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Abstract

We introduce a new class of arbitrary-order exponential time differencing methods based on
spectral deferred correction (ETDSDC) and describe a simple procedure for initializing the requisite
matrix functions. We compare the stability and accuracy properties of our ETDSDC methods to
those of an existing implicit-explicit spectral deferred correction scheme (IMEXSDC). We find that
ETDSDC methods have larger accuracy regions and comparable stability regions. We conduct
numerical experiments to compare ETD and IMEX spectral deferred correction schemes against a
competing fourth-order ETD Runge-Kutta scheme. We find that high-order ETDSDC schemes are
the most efficient in terms of function evaluations and overall speed when solving partial differential
equations to high accuracy. Our results suggest that high-order ETDSDC schemes are well-suited
to work in conjunction with spectral spatial methods or other high-order spatial discritizations.
Additionally, ETDSDC schemes appear to be immune to severe order reduction, a problem which
affects other ETD and IMEX schemes, including IMEXSDC.

Keywords: Spectral deferred correction, exponential time differencing, implicit-explicit, high-order,
stiff-systems, spectral methods.

1 Introduction

In this paper we present a new class of arbitrary-order exponential time differencing (ETD) methods
for solving nonlinear evolution equations of the form

φt = Λφ+N (t, φ)

where Λ is a stiff linear operator and N is a nonlinear operator. Such systems commonly arise when
discretizing nonlinear wave equations including Burgers’, nonlinear Schrödinger, Korteweg-de Vries,
Kuramoto, Navier-Stokes, and the quasigeostrophic equation. ETD Adams methods [3, 20], ETD
Runge-Kutta methods [7, 22, 25, 18, 19, 23, 20], and ETD general linear methods [34, 20] are well-
understood, and many of these schemes perform competitively when integrating nonlinear evolution
equations [12, 22, 29]. Despite these advances, no practical high-order exponential integrators have
been developed. High-order ETD Adams methods are largely unusable due to their small stability
regions, and there are no ETD Runge-Kutta schemes of order greater than five.

Nevertheless, high-order exponential integrators could prove useful if paired with spatial spectral
discretizations, especially on periodic domains. Spectral methods exhibit exceptional accuracy and have
been shown to be remarkably successful when applied to nonlinear wave equations [11, 40, 4]. When
applying spectral methods on PDEs with smooth solutions, the time integrator often limits the overall
order of accuracy. The development of stable, high-order integrators will allow for more accurate
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numerical simulations at reduced computational costs and will better balance spatial and temporal
accuracy.

In order to develop high-order ETD schemes, we turn our attention to spectral deferred correction
methods (SDC), originally developed by Dutt, Greengard, and Rokhlin [8]. SDC methods are a class of
high-order, self-starting time integrators for solving ordinary differential equations. By pairing Euler’s
method with a Picard integral equation, SDC methods achieve an arbitrary order of accuracy and
favorable stability properties. Remarkably, they are simple to implement, even at high order. In the
past decade, there has been a continuing effort to analyze and improve these methods [38, 39, 14, 6,
21, 28, 27, 13]. In particular, Minion introduced implicit-explict spectral deferred correction schemes
(IMEXSDC) for integrating stiff semilinear systems [31]. To date, these methods remain the only
practical arbitrary-order IMEX integrators.

In this paper, we present a new exponential integrator based on spectral deferred correction methods.
Our new integrator, which we call ETDSDC, allows for an arbitrary-order of accuracy, has favorable sta-
bility properties, and outperforms state-of-the-art ETD schemes when low error tolerances are required.
In Section 2, we provide a brief introduction to spectral deferred correction methods before deriving our
ETDSDC method and discussing IMEXSDC. In Section 3, we analyze and compare the stability and
accuracy regions of these two methods. In Section 4, we discuss two techniques for accurately initializing
the coefficients for our ETDSDC method. Finally, in Section 5, we perform numerical experiments com-
paring our ETDSDC method against IMEXSDC and ETDRK4, a well-known fourth-order exponential
integrator [7].

2 Spectral Deferred Correction Methods

In this section, we provide a review of Euler-based spectral deferred correction methods [8], before
deriving our ETDSDC method in Section 2.3 and the IMEXSDC method [31] in Section 2.4. To
introduce SDC methods, we consider a first-order initial value problem of the form

φ′(t) = F (t, φ)

φ(a) = φa
(1)

where φ ∈ Cd and F (t, φ) is ν times differentiable for ν � 1. We then shift our attention to a semi-linear
first-order initial value problem of the form

φ′(t) = Λφ+N (t, φ)

φ(a) = φa
(2)

where again φ ∈ Cd, N ∈ Cν , and Λ is a d × d matrix (not necessarily diagonal). The continuity
conditions on N (t, φ) and F (t, φ) are stronger than the Lipschitz continuity required for existence and
uniqueness, but they ensure that high-order methods can be applied successfully.

2.1 Preliminaries

Spectral deferred correction schemes iteratively improve the accuracy of an approximate solution to
Eq. (1) by repeatedly solving an integral equation that governs error. This integral equation is of the
form

y(t) = y(a) +

∫ t

a

g(s, y(s))ds+ r(t), (3)

where r(a) = 0. As first proposed by Dutt et al. [8], we can approximate the solution to Eq. (3) at
points t0, t1, . . ., tm using the implicit (` = 1) or explicit (` = 0) Euler-like method

y(tn+1) = y(tn) + hng(tn+`, y(tn+`)) + r(tn+1), (4)

where hn = tn+1 − tn.
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To arrive at the error equation of the form (3), we let φk(t) be an approximate solution to Eq. (1),
and let the error be E(t) = φ(t)− φk(t). By considering the integral form of Eq. (1), one arrives at

φ(t) = φ(a) +

∫ t

a

F (s, φ(s))ds.

Substituting φ(t) = φk(t) + E(t) leads to the integral equation

E(t) = −φk(t) + φk(a) + E(a) +

∫ t

a

F (s, φk(s) + E(s))ds. (5)

Introducing the residual

R(t, a, φk) =

[
φk(a) +

∫ t

a

F (s, φk(s))ds

]
− φk(t) (6)

allows us to rewrite Eq. (5) as

E(t) = E(a) +

∫ t

a

G(s, E(s))ds+R(t, a, φk), (7)

where
G(s, E(s)) = F (s, φk(s) + E(s))− F (s, φk(s)). (8)

Rewriting Eq. (5) in this manner isolates the residual and the error terms and leads to an equation of
the form (3). The residual R(t, a, φk) depends only on known quantities and can be approximated to
arbitrary accuracy via numerical quadrature of the function F (t, φk(t)). If we consider a single timestep
of method (4) applied to Eq. (7), and suppose that φk(t) is a sufficiently good approximation so that

sup
t∈[tn+1,tn]

‖E(t)‖ = O(hm) for h = tn+1 − tn and m ∈ N,

then, since F (t, φ) is Lipchitz continuous in φ, we have that

‖hG(s, E(s))‖ = h‖F (s, φk(s) + E(s))− F (s, φk(s))‖ = O(hm+1).

Thus, the Euler-like method (4) is sufficient for estimating E(t) to O(hm+1) in the interval [tn, tn+1].
This approximate error, which we denote by Ek(t), can be used to obtain an O(hn+1) accurate solution
φk+1(t) = φk(t)− Ek(t). This process can be repeated M times to obtain a sequence of increasingly
accurate approximations to Eq. (1).

To implement this strategy numerically, Dutt et al. proposed to divide each timestep [tn, tn+1] into
N substeps or quadrature nodes which we denote via tn,1, . . . , tn,N [8]. This enables us to represent the
approximate solution φk(t) as an interpolating polynomial which passes through the quadrature points.
We can then calculate a provisional solution φ1(t) at each node using either forward or backward Euler,
and obtain a sequence of higher-order approximations φk(tn,j) = φk−1(tn,j) +Ek−1(tn,j) by repeatedly
approximating the error E(t) at each quadrature node using (4).

The choice of the nodes tn,1, . . . , tn,N affects the quality of the quadrature approximation used to
determine Eq. (6). Dutt et al. use Gauss-Legendre points, and Minion has studied the implications of
using different quadrature nodes [27]. After M correction sweeps, the order of accuracy at each node is
min(N,M + 1), regardless of the choice of quadrature nodes [14, 39].

To simplify our discussion, we consider only a single timestep of spectral deferred correction from
tn = 0 to tn+1. We find it most convenient to describe SDC methods in terms of normalized quadrature
points which reduce to the quadrature points if the stepsize h = 1. Throughout the rest of this paper
we will make extensive use of the following definitions:

Stepsize: h = tn+1 − tn Normalized nodes: τi = tn,i/h

Substeps: hi = tn,i+1 − tn,i Normalized substeps: ηi = hi/h

We will use the notation SDCMN to denote a spectral deferred correction method which uses the
quadrature points {τi}Ni=1, and performs M correction sweeps. For brevity we also use the variables
φki = φk(tn,i) and Eki = Ek(tn,i) to denote the approximate solution and the error at the ith quadrature
node after k correction sweeps.
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2.2 Euler-Based Spectral Deferred Correction Methods

We now describe Euler-based spectral deferred correction methods in detail. Implicit and Explicit SDC
methods use Implicit or Explicit Euler respectively to determine the provisional solution φ1(t) at the
quadrature points hτi. Applying the Euler-like method (4) to Eq. (7) one obtains an approximation
of the error E(t) at each of the quadrature points. Every step of this Euler-like method requires
approximating the residual term; we describe this process below.

Approximating the Residual Term: During the kth correction sweep, φk(t) is known at the quadra-
ture points. The residual term (6) can be approximated for t = hτi+1 and a = hτi at the cost of N
function evaluations F (hτi, φ

k
i ) via

R̂(hτi+1, hτi, φ
k) = φk(hτi)− φk(hτi+1) + Ii+1

i (φk)

where Ii+1
i (φk) denotes the Nth order numerical quadrature approximation to∫ hτi+1

hτi

F (s, φk(s))ds. (9)

The coefficients for this numerical quadrature can be obtained for general quadrature points using
an algorithm which we propose in Section 4. For Chebyshev quadrature points, a fast O(N log(N))
matrix-free algorithm exists for computing (9) [33].

Given the initial condition φ1
1 = φ(a), we can express a single timestep of an SDCMN method algorith-

mically:

Implicit (` = 1) or Explicit (` = 0) SDCM
N Note: Ek1 = 0

• Initial Solution (Euler):

for i=1 to N-1
φ1
i+1 = φ1

i + hiF (hτi+`, φ
1
i+`)

• Correction & Update:
for k=1 to M

for i=1 to N-1
Eki+1 = Eki + hiG(hτi+`, E

k, φk) + R̂(hτi+1, hτi, φ
k)

φk+1
i+1 = φki+1 + Eki+1

By substituting the expression for Eki+1 into the update formula for φk+1
i+1 , noting that φk+1

i = φki +Eki ,
and using Eq. (8), one arrives at the following direct update formula:

φk+1
i+1 = φk+1

i + hi
[
F (hτi+`, φ

k+1
i+` )− F (hτi+`, φ

k
i+`)

]
+ Ii+1

i (φk).

This compact form for spectral deferred correction methods was first mentioned in [31] but was not
recommended due to potential numerical rounding errors. However, in our numerical experiments, we
find that this compact formula leads to simpler codes and equally accurate results. We therefore make
use of this compact update formula in all of our codes.

2.3 ETD Spectral Deferred Correction Methods

We now introduce a new class of exponential integrators based on spectral deferred correction for solving
Eq. (2), which we repeat here for convenience:

φ′(t) = Λφ+N (t, φ),

φ(a) = φa.
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To derive ETD spectral deferred correction schemes, we seek an error equation of the form

y(t) = y(a)eΛ(t−a) +

∫ t

a

eΛ(t−s)g(s, y(s))ds+ r(t). (10)

We propose to approximate the solution to Eq. (10) by replacing g(s, y(s)) with a one-point approxi-
mation, leading to the explicit (` = 0) or implicit (` = 1) ETD Euler-like method

y(tn+1) = y(tn)ehΛ + Λ−1
[
ehΛ − I

]
g(tn+`, y(tn+`)) + r(tn+1). (11)

To arrive at an error equation of the form (10), we let φk(t) be an approximate solution of Eq. (2), and
define the error to be E(t) = φ(t)− φk(t). Applying variation of constants, we obtain the integral form
of Eq. (2),

φ(t) = φ(a)eΛ(t−a) +

∫ t

a

eΛ(t−s)N (s, φ(s))ds.

Substituting φ(t) = φk(t) + E(t) leads to the integral equation

E(t) = −φk(t) +
(
φk(a) + E(a)

)
eΛ(t−a) +

∫ t

a

eΛ(t−s)N (s, φk(s) + E(s))ds. (12)

Introducing the residual

Re(t, a, φ
k) =

[
φk(a)eΛ(t−a) +

∫ t

a

eΛ(t−s)N (s, φk(s))ds

]
− φk(t) (13)

allows us to rewrite Eq. (12) as

E(t) = E(a)eΛ(t−a) +

∫ t

a

eΛ(t−s)H(s, E(s))ds+Re(t, a, φ
k), (14)

where
H(s, E(s)) = N (s, φk(s) + E(s))−N (s, φk(s)). (15)

Now that we have obtained an error equation of the form (10), we are free to proceed in the same
manner as Euler-based spectral deferred correction. The provisional solution φ1(t) is calculated at the
quadrature points using either implicit or explicit ETD Euler and the error at each quadrature point is
estimated using (11). As before, we describe the computation of the residual term.

Approximating the Residual Term: During the kth correction sweep, φk(t) is known at the quadra-
ture points. The residual (13) can be approximated for t = hτi+1 and a = hτi at the cost of N function
evaluations via

R̂e(hτi+1, hτi, φ
k(t)) = φk(hτi)e

hiΛ − φk(hτi+1) +W i+1
i (φk) (16)

where W i+1
i (φk) denotes the weighted N point numerical quadrature approximation to∫ hτi+1

hτi

eΛ(hτi+1−s)N (s, φk(s))ds (17)

where the weight function is w(s) = eΛ(τi+1−s). We describe in detail how to obtain the coefficients for
this weighted quadrature in Section 4.

We use ETDSDCMN to denote an ETD spectral deferred which performs M correction sweeps on the
quadrature points {τi}Ni=1. Given the initial condition φ1

1 = φ(a), we can express a single timestep of
an ETDSDCMN method algorithmically:
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Implicit (` = 1) or Explicit (` = 0) ETDSDCM
N Note: Ek1 = 0

• Initial Solution (ETD Euler):

for i=1 to N-1
φ1
i+1 = φ1

i e
hiΛ + Λ−1

[
ehiΛ − I

]
N (hτi+`, φ

1
i+`)

• Correction & Update:
for k=1 to M

for i=1 to N-1
Eki+1 = Eki e

hiΛ + Λ−1
[
ehiΛ − I

]
H(hτi+`, E

k, φk) + R̂e(hτi+1, hτi, φ
k)

φk+1
i+1 = φki+1 + Eki+1

By substituting the expression for Eki+1 into the update formula for φk+1
i+1 , noting that φk+1

i = φki +Eki ,
and using Eq. (15), one arrives at the following direct update formula:

φk+1
i+1 = φk+1

i ehiΛ + Λ−1
[
ehiΛ − 1

] [
N (hτi+`, φ

k+1
i+` )−N (hτi+`, φ

k
i+`)

]
+W i+1

i (φk). (18)

Though we have derived both an implicit and explicit exponential integrator, we will be solely consid-
ering the explicit exponential integrator throughout the rest of this paper.

2.4 IMEX Spectral Deferred Correction

We now briefly discuss Minion’s IMEXSDCMN method for solving Eq. (2) [31]. The provisional solution
φ1(t) is calculated using IMEX Euler. The error and residual equations can be derived by repeating
the procedure outlined in Section 2.1 with F (t, y) = Λy +N (t, y). This leads to

E(t) = E(a) +

∫ t

a

[ΛE(s) +G(s, E(s))] ds+R(t, a, φk), (19)

H(s, E(s)) = N (s, E(s) + φk(s))−N (s, φk(s)) (20)

R(t, a, φk) =

[
φk(a) +

∫ t

a

[
Λφk(s) +N (s, φk(s))

]
ds

]
− φk(t). (21)

Notice that Eq. (19) is of the form

y(t) = y(a) +

∫ t

a

[Λy(s) + g(s, y(s))] ds+ r(t). (22)

We can approximate Eq. (22) by treating the linear term implicitly and the nonlinear term explicitly,
yielding the IMEX Euler-like scheme

y(tn+1) = (I − hΛ)−1 [y(tn) + hg(tn+`, y(tn+`)) + r(tn+1)] .

The residual term (21) is approximated exactly as described in Section 2.2, except the integrand in
Eq. (9) is now Λφk(s) +N(s, φk(s)). We denote the quadrature approximation to the residual for
IMEXSDC by R̃(t, a, φ). Given the initial condition φ1

1 = φ(a), we can express a single timestep of an
IMEXSDCMN method algorithmically:
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IMEXSDCM
N Method Note: Ek1 = 0

• Initial Solution (IMEX Euler):

for i=1 to N-1
φ1
i+1 = [I − hiΛ]

−1 [
φ1
i + hiN(hτi, φ

1
i )
]

• Correction & Update:
for k=1 to M

for i=1 to N-1
Eki+1 = [I − hiΛ]

−1
[
Eki + hiH(hτi, E, φ

k) + R̃(hτi+1, hτi, φ
k)
]

φk+1
i+1 = φki+1 + Eki+1

By rewriting the error formula implicitly so that

Eki+1 =
[
Eki + hi(ΛE

k
i+1 +H(hτi, E, φ

k)) + R̃(hτi+1, hτi, φ
k)
]
,

substituting this expression into the update formula for φk+1
i+1 , and noting that

Eki+1 = φk+1
i+1 − φ

k
i+1, φk+1

i = φki + Eki

one arrives at the following direct update formula:

φk+1
i+1 = [I − hiΛ]

−1
[
φk+1
i − (hiΛ)φki+1 + hi(N (hτi, φ

k+1
i )−N (hτi, φ

k
i )) + Ĩi+1

i (φk)
]

where Ĩi+1
i (φk) denotes the numerical quadrature approximation to∫ hτi+1

hτi

Λφk(s) +N (s, φk(s))ds.

3 Stability and Accuracy

Determining the stability properties of IMEX and ETD integrators is non-trivial. A commonly used
approach is to consider the model problem

φ′ = µφ+ λφ

φ(0) = 1
(23)

where µ, λ ∈ C and the terms µφ, λφ act as the linear and nonlinear term respectively. This model
problem highlights stability for Eq. (2) when it is possible to simultaneously diagonalize both the linear
and nonlinear operators around a fixed point. Though this analysis does not extend to general linear
systems, it has proven useful for predicting stability properties of IMEX and ETD methods on a variety
of partial differential equations [12].

Applying an ETDSDCMN or IMEXSDCMN method on Eq. (23) leads to a recursion relation of the
form

φ(tn+1) = ψMN (r, z)φ(tn)

where r = µh, z = λh, and h denotes the timestep. As with all one-step methods, the stability region
is defined as

S = {(r, z) ∈ C2, |ψMN (r, z)| ≤ 1}.

We list the stability functions ψMN (r, z) for ETDSDCMN and IMEXSDCMN schemes in Table 1.
We choose to analyze stability for PDEs with linear dispersion and dissipation; thus, r = hµ and

z = hλ are complex-valued. Several strategies have been proposed for effectively visualizing the resulting
four-dimensional stability region. As in [3, 7, 25], we choose to overlay two-dimensional slices of the
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ETDSDC Stability Functions ψk1 (r, z) = 1

ψ1
i+1 = erηiψ1

i +
erηi − 1

r
zψ1

i

ψk+1
i+1 = erηiψk+1

i +
erηi − 1

r
z(ψk+1

i − ψki ) + z

N∑
j=1

Wi,jψ
k
j

where Wij =

∫ τi+1

τi

er(τi+1−s)Lj(s)ds, Lj(s) =

N∏
l=1
l 6=j

(s− τl)
(τj − τl)

.

(24)

IMEXSDC Stability Functions ψk1 (r, z) = 1

ψ1
i+1 =

(
1 + zηi
1− rηi

)
ψ1
i

ψk+1
i+1 =

(
ψk+1
i + ηiz

(
ψk+1
i − ψki

)
− rηiψki+1 + (r + z)

∑N
j=1 Ii,jψ

k
j

1− rηi

)

where Iij =

∫ τi+1

τi

Lj(s)ds, Lj(s) =

N∏
l=1
l 6=j

(s− τl)
(τj − τl)

.

(25)

Table 1: Stability functions for ETDSDCMN and IMEXSDCMN methods. As r → 0 the stability functions
of both methods limit to that of an explicit SDCMN method.
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stability regions, each corresponding to a fixed r value. For the sake of brevity, we focus our attention
on 8th order methods where N = 8, M = 7 and on 16th order methods where N = 16, M = 15. For
all methods, we select the Chebyshev quadrature nodes

τi =
1

2

(
1− cos

(
π(i− 1)

N − 1

))
i = 1, . . . , N.

We pick a range of real, imaginary, and complex r values to simulate nonlinear PDEs with varying
degrees of linear dispersion and dissipation. We plot stability regions pertaining to

r ∈ −1 · [0, 30], r ∈ 1i · [0, 30], and r ∈ exp(3πi/4) · [0, 30] (26)

in Figure 1. For these three r ranges, we find that the stability regions of all methods grow as |r|
increases. For imaginary r, the stability regions for ETDSDC methods temporarily decrease before
growing. Though all methods exhibit satisfactory stability properties, IMEXSDC methods allow for
coarser timesteps on a wider range of (r, z). Overall, our results suggest that both IMEXSDC methods
and ETDSDC methods exhibit good stability properties on a wide range of stiff nonlinear evolution
equations.

When analyzing spectral deferred correction methods, it is also common to plot accuracy regions.
Accuracy regions highlight the restrictions on the stepsize h so that error after one timestep is smaller
than ε > 0. They are simply defined as

Aε = {(r, z) ∈ C2, |ψMN (r, z)− exp(r + z)| ≤ ε}.

They were introduced in [8] for comparing the efficiency of high-order methods, and provide a more
detailed picture than stability regions which solely differentiate between convergent and divergent (r, z)
pairs.

We find that as |r| increases, the accuracy region containing z = 0 decreases rapidly for ETDSDCMN
methods and vanishes entirely for IMEXSDCMN methods. This behavior can be understood from
Eq. (24) and Eq. (25). For the ETDSDCMN methods it follows that ψMN (r, 0) = exp(rh); moreover,
since the stability function ψMN (r, z) is continuous, then for any ε > 0, there exists a nontrivial accuracy
region surrounding z = 0. The same cannot be said for IMEXSDC schemes since Eq. (25) satisfies the
weaker relation ψ(r, 0) = exp(rh) +O(rh); hence, as r becomes sufficiently large, there need not exist
an accuracy region around z = 0.

We present accuracy regions for ε = 1× 10−8 in Figure 2. We consider the three ranges of r values
in (26), but due to rapidly shrinking accuracy regions, we are only able to visualize different subsets
of r values for each numerical method. ETDSDCMN schemes outperform IMEXSDCMN schemes for all
tested values. Accuracy regions for the ETD methods decrease more slowly, and the non-vanishing
accuracy regions around z = 0 guarantee accuracy for any r so long as z is chosen sufficiently small.
The MATLAB code used to generate these figures can be found in [5] and can be easily modified to
generate stability and accuracy plots for other ETDSDC or IMEXSDC methods.

4 Calculating W i+1
i (φk)

Every iteration of an ETDSDCMN method requires computing W i+1
i (φk), which denotes the weighted

quadrature approximation to ∫ hτi+1

hτi

eΛ(hτi+1−s)N (s, φk(s))ds.

To arrive at a formula for W i+1
i (φk), we let Nl(φ) = N (hτl, φ(hτl)) and replace N (s, φk(s)) in

Eq. (17) with the Lagrange interpolating polynomial L(s) that passes through the quadrature points
{(hτl,Nl(φ

k))}Nl=1 so that

W i+1
i (φk) =

∫ hτi+1

hτi

eΛ(hτi+1−s)L(s)ds =

N∑
l=1

wi,lNl(φ
k). (27)
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Stability Region Plots

r = 0 r = R0/2 r = R0 r = 2R0

ETDSDC7
8 IMEXSDC7

8 ETDSDC15
16 IMEXSDC15

16

Dissipative Model Problem: r ∈ −1 · [0, 30] and R0 = −30

Dispersive Model Problem: r ∈ 1i · [0, 30] and R0 = 30i

Dissipative/Dispersive Model Problem: r ∈ exp(3πi/4) · [0, 30] and R0 = 30e3πi/4

Figure 1: Stability regions for 8th order and 16th order methods with Chebyshev quadrature nodes.
Colored contours correspond to different r values as described in the legend. We plot an additional
black contour for the ETDSDC15

16 method on the dispersive model problem to show that stability regions
eventually grow for sufficiently large imaginary r. For large |r|, increasing the order of the ETD and
IMEX methods does not lead to significantly larger stability regions.
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Accuracy Region Plots

r = 0 r = R0/2 r = R0

ETDSDC7
8 IMEXSDC7

8 ETDSDC15
16 IMEXSDC15

16

Dissipative Model Problem: r ∈ −1 · [0, 30]

R0 = −5 R0 = −2
R0 = −30 R0 = −20

Dispersive Model Problem: r ∈ 1i · [0, 30]

R0 = 5i R0 = 2i
R0 = 15i R0 = 9i

Dissipative/Dispersive Model Problem: r ∈ exp(3πi/4) · [0, 30]

R0 = 5e3iπ/4 R0 = 2e3iπ/4
R0 = 26e3iπ/4 R0 = 16e3iπ/4

Figure 2: Accuracy regions corresponding to ε = 1 × 10−8 for 8th order and 16th order methods with
Chebyshev quadrature nodes. Colored contours correspond to different r values as described in legend.
We choose R0 in each figure so that the red contour marks a near vanishing accuracy region around
z = 0. As expected, 16th order methods possess larger accuracy regions for a wider range of r than 8th
order methods.
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For low-order methods, explicit formulae for wi,l can be derived by forming L(s) and repeatedly applying
integration by parts. Unfortunately, this direct calculation leads to increasingly involved formulae for
large N . We therefore seek a general procedure for determining wi,l for any N . We propose to express
the weights wi,l in terms of the well-known functions

ϕn(z) =
1

(n− 1)!

∫ 1

0

ez(1−σ)σn−1dσ.

using a stable algorithm developed by Fornberg for determining finite difference coefficients [9]. We
describe our algorithm in Section 4.1, before discussing ϕ functions and two well-known methods for
initializing them in Section 4.2.

4.1 Proposed Algorithm

To arrive at a convenient expression for W i+1
i (φk), we propose to apply the change of variables

s = h [(τi+1 − τi)σ + τi] = hiσ + hτi, (28)

to the integral term in (27), expand the Lagrange interpolating polynomial L(s(σ)) as a Taylor poly-
nomial, and rewrite the result in terms of ϕ functions. Applying the change of variables (28) leads
to

hi

∫ 1

0

ehiΛ(1−σ)L(s(σ))dσ = hi

∫ 1

0

ehiΛ(1−σ)Pi(σ)dσ,

where Pi(σ) is the Lagrange interpolating polynomial which passes through the points

{(qi,l,Nl(φ
k))}Nl=1 and qi,l = (τl − τi)/(τi+1 − τi)

denote the scaled, translated quadrature nodes hτi under the transformation (28). Next, we define the

finite difference coefficients a
(i)
j,l so that

dj

dσj
Pi(σ)

∣∣∣∣
σ=0

=

N∑
l=1

a
(i)
j,lNl(φ

k).

Expanding Pi(σ) as a Taylor polynomial we obtain

W i+1
i (φk) = hi

∫ 1

0

ehiλ(1−σ)
N−1∑
j=0

[
σj

j!

N∑
l=1

a
(i)
j,l Nl(φ

k)

]
dσ.

Reordering terms we arrive at

W i+1
i (φk) = hi

N∑
l=1

Nl(φ
k)

N−1∑
j=0

[
a

(i)
j,l

j!

∫ 1

0

ehiΛ(1−σ)σjdσ

]
= hi

N∑
l=1

Nl(φ
k)

N−1∑
j=0

[
a

(i)
j,lϕj+1(hiΛ)

] .
By defining the functions

wi,l(z) = hi

N−1∑
j=0

a
(i)
j,lϕj+1(z), (29)

we obtain a convenient expression for the weighted quadrature rule:

W i+1
i (φk) =

N∑
l=1

wi,l(hiΛ)Nk(φk).
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To successfully implement this procedure, we must determine the finite difference coefficients a
(i)
j,l and

the matrix functions ϕn(hiΛ). The coefficients a
(i)
j,l can be rapidly obtained using the stable algorithm

presented in [9]. We define the functions:

• weights(z0, [q1, . . . , qn],m): returns a finite difference matrix a for computing m derivatives at z0,
assuming qj are the quadrature points. This calling sequence is consistent with the implementation
in [10].

• initPhi(z, n): returns the functions ϕi(z) for i = 0, . . . , n. We discuss two possible implementa-
tions in Section 4.2.

The algorithm for computing wi,l(z) for an ETDSDCMN method can be written as:

Computing wi,l(hiΛ)

for i=1 to N
[ϕ0(hiΛ), . . . , ϕN (hiΛ)] = initPhi(hiΛ, N)
for j=1 to N
qj = (τj − τi)/(τi+1 − τi)

a(i) = weights(0, [q1, . . . qN ], N − 1)
for l=1 to N

for j=0 to N-1

wi,l(hiΛ) = wi,l(hiΛ) + a
(i)
j,lϕj+1(hiΛ)

When computing wi,l(hiΛ), it is convenient to save ϕ0(hiΛ) and ϕ1(hiΛ) since both are required for
the ETD Euler method.

4.2 ϕ Functions

The coefficients of all exponential integrators can be expressed in terms of ϕ functions [20, 2, 30, 24].
The nth ϕ function can be defined in the following ways:

Integral Form: ϕn(z) =


ez n = 0

1

(n− 1)!

∫ 1

0

ez(1−s)sn−1ds n > 0
(30)

Series Form: ϕn(z) =

∞∑
k=0

zk

(k + n)!
(31)

Recursion Relation: ϕn(z) =
ϕn−1(z)− 1

(n−1)!

z
, ϕ0(z) = ez (32)

The first few ϕn(z) are given by

ϕ0(z) = ez, ϕ1(z) =
ez − 1

z
, ϕ2(z) =

ez − 1− z
z2

, ϕ3(z) =
ez − 1− z − 1

2z
2

z3
.

We can now rewrite the compact update formula (18) as

φk+1
i+1 = ϕ0(hiΛ)φk+1

i + ϕ1(hiΛ)
[
N(hτi+`, φ

k+1
i+` )−N(hτi+`, φ

k
i+`)

]
+W i+1

i (φk).

From their series definition, it follows that the functions ϕn(z) are entire; nevertheless, it is well-known
that explicit formula for ϕn(z) are prone to catastrophic numerical roundoff error for small |z|. Various
strategies for overcoming this difficulty have been compared extensively [1]. We briefly outline a method
based on scaling and squaring [24] and a method based on contour integration [22]. Other approaches
involve Krylov subspace approximations [17, 16] and improved contour integrals [41] but we do not
consider them in this paper.
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4.2.1 Taylor/Padé Scaling and Squaring Algorithm

The scaling and squaring algorithm for calculating ϕ functions is a generalization of a well-known
algorithm for computing matrix exponentials [15]. For small |z|, ϕn(z) can be accurately evaluated via
the Taylor series (31) or via the diagonal (m,m) Padé approximation, whose explicit formula is given
in [37]. This initial approximation can be used to obtain ϕn(z) for large |z| by repeatedly applying the
well-known scaling relation

ϕn(z) =
1

2n

[
ϕ0

(
z
2

)
ϕn
(
z
2

)
+

n∑
i=1

ϕi
(
z
2

)
(n− i)!

]
. (33)

We present pseudocode for an m-term Taylor series procedure for initializing φi(Λ) in Table 2. A
MATLAB implementation of the Padé scaling and squaring algorithm is freely available in [2] and can
be easily used to initialize ϕn(Λ) for both scalar and matrix Λ.

4.2.2 Contour Integration Algorithm

An alternative algorithm for initializing ETD coefficients was first suggested in [22]. Since the functions
ϕn(z) are entire, Cauchy’s integral formula can be used to obtain ϕ(z) at problematic regions near
z = 0. We highlight this procedure for both scalar and matrix Λ in Table 2 assuming that the explicit
formula for ϕn(z) is known. If this is not the case, then it is convenient to combine Eq. (32) with the
discretized contour integral so that

ϕn(Λ) =
1

P

P−1∑
j=0

ϕn−1(Λ + reiθ)− 1/(n− 1)!

Λ +Reiθ
. (34)

This allows one to progressively evaluate ϕn(Λ) for n = 1, . . . , N . For scalar Λ we use Eq. (34) when
|Λ| < 1 and Eq. (32) when |Λ| ≥ 1. For matrix Λ we find that the technique based on scaling and
squaring is faster and more accurate, especially for matrices with large norm.

5 Numerical Experiments

In this section, we numerically solve four partial differential equations in order to compare ETDSDCMN
and IMEXSDCMN methods of orders 4, 8, 16, 32 against the fourth-order Runge-Kutta method (ET-
DRK4) developed in [7]. We have chosen to include ETDRK4 in our tests since it was shown to
perform competitively [12, 22], and provides a good reference for comparing SDC based schemes to ex-
isting ETD and IMEX methods. We provide our MATLAB and Fortran implementation of ETDSDCMN ,
IMEXSDCMN and ETDRK4 in [5] along with code for reproducing our numerical experiments.

In all our numerical experiments, we apply a fine spectral spatial discretization so that error is
primarily due to the time integrator. In our first three experiments we impose periodic boundary
conditions and solve the PDEs in Fourier space. This is convenient since it leads to an evolution
equation of the form (2) where the matrix Λ is diagonal. In our final experiment we consider a more
challenging example where Λ is a dense matrix. We base our first three numerical experiments from
[22, 12] so that our results can be compared with those obtained using other IMEX and ETD schemes.

Since we consider methods of varying order, our experiments are based on the number of function
evaluations rather than the step size h. We compute reference solutions by using four times as many
function evaluations as used in the experiment. To avoid biased results, we average the solutions of at
least two convergent methods when forming our reference solutions. For each PDE, we present plots of
relative error vs. function evaluations, relative error vs. stepsize, and relative error vs. computational
time, where the relative error between two solution vectors x and y is ‖x − y‖∞/‖x‖∞. Though we
solve equations in Fourier space, we compute relative errors in physical space. We do not count the time
required to initialize ETD coefficients in our time plots. We also make no specific efforts to optimize
our code, thus timing results only serve as an indication and may vary under different implementations.
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m-Term Taylor Scaling & Squaring Procedure for Matrix/Scalar Λ

• Select Scaling Factor:

Let s ∈ N so that ‖Λ/2s‖∞ < δ(m) See Appendix A or [24] for choosing δ(m).

• Initialize ϕi(Λ/2
s) via Horner’s Method:

for i=0 to N

Pi = Λ
(m+i)! + I

(m+i−1)!

for k=0 to m-2

Pi = ΛPi + I
(m+i−2−k)!

ϕi(Λ/2
s) = Pi

• Obtain ϕi(Λ) via Eq. (33):

for i=1 to s
for n=0 to N

ϕn(Λ/2s−i) =
1

2n

[
ϕ0

(
Λ/2s−i+1

)
ϕn
(
Λ/2s−i+1

)
+

n∑
i=1

ϕi
(
Λ/2s−i+1

)
(n− i)!

]

Contour Integral for Scalar |Λ| < 1 Contour Integral for Matrix Λ

• Cauchy Integral Formula:

ϕn(Λ) =
1

2πi

∮
Γ

ϕn(z)

(z − Λ)
dz

• Choosing Γ:

Let Γ = Reiθ + Λ for θ ∈ [0, 2π]. The radius
R should be chosen so that contour never
comes near the origin.

ϕn(Λ) =
1

2π

∫ 2π

0

ϕn(Reiθ + Λ)dθ

• Discretization via Trapezoidal Rule:

Let θj = 2πj/P , then for P sufficiently large,
ϕn(Λ) is approximately

1

P

P−1∑
j=0

ϕn(Λ +Reiθj ).

For scalar |Λ| ≥ 1, use Eq. (32).

• Cauchy Integral Formula:

ϕn(Λ) =
1

2πi

∮
Γ

ϕn(z)(zI− Λ)−1dz

• Choosing Γ:

Let Γ = Reiθ + z0 for θ ∈ [0, 2π]. The ra-
dius R and center z0 must be chosen so that
contour encloses spectrum of Λ.

ϕn(Λ) =
1

2π

∫ 2π

0

ϕn(Reiθ + Λ)dθ

• Discretization via Trapezoidal Rule:

Let θj = 2πj/P , γj = R exp(θj) + z0, then for
P sufficiently large, ϕn(Λ) is approximately

1

P

P−1∑
j=0

ϕn(γj)

(
I +

(z0I− Λ)

Reiθj

)−1

where ϕn(γj) initialized like scalar Λ.

Table 2: Scaling & squaring, and contour integral methodology for initializing ϕn(Λ).
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The results presented in this paper have been run on a 3.5 Ghz Intel i7 Processor using our double
precision Fortran implementation. We describe each of the four problems below.

The Kuramoto-Sivashinsky (KS) equation models reaction-diffusion systems [26]. As originally
presented in [22], we consider the KS equation with periodic boundary conditions:

ut = −uxx − uxxxx − 1
2

(
u2
)
x
, (35)

u(x, t = 0) = cos
(
x
16

) (
1 + sin

(
x
16

))
, x ∈ [0, 64π].

We numerically integrate Eq. (35) using a 1024 point Fourier spectral discretization in x and run the
simulation out to t = 60. The KS equation has a dispersive linear term Λ with eigenvalues given by
λ(k) = k2 − k4, where k denotes the Fourier wavenumber. We present our numerical results in Figure
3.

The Nikolaevskiy equation was originally developed for studying seismic waves [32] and now serves as
a model for pattern formation in a variety of systems [36]. As originally presented in [12], we consider
the Nikolaevskiy equation with periodic boundary conditions:

ut = α∂3
xu+ β∂5

xu− ∂2
x

(
r − (1 + ∂2

x)2
)
u− 1

2

(
u2
)
x
, (36)

u(x, t = 0) = sin(x) + ε sin(x/25), x ∈ [−75π, 75π]

where r = 1/4, α = 2.1, β = 0.77, and ε = 1/10. We solve the Nikolaevskiy equation using a 4096 point
Fourier spectral discretization in x and run the simulation out to t = 50. The Nikolaevskiy equation has
a dissipative and dispersive linear term with eigenvalues given by λ(k) = k2(r − (1− k2)2)− iαk3 + iβk5,
where k denotes the Fourier wavenumber. We present our numerical results in Figure 3.

The quasigeostrophic (QG) equations model a variety of atmospheric and oceanic phenomena [35].
As originally presented in [12], we consider the barotropic QG equation on a β-plane with linear Ekman
drag and hyperviscous diffusion of momentum with periodic boundary conditions,

∂t∇2ψ = −
[
β∂xψ + ε∇2ψ + ν∇10ψ + u · ∇(∇2ψ)

]
(37)

ψ(x, y, t = 0) =
1

8
exp

(
−8
(
2y2 + x2/2− π/4

)2)
,

(x, y) ∈ [−π, π]

where ψ(x, y) is the stream function for two-dimensional velocity u = (−∂yψ, ∂xψ), ε = 1/100, and
ν = 10−14. We run the simulation to time t = 5 using a 256 × 256 point Fourier discritization. We
consider a different initial condition than the one presented in [12], since ∇2ψ(x, y) was originally
chosen to be discontinuous at the point (0, 0). We note that Eq. (37) describes the change in the
vorticity ω = ∇2ψ in terms of the stream function ψ. In order to obtain ψ at each timestep, it is
necessary to solve Poisson’s equation ∇2ψ = ω. Since we are solving in Fourier space, it follows that

ψ̂k,l =

{
0 k = l = 0

− ω̂
k2+l2 otherwise

where k and l are the Fourier wave numbers and ψ̂, ω̂ denote the discrete Fourier transforms of ψ and
ω. The QG equation has a linear term with strong dissipation and mild dispersion with eigenvalues

given by λ(k, l) = −ik−εk2
k2+l2 − ν(k8 + l8). We present our numerical results in Figure 4.
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Performance Results for Kuramoto-Sivashinsky Equation
Solution Plot
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Performance Results for Nikolaevskiy Equation
Solution Plot
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Figure 3: Performance results for the Kuramoto-Sivianshi and Nikolaevskiy equations. Gray dashed
lines of increasing steepness in the accuracy vs stepsize plots correspond to O(h4), O(h8) and O(h16),
respectively. IMEXSDC schemes experience significant order reduction on both problems.
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Performance Results for Quasigeostrophic Equation
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Performance Results for Korteweg-de Vries Equation
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Figure 4: Performance results for the Quasigeostrophic and Korteweg-de Vries equations. Dashed lines
of increasing steepness in the accuracy vs stepsize plots correspond to O(h4), O(h8) O(h16) and O(h32),
respectively. Notice that high-order IMEXSDC schemes are unstable on the KDV equation. Order
reduction does not occur for any method on the quasigeostrophic equation, but affects both IMEXSDC
and ETDSDC schemes on the KDV equation.
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The Korteweg-de Vries (KDV) equation describes weakly nonlinear shallow water waves. In 1965
Kruskal and Zabusky observed that smooth initial conditions could give rise to soliton solutions [42].
As in their original numerical experiment, we consider the KDV equation on a periodic domain

ut = −
[
δuxxx + 1

2 (u2)x
]

u(x, t = 0) = cos(πx), x ∈ [0, 2]

where δ = 0.022 and the simulation is run out to time t = 3.6/π. The eigenvalues of the linear terms are
given by λ(k, l) = δik3; thus this equation possess a purely dispersive linear term. Unlike our previous
examples, we solve this PDE in physical space where the resulting differentiation matrix is no longer
diagonal. The nondiagonal case is more challenging since the coefficients wi,n in Eq. (27) are now matrix
functions. In practice it would be more efficient to consider a lower-order spatial description and apply
Krylov space or contour integral techniques that avoid explicitly initializing the requisite ETD matrices.
Nevertheless, we consider this example to test the robustness of the scaling and squaring algorithm.
For IMEXSDCMN schemes it is necessary to repeatedly solve the system Λx = f at each timestep. We
perform an initial LU factorization of Λ to expedite this process. We present our numerical results for
the KDV equation in Figure 4.

5.1 Discussion

Our results demonstrate that high-order methods can lead to significant speedup when solving nonlinear
wave equations to high accuracy. Methods of order 8 and 16 were able to achieve the smallest error
using the fewest function evaluations and the least overall CPU time. Interestingly, the error threshold
separating good and bad performance for high and low order methods varied significantly in each
experiment. Overall, ETDSDC methods consistently achieved better accuracy than corresponding
IMEXSDC methods, and did not suffer from crippling order reduction on any of the problems we tested.
Amongst the fourth order methods, ETDRK4 is more efficient than either ETDSDC3

4 or IMEXSDC3
4.

Moreover, ETDRK4 is the fastest method for computing solutions if error tolerances are large. Methods
of order 32 were generally less competitive than those of 8th or 16th order, and should only be considered
in situations where extreme precision is necessary and quad/arbitrary-precision arithmetic allow for
relative errors significantly below 1× 10−12. Finally, for diagonal Λ, the time required to initialize
the ETD coefficients was insignificant as compared to overall computational time even for 32nd order
method.

High-order ETDSDC methods continued to perform well even in the non-diagonal case, and we found
no evidence of catastrophic roundoff error when forming the ETD matrix coefficients wi,l(hiΛ). For
nondiagonal Λ, high-order ETDSDCMN schemes require large amounts of memory and time to initialize
and store the N2 − N requisite matrices. Moreover, the expensive matrix multiplications at each
timestep reduced their overall competitiveness. To improve the performance of ETDSDC schemes on
higher dimensional problems with non-diagonal linear operators, it becomes essential to use techniques
that avoid explicitly storing the ETD matrices.

High-order IMEXSDC schemes were unstable when solving the KDV equation on fine grids in both
physical and Fourier space. Through additional numerical testing we find that IMEXSDC schemes can
be unstable when integrating other nonlinear wave equations with dispersive linear terms such as the
nonlinear Schrödinger equation.

We make several additional comments regarding our numerical experiments. The benefits of using
high-order methods is greatly reduced if the initial conditions are not smooth, though in certain situ-
ations we found that high-order methods are rendered no less efficient than lower-order counterparts.
The size of the integration window also affects the difference in performance between high and low-order
methods, with the high-order methods generally benefiting on larger time domains. Chaotic equations
can cause additional complications, as small perturbations due to rounding errors grow exponentially
and contaminate overall accuracy. This was the case for the the KS equation where we were not able
to integrate further without damaging the quality of the reference solution.
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6 Conclusion

We have demonstrated that high-order ETD spectral deferred correction schemes possess excellent ac-
curacy/stability properties and outperform existing ETD and IMEX methods when solving nonlinear
wave equations to high accuracy. Our proposed methodology for initializing ETD coefficients is robust
and can be successfully applied to ETDSDC schemes up to 32 order accuracy, even for equations with
non-diagonal linear operator Λ. We have also highlighted the advantages of ETD spectral deferred cor-
rection methods as compared with IMEXSDC schemes. Our new ETD schemes consistently outperform
their IMEX counterparts, do not appear to suffer from crippling order reduction, and retain stability
on equations with dispersive linear terms.
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A Choosing δ(m)

We describe a simple choice for δ(m) from Table 2; more sophisticated alternatives are developed in [24].
Let Λ be a matrix or scalar and let A = Λ/2s. We seek an integer s so that ϕn(A) can be initialized
via its mth order Taylor series without admitting an error larger than ε, assuming exact arithmetic.
ϕn(A) can be approximated by

ϕmn (A) =

m∑
k=0

Ak

(k + n)!
+ O

(
‖A‖m+1

)
.

The error En(A) = ‖ϕn(A)− ϕmn (A)‖ can be expressed as

En(A) =

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=m+1

Ak

(k + n)!

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
k=m+1

‖A‖k

(k + n)!
.

For any n, En(A) can be bounded above by

∞∑
k=1

‖A‖k+m

k!(m+ 1)!
=
‖A‖m+1 exp(‖A‖)

(m+ 1)!
.

Assuming exact arithmetic, we can guarantee that En(A) < ε for any s so that A = Λ/2s satisfies

ε =
‖A‖m+1 exp(‖A‖)

(m+ 1)!
.

To avoid solving a nonlinear system for each m and ε, we fix m = 20, ε = 1× 10−16 and let ‖A‖ ≤ ρ.
Solving the cooresponding nonlinear equation for ρ, leads to ρ = 1.4 ≈ 1.0. Therefore our condition on
A reduces to ‖A‖ = ‖Λ/2s‖ ≤ 1. In our numerical codes we choose ‖A‖ = max{‖A‖1, ‖A‖∞}. This
leads to the condition

s = max

{
0,

ln (max{‖A‖1, ‖A‖∞})
ln(2)

}
.
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