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Abstract

Motivated by TRACE algorithm [18], we propose a trust region algorithm for finding second order
stationary points of a linearly constrained non-convex optimization problem. We show the conver-

gence of the proposed algorithm to (ǫg, ǫH)-second order stationary points in Õ
(
max

{
ǫ
−3/2
g , ǫ−3

H

})

iterations. This iteration complexity is achieved for general linearly constrained optimization without
cubic regularization of the objective function.

1 Introduction

Due to its wide application in machine learning, solving non-convex optimization problems encountered
significant attention in recent years [1, 11, 13, 14, 17, 18, 28]. While this topic has been studied for
decades, recent applications and modern analytical and computational tools revived this area of research.
In particular, a wide variety of numerical methods for solving non-convex problems have been proposed
in recent years [26, 22, 31, 8, 9, 10, 34].

For general non-convex optimization problems, it is well-known that computing a local optimum is NP-
Hard [30]. Given this hardness result, recent focus has been shifted toward computing (approximate) first
and second-order stationary points of the objective function. The latter set of points provides stronger
guarantees compared to the former as it constitutes a smaller subset of points that includes local and
global optima. Therefore, when applied to problems with “nice” geometrical properties, the set of second
order stationary points could even coincide with the set of global optima – see [2, 3, 7, 33, 36, 20, 37, 38]
for examples of such objective functions.

Convergence to second-order stationarity in smooth unconstrained setting has been thoroughly inves-
tigated in the optimization literature [21, 16, 9, 10, 31, 17, 18, 20]. As a second-order algorithm, [31]
proposed a cubic regularization method that converges to approximate second-order stationarity in finite
number of steps. More recently, [9, 10] proposed the Adaptive Regularization Cubic algorithm (ARC)
that computes an approximate solution for a local cubic model at each iteration. They established con-
vergence to first and second order stationary points with optimal complexity rates. Motivated by these
rates, [18] proposed an adaptive trust region method, entitled TRACE, and established iteration com-
plexity bounds for finding ǫ-first-order stationarity with worst-case iteration complexity O(ǫ−3/2); and for

finding (ǫg, ǫH)-second-order stationarity with worst-case complexity O(max{ǫ
−3/2
g , ǫ−3

H }). This method
alters the acceptance criteria adopted by traditional trust region methods, and implements a new mech-
anism for updating the trust region radius. A more recent second-order algorithm that uses a dynamic
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choice of direction and step-size was proposed in [16]. This method computes first and second order
descent directions and chooses the direction that predicts a more significant reduction in the objective
value. All of the above methods satisfy the set of generic conditions of a general framework proposed in
[17].

Recent results show that for smooth unconstrained optimization problems, even first order methods can
converge to second-order stationarity, almost surely. For instance, [20] shows that noisy stochastic gra-
dient descent escapes strict saddle points with probability one. Therefore, when applied to problems
satisfying the strict saddle property this method converges to a local minimum. A similar result was
shown for the vanilla gradient descent algorithm in [26]. A negative result provided by [19] shows that
vanilla gradient descent can take exponential number of steps to converge to second-order stationarity.
This computational inefficiency can be overcome by a smart perturbed form of gradient descent proposed
in [24].

Most of the above results can be extended to the smooth constrained optimization in the presence of
simple manifold constraints. In this case, [25] shows that manifold gradient descent converges to second-
order stationarity, almost surely. More recently, [22] established similar results for gradient primal-dual
algorithms applied on linearly constrained optimization problems. When the constraints are non-manifold
type, projected gradient descent is a natural replacement of gradient descent. As a negative result, [32]
constructs an example, with a single linear constraint, showing that there is a positive probability that
projected gradient descent with random initialization can converge to a strict saddle point. This raises
the question of whether there exist a first order method that can converge to second-order stationarity in
the presence of inequality constraints. To our knowledge, no affirmative answer has been given to this
question to date.

The answer to the question above is obvious when replacing first-order methods with second-order meth-
ods. In fact, convergence to second-order stationarity in the presence of convex constraints has been estab-
lished by adapting many of the aforementioned second-order algorithms [8, 13, 12]. The work in [8] adapts

the ARC algorithm and showed convergence to ǫg-first-order stationarity in at most O(ǫ
−3/2
g ) iterations.

[6] uses active set method and cubic regularization to achieve this rate for special types of constraints.

The work[5] uses interior point method to achieve a second order stationarity in O
(
max{ǫ

−3/2
g , ǫ−3

H }
)

iterations for box constraints. For general constraints, [14] proposed a conceptual trust region algorithm
that can compute an ǫ-qth stationary point in at most O(ǫ−q−1) iterations. More recently, [29] proposed
a general framework for computing (ǫg, ǫH)-second-order stationary points for convex-constrained opti-
mization problem with worst-case complexity O

(
max{ǫ−2

g , ǫ−3
H }
)
. In particular, this framework allows for

using Frank-Wolfe or projected gradient descent to converge to an approximate first-order method, and
then computes a second-order descent direction if it exists. The iteration complexity bounds computed
for these methods hide the per-iteration complexity of solving the quadratic or cubic sub-problems. As
shown in [32], for linearly constrained non-convex problems, even checking whether a given point is an
approximate second-order stationary point is NP-Hard. Despite this hardness result, [32] proposed a
second-order Frank-Wolfe algorithm that adapts the dynamic method introduced in [16], and identified
instances for which solving the constrained quadratic sub-problem can be done efficiently. The algorithm
converges to approximate first and second-order stationarity with a worst-case complexity similar to
[16]. However, second-order information as utilized in the adapted ARC algorithm yields better iteration
complexity rates. Motivated by this result, in this paper, we propose a trust region algorithm, entitled
LC-TRACE, that adapts TRACE to linearly-constrained non-convex problems. We establish the con-

vergence of our algorithm to (ǫg, ǫH)-second order stationarity in at most Õ(ǫ
−3/2
g , ǫ−3

H ) iterations.

The remainder of this paper is organized as follow. In section 2, we first review and define the concepts
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of first and second order stationarity. Then, we review some of our previous results in section 3. Finally,
in section 4, we propose and analyze LC-TRACE algorithm.

2 First and Second Order Stationarity Definitions

To understand the definition of first and second order stationarity, let us first start by considering the
unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn 7→ R is a twice continuously differentiable function. We say a point x̄ is a first order
stationary point (FOSP) of (1) if ∇f(x̄) = 0. Similarly, a point x̄ is said to be a second-order stationary
point (SOSP) of (1) if ∇f(x̄) = 0 and ∇2f(x̄) � 0. In practice, most of the algorithms used for finding
stationary points are iterative. Therefore, we define the concept of approximate first and second order
stationarity. We say a point x̄ is an ǫg-first-order stationary point if

‖∇f(x̄)‖2 ≤ ǫg. (2)

Moreover, we say a point x̄ is an (ǫg, ǫH)-second-order stationary point if

‖∇f(x̄)‖2 ≤ ǫg and ∇2f(x̄) � −ǫHI. (3)

We now extend these definitions to the constrained optimization problem

min
x∈P

f(x), (4)

where P ⊆ R
n is a closed convex set. As defined in [4], we say x̄ ∈ P is a FOSP of (4) if

〈∇f(x̄),x− x̄〉 ≥ 0 ∀x ∈ P. (5)

Similarly, we say a point x̄ is a SOSP of the optimization problem (4) if x̄ ∈ P is a first order stationary
point and

0 ≤ dT∇2f(x̄)d, ∀d s.t. 〈d,∇f(x̄)〉 = 0 and x̄+ d ∈ P. (6)

Notice that when P = R
n, the definitions above obviously correspond to the definitions in the uncon-

strained case.

Motivated by (5) and (6), given a feasible point x, we define the following first and second order station-
arity measures

X (x) , − min
s

〈∇f(x), s〉

s.t. x+ s ∈ P, ‖s‖ ≤ 1.
(7)

and

ψ(x) , − min
d

dT∇2f(x)d

s.t. x+ d ∈ P, ‖d‖ ≤ 1

〈∇f(x),d〉 ≤ 0.

(8)

Notice that since x is feasible, X (x) ≥ 0 and ψ(x) ≥ 0. Moreover, these optimality measures, which are
also used in [32], can be linked to the standard definitions in [4] by the following Lemma.
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Lemma 1 ([32]). The first and second order stationarity measures X (·) and ψ(·) are continuous in x.
Moreover, if x̄ ∈ P then

• X (x̄) = 0 if and only if x̄ is a first order stationary point.

• X (x̄) = ψ(x̄) = 0 if and only if x̄ is a second order stationary point.

Using this lemma, we define the approximate first and second order stationarity.

Definition 2. Approximate Stationary Point: For problem (4),

• A point x̄ ∈ P is said to be an ǫg-first order stationary point if X (x̄) ≤ ǫg.

• A point x̄ ∈ P is said to be an (ǫg, ǫH)-second order stationary point if X (x̄) ≤ ǫg and ψ(x̄) ≤ ǫH .

In the unconstrained scenario, these definitions correspond to the standard definitions (3) and (2).

Remark 3. Notice that our definition of (ǫg, ǫH)-second order stationarity is different than the definition
in [29]. In particular, there are two major differences:

1) The definition used for approximate first and second order stationarity in [29] does not include the
normalization constraints ‖s‖ ≤ 1 and ‖d‖ ≤ 1 in (7) and (8).

2) The second order optimality measure in [29] is defined based on using equality constraint 〈∇f(x),d〉 =
0 in (8) instead of the inequality constraint 〈∇f(x),d〉 ≤ 0.

To understand the necessity of using normalization, consider the optimization problem minx2 and the
point x̄ = ǫ with ǫ being (arbitrary) small. Clearly, x̄ is close to optimal, while the optimality measure
(7) does not reflect this approximate optimality if we do not include the normalization constraint in (7).
To understand the importance of using inequality constraint 〈∇f(x),d〉 ≤ 0 instead of equality constraint
in (8), consider the scalar optimization problem

min
x
−

1

2
x2

s.t. 0 ≤ x ≤ 10.

Let us look at the point x̄ = ǫ > 0. Using second order information, one can say that x̄ is not a reasonable
point to terminate your algorithm at. This is because the Hessian provides a descent direction with large
amount of improvement in the second order approximation of the objective value. This fact is also reflected
in the value of ψ(x̄) = 1. However, if we had used equality constraint 〈∇f(x),d〉 = 0 in the definition of
ψ(·) in (8), then the value of ψ(·) would have been zero.

Remark 4. There are other definitions of second order stationarity in the literature. For example, the
works [5, 6] use a scaled version of the Hessian in different directions to define second order stationarity
for box constraints. Recently, [35] carefully revised it to account for the coordinates which are very far from
the boundary. Another related definition of second order stationary, which leads to a practical perturbed
gradient descent algorithm, is provided in [27] for general linearly constrained optimization problems.
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3 Finding second-order stationary points for constrained optimization

Consider the quadratic co-positivity problem

min
x∈Rn

1

2
xTQx s.t. x ≥ 0, ‖x‖ ≤ 1. (9)

Clearly, checking whether x̄ = 0 is a second order stationary point of (9) is equivalent to checking its
local optimality, which is an NP-Hard problem [30]. This observation shows that checking exact second
order stationarity is Hard. The following result, which is borrowed from [32], shows that even checking
approximate second order stationarity is NP-hard.

Theorem 5 (Theorem 6 in [32]). There is no algorithm which can check whether x = 0 is an (ǫg, ǫH)-
second order stationary point in polynomial time in (n, 1/ǫH), unless P = NP.

This hardness result implies that we should not expect an efficient algorithm for finding second order
stationary points of non-convex problems. However, in this problem, the source of hardness stems from
the number of linear inequality constraints. In fact, when we have a small constant number of linear
constraints (say m fixed constraints), [23] proposed a backtracking approach that efficiently solves this
quadratic constrained optimization problem. Although the method proposed is exponential in m as it
uses an exhaustive search over the set of active constraints, it can still be used whenm is small. Motivated
by this observation, in the next section we describe our LC-TRACE algorithm and analyze its iteration
complexity for finding second order stationary points of linearly constrained non-convex optimization
problems. A core assumption in our algorithm is that a certain quadratic objective can be minimized
given existing linear constraints (for example when m is small).

4 A Trust Region Algorithm for Solving Linearly-Constrained Smooth

Non-Convex Optimization Problems

Consider the optimization problem

min
x∈Rn

f(x),

s.t. Ax ≤ b,
(10)

where A ∈ R
m×n and b ∈ R

m. In this section, we propose a trust region algorithm, entitled LC-
TRACE (Linearly Constrained TRACE), that adapts TRACE [18] to the above linearly-constrained
non-convex problem. We establish its convergence to ǫg-first order stationarity with iteration complexity

order Õ(ǫ
−3/2
g ). This method is then used to develop an algorithm to converge to (ǫg, ǫH)-second-order

stationarity with the iteration complexity Õ
(
max{ǫ

−3/2
g , ǫ−3

H }
)
.

LC-TRACE is different from the traditional trust region method proposed in [14] for constrained opti-
mization. More specifically, LC-TRACE utilizes the mechanisms used in TRACE [18] to provide a faster
convergence rate compared to [14]. The improved convergence rate matches the rates achieved by adapted
ARC [8] and TRACE [18], up to logarithmic factors. Since applying TRACE directly to constrained op-
timization fails (as will be discussed later), we introduced modifications to adapt this method to linearly
constrained problems. Our modifications are not the result of a “simple extension” of unconstrained to
constrained scenario. Before explaining LC-TRACE, let us first provide an overview of the classical trust
region and TRACE algorithms.
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4.1 Background on Traditional Trust Region Algorithm and TRACE

In traditional trust region methods, the trial step sk at iteration k is computed by solving the standard
trust region sub-problem

min
s∈Rn

qk(s), s.t. ‖s‖2 ≤ δk, (11)

where qk(s) : R
n 7→ R is the second-order Taylor approximation of f around xk, i.e.,

qk(s) , fk + gT
k s+

1

2
sTHks.

Here fk = f(xk), gk = ∇f(xk), and Hk = ∇2f(xk). Based on the resulting trial step, an acceptance
criteria is used to either accept or reject the step. In particular, if the ratio of actual-to-predicted reduction

fk − f(xk + sk)

fk − qk(sk)

is greater than a prescribed constant, the step is accepted, otherwise it is rejected. The iterate xk+1 and
trust region radius are updated accordingly. Traditional trust region methods use a geometric update
rule for the trust region radius δk, i.e., δk+1 is some constant factor of δk. TRACE algorithm, on the
other hand, modifies the acceptance criteria and this linear update rule for δk to match the rate achieved
by the ARC algorithm [9, 10]. In particular, the authors in [18] observed that ARC computes a positive
sequence of cubic regularization coefficients σk ∈ [σ, σ] that satisfy

fk − fk+1 ≥ c1σk‖sk‖
3
2 and ‖sk‖2 ≥

( c2
σ + c3

)1/2
‖gk+1‖

1/2
2 , (12)

for some given positive constants c1, c2, c3. TRACE designed a modified acceptance criteria and a new
mechanism for updating the trust region radius to satisfy the conditions provided in (12). Some of these
ideas are discussed next.

Sufficient Decrease Acceptance Criteria. TRACE defines the ratio

ρk ,
fk − f(xk + sk)

‖sk‖
3
2

, (13)

as a measure to decide whether to accept or reject a trial step. For some prescribed ρ ∈ (0, 1), a trial step
sk can only be accepted if ρk ≥ ρ. By noticing that a small ‖sk‖2 may satisfy only the first condition in
(12), the developers of TRACE realize that an acceptance criteria that only involves (13) is not sufficient.
To avoid such cases, TRACE defines a sequence {σk} to estimate an upper bound for the ratio λk/‖sk‖2
used for acceptance. Here {λk} is the sequence of dual variables corresponding to the constraint ‖s‖2 ≤ δk
in sub-problem (11). In short, TRACE accepts a trial pair (sk, λk) if it satisfies the following conditions:

ρk ≥ ρ and λk/‖sk‖2 ≤ σk. (14)

Trust Region Radius Update Procedure. In contrast to the linear update rule utilized in traditional
trust region algorithms, TRACE uses a CONTRACT subroutine that allows for sub-linear updates. In
particular, this subroutine compares the radius obtained by the linear update scheme to the norm of the
trial step computed using

min
s∈Rn

fk + gT
k s+

1

2
sT (Hk + λI)s, (15)

for a carefully chosen λ. If the norm of this trial step falls within a desired range, then it is chosen to be
the new trust region radius. This subroutine is called at iteration k if ρk < ρ.

TRACE is designed to solve unconstrained smooth optimization problems. A direct implementation of
this algorithm fails in the constrained setting. In the next section, we describe two fundamental difficulties
introduced in the presence of constraints and discuss the necessary modifications.
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4.2 Difference Between LC-TRACE and TRACE

In the constrained setting, we define the trust region sub-problem and its regularized Lagrangian form as

Qk , min
s∈Rn

qk(s), s.t.

{
As ≤ b−Axk

‖s‖2 ≤ δk
(16)

and

Qk(λ) , min
s∈Rn

fk + gT
k s+

1

2
sT (Hk + λI)s, s.t. As ≤ b−Axk. (17)

A major difficulty introduced by the constraints is related to the optimality conditions of the sub-problem.
In the unconstrained case, it is known thatHk+λkI � 0 at every iteration [15, Corollary 7.2.2] for optimal
Lagrange multiplier λk. Along with the fact that λ > λk in the CONTRACT subroutine of TRACE,
we conclude that Qk(λ) is a strongly convex quadratic optimization problem which has a unique global
minimizer. Let s∗(λ) be the solution of Qk(λ). It follows that the function s∗(λ) is continuous in λ in
the unconstrained scenario. However, in the linearly constrained scenario, the regularized sub-problem
(17) might have multiple optimal solutions. Moreover, s∗(λ) and the ratio λ/‖s∗(λ)‖2, which are core
quantities in TRACE, might not even be continuous. To clarify this difficulty, consider the following
simple example

Q(λ) = min
s1≤5, s2≥0

s21 − s
2
2 + λ(s21 + s22) s.t. s2 − 3s1 ≤ −12. (18)

It is not hard to see that the optimal solution of (18) is given by

s∗(λ) =





(5, 3) if λ < 0

(5, 3); (4, 0) if λ = 0

(4, 0) Otherwise.

.

Thus, a small increases in λ may lead to a huge change in the ratio λ/‖s∗(λ)‖2. Therefore, the luxury of
having an arbitrarily choice for the bounds σ and σ̄ of the ratio λ/‖s‖2 is not present in the constrained
case. In LC-TRACEC, we resolved this issue by defining

σ =
ǫ

Cmin +max{λmax, λ0}
and σ̄ = 2∆, (19)

and altering the update rule of λ in the CONTRACT sub-routine. Here ǫ > 0 is the threshold used for
the termination of the algorithm, Cmin is defined in Lemma 20, λmax is defined in Lemma 19, and ∆ is
defined in Lemma 18.

Another major difficulty in the constrained scenario is related to the standard trust region theory on the
relationship between sub-problem solutions and their corresponding dual variables. In the unconstrained
case, λ1 > λ2, implies ‖s∗(λ1)‖2 < ‖s

∗(λ1)‖2, see [15, Chapter 7]. This relationship was used in [18],
to show that CONTRACT subroutine reduces the radius of the trust region. However, it can be seen
from example (18), that this relation may not hold in the constrained case. To account for this issue, we
modified the CONTRACT sub-routine to guarantee a reduction in the trust region radius (See Lemma
12). In summary, the differences between LC-TRACE and TRACE are mainly in the CONTRACT
sub-routine. Next, we describe the steps of the algorithm.

4.3 Description of LC-TRACE

Our proposed algorithm LC-TRACE has two main building blocks: First-Order-LC-TRACE and Second-
Order-LC-TRACE. We first present First-Order-LC-TRACE which can converge to ǫg-first order station-

arity in Õ(ǫ
−3/2
g ). Then, we use this algorithm in Second-Order-LC-TRACE to find an (ǫg, ǫH)-Second

Order stationarity in Õ(max{ǫ
−3/2
g , ǫ−3

H }) iterations.
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The First-Order-LC-TRACE algorithm is outlined in Algorithm 1. At each iteration xk, this iterative
algorithm computes the values sk, λk, and ρk by solving the optimization problem (16) and using the
equation (13). Depending on the obtained values, it decides to either accept the trial point sk, or reject
it. When rejecting the trial point, it either goes to contraction or expansion procedures. Thus, the main
decisions include: Acceptance, Contraction, or Expansion. We distinguish the iterations by partitioning
the set of iteration numbers into what we refer to as the sets of accepted (A), contraction (C), and
expansion (E) steps:

A , {k ∈ N : ρk ≥ ρ and either λk ≤ σk‖sk‖2 or ‖sk‖2 = ∆k},

C , {k ∈ N : ρk < ρ}, and

E , {k ∈ N : k /∈ A ∪ C}.

Hence, step k is accepted if the computed pair (sk, λk) satisfies the sufficient decrease criteria ρk ≥ ρ, and
either the norm of sk is large enough (‖sk‖2 = ∆k) or the ratio λk/‖sk‖2 is smaller than an upper-bound
σk. We also partition the set of accepted steps into two disjoint subsets

A∆ , {k ∈ A : ‖sk‖2 = ∆k} and Aσ , {k ∈ A : k /∈ A∆}.

The sequence ∆k is used in the algorithm as an upper bound on the norm of ‖sk‖2. From steps 7, 12,
and 16, we notice that this sequence is non-decreasing. We now describe the update mechanism used
in a contraction step of First-Order-LC-TRACE which is the main difference between TRACE and our
proposed algorithm.

When CONTRACT subroutine is called, two different cases may occur in Algorithm 2. The first case
is reached whenever conditions in Step 3 in the CONTRACT subroutine tests true. In that case, we
carefully choose choose λ > λk to ensure that the pair (s, λ) with s being the solution of Qk(λ) satisfies

σ ≤ λ/‖s‖2 ≤ σ,

where σ and σ̄ are prescribed positive constants defined in (19). The second case is reached whenever the
conditions in Step 3 tests false. In that case, we choose λ ∈ (λk, Cλk] with C > 1 is a constant scalar, to
ensure that the pair (s, λ) with s being the solution of Qk(λ) satisfies the following

λ

‖s‖2
< max

{
σ̄,
( γλ
γC

)HLip + 2ρ

2κ

}
,

where κ ∈ (0, 1] is a constant scalars, andHLip is defined in assumption 6. In what follows, we first present
our results about the convergence of First-Order-LC-TRACE algorithm and its iteration complexity.

4.4 Convergence of First-Order-LC-TRACE to First-order Stationarity

Throughout this section, we make the following assumptions that are standard for global convergence
theory of trust region methods.

Assumption 6. The objective function f is twice continuously differentiable and bounded below by a
scalar fmin on P. We assume that the functions g(·) , ∇f(·) and H(·) , ∇2f(·) are Lipschitz continuous
on the path defined by the iterates computed in the Algorithm, with Lipschitz constants L and HLip,
respectively. Furthermore, we assume the gradient sequence {gk} is bounded in norm, that is, there exists
a scalar constant gmax > 0 such that ‖gk‖2 , ‖∇f(xk)‖2 ≤ gmax for all k ∈ N. Moreover, we assume
that the Hessian sequence {Hk} is bounded in norm, that is, there exist a scalar constant Hmax > 0, such
that ‖Hk‖2 , ‖∇2f(xk)‖2 ≤ Hmax for all k ∈ N.

8



Algorithm 1 First-Order-LC-TRACE

Require: an acceptance constant ρ ∈ (0, 1).
Require: update constants {γC , γE , γλ} with γC ∈ (0, 1) and γλ, γE > 1.
Require: ratio bound constants σ and σ defined in (19).

1: procedure First-Order-LC-TRACE

2: Choose a feasible point x0, a pair {δ0,∆0} with 0 < δ0 ≤ ∆0, and σ0 with σ0 ≥ σ.
3: Compute (s0, λ0) by solving Q0, then compute ρ0 using the definition in (13) .
4: for k = 0, 1, 2, . . . do
5: if ρk ≥ ρ and either λk/‖sk‖2 ≤ σk or ‖sk‖2 = ∆k then (Acceptance)
6: set xk+1 ← xk + sk
7: set ∆k+1 ← max{∆k, γE‖sk‖2}
8: set δk+1 ← min{∆k+1,max{δk, γE‖sk‖2}}
9: set σk+1 ← max{σk, λk/‖sk‖2}

10: else if ρk < ρ then (Contraction)
11: set xk+1 ← xk

12: set ∆k+1 ← ∆k

13: set δk+1 ← CONTRACT(xk, δk, σk, sk, λk) defined in Algorithm (2)
14: else if ρk ≥ ρ, λk/‖sk‖2 > σk, and ‖sk‖2 < ∆k then (Expansion)
15: set xk+1 ← xk

16: set ∆k+1 ← ∆k

17: set δk+1 ← min{∆k+1, λk/σk}
18: set σk+1 ← σk
19: end if

20: Compute (sk+1, λk+1) by solving Qk+1, then compute ρk+1 using (13)
21: if ρk < ρ then

22: set σk+1 ← max{σk, λk+1/‖sk+1‖2}
23: end if

24: end for

25: end procedure

9



Algorithm 2 CONTRACT Sub-routine

Require: update constant γC ∈ (0, 1).
Require: ratio bound constants σ and σ defined in (19).

1: procedure CONTRACT(xk, δk, σk, sk, λk)
2: set λ̄← λk + σ∆k and set s̄ as the solution of Qk(λ̄).
3: if ‖s̄‖2 < ‖sk‖2 and λk < σ‖sk‖2 then

4: set λ← λ̄+Hmax +
(
σXk

)1/2
and set s as the solution of Qk(λ).

5: if λ/‖s‖2 ≤ σ then

6: return δk+1 ← ‖s‖2
7: else

8: set λ← λ̄
9: return δk+1 ← ‖s̄‖2

10: end if

11: else

12: if ‖s̄‖2 = ‖sk‖2 then

13: set λ← γλλ̄ and set s as the solution of Qk(λ)
14: else

15: set λ← γλλ and set s as the solution of Qk(λ)
16: end if

17: while ‖s‖2 = ‖sk‖2 do

18: λ← γλλ and set s as the solution of Qk(λ)
19: end while

20: if ‖s‖2 ≥ γC‖sk‖2 then

21: return δk+1 ← ‖s‖2
22: else

23: return δk+1 ← γC‖sk‖2
24: end if

25: end if

26: end procedure

10



We next state the main results for convergence of Frist-Order-LC-TRACE.

Theorem 7. Under Assumption 6, any limit point of the iterates generated by First-Order-LC-TRACE
algorithm is a first-order stationary point .

Proof. The proof of the Theorem is relegated to Appendix A.1.

Unfortunately, Assumption 6 is not sufficient to obtain the desired rate of convergence in the presence of
constraints; in particular, Assumption 6 may not ensure a model decrease of the form

fk − qk(sk) = −g
T
k sk −

1

2
sTkHksk ≥ κλk‖sk‖

2
2, (20)

for some constant κ ∈ (0, 1). To understand this, let us first review the same result for the unconstrained
scenario: it is known that Hk + λkI � 0 at every iteration [15, Corollary 7.2.2]. Thus, by Lemma 11, we
get

fk − qk(sk) = −g
T
k sk −

1

2
sTkHksk ≥

1

2
λk‖sk‖

2
2. (21)

However, in contrast to the unconstrained case, there is no guarantee that the step sk satisfies (20) in the
constrained scenario. More specifically, in the presence of constraints, the condition is not guaranteed
when the step sk provides ascent first-order direction with negative curvature. To account for this case,
we assume the following assumption holds.

Assumption 8. If gT
k sk ≥ 0 and sTkHksk ≤ 0, there exists a sequence of feasible points {xk,i}

lk
i=0 with

0 ≤ lk ≤ l̄, xk,0 = xk, sk,i = xk,i − xk and xk,lk = xk + sk such that for i = 1, . . . , lk,

qk(sk,i) ≤ qk(sk,i−1);

gT
k (xk,i − xk,i−1) + sTk,iHk(xk,i − xk,i−1) ≤ −λks

T
k,i(xk,i − xk,i−1);

gT
k (xk,i − xk,i−1) + sTk,i−1Hk(xk,i − xk,i−1) ≤ −λks

T
k,i−1(xk,i − xk,i−1).

This assumption was also used in [8] to show that the number of iterations required to reach an ǫ-first order
stationary point when adaptive ARC algorithm is used is O(ǫ−3/2). As mentioned in [8], this assumptions

holds if xk,lk is the first minimizer of the model qλk
along the piecewise linear path Pk ,

lk⋃
i=1

[xk,i−1,xi].

Using Assumption 8, we obtain the desired model decrease (20) and we have the following Theorem.

Theorem 9. Under Assumptions 6 and 8, for any given scalar ǫ ∈ (0,∞), the total number of sub-
problem routines of First-Order-LC-TRACE required to reach an ǫ-first order stationary point of (10) is
O(ǫ−3/2 log3(1/ǫ)).

Proof. The proof of the Theorem is relegated to Appendix A.2.

In the next section, we use this first order result to develop an algorithm for finding second order stationary
points.

5 Second-Order-LC-TRACE Algorithm

Leveraging the convergence result of First-Order-LC-TRACE, we propose algorithm 3 for converging to
second order stationary points.

11



Algorithm 3 Second-Order-LC-TRACE

Require: The constants L̃ , max{L, gmax}, H̃ , max{HLip,Hmax}, ǫg > 0, ǫH > 0.

1: procedure

2: Choose a feasible point x0.
3: Compute X0 and ψ0 by solving (7) and (8), respectively.
4: for k = 0, 1, 2, . . . do
5: if Xk > ǫg then

6: Compute xk+1 by running one iteration of First-Order-LC-TRACE starting with xk.
7: else

8: Compute d̂k and ψk by solving (8).

9: set xk+1 ← xk +
2ψk

H̃
d̂k.

10: end if

11: end for

12: end procedure

We now show that this algorithm can find an (ǫg, ǫH)-second-order stationary point of problem (10).

Theorem 10. Under Assumptions 6 and 8, for any given scalars ǫg > 0 and ǫH > 0, the total number of
iterations required to reach an (ǫg, ǫH)-second-order stationary point of (10) when running Algorithm 3

is O
(
log3(ǫ−1

g )max
{
ǫ
−3/2
g , ǫ−3

H

})
.

Proof. The proof of the Theorem is relegated to Appendix A.3.
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A Proofs for Section 4

Consider the following optimization problem

minimize
x∈P

f(x), (22)

where P , {x ∈ R
n |Ax ≤ b} is a polyhedron with finite number of linear constraints. In this section

we generalize results from [18] to adapt for the linear constraints. For the sake of completeness of the
manuscript, some Lemmas and proofs are restated from [18].

Recall the sub-problem Qk with trust region δk,

Qk , min
s

qk(s) , fk + gT
k s+

1

2
sTHks, subject to

{
As ≤ b−Axk

‖s‖2 ≤ δk
.

Let λC
k be the multiplier corresponding to the linear constraint As ≤ b−Axk, and λk be the multiplier

for the trust region constraint ‖s‖2 ≤ δk. The first order K.K.T optimality conditions for the above
problem are state below [4]

gk + (Hk + λkI)sk +AT
λ
C
k = 0, (23)

0 ≤ λ
C
k ⊥ b−Axk −Ask ≥ 0, (24)

0 ≤ λk ⊥ δk − ‖sk‖
2
2 ≥ 0. (25)

A.1 Proof of Theorem 7

To show convergence to first-order stationarity, we first provide in Lemma 11 a sufficient decrease condi-
tion. Then, in Lemma 17 we show that the number of accepted steps |A| is infinite. Combining these two
results with the assumption that f is lower bounded, we get the desired convergence result. In practice,
the algorithm terminates when Xk is below a prescribed positive threshold ǫ > 0. Hence, we assume,
without loss of generality that Xk ≥ ǫ for all k ∈ N.

Lemma 11. For any k ∈ N, the trial step sk and dual variable λk satisfy

fk − qk(sk) ≥
1

2
sTk (Hk + λkI)sk +

1

2
λk‖sk‖

2
2. (26)

In addition, for any k ∈ N+, the trial step sk satisfies

fk − qk(sk) ≥ CXk min
{
δk,

Xk

‖Hk‖2
, 1
}
. (27)

Proof. By definition of qk,

fk − qk(sk) = −g
T
k sk −

1

2
sTkHksk

= sTkHksk + λk‖sk‖
2
2 + sTkA

T (λC
k )−

1

2
sTkHksk

=
1

2
sTk (Hk + λkI)sk +

1

2
λk‖sk‖

2 + sTkA
T (λC

k )

≥
1

2
sTk (Hk + λkI)sk +

1

2
λk‖sk‖

2, (28)

where the second equality follows by KKT condition (23), and the last inequality follows from the
feasibility of xk and the complementary slackness (24).
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Also, using [15, Theorem 12.2.2], we obtain

fk − qk(sk) ≥ CXk min
{
δk,

Xk

‖Hk‖2
, 1
}
.

To prove the infinite cardinality of the set A, we need some intermediate Lemmas. The next result shows
that the trust region radius is reduced when the CONTRACT subroutine is called.

Lemma 12. For any k ∈ N, if k ∈ C, then δk+1 < δk.

Proof. Suppose that k ∈ C. We prove the result by considering the various cases that may occur within the
CONTRACT subroutine. If Step 23 is reached, the subroutine returns δk+1 = γC‖sk‖2 < δk. Otherwise,
if Step 6 is reached, the subroutine returns δk+1 = ‖s‖2 where s solves Qk(λ) for λ ≥ λ̄. Hence,

δk+1 = ‖s‖2 < ‖sk‖2 ≤ δk,

where the strict inequality follows from Step 3. Similarly, if Step 9 is reached, the subroutine returns
δk+1 = ‖s̄‖2 where s̄ solves Qk(λ̄). Hence,

δk+1 = ‖s̄‖2 < ‖sk‖2 ≤ δk.

Otherwise, Step 21 is reached. In which case, the subroutine returns δk+1 = ‖s‖2 where s solves Qk(λ)
for λ > λk. The result follows using the while loop condition Step 17 along with the inverse relationship
of λ and ‖s‖.

We now show that for all iterations k, the trust region region radius δk is upper bounded by a non-
decreasing sequence {∆k}. Also, if k ∈ A ∪ E , we show that δk+1 ≥ δk.

Lemma 13. For any k ∈ N, there holds δk ≤ ∆k ≤ ∆k+1. Moreover, δk+1 ≥ δk for all k ∈ A ∪ E.

Proof. The fact that ∆k ≤ ∆k+1 for all k ∈ N follows from the computations in Steps 7, 12, and 16 of
Algorithm 1. It remains to show that δk ≤ ∆k for all k ∈ N. We prove the result by means of induction.
The inequality holds for k = 0 by the initialization of quantities in Step 2 of Algorithm 1. Assume the
induction hypothesis holds for iteration k. By the computations in Steps 7, 8, 16, 17 and by Lemma 12,
the result holds for iteration k + 1. We next show that δk+1 ≥ δk for all k ∈ A ∪ E .
Suppose k ∈ A. It follows from Steps 7 and 8 that

δk+1 = min{max{∆k, γE‖sk‖2},max{δk, γE‖sk‖2}} ≥ δk.

Here the inequality follows since δk ≤ ∆k ≤ ∆k+1. Now suppose k ∈ E . By the conditions indicated in
Step 14, we have λk > σk‖sk‖2 ≥ 0. It follows by (25) that ‖sk‖2 = δk. We obtain

δk+1 = min{∆k+1, λk/σk} ≥ min{δk, ‖sk‖2} = δk,

where the inequality follows since δk ≤ ∆k ≤ ∆k+1.

The next result, shows that we cannot have two consecutive expansion steps.

Lemma 14. For any k ∈ N, if k ∈ C ∪ E, then k + 1 /∈ E.
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Proof. Observe that if λk+1 = 0, then conditions in Steps 14 of Algorithm 1 ensure that (k + 1) /∈ E .
Thus, by (25), we may proceed under the assumptions that ‖sk+1‖2 = δk+1 and λk+1 > 0.
Suppose that k ∈ C, i.e. ρk < ρ. It follows that Step 22 sets σk+1 ≥ λk+1/‖sk+1‖2. Therefore, if ρk+1 ≥ ρ,
we have (k + 1) ∈ A. Otherwise, ρk+1 < ρ, which implies that (k + 1) ∈ C.
Now suppose that k ∈ E . It follows that

λk > σk‖sk‖2, δk+1 = min{∆k, λk/σk}, and σk+1 = σk. (29)

Combined with (25), we get ‖sk‖2 = δk. We now consider two different cases:

1. Suppose ∆k ≥ λk/σk. It follows from (29) that

δk+1 = λk/σk > ‖sk‖2 = δk. (30)

Therefore, by the relationship between the trust region radius and its corresponding multiplier, we
get λk+1 ≤ λk. Combined with (29) and (30), we obtain

λk+1 ≤ λk = σkδk+1 = σk+1‖sk+1‖2.

Hence (k + 1) /∈ E .

2. Suppose ∆k < λk/σk. Using (29)

‖sk+1‖2 = δk+1 = ∆k = ∆k+1,

where the last equality holds by Step 16. If ρk+1 ≥ ρ, then (k+1) ∈ A∆ ⊆ A. Otherwise, ρk+1 < ρ,
from which it follows that (k + 1) ∈ C.

Hence, in both cases (k + 1) /∈ E .

Next, we show that if the dual variable for the trust region constraint λk is sufficiently large, then the
constraint is active and the sufficient decrease criteria is met.

Lemma 15. For any k ∈ N, if the trial step sk and dual variable λk satisfy

λk ≥ gLip +Hmax + ρ‖sk‖2, (31)

then ‖sk‖2 = δk and ρk ≥ ρ.

Proof. By the definition of the objective function of the model qk, there exists a point x̄k ∈ R
n on the

line segment [xk,xk + sk] such that

qk(sk)− f(xk + sk) =
(
gk − g(x̄k)

)T
sk +

1

2
sTkHksk

≥ −‖gk − g(x̄k)‖2‖sk‖2 −
1

2
‖Hk‖2‖sk‖

2
2.

(32)

Therefore,

fk − f(xk + sk) = fk − qk(sk) + qk(sk)− f(xk + sk)

≥
1

2
sTkHksk + λk‖sk‖

2
2 − ‖gk − g(x̄k)‖2‖sk‖2 −

1

2
‖Hk‖2‖sk‖

2
2

≥ −‖Hk‖2‖sk‖
2
2 + λk‖sk‖

2
2 − gLip‖sk‖

2
2

≥ (λk − gLip −Hmax)‖sk‖
2
2

≥ ρ‖sk‖
3
2.

Here the first inequality holds from Lemma 11 and expression (32). The result ‖sk‖ = δk follows directly
from (31) and (25).

18



We now use the previous results to show that if from some iteration onward, all the steps are contraction
steps, then the sequence of trust region radii converge to zero, and the sequence of dual variables converge
to infinity.

Lemma 16. If k ∈ C for all k ≥ k0, then {δk} → 0 and {λk} → ∞.

Proof. Assume, without loss of generality, that k ∈ C for all k ∈ N. It follows from Lemma 12 that {δk}
is monotonically strictly decreasing. Combined with the fact that {δk} is bounded below by zero, we
have that {δk} converges. We may now observe that if Step 23 of the CONTRACT subroutine is reached
infinitely often, then clearly, {δk} → 0. Hence, it follows by the relationship between the trust region
radius and its corresponding multiplier that {λk} → ∞. Therefore, let us assume that Step 23 of the
CONTRACT subroutine does not occur infinitely often, i.e., that there exists kC ∈ N such that Step 6,
9, or 21 is reached for all k ≥ kC . Consider iteration kC . Steps 2, 4, 13, 15, 18 in the CONTRACT
subroutine will set

λk+1 = λ ≥ min{λk + σ∆k, γλλk} > λk for all k ≥ kC + 1.

Therefore, since k ∈ C for all k ≥ kC , we have xk = xkC (and so Xk = XkC) for all k ≥ kC , which implies
that {λk} → ∞. It follows by the relationship between the trust region radius and its corresponding
multiplier that ‖sk‖2 = δk → 0.

We now prove that the set of accepted steps is infinite.

Lemma 17. The set A has infinite cardinality.

Proof. To derive a contradiction, suppose that |A| < ∞. We claim that this implies |C| = ∞. Indeed,
if |C| < ∞, then there exist some kE ∈ N such that k ∈ E for all k ≥ kE , which contradicts Lemma 14.
Thus, |C| =∞. Combining this with the result of Lemma 14, we conclude that there exists some kC ∈ N+

such that k ∈ C for all k ≥ kC . It follows from Lemma 16 that {‖sk‖2} ≤ {δk} → 0 and {λk} → ∞.
In combination with Lemma 15, we conclude that there exists some k ≥ kC such that ρk ≥ ρ, which
contradicts the fact that k ∈ C for all k ≥ kC . Having arrived at a contradiction under the supposition
that |A| <∞, the result follows.

We now provide an upper bound for the sequence {∆k} and the trial steps {sk}. Moreover, we show that
the number of A∆ steps computed by the algorithm is finite.

Lemma 18. There exists a scalar constant ∆ > 0 and kA ∈ N, such that ∆k = ∆ for all k ≥ kA.
Moreover, the set A∆ has finite cardinality, and there exists a scalar constant smax > 0 such that ‖sk‖2 ≤
smax for all k ∈ N.

Proof. For all k ∈ A, we have ρk ≥ ρ, which implies by Step 6 of Algorithm 1 that

f(xk)− f(xk+1) ≥ ρ‖sk‖
3
2.

Combining this with Lemma 17 and the fact that f is bounded below, it follows that {sk}k∈A → 0. In
particular, there exists kA ∈ N such that for all k ∈ A with k ≥ kA, we have

γE‖sk‖2 ≤ ∆0 ≤ ∆k, (33)

where the latter inequality follows from Lemma 13. Combined with the update in Steps 7, 12 and 16 of
LC-TRACE, we get

∆k+1 = ∆k for all k ≥ kA.

This proves the first part of the lemma. The second part also follows from (33) which implies that
‖sk‖2 < ∆k for all k ∈ A with k ≥ kA. Finally, the last part of the lemma follows from the first part and
the fact that Lemma 13 ensures ‖sk‖2 ≤ δk ≤ ∆k = ∆ for all sufficiently large k ∈ N.
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We now show that there exits a uniform upper bound on the term ‖gk +AT
λ
C
k ‖2.

Lemma 19. For all k ∈ N, ‖gk +AT
λ
C
k ‖2 ≤ Gmax, where Gmax > 0 is a constant scalar. Moreover,

λk ≤ max{λ0, λmax} ∀ k ∈ N,

where λmax , max{gLip + 2Hmax + (ρ+ σ)∆ + (σgmax)
1/2, γλ(gLip +Hmax + ρ∆)}.

Proof. By (23) and Lemma 13,

‖gk +AT
λ
C
k ‖2 = ‖Hksk + λksk‖2 ≤ (Hmax + λk)δk ≤ (Hmax + λk)∆.

Thus, it suffices to find a constant upper bound for λk to get the desired result.
If ‖sk+1‖2 < δk+1, then by (25), λk+1 = 0. Therefore, we may proceed under the assumption that
‖sk+1‖2 = δk+1. Suppose k ∈ C, then by Lemma 15, λk < gLip +Hmax + ρ∆.

If Step 3 in the CONTRACT subroutine tests true, we get

λk+1 ≤ λk +Hmax + σ∆k + (σXk)
1/2

≤ gLip + 2Hmax + (ρ+ σ)∆ + (σgmax)
1/2.

(34)

Otherwise, if Step 3 tests false, we claim that

λk+1 ≤ γλ(gLip +Hmax + ρ∆). (35)

To show our claim, we assume the contrary, i.e. λk+1 > γλ(gLip+Hmax+ ρ∆). Then the condition of the

while loop in Step 17 of the CONTRACT subroutine tested true for some ŝ being a solution of Qk(λ̂) for
λ̂ ≥ gLip +Hmax + ρ∆.
There exist x̂ on the line segment [xk,xk + ŝ] such that

qk(ŝ)− f(x̂+ ŝ) =
(
gk − g(x̂k)

)T
sk +

1

2
ŝTHk ŝ ≥ −gLip‖ŝ‖

2
2 −

1

2
Hmax‖ŝ‖

2
2. (36)

Therefore,

f(x̂)− f(x̂+ ŝ)

‖ŝ‖32
=
f(x̂)− qk(ŝ) + qk(ŝ)− f(x̂+ ŝ)

‖ŝ‖32

≥
−‖Hk‖2 + 2λ̂− 2gLip −Hmax

2‖ŝ‖2

≥
λ̂− gLip −Hmax

‖ŝ‖2

≥ ρ,

where the first inequality holds by Lemma 11 and (36). Since

ρk =
fk − f(xk + sk)

‖sk‖32
< ρ,

it follows that ‖ŝ‖2 6= ‖sk‖2 which contradicts the condition of the while loop in Step 17 which tested
true for ŝ generated by solving Qk(λ̂).
Combining (34) and (35), we get that for all k ∈ C

λk+1 ≤ λmax, (37)
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where λmax , max{gLip + 2Hmax + (ρ+ σ)∆ + (σgmax)
1/2, γλ(gLip +Hmax + ρ∆)}. Now, suppose that

k ∈ A∪E . By Lemma 13, we have ‖sk+1‖2 = δk+1 ≥ δk ≥ ‖sk‖2. Hence, by the relationship between the
trust region radius and its corresponding multiplier, we obtain

λk+1 ≤ λk. (38)

Let kC , min{k ∈ N | k ∈ C} be the first contract step. By (38), λk ≤ λ0 for all k ≤ kC . Moreover, using
(37) and (38),

λk ≤ λmax ∀ k > kC .

Combining these results yield
λk ≤ max{λ0, λmax} ∀ k ∈ N,

which completes the proof.

Notice that in the proof of Lemma 19, we have shown that there exists a uniform upper bound for the

dual variables λk. Our next result shows that the ratio
Xk

‖s‖2
is upper bounded by Cmin+λk, where Cmin

is a scalar constant.

Lemma 20. For any k ∈ N, it holds

Xk ≤ (Cmin + λk)‖sk‖2, (39)

where Cmin , Hmax +Gmax + gmax is a scalar constant.

Proof. Let ξk,1 be the largest singular value of Hk. For all d satisfying Ad ≤ b−Axk, we have

gT
k d = −dT (Hk + λkI)s

T
k − (λC

k )
TAd

≥ −dT (Hk + λkI)s
T
k − (λC

k )
TAsk

≥ −(ξk,1 + λk)‖d‖2‖sk‖2 − (λC
k )

TAsk, (40)

where the first equality holds by (23), and the first inequality holds by complementary slackness (24).
Minimizing over all such d, we obtain

min
Ad≤b−Axk , ‖d‖≤1

gT
k d ≥ −(ξk,1 + λk)‖sk‖2 − ‖(λ

C
k )

TA‖2‖sk‖2

≥ −(ξk,1 + λk)‖sk‖2 − (‖gk + (λC
k )

TA‖2 + ‖gk‖2)‖sk‖2

≥ −(Hmax + λk)‖sk‖2 − (Gmax + gmax)‖sk‖2,

where the last inequality uses Lemma 19. Then definition of Xk yields

Xk ≤ (Hmax + λk +Gmax + gmax)‖sk‖2

= (Cmin + λk)‖sk‖2,

where Cmin , Hmax +Gmax + gmax is a scalar constant.

We now show that the limit inferior of stationarity measure Xk is equal to zero.

Lemma 21. There holds
lim inf

k∈N, k→∞
Xk = 0.
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Proof. Suppose the contrary that there exists a scalar constant Xmin > 0 such that Xk ≥ Xmin for all
k ∈ N. Then by Lemmas 19 and 20, for scalar

smin =
Xmin

Cmin +max{λmax, λ0}
,

we have that ‖sk‖2 ≥ smin > 0 for all k ∈ N. Moreover, for all k ∈ A we have fk − fk+1 ≥ ρ‖sk‖
3
2 > 0.

Given the lower boundedness of f and Lemma 17 that insures infinite cardinality of set A, we have
{sk}k∈A → 0. This contradicts the existence of smin > 0.

Theorem 22. Under Assumption 6, it holds that

lim
k∈N, k→∞

Xk = 0. (41)

Proof. Suppose the contrary that (41) does not hold. Combined with Lemmas 17 and 21, it implies that
there exist an infinite sub-sequence {ti} ⊆ A (indexed over i ∈ N) such that Xti ≥ 2ǫX for some ǫX > 0
and all i ∈ N. Additionally, Lemmas 17 and 21 imply that there exist an infinite subsequence {li} ⊆ A
such that

Xk ≥ ǫX and Xli < ǫX ∀ i ∈ N, k ∈ N, ti ≤ k < li. (42)

We claim that for all k ∈ N+, the trial step sk satisfies the following

‖sk‖2 ≥ min
{
δk,
Xk

Cmin

}
. (43)

The proof of this claim follows directly from Lemma 20. If ‖sk‖2 = δk, the result trivially holds.
Otherwise, using KKT condition (25), λk = 0 which proves our claim when combined with Lemma 20.
We now restrict our attention to indices in the infinite index set

K , {k ∈ A : ti ≤ k < li for some i ∈ N}.

Observe from (42) and (43) that

fk − fk+1 ≥ ρ‖sk‖
3
2 ≥ ρ

(
min

{
δk,

ǫX
Cmin

})3
. (44)

Since {fk} is monotonically decreasing and bounded below, we know that fk → f for some f ∈ R. When
combined with (44), we obtain

lim
k∈K,k→∞

δk = 0. (45)

Using this fact and Lemma 11, we have for all sufficiently large k ∈ K that

fk − fk+1 = fk − qk(sk) + qk(sk)− fk+1

≥ CXk min
{
δk,

Xk

‖Hk‖2
, 1
}
− (gLip +

1

2
Hmax)‖sk‖

2
2

≥ CǫX min
{
δk,

ǫX
Hmax

, 1
}
− (gLip +

1

2
Hmax)‖sk‖

2
2

≥ CǫX δk − (gLip +
1

2
Hmax)δ

2
k

≥
C

2
ǫX δk.
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Consequently, for all sufficiently large i ∈ N, we have

‖xti − xli‖2 ≤
li−1∑

k∈K,k=ti

‖xk − xk+1‖2

≤
li−1∑

k∈K,k=ti

δk ≤
li−1∑

k∈K,k=ti

2

CǫX
(fk − fk+1) =

2

CǫX
(fti − fli).

Since {fti − fli} → 0, we get {‖xti − xli‖2} → 0, which, in turn, implies that {Xti − Xli} → 0. This
contradicts (42).

A.2 Proof of Theorem 9

In this section we show that the number of iterations required to reach an ǫ-first order stationary point
is O(ǫ−3/2 log3 ǫ−1). To that end, we start by showing the desired model decrease using Assumption 8.

Lemma 23. Consider the directions s, s+ and points x = xk + s, x+ = xk + s+. If for some κ̄ ∈ (0, 1]

fk − qk(s) ≥ κ̄λk‖s‖
2
2, (46)

qk(s
+) ≤ qk(s), (47)

gT
k (s

+ − s) + (s+)THk(s
+ − s) ≤ −λk(s

+)T (s+ − s), (48)

gT
k (s

+ − s) + sTHk(s
+ − s) ≤ −λks

T (s+ − s), (49)

then

fk − qk(s
+) ≥

1

3
κ̄λk‖s

+‖22.

Proof. Suppose that for a given constant scalar α ∈ (0, 1), ‖s‖2 ≥ α‖s+‖2. Then, it directly follows
by (46) and (47) that

fk − qk(s
+) = fk − qk(s) + qk(s)− qk(s

+) ≥ κ̄λk‖s‖
2
2 ≥ κ̄α

2λk‖s
+‖22. (50)

Now consider the case that ‖s‖2 < α‖s+‖2. First note that by (48),

0 ≥ (gk +Hks
+)T (s+ − s) + λk(s

+)T (s+ − s)
= (gk +Hks)

T (s+ − s) + (s+ − s)THk(s
+ − s) + λk(s

+)T (s+ − s).
(51)

Also, by (49)
(gk +Hks)

T (s+ − s) + λks
T (s+ − s) ≤ 0. (52)

Adding (51) and (52), we get

qk(s
+)− qk(s) = (gk +Hks)

T (s+ − s) +
1

2
(s+ − s)THk(s

+ − s)

≤ −
1

2
λk(‖s

+‖22 − ‖s‖
2
2).

(53)

Since ‖s‖2 < α‖s+‖2, it follows that

fk − qk(s
+) ≥ qk(s)− qk(s

+) ≥
1

2
λk(‖s

+‖22 − ‖s‖
2
2) ≥

1

2
λkκ̄‖s

+‖22(1− α
2), (54)

where the first inequality holds by (46), the second inequality holds by (53), and the last inequality holds
because ‖s‖2 < α‖s+‖2. We now choose the value of α for which the lower bounds (50) and (54) are

equal; i.e. α2 =
1

2

(
1− α2

)
, equivalently α =

√
1

3
.
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We next show that sufficient model decrease is satisfied when either gT
k sk ≤ 0 or sTkHksk ≥ 0.

Lemma 24. Suppose that gT
k sk ≤ 0 or sTkHksk ≥ 0. Then,

fk − qk(sk) = −g
T
k sk −

1

2
sTkHksk ≥

1

2
λk‖sk‖

2
2. (55)

Proof. First notice that since the origin is feasible in Qk,

gT
k sk +

1

2
sTkHksk ≤ 0.

Hence,
sTkHksk ≥ 0⇒ gT

k sk ≤ 0.

On the other hand, if gT
k sk ≤ 0, by (23),

2
(
gT
k sk +

1

2
sTkHksk +

1

2
λk‖sk‖

2
2

)
= gT

k sk − sTkA
T
λ
C
k ≤ gT

k sk ≤ 0, (56)

where the first inequality holds due to the complementary slackness condition (24).

Lemma 25. Suppose Assumption 8 holds at iteration k. Then there exist a constant κ > 0 independent
of k such that

fk − qk(sk) ≥ κλk‖sk‖
2
2.

Proof. If gT
k sk ≤ 0 or sTkHksk ≥ 0, the result follows by Lemma 24. Thus, we may proceed under the

assumption that gT
k sk ≥ 0 and sTkHksk ≤ 0. Using Assumption 8, we proceed with a proof by induction

on lk. If lk = 1, the last condition in Assumption 8 implies that gT
k sk ≤ 0, thus Lemma 24 implies

the desired result. Now assume the result holds for lk = i < l̄, we next show that the result holds for
lk = i+ 1. By the induction step and Assumption 8, we have

fk − qk(sk,i) ≥ κ̄λk‖sk,i‖
2
2,

qk(sk,i+1) ≤ qk(sk,i),
〈
gk +Hksk,i+1,xk,i+1 − xk,i

〉
≤ −λks

T
k,i+1(xk,i+1 − xk,i+1),

〈
gk +Hksk,i,xk,i+1 − xk,i

〉
≤ −λks

T
k,i(xk,i+1 − xk,i+1).

Then using Lemma 23, with x = xk,i and x+ = xk,i+1 we obtain

fk − qk(sk,i+1) ≥ κ̄
+λk‖sk,i+1‖

2
2,

for some κ̄+ ∈ (0, 1) independent of k.

Our next result provides a bound on the ratio λk+1/‖sk+1‖2 when k ∈ C.

Lemma 26. Assume Assumption 8 holds at iteration k ∈ C. Then,

• If Step 6, 9, or 21 of Algorithm 2 is reached, then

σ ≤
λk+1

‖sk+1‖2
≤ max

{
σ,
( γλ
γC

)HLip + 2ρ

2κ

}
.

• If Step 23 of Algorithm 2 is reached, then

λk+1

‖sk+1‖2
≤ max

{
σ,
( γλ
γC

)HLip + 2ρ

2κ

}
.
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Proof. Let k ∈ C and consider the three possible cases. The first two correspond to situations in which
the conditions in Step 3 in the CONTRACT subroutine tests true.

• Suppose that Step 6 is reached. Then, δk+1 = ‖s‖2 where (λ, s) is computed in Step 4. It follows
that Step 22 in Algorithm 1 will then produce the primal-dual pair (sk+1, λk+1) = (s, λ) with λ > 0.
Since the condition in Step 5 tested true, we have

σ ≤
λk + σ∆k

∆k
≤

λk+1

‖sk+1‖2
=

λ

‖s‖2
≤ σ, (57)

where the second inequality holds since ‖sk+1‖2 = δk+1 ≤ ‖sk‖2 ≤ ∆k.

• Suppose that Step 9 is reached. Then, δk+1 = ‖s̄‖2 where (λ̄, s̄) is computed in Step 2. Similar
to the previous case, it follows that Step 22 in Algorithm 1 will produce the primal-dual pair
(sk+1, λk+1) = (s̄, λ̄) with λ̄ = λk + σ∆k. We first show that ‖s̄‖2 ≥ σ. Assume the contrary, then
by Lemma 20 and the fact that Xk+1 = Xk for all k ∈ C,

Xk ≤ (Cmin +max{λmax, λ0})‖s̄‖2 ≤ (Cmin +max{λmax, λ0})σ = ǫ,

which contradicts our assumption on Xk. Here the last inequality uses the definition (19) of σ.
Combined with Lemma 13 we obtain

σ ≤ ‖s̄‖2 ≤ ‖sk‖2 ≤ ∆k.

Therefore,

σ ≤
λk + σ∆k

∆k
≤

λ̄

‖s̄‖2
≤
λk + σ∆k

σ
≤
σ(‖sk‖2 +∆k)

σ
≤ 2∆k ≤ σ̄, (58)

where the fourth inequality holds by the condition of Step 3 and the last inequality holds by Lem-
mas 13, 18 and the definition of σ̄ in 19.

The other case correspond to situations in which the condition in Step 3 tests false. It follows by
Steps 2 and 3 that

σ ≤
λ

‖s‖2
, (59)

Finally, using the argument of Lemma 19, we claim that

λk+1 ≤ γλ
(HLip + 2ρ

2κ

)
‖sk‖2. (60)

To show our claim, we assume the contrary, i.e. λk+1 > γλ

(HLip + 2ρ

2κ

)
‖sk‖2. Then the condition of

the while loop in Step 17 tested true for some ŝ computed by solving Qk(λ̂) for λ̂ ≥ (
HLip + 2ρ

2κ
)‖ŝ‖2.

There exists x̂ on the line segment [xk,xk + ŝ] such that

qk(ŝ)− f(x̂+ ŝ) =
1

2
ŝT
(
Hk −H(xk)

)
ŝ ≥ −

1

2
HLip‖ŝ‖

3
2. (61)

Therefore,

f̂ − f(x̂+ ŝ)

‖ŝ‖32
=
f̂ − qk(ŝ) + qk(ŝ)− f(x̂+ ŝ)

‖ŝ‖32

≥
κλ̂‖ŝ‖22 − 0.5HLip‖ŝ‖

3
2

‖ŝ‖32

≥
‖sk‖2ρ

‖ŝ‖2

≥ ρ,
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where the first inequality holds by Lemma 25 and (61), and the last inequality holds since ‖sk‖2 ≥

‖ŝ‖2. However ρk =
fk − f(xk + sk)

‖sk‖32
< ρ. It follows that ‖ŝ‖2 6= ‖sk‖2 which contradicts the

condition of the while loop in Step 17 for ŝ computed by solving Qk(λ̂).

• Suppose that Step 21 is reached. Then, δk+1 = ‖s‖2. It follows that Step 22 in Algorithm 1
will produce the primal-dual pair (sk+1, λk+1) solving Qk+1 such that sk+1 = s and λk+1 = λ.
In conjunction with (59), (60), and the condition in Step 20 of the CONTRACT sub-routine, we
observe that

σ ≤
λk+1

‖sk+1‖2
=

λ

‖s‖2
≤
( γλ
γC

)HLip + 2ρ

2κ
(62)

• Suppose that Step 23 is reached. Then, δk+1 = γC‖sk‖2. It follows that Step 22 in Algorithm 1
will produce the primal-dual pair (sk+1, λk+1) = (s, λ). If ‖s‖2 < δk+1 = γC‖sk‖2, then λk+1 = 0.
Otherwise, ‖s‖2 = δk+1 = γC‖sk‖2 and λk+1 > 0. Combined with (59) and (60), we obtain

λk+1

‖sk+1‖2
=

λ

‖s‖2
≤
( γλ
γC

)(HLip + 2ρ

2κ

)
.

The result follows since we have obtained the desired inequalities in all cases.

We now provide an upper bound for the sequence {σmax}.

Lemma 27. Assume Assumption 8 holds. There exists a scalar constant σmax > 0 such that

σk ≤ σmax ∀ k ∈ N.

Proof. First note that by Lemma 18, the cardinality of the set A∆ is finite. Hence, there exist kA ∈ N

such that k /∈ A∆ for all k ≥ kA. We continue by showing that σk is upper bounded for all k ≥ kA.
Consider the following three cases:

• If k ∈ Aσ, then by definition λk ≤ σk‖sk‖2, which implies by Step 9 of Algorithm 1 that

σk+1 = max{σk, λk/‖sk‖2} = σk.

• If k ∈ C, by Step 22 of Algorithm 1 and Lemma 26, it follows that

σk+1 = max
{
σk,

λk+1

‖sk+1‖2

}
≤ max

{
σk, σ,

( γλ
γC

)HLip + 2ρ

2κ

}
. (63)

• If k ∈ E , then Step 18 of Algorithm 1 implies that σk+1 = σk.

Combining the results of these three cases, the desired result follows.

We now establish an upper bound on the norm trial steps sk when k ∈ Aσ.

Lemma 28. For all k ∈ Aσ, the accepted step sk satisfies

‖sk‖2 ≥ (HLip + σmax)
−1/2X

1/2
k+1.
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Proof. For all k ∈ Aσ , there exists x̄k on the line segment [xk,xk + sk] such that

gT
k+1d = gT

k+1d− gT
k d− dT (Hk + λkI)sk − dTAT

λ
C
k

=
(
g(xk + sk)− gk

)T
d− dT (Hk + λkI)sk − dTAT

λ
C
k

= dT (H(x̄k)−Hk)sk − λkd
T sk − dTAT

λ
C
k

≥ −HLip‖sk‖
2
2‖d‖2 − λk‖sk‖2‖d‖2 − dTAT

λ
C
k

≥ −HLip‖sk‖
2
2 − σk‖sk‖

2
2 − dTAT

λ
C
k for all d with ‖d‖2 ≤ 1,

where the first equation follows from (23) and the last inequality follows since λk ≤ σk‖sk‖2 for all
k ∈ Aσ. Thus

min
s.t. d∈Dk+1

gT
k+1d ≥ −HLip‖sk‖

2
2 − σk‖sk‖

2
2 − max

s.t. d∈Dk+1

dTAT
λ
C
k , (64)

where Dk+1 , {d ∈ R
n | ‖d‖2 ≤ 1; Ad ≤ b−Axk+1}. Note that since k ∈ Aσ the updated step will be

xk+1 = xk + sk. Now, let Ik , {i |aTi sk = bi − aTi xk}, then

AIkd ≤ bIk −AIkxk+1 = bIk −AIkxk −AIksk = 0⇒ (λC
k )

TAd = (λC
k )

T
Ik
AIkd ≤ 0,

for all d ∈ Dk+1. Substituting in (64), we obtain

Xk+1 ≤ HLip‖sk‖
2
2 + σk‖sk‖

2
2,

which along with Lemma 27, implies the result.

We are now ready to compute a worst-case upper bound on the number of steps in Aσ for which the
first-order criticality measure Xk is larger than a prescribed ǫ > 0.

Lemma 29. Assume Assumption 8 holds. For a scalar ǫ ∈ (0,∞), the total number of elements in the
index set

Kǫ , {k ∈ N+ : k ≥ 1; (k − 1) ∈ Aσ; Xk > ǫ}

is at most ⌈(
f0 − fmin

ρ(HLip + σmax)−3/2

)
ǫ−3/2

⌉
, Kσ(ǫ) ≥ 0. (65)

Proof. By Lemma 28, we have for all k ∈ Kǫ that

fk−1 − fk ≥ ρ‖sk−1‖
3
2 ≥ ρ(HLip + σmax)

−3/2X
3/2
k ≥ ρ(HLip + σmax)

−3/2ǫ3/2.

In addition, we have by Theorem 22 that |Kǫ| <∞. Hence, we have that

f0 − fmin ≥
∑

k∈Kǫ

(fk−1 − fk) ≥ |Kǫ|ρ(HLip + σmax)
−3/2ǫ3/2.

Rearranging this inequality to yield an upper bound for |Kǫ| we obtain the desired result.

It remains to compute a worst-case upper bound for the number of iterations in A∆ for which Xk is larger
than a prescribed ǫ > 0, and the number of contraction and expansion iterations that may occur between
two acceptance steps. We compute these bounds separately in Lemmas 30 and 33.

Lemma 30. The cardinality of the set A∆ is upper-bounded by
⌈
f0 − fmin

ρ∆3
0

⌉
, K∆ ≥ 0. (66)
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Proof. For all k ∈ A∆, it follows by Lemma 13 that

fk − fk+1 ≥ ρ‖sk‖
3
2 = ρ∆3

k ≥ ρ∆
3
0.

Hence, we have that

f0 − fmin ≥
∞∑

k=0

(fk − fk+1) ≥
∑

k∈A∆

(fk − fk+1) ≥ |A∆|ρ∆
3
0,

from which the desired result follows.

So far, we have obtained upper-bound on the number of acceptance iterations. To obtain upper-bounds
on the number of contraction and expansion iterations that may occur until the next accepted step, let
us define, for a given k̂ ∈ A,

kA(k̂) , min{k ∈ A : k > k̂},

I(k̂) , {k ∈ N+ : k̂ < k < kA(k̂)},

Using this notation, the following result shows that the number of expansion iterations between the first
iteration and the first accepted step, or between consecutive accepted steps, is never greater than one.
Moreover, when such an expansion iteration occurs, it must take place immediately.

Lemma 31. For any k̂ ∈ N+, if k̂ ∈ A, then E ∩ I(k̂) ⊆ {k̂ + 1}.

Proof. By the definition of kA(k̂), we have under the conditions of the lemma that I(k̂) ∩ A = ∅, which
means that I(k̂) ⊆ C ∪ E . It then follows from Lemma 14 that that E ∩ I(k̂) ⊆ {k̂ + 1}, as desired.

Lemma 32. For any k ∈ N+, if k ∈ C and Step 21 in Algorithm 2 is reached, then

λk+1

‖sk+1‖2
≥ γλ

( λk
‖sk‖2

)
.

Proof. If Step 21 is reached, then ‖s‖2 ≥ γC‖sk‖2. It follows that Step 22 in Algorithm 1 will produce
the primal-dual pair (sk+1, λk+1) solving Qk+1 such that ‖sk+1‖2 = δk+1 < ‖sk‖2 = δk and λk+1 ≥ γλλk,
i.e.,

λk+1

‖sk+1‖2
≥

γλλk
‖sk‖2

. (67)

Lemma 33. Assume Assumptions 6 and 8 hold. For any k̂ ∈ N+, if k̂ ∈ A, then

|C ∩ I(k̂)| ≤ KC ,

where

KC , 1 +

⌈(
2 +

1

log(γλ)
log

(
σmax

σ

))
log
(
ǫ−1∆(Cmin +max{λmax, λ0)

)

log(1/γC )

⌉
.

Proof. The result holds trivially if |C ∩ I(k̂)| = 0. Thus, we may assume |C ∩ I(k̂)| ≥ 1. To proceed
with our proof, we first claim that the number of iterations k ∈ C ∩ I(k̂) with Step 23 in CONTRACT
sub-routine reached, we denote by KC,1, satisfies

KC,1 ≤
log
(
ǫ−1∆(Cmin +max{λmax, λ0

))

log(1/γC )
.
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By Lemma 20, and the assumption that XkA(k̂) ≥ ǫ (optimality not reached yet),

(Cmin +max{λmax, λ0})
−1ǫ ≤ ‖skA(k̂)−1‖2 ≤ δkA(k̂)−1 ≤ γ

KC,1

C ∆,

where the last inequality holds by Lemma 13, Lemma 12, and the fact that each time Step 23 is reached
the radius of the trust region is multiplied by γC . The proof of the claim follows by rearranging the
inequality to yield an upper bound for KC,1.

It remains to compute the number of iterations between Steps in k ∈ C ∩ I(k̂) for which Step 23 is
reached. For a given k̂ ∈ A, We define

IC(k̂) , {k ∈ C ∩ I(k̂) : Step 23 is reached in Algorithm 2}

which correspond to indices in C ∩ I(k̂) for which step 23 is reached. Let kC,1(k̂) and kC,2(k̂) be any two

consecutive indices in IC(k̂) with kC,2(k̂)− kC,1(k̂) > 2. By Lemma 26, we have

λk
‖sk‖2

≥ σ, ∀ kC,1(k̂) + 2 ≤ k ≤ kC,2(k̂),

which implies that step 21 of CONTRACT subroutine is reached for every kC,1(k̂) + 2 < k < kC,2(k̂). By
Lemmas 27 and 32, we then get

σmax ≥
λkC,2(k̂)

‖skC,2(k̂)‖2
≥ σγ

kC,2(k̂)−kC,1(k̂)−2
λ .

Hence,

kC,2(k̂)− kC,1(k̂) ≤
1

log(γλ)
log
(σmax

σ

)
+ 2.

Now let kC,last(k̂)− kC,1(k̂) be the last element of IC(k̂). Similarly, we can show that

kA(k̂)− kC,last(k̂) ≤
1

log(γλ)
log
(σmax

σ

)
+ 2.

The desired result follows s since |C ∩ I(k̂)| = 1 +KC,1

(
1

log(γλ)
log
(σmax

σ

)
+ 2

)
.

Notice that since σ = O(ǫ−1), the number of contract steps KC is of order O(log2 ǫ−1). Due to the while
loop in Step 17 of the CONTRACT sub-routine, completing a contract step may require solving more
than one sub-problem. Our next result provides an upper bound on the number of subproblem routine
calls required in one contract step.

Lemma 34. Assume Assumptions 6 and 8 hold. For a scalar ǫ ∈ (0,∞), the total number of sub-problems
we are required to solve in a step k ∈ C with Xk ≥ ǫ, is at most

K1
C , log

(
(Cmin +max{λmax, λ0}

)Hmax + gLip + ρ∆

σǫ

)
.

Proof. We prove the result by contradiction. Assume the contrary,

λ ≥ λkγ
log

((
Cmin+max{λmax,λ0}

)Hmax + gLip + ρ∆

σǫ

)

λ

≥ σ‖sk‖2
(
Cmin +max{λmax, λ0}

)Hmax + gLip + ρ∆

σǫ

≥ Hmax + gLip + ρ∆,
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where the last inequality holds by Lemma 20 and the fact that Xk ≥ ǫ. Hence, by Lemma 15

f(xk + s)− fk
‖s‖32

≥ ρ >
f(xk + sk)− fk

‖sk‖32
,

where s is computed by solving Qk(λ) and the strict inequality holds since k ∈ C. We conclude that
‖sk‖2 6= ‖s‖2 which contradicts the condition of the while loop. This completes the proof.

Notice that from the definition of σ in the algorithm, K1
C = O(log ǫ−1).

Theorem 35. Under Assumptions 6 and 8, for a scalar ǫ ∈ (0,∞), the total number of elements in the
index set

{k ∈ N+ : Xk > ǫ}

is at most
K(ǫ) , 1 + (Kσ(ǫ) +K∆)(1 +KCK

1
C), (68)

where Kσ(ǫ), K∆, K
1
C , and KC are defined in Lemmas 29, 30, 33, and 34 respectively. Hence, for

ǫg > 0, the number of sub-problem routines required for First-Order-LC-TRACE to find an ǫg-first-order

stationary point is at most K(ǫg) = O
(
ǫ
−3/2
g log3 ǫ−1

g

)
.

Proof. Without loss of generality, we may assume that at least one iteration is performed. Lemmas 29
and 30 guarantee that the total number of elements in the index set {k ∈ A | k ≥ 1, Xk > ǫ} is at most
Kσ(ǫ)+K∆. Also, immediately prior to each of the corresponding accepted steps, Lemmas 31, 33, and 34
guarantee that at most 1 +KCK

1
C sub-problem routine calls are required in expansion and contraction.

Accounting for the first iteration, the desired result follows.

A.3 Proof of Theorem 10

.

Proof. Let us first define
Kǫ , {k ∈ N+ : k ≥ 1; (k − 1) ∈ Aσ; Xk > ǫ}

and
V , {k |Step 7 in Algorithm 3 is reached at iteration k}.

To proceed with our proof, we first show that if k ∈ V ∪ Kǫ, the following reduction bound on the
objective value holds

fk−1 − fk+1 ≥ min

{
ρX

3/2
k

(HLip + σmax)3/2
,
2ψ3

k

3H̃2

}
(69)

If k ∈ V, then using second-order descent lemma, we obtain

fk+1 ≤ fk + 〈gk,xk+1 − xk〉+
1

2
(xk+1 − x)THk(xk+1 − xk) +

HLip

6
‖xk+1 − xk‖

3
2

≤ fk + 〈gk,xk+1 − xk〉+
1

2
(xk+1 − xk)

THk(xk+1 − xk) +
H̃

6
‖xk+1 − xk‖

3
2

= fk +
2ψk

H̃
〈gk, d̂k〉+

2ψ2
k

H̃2
(d̂k)

THk(d̂k) +
4ψ3

k

3H̃2
‖d̂k‖

3
2

≤ fk −
2ψ3

k

H̃2
+

4ψ3
k

3H̃2

= fk −
2ψ3

k

3H̃2
. (70)
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Now if a first-order stationary point was reached at k − 1, i.e. k − 1 ∈ V, it directly follows from (70)
that

fk−1 − fk+1 ≥ fk − fk+1 ≥
2ψ3

k

3H̃2
, ∀ k ∈ V, k − 1 ∈ V. (71)

Otherwise, Step 5 of Algorithm 3 was reached at iteration k− 1 and First-Order-LC-TRACE was called.
The former algorithm by definition is a monotone algorithm, i.e. it generates a sequence of iterates for
which the corresponding sequence of objective values is decreasing. This property combined with (70)
implies that

fk−1 − fk+1 ≥ fk − fk+1 ≥
2ψ3

k

3H̃2
, ∀ k ∈ V, First-Order-LC-TRACE called at k − 1. (72)

Combining (71) and (72), we get

fk−1 − fk+1 ≥ fk − fk+1 ≥
2ψ3

k

3H̃2
, ∀ k ∈ V. (73)

We next show a lower bound on the reduction of the objective value if k ∈ Kǫ. By Lemma 29, we have

fk−1 − fk+1 ≥ fk−1 − fk ≥
ρX

3/2
k

(HLip + σmax)3/2
, (74)

where the first inequality again holds by the monotonicity of First-Order-LC-TRACE and (70). Com-
bining (73) and (74), we get

fk−1 − fk+1 ≥ min

{
ρX

3/2
k

(HLip + σmax)3/2
,
2ψ3

k

3H̃2

}
, ∀k ∈ Kǫ ∪ V.

By summing over the iterations we get

2(f0 − fmin) ≥
∑

k∈Kǫ∪V ,k≥1

(fk−1 − fk+1) ≥ |Kǫ ∪ V|min

{
ρX

3/2
k

(HLip + σmax)3/2
,
2ψ3

k

3H̃2

}
.

Rearranging this inequality yields

|Kǫ ∪ V| ≤
2(f0 − fmin)

max

{
ρX

3/2
k

(HLip + σmax)3/2
,
2ψ3

k

3H̃2

} (75)

Let H(ǫg, ǫH) , {k | Xk > ǫg, ψk > ǫH}. Using Lemmas 31, 33 and 34, the number of sub-problem
routine calls required in expansion and contraction between two acceptance steps is upper bounded by
1 +KCK

1
C . Hence,

|H(ǫg, ǫH)| ≤ (|Kǫ ∪ V|+K∆)(1 +KCK
1
C),

which concludes our proof.
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