplicity three and geometric multiplicity two. In particular,
defining

<I>(1) = ¢ @8 = om CI)g = 0q

Wemp Wl WGl

where B € L}%er((), 1) is the unique odd function satisfying A(T)[qzb]ﬁ € ker (AEL)M)]) and <B, <I>(1)> =1, we

have that {®9}3_, and {\Ifg}?:l provide a basis of solutions for the generalized kernels of Ag|d] and
A$[¢], respectively. In particular, we have <\I/?, <I>g> = 8j¢ and the ®Y and \Ilg-) satisfy the equations
Ao[g]®) =0, Ao[¢]®f = —kerr @Y, Ao[¢]®] = —keq®!

and
Al[g]9) =0 = Af[p] ¥, Af[¢]¥) € span{¥}, U]} \ {0}.

Before continuing, we note for future use that the function ¢ is also 1-periodic and satisfies
the equation

(4.19) Alglor = —kerd' — 2k%cG[g] ((¢/)% — 90")'.

Furthermore, differentiating (4.16) with respect to k, while holding M and @ constant, yields the
important relations

(4.20) (Low) =0 and (G'[g)o% o) = 2k (672 (¢))%).
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4.3 Modulational Stability Calculation

Now that we have constructed a basis for the generalized kernels of Ag[¢] and its adjoint in a
coordinate system compatible with the Whitham system (3.6), we proceed to study how this triple
eigenvalue bifurcates from the (A, §) = (0,0) state. To this end, recall from (4.8) that this is
equivalent to seeking the 1-periodic eigenvalues in a neighborhood of the origin of the associated
Bloch operators

Aed] = G¢ ' [9]k(Dp + i€) Le[9)

for |¢| < 1, where here G¢[@] := e %®0G[p]e®? and L¢[@] := e P L[p]e’? are the Bloch operators
associated with the operators G[¢] and L[] defined in (4.17). Following [3, 11, 2], we begin ex-
panding the Bloch operators for || < 1. As these expressions are analytic in &, it is straightforward
to verify that

Lel¢] = Lo + (ik€) Ly + (ik€)* Ly and Ge[g] = Go + (ik€)G1 + (ik€)? G,
where here
Lo := L[], Ly :=2ke(¢' —¢dp), Lg:=—co

and

Go:=Gld], Gi:=—-20kdy, Gy:=—0¢.

are operators acting on L2_(0,1). Using that Go[¢] is invertible on L2..(0,1) and rewriting the
expansion for Ge¢[¢] as

Gelo) = (I + (ik)C1Gy " + (ik€)*GaGy " ) G

it follows Ggl[qﬁ] can be expanded for |{| < 1 as the Neumann series

=Gyt Z [((ik€)G1 + (ik€)?Ga) Gy Y

=Go + (zkg)gl + (ik€)2Ga + O([¢[*),
where here
Go=G7'[gl, Gi=2G""[9](¢kdy(G"[¢]"))
and
Gy = G [Bl(6G 8] -) + 4G 9] (¢kDs (G [B](pkDp (G [0]-))))

are again acting on L 1). The Bloch operators A¢[¢] can thus be expanded for [{| < 1 as

per( ’
Ael] = (Go + (ik€)G1 + (ik€)*Ga + O(I€*)) (kdy + ik€) (Lo + (ik€) Ly + (ik€)*La)
= Ag + (ik€) AW + (ik€)*A® + O(I¢*)

where, after some manipulation,

Ao = Aolg],
Y = G1kdyLo + Gokdy L1 + Go Lo
(4.21) =Gy (2¢k89A0 + kOpL1 + Lo) ,

) = GokdyLo + G1kds L1 + GokdyLa + G1 Lo + GoLy
= Go (pAg + 4pk0pGopkOp Ao + 20k09GokOp L1 + kOpLa + 2¢k0pGoLo + L1) .
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Note to assist in our computations of the actions of A1) and A®? later, we have expanded these
operators in (4.21) as to identify any factors of Ay present in them, as well as to pull out a global
factor of Gg.

Now, by Corollary 4.7, we know A\ = 0 is an isolated eigenvalue of Ag[¢] with algebraic multi-
plicity three. Since A¢[¢] is a relatively compact perturbation of Ag[¢] for all [{| < 1 depending
analytically on the Bloch parameter &, it follows that the operator A¢[¢] will have three eigenvalues
{A;(6) ?:1, defined for || < 1, bifurcating from A\ = 0 for 0 < |¢{| < 1. The modulational stability
or instability of ¢ may then be determined by tracking these three eigenvalues for |{| < 1. To
this end, observe we may use the bases identified in Corollary 4.7 to build explicit rank 3 spectral
projections onto the generalized kernels of Ap[¢] and Ag [¢]. By standard spectral perturbation
theory (see, for example, Theorems 1.7 and 1.8 in [13, Chapter VII.1.3]) these dual bases extend
analytically into dual right and left bases {q)g}?zl and {\I»f}?zl associated to the three eigenvalues

{A;(6) ?:1 near the origin that satisfy <\Il§,<I>§) = 0j¢ for all [¢] < 1. For |{| < 1, we may now
construct &-dependent rank 3 eigenprojections

3 3
TI(€) = L2, (0,2m) — @ ker (Acl] = S (O)), TI€) : L0, (0,27) — Per (4flg] - 4,E)7)
j=1

J=1

with ranges coinciding with the total left and right eigenspaces associated with the eigenval-
ues {\; (f)};’:l Using this one-parameter family of eigenprojections, for each fixed || < 1 we
can project the infinite dimensional spectral problem for A¢[¢] onto the three-dimensional total
eigenspace associated with the eigenvalues {)\j(f)}?zl. In particular, the action of the operators
A¢[¢] on this subspace can be represented by the 3 x 3 matrix operator

Dg = TI(§) A[¢]TI(€) = <<‘I’§vA£[¢]q>§>>j,e=1'

It follows that for each |£| < 1 the eigenvalues \;(&) correspond precisely to the values A where the
matrix D¢ — Al is singular, where here I denotes the identity matrix' on R3. In what follows, we
aim to explicitly construct this matrix for |¢| < 1.

First, we observe that Corollary 4.7 implies that D¢ at { = 0 is given by!®

0 ‘ —key —keg
Dy=10 0 0
0 0 0

Expanding the right and left bases CDE and \II§ as'6

o = o + k) (hoe | )+ e (ot ] ) + o0l

and

WE = W0 4 (ik€) (i}cag \1/§L:0> + (ike)? (uli)Qag \Ifﬂg:()) + o),

!4Here, we are using that ﬁ(g)H(f) is the identity by construction.

'5The horizontal and vertical lines are included only to organize the 3 x 3 matrices into sub-blocks.

16Note the expansion in ik, rather than simply i€, is natural due to our spatial rescaling. Further, it is consistent
with how A¢[¢] naturally expands in the rescaled system.
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yields an expansion of the matrix D¢ of the form

D¢ = Do + (ik&) DY + (ik€)* D@ + O(¢[%).

Note that, explicitly,

3
D) — (<\IJ§?,A0$€6§ @E o + A(1)<I>2> + <5€85 @§’§:0,A0¢8>> L
=

To continue, we need information regarding 8§<I>§ at £ = 0. We claim that, up to harmless
modifications of the basis functions used above, we can arrange for this first order variation to be
exactly ¢y, while simultaneously preserving biorthogonality of the bases up to O(|¢]?). Indeed,
observe that by differentiating the identity II1()A¢[¢] (Iﬁ = A¢[o)] (Iﬁ and evaluating at £ = 0 yields
the relation

11(0) <A0 <i1,€ag @f]w) + A<1>c1>?> + 206 TI()]e_p oD = Ao (i}cag cpﬂﬁo) + AMal.

Recalling Ag®! = 0, and noting that (4.19) can be rewritten as A(1)<I>(1) = —Appr — kep®Y, we find

that
110) (40 (e 9]~ ox) ) = 0 (hoe 2f]_, —

which implies that i@g (I)ﬂgfo — ¢y, lies in the generalized kernel of Ag[¢]. Consequently, there

exists constants {a; }3-’:1 such that

3
0
50 ‘I’ﬂH =+ ) a;®f
- o
Replacing <I>§ with
3
@8 = @8 — (ik¢) Z
while simultaneously replacing \I/§ for j =1,2,3 with

U = U5+ (ik€)a; 15,

we readily see that
(4.22) B} = @ + (ik€)dr, + O(E), I =THEI(E) = I + O(€f),

as claimed. Note that I; is the 3x3 matrix describing the action of the identity operator with respect
to the modified bases. For notational simplicity, we will drop the tildes throughout the remainder
and refer to these modified bases as simply { @g}?zl and { \Ifg }?:1 With the above choices, the terms

involving the variations in \I/§ can be directly computed. For example, using Corollary 4.7 we have

1 3 0\ _ 1 13 0\ _ £ 1 0 _ 0
<ika§ \IJjL:O ,A0<I>2> — —key <ikag ‘I’J'L:O’q’1> — ke <x11j, 1 ‘1’1\5:0> — kear (U9, 6y,
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where the second equality follows since (4.22)(ii) implies

0= (¥, q>§>‘£zo - <a5 Wﬂg:o , <1>9> + (95,06 9f )

Using the above modified bases, straight forward calculations yield

—key, ‘ * *
DW= 0 (09, AV Y) (03, AW ®Y) :
0 [ (09, AD®Y + kenroy) (U9, ADDY + kegoy,)

Wy

where here “x” is used to denote undetermined terms that, as we will see, are irrelevant to our
calculation. Similarly, one finds

* ‘ k Xk
DR — <\118’A(2)q>(1) +A(1)¢k> % %
(09, A9 + AWy + kepgy) |+ *

Noticing the above implies the matrix Dy satisfies

o(eh | o)
o) | odeh |

D¢ =

where the upper left block is 1 x 1, it follows by standard arguments that the eigenvalues A;(§)
are at least C'! in €, and can thus be written as A (&) = ik&p;(§) for some continuous functions p;
defined for |¢| < 1. Further, introducing, for 0 < [¢| < 1, the invertible matrix'”

ik& |00
S(§) = 0110
00 1
and defining D¢ := 75(€) DeS(€) ™" and I := S(§)IeS(§)7", it follows D¢ and I¢ are analytic in
1k& and, at € = 0, are given by fg =T and
(4.23)
—key, —kepr —kcg
Dy = (U9, AP @9 + AW gy ) (09, AL DY) (09, AVY)

(U9, AP0 + AWy + kegoy) (U, AVDY + keprgr) (03, ADRY + kegor)

Furthermore, the y;(§) are the eigenvalues of the matrix ﬁg since clearly

~

det(Dg — A(€)I¢) = (ik€)® det(Dg — p(€)I¢)

In summary, we have proven the following result.

'"Note that the conjugating by S(€) effectively replaces the coefficient of the ¢’, corresponding to the local phase
1, with the wave number |£]|Y) ~ 1),. This is reminiscent of the fact that the Whitham system (3.6) involves the wave
number ., rather than the phase .
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Theorem 4.8. Under the hypotheses of Corollary 4.7, in a sufficiently small neighborhood of the
origin, the spectrum of A[¢] on L*(R) consists of precisely three C* curves {)\j(§)}§?:1 defined for
|€| < 1 which can be expanded as

Aj(€) = ik€pi (0) +o([€]), j=1,2,3

where the 11;(0) are precisely the eigenvalues of the matriz lA?o above. In particular, a necessary
condition for ¢ to be a spectrally stable solution of (1.1) is that all the eigenvalues of Dy are real.

Note the possible spectral instability predicted from Theorem 4.8 is of modulational type, oc-
curring near the origin in the spectral plane for side-band Bloch frequencies. In general, computing
the eigenvalues of lA?O is a difficult task, requiring one to identify the above inner products in terms
of known quantities: see, for example, [5, 3]. As we will see, however, this identification is not
necessary in order to rigorously connect modulational instability of ¢ to the Whitham modulation
system (3.6). Indeed, recalling the quasilinear form (3.7) of the Whitham modulation system (3.6),
in the next section we will prove that

D(¢) = Do — cI

so that, in particular, a necessary condition for the spectral stability of ¢ is that the matrix D(¢)
is weakly hyperbolic, i.e. that all of its eigenvalues are real, thus establishing Theorem 3.1.

5 Proof of Theorem 3.1

In this section, we establish Theorem 3.1. We will use a direct, row-by-row calculation to show
that R
D((rb) = -DO - CI)

where here D(¢) is the linearized matrix associated to the Whitham modulation equations (3.7)
and the eigenvalues of Dy, defined in (4.23), rigorously describe the structure of the L?(R)-spectrum
of the linearized operator A[¢] in a sufficiently small neighborhood of the origin: see Theorem 4.8.
To this end, first observe that the first rows of each of these matrices are clearly identical. To
compare the second rows, it is enough to establish the identities

(1,ADY + AVg, ) = <1 2K7c(¢/)’ — 67),.,
(5.1) <1 Al ¢M> _e= (1 2%2c( ¢2>M,
(1,400q) = (1,2k%( ¢2>Q

For the first equality, observe from (4.21) that, after some manipulations,

(52) AP¢ + AWy = G g] (ke(¢)? — 3kehd” — 2k crpd” + 2k*cdy (¢ b1, — ¢d),) + L[d]bx)

which, recalling that G=1[¢](1) = 1 and using integration by parts, yields

(1,409 + AWgy ) = (1, 4ke(¢!)? + 262 cx(9)* + L[8]ow)
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Since integration by parts implies

(1, L[Glpr) = (1, cp, — 20¢y — k*cd ¢y + 2k>cd/ ¢}, — kcody)
=C <1a ¢k> + <]-a _(¢2)k + 2k26((¢/)2)k>

it follows that
(1,496 + AW g ) = e (1, 61) + (1,2K%(9))? — 62,

which, recalling (1, ¢x) = 0 by (4.20)(i), establishes (5.1)(i). The other two equalities in (5.1) follow
in a similar way. Indeed, using analogous manipulations as above, as well as integration by parts,

we find
<]-a A(1)¢M> =cC (17 ¢M> + <]-a 2]{52C(¢)/)2 - ¢2>M

and

(1,4D6q) = ¢ (1, 60) + (1,2K%(#)? = 6*)q.

Since (1, ¢ar) =1 and (1, ¢g) = 0 by the biorthogonality relations in Corollary (4.7), the identities
(5.1)(ii)-(iii) follow. This establishes that the second rows of the matrices D(¢) and Do — I are
identical.

To compare the third rows, we aim to establish the following three identities:

(G616, AP + AV, + bexgr ) = — (1,218
(5.3) (GT191072, AW gur + kendn ) = — (1,21n[g)
(GM[8)072 A6 + keqor) +c = — (1,2In]8])g
Focusing on the first term, we note that (5.2) and integration by parts implies
(G810 AP ¢ + ANy + kerr ) = (672, —2k(c + kar) (¢)” + 2k2e(9" b, — d07) + Lol
+ (G802 kewor,)
so that, by (4.20)(ii),
(GH8)o2 AP ¢ + AWy + kerdr) = —c (G802 b ) + (672 2K%("dn — 667 + LIdlow,)
Now, using the fact that (¢72, ¢¢}) = (¢72,¢/¢),) we see

(072, LIGIok) = — (&%, 200k) + (672, con — k2¢O + 2k°cd' ¢, — KPcogy)
= —2(1,In|o]), + (672 cor, — K2c (¢"dr — 60%))

and hence
(GM10l672, AP + AWy + heyar ) = — ¢ (GTolo 2 1) = (1,21 ]0]),
(672 cn, + ke (6" 0n — 60f))
=—c(GMglo%, 61 ) — (1.2In6]), + e (672 Glélon)
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The identity (5.3)(i) has now been established. The other two equalities follow similarly. Indeed,
using analogous manipulations as above, as well as integration by parts, we find that

(GM19lo™% AWonr + kearor) = — (1,210 + e (G807 o)

and

(GH18lo2 AWoq + kegon) = = (1,2n[gl)g + ¢ (G'ls]o % 60 ) -

Recalling that <GT [¢]¢_2,¢M> = 0 and <GJr [¢]¢_2,¢Q> = —1 by the biorthogonality relations in
Corollary (4.7), the identities (4.20)(ii)-(iii) follow. This complete the proof of Theorem 3.1

6 Analysis for Small Amplitude Waves

In general, determining whether the Whitham system (3.6) is weakly hyperbolic at a given peri-
odic traveling solution of (1.1) is a difficult matter. See [3, 5], for example, for cases where this
information can be computed in the presence of a Hamiltonian structure. Nevertheless, one can
use well-conditioned numerical methods to approximate the entries of the matrix D(¢) in (3.7),
thereby producing a numerical stability diagram. Such numerical analysis was recently carried out
in [17]. There, the authors findings indicate, among other things, that the Whitham modulation
system (3.6) is hyperbolic about a given periodic traveling wave ¢ provided ¢ has sufficiently large
period, while the system is elliptic for sufficiently small periods. Formally then, the authors find-
ings suggest long waves are modulationally stable while short waves are modulationally unstable.
For asymptotically small waves, however, it is possible to use asymptotic analysis to analyze the
hyperbolicity of the Whitham modulation system (3.6). While this analysis is discussed in [17], for
completeness we reproduce their result for small amplitude waves.

To this end, we note that 7' = 1/k-periodic traveling wave solutions with speed ¢ of the conduit
equation (1.1) correspond to 1-periodic stationary solutions of the profile equation

(6.1) —wd + 2k + KPwpd” — KPwe'¢” =0,

where where w = kc is the frequency and primes denote differentiation with respect to the traveling
variable § = kx—wt. Using an elementary Lyapunov-Schmidt argument, one can show that solution
pairs (¢,w) of (6.1) with asymptotically small oscillations about its mean'® M admit a convergent

asymptotic expansion in Hp, (0,1) of the form

¢(0;k, M, A) = M + Acos(2m0) + Y Al ¢;(0; k, M)
j=2
w(k, M, A) = wo(k, M) + A%ws(k, M) + O(A*)

valid for |A| <« 1, where the functions ¢; are 1-periodic and satisfy

1 1
/ 6;(6)d6 = 0 = / 6,;(6) cos(276)d6
0 0

18Note that, here, the mean M agrees with the mass, as defined in (2.2), since we are working with 1-periodic
functions. More generally, these quantities would differ by factor of k.
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for all j > 2. Further, it is an easy calculation to see that

(27m)2k2M + 1

¢2(0) = COS(4770) = m COS(47T0)

6(2m)2kwo M
and

2k M 1 —8(27)%k*M
— s, W2 = .
r)2k2M + 17 2 12(27)2kM2((27)2k2M + 1)
Using these asymptotic expansions, the Whitham modulation system (3.6) about these waves ex-
pands for |[A| < 1 as

wo =

ks + Ox (wo + A2WQ) = O(Ag)
Mg + 0x (M?* — 1A% (2(27)%kwo — 1)) = O(4?)
820.)0 8&]0

7)2k?
(1+0(4%) (A7) g + A% Fhx + (A7) ¢ == + 447 (1 - (2(2275?2]321\4‘]‘4{1)3) Mx = O(A®).

Using the chain rule, this system can be rewritten in the quasilinear form

k k
M | +BkMA| M | =0,
A S A X

where here B expands in A as
B(k, M, A) = By(k, M) + ABy(k, M) + A’B(k, M, A),

with B (k, M, A) a bounded, continuous matrix-valued function and

8—"‘20 % 0 0 0 2wa
By = 0 2M 0 |, By = 0 0 . 1 — 2(27)%kwo
o) 192 2(2m)2k2 M
0 0 S 2ok 2 (1 - m) 0

Based on the above asymptotics, the eigenvalues of the Whitham system (3.6) about the small
amplitude 1-periodic traveling wave ¢(-; k, M, A) may be asymptotically expanded as

M (k, M, A) = 2M + O(A?)

2
N (k, M, A) = % Ay —n(k, M)% +o4?),

where we have explicitly

8[(2m)2k2M)? + 5[(27)* k> M] + 3

M) = T kAR ([(2)2REM) + 1)([(2m)2K2M] + 3)

Since
9wy _ 16m*kM? ((27k)*M — 3)

——(k

Ok? (k, M) ((27k))2M +1)3 ’
and since n(k, M) is clearly a strictly positive function of k and M, we immediately have the
following result.
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Theorem 6.1. Let ¢(-; k, M, A) be a 1-periodic traveling wave solution of (6.1) with asymptotically
small amplitude. Then ¢ is modulationally unstable if

3
ork)? > —.
(7?)>M

Further, a necessary condition for ¢ to be modulationally stable is

3
0 < (27k)* < U

Theorem 6.1 makes rigorous the formal calcluations in [17] regarding small amplitude periodic
traveling wave solutions'® of (1.1). Note that while the above analysis shows the Whitham system
(3.6) is (strictly) hyperbolic when 0 < (27k)? < 3/M, this is not sufficient to conclude modulational
stability of the underlying wave ¢ since hyperbolicity of (3.6) only guarantees the eigenvalues of
A¢l¢] lie on the imaginary axis to first order in &, ie. it guarantees tangency of the spectral
curves at A = 0 to the imaginary axis. Of course, modulational stability requires that the spectral
curves near the origin are confined to the left half plane, and hence cannot be concluded?® from
only first order information. Modulational stability was concluded in [17] for the conduit equation,
however, in the case 0 < (27k)? < 3/M through numerical time evolution. It would be interesting
to rigorously verify this prediction.

Remark 6.2. Note that a slightly different approach to proving Theorem 3.1 would have been to
expand the matriz D(¢$) in (3.7), and using the chain rule to express derivatives with respect to Q in
terms of derivatives with respect to (k, M, A). This calculation of course produces the same result.
However, here we preferred to start working directly with the variables (k, M, A) in the Whitham
system, since this is the natural parameterization in the asymptoically small amplitude limit.
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