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Abstract. We introduce a class of positive definite preconditioners for the solution of large
symmetric indefinite linear systems or sequences of such systems, in optimization frameworks. The
preconditioners are iteratively constructed by collecting information on a reduced eigenspace of the
indefinite matrix, by means of a Krylov-subspace solver. A spectral analysis of the preconditioned
matrix shows the clustering of some eigenvalues and possibly the nonexpansion of its spectrum.
Extensive numerical experimentation is carried out on standard difficult linear systems and by em-
bedding the class of preconditioners within truncated Newton methods for large-scale unconstrained
optimization (the issue of major interest). Although the Krylov-based method may provide mod-
est information on matrix eigenspaces, the results obtained show that the proposed preconditioners
lead to substantial improvements in terms of efficiency and robustness, particularly on very large
nonconvex problems.
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1. Introduction. Consider solving the symmetric indefinite linear systems

(1.1) Ax = b,

where A ∈ Rn×n and b ∈ Rn. It is assumed that n is large and no sparsity pattern of
A is given. The importance of efficiently solving such linear systems is well known. It
is commonly claimed that “In scientific computing most computational time is spent
in solving systems of linear equations” [64]. We propose a class of preconditioners
for solving (1.1) and also focus on the solution of sequences of systems Ax = bi, or
Aix = bi, i = 1, . . . , N , with particular reference to the framework of the truncated
Newton method for large-scale unconstrained optimization.

When the systems are large, direct methods are not usually applicable, and it-
erative methods become mandatory. The most commonly used methods belong to
the Krylov-subspace class [37, 64]. In exact arithmetic, this class converges in a fi-
nite number of steps. In practice, however, it is recognized that preconditioning is
an essential tool for obtaining an efficient solver [5, 41, 63], because the aim of any
preconditioning strategy is to improve the spectral properties of the system. Indeed,
the rate of convergence of preconditioned Krylov-based methods is strongly affected
by the distribution of the eigenvalues of the preconditioned matrix. For large-scale
systems, a preconditioning strategy must be matrix-free. Thus, a matrix cannot be
stored but the matrix-vector product Ay can be provided by means of some available
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routine, and a preconditioning matrix must be handled efficiently also. (See [5] for a
survey on preconditioning techniques for large linear systems.)

Additional safeguard is needed whenever A is indefinite. In this case, the Conju-
gate Gradient method (CG) may fail to solve the linear system. Moreover, for indef-
inite systems, the relation between the performance of the iterative method and the
spectral properties of the preconditioned matrix is far from obvious. To overcome the
first drawback, some methods have been proposed such as MINRES and SYMMLQ
[56], GMRES [59] and the recently proposed planar-CG methods (see [28, 29, 30] and
the references therein).

Of course, matrix-free preconditioners are the only ones that can be used in the
framework of truncated Newton methods for large-scale optimization. These meth-
ods (also called Newton-Krylov methods) are commonly adopted methods for min-
imizing a twice continuously differentiable function f : Rn −→ R [53]. They are
based on two nested loops: the outer and the inner iterations. On each outer it-
eration k, the search direction dk is computed by approximately solving the linear
system ∇2f(xk)d = −∇f(xk) for d, by means of a Krylov-subspace method. For
general nonconvex functions with the Hessian ∇2f(xk) possibly indefinite, a sequence
of symmetric indefinite linear systems must be solved. Here, the importance of pre-
conditioning strategies is well known since the paper of Nash [52]. The interest in the
truncated Newton methods is still very strong, for example in the framework of opti-
mization methods for large-scale machine learning [11, section 6.1]. The recent paper
[45] shows the importance of preconditioners within the truncated Newton methods
for large-scale linear classification problems.

Interesting classes of preconditioners, particularly suited for solving a sequence
of symmetric linear systems, have been proposed in [7, 9, 10, 26, 27, 39, 40, 49, 50].
In particular, [40] introduces a class of Limited Memory Preconditioners (LMP) for
solving positive definite linear systems with multiple right-hand sides, extended to the
indefinite case in [39]. An automatic preconditioning strategy (PREQN) is proposed
in [50] and tested within a Hessian-free Newton method. Both LMP and PREQN are
based on quasi-Newton limited memory L-BFGS Hessian approximation [54]. More-
over, [49] proposes a preconditioning strategy that can be applied to particular saddle-
point problems, while [7] deals with efficient preconditioning techniques for sequences
of KKT linear systems. We also recall the matrix-free approximate inverse precon-
ditioners in [33, 34] (which represent the forerunners of the preconditioners proposed
in this paper), the DSPREC preconditioner [57] based on a dynamic scaling, and the
band preconditioners of [23, 47].

Specific mention is mandatory for the approaches known as deflation precondition-
ing [61] and spectral preconditioning [36]. Both methods are popular for unsymmetric
systems and rely on a Krylov-based procedure, which exploits some spectral prop-
erties of A, in order to build a preconditioner M . The structure of M is such that
the spectrum of MA includes several eigenvalues equal to one. These approaches
typically require Krylov-based methods (e.g., GMRES in the unsymmetric case) to
explore, after h iterations, an h-dimensional subspace that is invariant under a lin-
ear transformation given by the matrix A. If the columns of Vh ∈ Rn×h span this
subspace, the matrix1

(1.2) M = I − VhV H
h + Vh(V H

h AVh)−1V H
h

can be used as preconditioner for the unsymmetric linear system, as h eigenvalues of

1The superscript H indicates the conjugate transpose of a matrix.
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MA are provably equal to one (see section 4 of [61]).
Here we take advantage of the literature on deflation preconditioning and spectral

preconditioning in order to
• reinforce this last result, by building preconditioners whose structure resem-

bles (1.2), but without requiring any basis of an invariant subspace for A;
• exploit the structure of the proposed preconditioners, so that some informa-

tion on the remaining n − h eigenvalues can be provided, without resorting
to the introduction of the δ-pseudospectrum of an auxiliary matrix (compare
with [61, Theorem 4.1]).

In particular, we propose a class of (matrix-free) positive definite preconditioners to
be used for the solution of large indefinite symmetric linear systems (1.1). The pre-
conditioners are constructed by using information gained from any Krylov-subspace
method. They are iteratively built by using (but not performing) an implicit factor-
ization of the system matrix, obtained as a by-product of a Krylov-subspace method.
We draw our inspiration from the class of Approximate Inverse (AINV) Precondi-
tioners (see [6], section 5.1.2 of [5] and [9, 10]), because ideally a good preconditioner
should mimic A−1 and the AINV preconditioners usually work well in practice.

The proposed preconditioners (which we call AINVK class) represent a significant
enhancement relative to those in [33] and [34]. The preconditioners introduced in [33]
are characterized by a simpler structure, where CG is used so that early termination
might occur. Conversely, those presented in [34] have a structure analogous to the
class we study here, but with the following limiting features: i) the approach of
[34] only copes with the positive definite case; ii) the spectral analysis performed
therein is different, as it only refers to singular values. Unlike [34], the AINVK class
applies to indefinite problems and has proved to be effective in practical solution
of large problems. We report a refined theoretical spectral analysis for the AINVK
class of preconditioners, in terms of the eigenvalues and condition number of the
preconditioned matrix. In particular, we analyze the clustering of eigenvalues and
possibly the nonexpansion of the spectrum of the preconditioned matrix.

The AINVK preconditioners have been paired here with the Krylov-based solver
SYMMBK [19] and numerically tested. First, experimentation has been performed
on standard difficult indefinite linear systems. Then, we focused on using AINVK
within truncated Newton methods to improve the efficiency and robustness of such
methods for large-scale nonconvex unconstrained optimization. The results of exten-
sive numerical experimentation seem to confirm this aim. (For the sake of brevity,
we report them only for nonlinear optimization problems, but for further material see
[31, 32].) In particular, by embedding AINVK within a linesearch-based implementa-
tion of a truncated Newton method, we show good performance of the method on a
set of large test problems consisting of all CUTEst [38] unconstrained problems whose
dimension ranges from 103 to 106. Theoretical and numerical comparison with the
LMP preconditioners have been carried out here, showing a preference for AINVK.
LMP proved to be efficient on different classes of positive definite linear systems,
and for the AINVK preconditioners a complete analysis in the indefinite case shows
analogous efficiency on nonconvex optimization problems.

The paper is organized as follows. Section 2 introduces some preliminaries con-
cerning Krylov-subspace methods and symmetric indefinite factorizations. In sec-
tion 3, the proposed AINVK class of preconditioners is introduced, and section 4
studies the relation between the AINVK and LMP classes. The spectral properties
of the AINVK class are investigated in section 5, while section 6 deals with its com-
putational cost. The results of extensive numerical experimentation are reported in
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section 7.
Let λmin(A), λi(A) and λmax(A) denote the smallest, i-th and largest eigenvalues

of a matrix A, and κ(A) its condition number, ‖v‖ be the Euclidean norm of a vector
v, and In be the identity matrix of order n ≥ 1. Finally, eh ∈ Rn is the h-th unit
vector.

2. Preliminaries. The CG method and the Lanczos process (the latter coupled
with a procedure for solving a tridiagonal system) are usually adopted to tackle sys-
tem (1.1). As well known, they are equivalent (in exact arithmetic) as long as A is
positive definite, and the relationship between them is well established [37, 62, 64] and
[22, chapter 5]. Indeed, both methods compute different bases for the same Krylov
subspace. However, CG, though cheaper, presents a major drawback: it does not cope
with the indefinite case. We now recall some details on Krylov-subspace methods that
are used later.

2.1. Krylov-subspace methods. Consider any Lanczos-based Krylov-subspace
method for solving symmetric linear system (1.1), and suppose that h steps of the
method are performed, with h ≤ n − 1. Then orthonormal vectors u1, . . . , uh+1 are
generated such that

(2.1) ARh = RhTh + ρh+1uh+1e
T
h ,

where Rh = [u1 · · ·uh] ∈ Rn×h and Th ∈ Rh×h is a certain tridiagonal matrix (see
(2.2) below). If the scalar ρh+1 6= 0 (i.e. the Krylov-subspace method has not yet
come to convergence), then the columns of Rh are not invariant with respect to A.
To have a better intuition on the generation of the orthonormal vectors ui, in the
case of the two commonest Krylov-subspace methods, they coincide with the Lanczos
vectors for the Lanczos process and with the normalized residuals for the CG-based
methods. These vectors are used for transforming system (1.1) into a tridiagonal one
and the methods differ only in the way the resulting tridiagonal system is solved by
factorization. Premultiplying (2.1) by RT

h , and assuming orthonormality, we obtain
the important explicit relationship

(2.2) Th = RT
hARh.

2.2. Factorization of the tridiagonal matrix. If the matrix A is positive
definite, equation (2.2) implies that Th is also positive definite, so that it can be
decomposed as

(2.3) Th = LhDhL
T
h ,

where Lh ∈ Rh×h is a unit lower bidiagonal matrix and Dh ∈ Rh×h is a diagonal
matrix [37]. Since Th+1 has Th as an h× h diagonal submatrix, the decomposition of
Th+1 can be easily obtained from that of Th.

When A is indefinite, the decomposition (2.3) may not exist or may be numerically
unstable. Therefore, methods for solving large indefinite linear systems should be
based on reliable symmetric indefinite factorizations of the tridiagonal matrix Th.
One possibility is the Bunch and Kaufman decomposition [13],

(2.4) Th = LhBhL
T
h ,

where Bh ∈ Rh×h is block diagonal with each block of dimension at most two. Its
distinguishing feature is to perform 2 × 2 pivot in place of a single element, 1 × 1,



A CLASS OF APPROXIMATE INVERSE PRECONDITIONERS 5

whenever in Th+1 a small pivot would cause instability of the decomposition. To
maintain numerical stability, a suitable rule due to Bunch [12] is adopted for choosing
a 1 × 1 or 2 × 2 pivot, avoiding growth in the matrix elements ([14, 15, 42] and
[43, chapter 11]). A recursive procedure based on the generation of a sequence of
tridiagonal matrices of order h was proposed in [19], and the resulting algorithm is
known as SYMMBK (see also [48]). If at iteration h a 1×1 pivot is adopted, the next
iterate will be xh+1, while if a 2× 2 pivot takes place, the next iterate will be xh+2.

Other factorizations (when Th is indefinite), used by Paige and Saunders [56], can
be found in SYMMLQ, which computes a numerically stable factorization Th = LhQh

(with Lh lower triangular and Qh orthogonal), and MINRES, which uses QR factors
of a suitable tridiagonal matrix.

2.3. Subproblems definitions for Lanczos-based solvers. It is important
to highlight that, at each iteration of a Lanczos-based solver, a subproblem is solved
to generate iterates of the form xh = Rhyh, for some yh ∈ Rh, which approximate
a solution of (1.1), without computing yh explicitly. Indeed, setting b = ρ1u1, since
(2.1) can be rewritten as ARh = Rh+1Th+1,h, where

(2.5) Rh+1 = [Rh uh+1], Th+1,h =

[
Th

ρh+1e
T
h

]
,

we have

rh = b−Axh = ρ1u1 −Rh+1Th+1,hyh = Rh+1 (ρ1e1 − Th+1,hyh) .

Therefore, Lanczos-based solvers aim to make ρ1e1 − Th+1,hyh small. CG considers
the first h equations and determines yh ∈ Rh from the subproblem Thy = ρ1e1.
SYMMLQ focuses on the first h−1 equations and solves miny ‖y‖ s.t. TT

h,h−1y = ρ1e1
by applying the LQ factorization. MINRES solves miny ‖Th+1,hy − ρ1e1‖ by using
the QR factorization. (See [60, Table 3.1] and also [20, 21].) SYMMBK uses the same
subproblem Thy = ρ1e1 as CG except when it would be numerically unsafe to compute
xh. In this case, yh and xh are undefined, but the factorization (2.4) exists for Th+1

and the next subproblem Th+1y = ρ1e1 is used to compute xh+1. This strategy can
be viewed as a look-ahead of 1.

3. The AINVK class of preconditioners. Our class of preconditioners, also
based on deflation preconditioning, extends that in [34] to the indefinite case. Consid-
ering any Lanczos-based Krylov-subspace method for solving the symmetric system
(1.1), we state the following standard assumption.

Assumption 3.1. Consider relation (2.1). The tridiagonal matrix Th is irreduc-
ible and decomposition (2.4) exists, where Bh is either 1 × 1 or 2 × 2 block diagonal
and Lh is unit lower bidiagonal.

This assumption is not restrictive because the factorization (2.4) always exists, even
without permutation of rows and columns of Th (recall SYMMBK in subsection 2.2).
However, the numerical stability is strictly dependent on the choice of the pivoting
strategy (see [42] for details on the existence and the stability of such decomposition).
Moreover, since Th is assumed to be irreducible, it cannot have multiple eigenvalues.

For convenience, we let

Bh = blkdiag1≤j≤m{E
j
h},
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where either Ej
h ∈ R or Ej

h ∈ R2×2 for j = 1, . . . ,m. For the latter case we find the
eigen-decomposition of each 2× 2 diagonal block:

Ej
h = U j

hD
j
h(U j

h)T ,

where Dj
h = diag{dj1h , d

j2
h } with dj1h and dj2h being the eigenvalues of Ej

h, and the

columns of U j
h are orthogonal eigenvectors ((U j

h)TU j
h = I). For blocks consisting of

one element, we note that Ej
h = dj1h and U j

h ≡ 1. Taking the absolute value of all the

diagonal elements djih , i ∈ {1, 2} (see also [35]), we define the matrix

|Bh| ≡ blkdiag1≤j≤m

{
U j
h|D

j
h|(U

j
h)T
}

= Uh|Dh|UT
h ,

where

(3.1) Uh = blkdiag1≤j≤m

{
U j
h

}
, |Dh| = blkdiag1≤j≤m

{
|Dj

h|
}
,

(3.2) |Dj
h| ∈

{
|dj1h |,diag{|dj1h |, |d

j2
h |}
}
.

Similar to (2.4), we define

(3.3) |Th| ≡ Lh|Bh|LT
h

which has the following properties: (i) |Th| is positive definite for any h and |Th| = Th
if Th is positive definite; (ii) |Th| = LhUh|Dh|UT

h L
T
h ; (iii) |Th|T = |Th| and

(3.4) Th|Th|−1 =
[
|Th|−1Th

]T
= LhÎhL

−1
h ,

where Îh = Bh|Bh|−1 is block-diagonal, including at most 2× 2 diagonal blocks, with
eigenvalues equal to either 1 or −1.

We now introduce the AINVK class of preconditioners. For h ≥ 1, we define the
preconditioner matrix

(3.5) Mh(a,Wh) ≡
[
In −Rh+1R

T
h+1

]
+ Rh+1T −1h RT

h+1,

where

(3.6) Th =

[
|T̂h| aeh
aeTh 1

]
,

Wh = diag{w2
1, . . . , w

2
h}, a and {wi} are scalars, Rh+1 is defined in (2.5) and

(3.7) |T̂h| ≡ LhUh (Wh|Dh|)UT
h L

T
h .

We note that the matrix in the square brackets of (3.5) can be written as

(3.8) R̂h+1R̂
T
h+1 = In −Rh+1R

T
h+1,

where the columns of R̂h+1 ∈ Rn×(n−h−1) are orthonormal. Observe that, Wh|Dh| is

diagonal and T̂h = Th if Wh = Ih. In the sequel, to simplify the notation, we denote
|Dh| by Dh.
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The structure of AINVK in (3.5) can be described as follows: the first term
represents a projector onto the subspace orthogonal to the range of Rh+1, while
the second one may be interpreted as a suitable approximation of A−1 (exploiting
the Spectral Theorem) over the Krylov subspace span{u1, . . . , uh+1}. Moreover, two
(user-dependent) parameters are present: the scalar a and the matrix Wh. The effect
of Wh is to emphasize the information about A collected by the Krylov-subspace
method, because it acts as a scaling of the matrix Dh. For the simple choice Wh = Ih,
Mh(a, Ih) can be regarded as an approximate inverse preconditioner [58], without
scaling. However, numerical evidence suggests other choices for Wh (see section 7).

The AINVK preconditioners (3.5) extend those proposed in [33, 34]. Indeed, the
preconditioners proposed in [33] are merely built using the CG method and can be
obtained as a particular case of (3.5) by setting a = 0 and Wh = Ih. In [34] the
class of preconditioners proposed is characterized by a 6= 0 and Wh = ν2Ih, where
ν is a scalar, but only the positive definite case is considered, implying |T̂h| = T̂h.
Moreover, the spectral analysis performed in [34] is only in terms of singular values of
the (unsymmetric) preconditioned matrix, which may not yield direct information on
the convergence properties of a Krylov-subspace method. Recalling that ρh+1 6= 0 in
(2.1) implies that the subspace span{u1, . . . , uh} is not invariant, we consider a more
general framework than [3] and most of the approaches based on deflation precondi-
tioning.

4. Relation between the AINVK and LMP classes. In this section, we
highlight the relation between AINVK and the Limited Memory Preconditioners
(LMP) in [40]. The LMP preconditioners use the L-BFGS quasi-Newton updates
to build an approximate inverse preconditioner for (1.1), when A is positive definite.
An extension of LMP to the indefinite case has been proposed more recently in [39],
where a theoretical analysis of the Ritz-LMP variant is also reported. Here, the ex-
tended LMP preconditioners are themselves possibly indefinite (see [39, section 3.3]),
so that some additional care is mandatory when used in specific contexts.

In principle, since the L-BFGS update is used in place of Krylov-subspace meth-
ods, the idea behind LMP is different from our proposal. However, recalling the
relationship between the directions computed by the L-BFGS and CG methods (see
also [62]) when A is positive definite, it is not surprising that the two approaches show
great similarities. In this case we can obtain a formal complete relationship between
AINVK and LMP. Conversely, on indefinite linear systems, the two proposals differ
greatly, as the AINVK preconditioners are always positive definite for suitable values
of a in (3.5), while LMPs might be indefinite. Thus, in the indefinite case a full
comparison seems hardly possible. With

Vh ≡ In − Ph(PT
h APh)−1PT

h A,

the LMP class is characterized by

(4.1) Hh = VhH0V
T
h + Ph(PT

h APh)−1PT
h ,

where Ph = [p1 · · · ph] is any n × h matrix of rank h ≤ n and H0 is a symmetric
positive definite matrix. Note that this formula defines multiple BFGS updates and
satisfies the so-called generalized quasi-Newton condition HhAPh = Ph (it is proposed
in [16] with further details in [1] and the references therein). No assumption is required
on the column vectors pj apart from their linear independence.

Following the reasoning in section 2 of [40], where the expression of Hh is derived
from the fact that the columns of Ph are A-conjugate directions, we can take p1, . . . , ph
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as the conjugate directions computed by CG (or L-BFGS; see [55] for the relation
between CG and L-BFGS). Observe that Hh is invariant under scaling of the vectors
p1, . . . , ph (see [40, Theorem 3.1]). Thus, if r1, . . . , rh are the corresponding residuals
computed by CG up to step h, it follows that the norm of these residuals is bounded
away from zero, so that we redefine

(4.2) Ph =

[
p1
‖r1‖

· · · ph
‖rh‖

]
.

Thanks to the relation between the residuals and conjugate directions in CG (see also
[62]), we have Ph = RhL

−T
h , where

(4.3) Rh =

[
r1
‖r1‖

· · · rh
‖rh‖

]
, Lh =



1

−‖r2‖‖r1‖ 1

−‖r3‖‖r2‖ 1

. . .
. . .

− ‖rh‖
‖rh−1‖ 1

 .

Because

Ph(PT
h APh)−1PT

h A = RhL
−T
h [L−1h RT

hARhL
−T
h ]−1L−1h RT

hA

= RhT
−1
h

[
RhTh + ρh+1

rh+1

‖rh+1‖
eTh

]T
= RhR

T
h + ρh+1RhT

−1
h eh

rTh+1

‖rh+1‖
≡ Zh

and Th = RT
hARh, relation (4.1) becomes

(4.4) Hh = (In − Zh)H0 (In − Zh)
T

+ RhT
−1
h RT

h .

With (3.5), (3.7), Wh = Ih and a = 0, this implies that Hh and Mh(a, Ih) are generally
different. However, recalling that (In − RhR

T
h ) is idempotent, setting ρh+1 = 0 and

H0 = In, we obtain Hh ≡Mh(0, Ih). Thus, if A is positive definite, when the L-BFGS
update is complete (i.e., when ρh+1 = 0 in (2.1)), the LMP class with H0 = In and
the proposed class (with Wh = Ih and a = 0) are coincident in exact arithmetic.
When ρh+1 6= 0, there is no chance that the two preconditioners coincide.

Remark 4.1. It is possible to show that if CG is used as the Krylov-subspace
method for solving (1.1) and for building both the LMP and AINVK preconditioners,
then the two preconditioners simply differ by a rank-2 matrix.

Finally, we acknowledge the relevant role of the first-level preconditioner H0 in the
LMP class, which has no immediate counterpart in our proposal. In fact, such a
matrix H0 can be very effective when properly set, in applications where additional
problem information is known.

5. Spectral properties of the preconditioned matrix. The spectral prop-
erties of the preconditioned matrix Mh(a,Wh)A may strongly affect the behavior of
a Krylov-subspace method used for solving the preconditioned linear system. There-
fore, we study the spectrum and give indications on the condition number of the
preconditioned matrix Mh(a,Wh)A.
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Given the orthogonal matrix

(5.1) N = [Rh+1 R̂h+1], h ≤ n− 1,

where R̂h+1 is defined in (3.8), we may write (3.5) as

(5.2) Mh(a,Wh) = N
[
T −1h 0

0 In−(h+1)

]
N T , h ≤ n− 1,

where Th is defined in (3.6). Recalling that Lh is unit lower bidiagonal (L−1h eh = eh
and Lheh = eh), setting

(5.3) ∆h = 1− a2eTh |T̂h|−1eh,

using the identity

(5.4) Th =

[
Ih 0

aeTh |T̂h|−1 1

] [
|T̂h| 0

0 ∆h

] [
Ih a|T̂h|−1eh
0 1

]
and (3.7), and assuming ∆h 6= 0, we obtain the factorization

(5.5) T −1h = L̃T
h L̃h, L̃h =

[
W
−1/2
h D−1/2h UT

h L
−1
h 0

−a∆
−1/2
h eTh |T̂h|−1 ∆

−1/2
h

]
.

The following theorem characterizes the spectrum of the preconditioned matrix,
showing that like spectral preconditioners, the AINVK preconditioners (3.5) cluster a
certain number of eigenvalues of the preconditioned matrix Mh(a,Wh)A. An impor-
tant interlacing property is proved between the eigenvalues of Mh(0,Wh)A and those
of the indefinite matrix A.

Theorem 5.1. In (1.1), suppose Assumption 3.1 holds, consider the AINVK
class of preconditioners (3.5) and assume ∆h 6= 0. Then

i) if ∆h > 0 then Mh(a,Wh) is positive definite;
ii) Mh(a,Wh)A has at least (h− 2) eigenvalues in {±1/w2

1 , . . . , ±1/w2
h};

iii) if Bh in (2.4) is diagonal then Mh(a,Wh)A has at least (h − 1) eigenvalues
in {±1/w2

1 , . . . ,±1/w2
h};

iv) if A is positive definite, then Mh(a,Wh)A has at least (h− 1) eigenvalues in
{1/w2

1, . . . , 1/w
2
h};

v) if A is positive definite and a = w2
hρh+1 then Mh(a,Wh)A has at least h

eigenvalues in {1/w2
1, . . . , 1/w

2
h};

vi) if a = 0, there exist n − h − 2 eigenvalues λi(Mh(0,Wh)A), i ∈ {1, . . . , n},
which do not coincide with the eigenvalues in items ii), iii), iv) and v), such
that

λmin(A) ≤ λi(Mh(0,Wh)A) ≤ λmax(A);

vii) let ρmax = max{|ρh+1|, |ρh+2|}, σmin = min
1≤i≤h

{σi/w2
i } and σmax = max

1≤i≤h
{σi/w2

i },

where σi is the i-th eigenvalue of Îh in (3.4). If a = 0 then, for i = 1, . . . , n

min {σmin, λmin(A)}+O(ρmax) ≤ λi(Mh(0,Wh)A)

≤ max {σmax, λmax(A)}+O(ρmax).(5.6)
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Proof. Item i) immediately follows from (5.2), (5.3) and (5.4). For ii), letting

L̂h =

[
L̃T
h 0

0 In−(h+1)

]
we obtain (by (5.2) and (5.5))

Mh(a,Wh) = NL̂hL̂T
hN T

and (by (2.1) and (2.2))

N TAN =

 RT
hARh RT

hAuh+1 RT
hAR̂h+1

uTh+1ARh uTh+1Auh+1 uTh+1AR̂h+1

R̂T
h+1ARh R̂T

h+1Auh+1 R̂T
h+1AR̂h+1


=

 Th ρh+1eh 0
ρh+1e

T
h uTh+1Auh+1 ρh+2e

T
1

0 ρh+2e1 R̂T
h+1AR̂h+1

 ,(5.7)

where ρh+1 and ρh+2 are defined in (2.1). Moreover, Bh = UhDhU
T
h (by (3.2)) gives,

for suitable scalars αh, βh,

W
−1/2
h D−1/2h UT

h L
−1
h eh = W

−1/2
h D−1/2h UT

h eh =

 αheh, if Um
h ∈ R

αheh + βheh−1, otherwise;

Th|T̂h|−1eh = LhBhL
T
hL
−T
h UhD−1h W−1h UT

h L
−1
h eh

= LhBhUhD−1h W−1h UT
h eh =

 αheh, if Um
h ∈ R

αheh + βheh−1, otherwise;

eTh |T̂h|−1eh = eThL
−T
h UhD−1h W−1h UT

h L
−1
h eh = eThUhD−1h W−1h UT

h eh

|T̂h|−1eh = L−Th UhW
−1
h D

−1
h UT

h L
−1
h eh

= L−Th UhW
−1
h D

−1
h UT

h eh =

 αheh, if Um
h ∈ R

αheh + βheh−1, otherwise.

Note that λ is an eigenvalue of Mh(a,Wh)A if and only if it is an eigenvalue of
L̂T
hN TANL̂h. Observe that

(5.8) L̂T
hN TANL̂h =

 M1,1 M1,2 0
MT

1,2 M2,2 M2,3

0 MT
2,3 M3,3

 ,
where

M1,1 =
[
W
−1/2
h D−1/2h UT

h L
−1
h

]
Th

[
L−Th UhD−1/2h W

−1/2
h

]
= W

−1/2
h D−1/2h DhD−1/2h W

−1/2
h = diag1≤i≤h{±1/w2

i },(5.9)
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and for suitable scalar ᾱh, α̃h, β̄h, β̃h,

M1,2 = W
−1/2
h D−1/2h UT

h L
−1
h

(
−a∆

−1/2
h Th|T̂h|−1eh + ρh+1∆

−1/2
h eh

)

=


W
−1/2
h D−1/2h UT

h L
−1
h (ᾱheh) = α̃heh, if Um

h ∈ R

W
−1/2
h D−1/2h UT

h L
−1
h (ᾱheh + β̄heh−1) = α̃heh + β̃heh−1, otherwise,

M2,2 = ∆−1h

(
−aeTh |T̂h|−1Th + ρh+1e

T
h

)(
−a|T̂h|−1eh

)
+

∆−1h

(
−aρh+1e

T
h |T̂h|−1eh + uTh+1Auh+1

)
=

1

∆h

(
a2eTh |T̂h|−1Th|T̂h|−1eh − 2aρh+1e

T
h |T̂h|−1eh + uTh+1Auh+1

)
,

M2,3 = ρh+2∆
−1/2
h eT1 ,

M3,3 = R̂T
h+1AR̂h+1.

Thus, if Em
h ∈ R, Mh(a,Wh)A has at least h − 1 eigenvalues in {±1/w2

1 , . . . ,±1/w2
h}

(corresponding to h− 1 eigenvectors in the set {e1, . . . , eh}), otherwise Em
h ∈ R2×2 so

that the last property holds with h− 1 replaced by h− 2.
For iii), we have |Th| = Lh|Bh|LT

h with Bh diagonal and Em
h ∈ R. Thus, using

the reasoning of ii) we obtain the result.
For iv), since A is positive definite, Th is positive definite too, and can be factorized

as Th = LhDhL
T
h , where Dh is diagonal. Hence, iii) implies iv).

Item v) is a special case of iv), and recalling that A positive definite implies that
Uh in (3.1) is diagonal, by the choice a = w2

hρh+1, we see that M1,2 = 0 in (5.8),
which is reduced to the matrix M1,1 0 0

0 M2,2 M2,3

0 MT
2,3 M3,3

 .
Thus, Mh(a,Wh)A has at least h eigenvalues in {1/w2

1 , . . . , 1/w
2
h} (corresponding to

the eigenvectors {e1, . . . , eh}).
For item vi) ∆h = 1. By (5.8), along with the definition of M2,3, we have that

λi(Mh(0,Wh)A) = λi(M3,3) is the eigenvalue associated with an eigenvector of M3,3

that lies in the subspace span{e2, . . . , en−h−1}. We may choose n − h − 2 orthog-
onal eigenvectors of M3,3 in span{e2, . . . , en−h−1}, so that by Poincare’s Separation
Theorem (see also Corollary 4.3.16 of [44]) we obtain vi).

For item vii), by a generalization of the Monotonicity Theorem (or Weyl’s inequal-
ity) (see e.g., Theorems 8.4.9 and 8.4.11 of [8]), we have for any symmetric matrices
B and C that

λi(B) + λmin(C) ≤ λi(B + C) ≤ λi(B) + λmax(C).

Since L−1h eh = eh, when a = 0 (which yields ∆h = 1), the matrix L̂T
hN TANL̂h in

(5.8) is reduced to M1,1 ρh+1W
−1/2
h D−1/2h UT

h eh 0

ρh+1e
T
hUhD−1/2h W

−1/2
h uTh+1Auh+1 ρh+2e

T
1

0 ρh+2e1 M3,3

 ≡ B + C,
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where

B =

 M1,1 0 0
0 uTh+1Auh+1 0
0 0 M3,3

 ,

C =

 0 ρh+1W
−1/2
h D−1/2h UT

h eh 0

ρh+1e
T
hUhD−1/2h W

−1/2
h 0 ρh+2e

T
1

0 ρh+2e1 0

 .
It follows from Gershgorin’s Circle Theorem and observing that for some scalars
αh, βh,

ρh+1W
−1/2
h D−1/2h UT

h eh =

 αheh, if Um
h ∈ R

αheh + βheh−1, otherwise,

we have from (5.9) and (3.4)

min
{
σmin, u

T
h+1Auh+1, λmin(M3,3)

}
+O (ρmax) ≤ λi(Mh(0,Wh)A)

≤ max
{
σmax, u

T
h+1Auh+1, λmax(M3,3)

}
+O (ρmax) .

By Poincare’s Separation Theorem the i-th eigenvalue of R̂T
h+1AR̂h+1 satisfies

λmin(A) ≤ λi(M3,3) ≤ λmax(A).

Since uh+1 has unit norm, (5.7) implies

λmin(A) ≤ uTh+1Auh+1 ≤ λmax(A).

Therefore (5.6) holds.

Of course, R̂h+1 in the proof of Theorem 5.1 always exists, such that N in (5.1) is
orthogonal. However, R̂h+1 is neither built nor used, and it is introduced only for
theoretical purposes.

It is worth comparing the results in Theorem 5.1 with similar results for the
preconditioners of the LMP class in [40], concerning clustering of eigenvalues and
nonexpansion of the spectrum of the preconditioned matrix. First note that the
results in Theorem 5.1 hold when Th is positive definite or indefinite. Theorem 5.1 is
more general than Lemma 3.3 and Theorem 3.4 of [40], except the following: when
A is positive definite, the result in item vii) is weaker than that in [40], because
of the presence of O(ρmax) in (5.6). Also observe that the extension of the LMP
class to symmetric indefinite systems in [39] leads to weaker results than those in
Theorem 5.1. One specific reason for this conclusion relies on the fact that while
the AINVK preconditioners are always positive definite (see i) of Theorem 5.1), on
indefinite linear systems LMPs can be possibly indefinite.

We emphasize that (5.6) can be simplified when A is positive definite as follows.

Proposition 5.2. Assume A is positive definite and consider the AINVK pre-
conditioners (3.5) with a = 0 and Wh = Ih. Let σmin = min1≤i≤h{σi/w2

i }, where

σi is the i-th eigenvalue of Îh in (3.4). Also let τ = ‖w‖2/wTAw, where w is any
nonzero vector. Then, the condition number of the preconditioned matrix Mh(0, Ih)Ã,
where Ã = τσminA, can be bounded according to

(5.10) κ(Mh(0, Ih)Ã) ≤ λmax(Ã) +O(ρmax)

λmin(Ã) +O(ρmax)
.
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Proof. As in [40], we note that

λmin(τσminA) ≤ wT (τσminA)w

‖w‖2
≤ λmax(τσminA).

Thus, given (1.1) with A positive definite and a = 0 (which implies ∆h = 1), we can
always multiply it by the scalar τσmin such that (5.6) becomes

λmin(Ã) +O(ρmax) ≤ λi(Mh(0,Wh)Ã) ≤ λmax(Ã) +O(ρmax),

which implies (5.10).

When the Krylov-subspace method approaches the solution then both ρh+1 → 0
and ρh+2 → 0. Thus, using Proposition 5.2 with A positive definite, a = 0 and
Wh = Ih, we have

(5.11) lim
ρh+1 → 0

ρh+2 → 0

κ(Mh(0, Ih)Ã) ≤ κ(Ã).

This result is weaker than the analogous result in Lemma 3.3 and Theorem 3.4 of
[40]. However, as shown in section 7, the proposed AINVK preconditioner performs
better than that in [40]. Section 6 also shows that AINVK preconditioners require
less memory and computational cost.

Remark 5.3. Since λ is an eigenvalue of the preconditioned matrix Mh(a,Wh)A
if and only if λ is an eigenvalue of L̂T

hN TANL̂h (see the proof of Theorem 5.1), we
can derive some guidelines for the choice of the parameters a and Wh in (3.5). Indeed,
they may be set in order to impose conditions like

tr

[
M1,1 M1,2

MT
1,2 M2,2

]
= h+ 1, tr [M1,1] = h

(see also [4] for details), which tend to force the clustering of the eigenvalues of the
matrix in (5.8) to either +1 or −1.

5.1. Issues on the condition number of Mh(a,Wh)A. We now describe some
theoretical results concerning the bounding of the condition number of the precondi-
tioned matrix Mh(a,Wh)A in the general case a 6= 0 and Wh = diag{w2

1, . . . , w
2
h}.

Proposition 5.4. Consider Mh(a,Wh) in (3.5), with h ≤ n− 1. Let µ1 ≤ · · · ≤
µh be the eigenvalues of |T̂h| in (3.7), which are not all coincident. If ∆h in (5.3) is
positive, we have

(5.12) κ(Mh(a,Wh)A) ≤
max

{
1, λ̃h+1

}
min

{
1, λ̃1

} κ(A),

where

(5.13) λ̃1 =
γh − (γ2h − 4σh)1/2

2
, λ̃h+1 =

γh + (γ2h − 4σh)1/2

2
,

(5.14) γh = −(h− 1)µ1 + tr(|T̂h|) + 1, σh =
∆h det(|T̂h|)

µh−1
h

.
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Fig. 1. Relation between the eigenvalues λ1 and λh+1 of the matrix Th in (3.6).

Proof. Let λ1 ≤ · · · ≤ λh+1 be the eigenvalues of Th in (3.6). From (5.4) and
∆h > 0, it follows that

(5.15) det(Th) = ∆h det(|T̂h|).

Therefore, by the Cauchy interlacing properties (Lemma 8.4.4 in [8]) between the
eigenvalues {µj}j=1,...,h and {λi}i=1,...,h+1 we have the relation

(5.16) λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λh ≤ µh ≤ λh+1.

By (5.16), (3.6) and (5.15) we respectively obtain the following intermediate results:
i) µ1 ≤ λi ≤ µh, i = 2, . . . , h;

ii)

h+1∑
i=1

λi = tr(|T̂h|) + 1;

iii)

h+1∏
i=1

λi = ∆h det(|T̂h|).

From i) we deduce that (h−1)µ1 ≤
h∑

i=2

λi ≤ (h−1)µh, so that from ii), iii), (5.16)

and recalling that the matrix Th in (3.6) is positive definite, it follows that

max
{

0,−(h− 1)µh + tr(|T̂h|) + 1
}
≤ λ1 + λh+1 ≤ −(h− 1)µ1 + tr(|T̂h|) + 1,

∆h det(|T̂h|)
µh−1
h

≤ λ1λh+1 ≤
∆h det(|T̂h|)

µh−1
1

.

From the last inequality (see also points (A) and (B) in Figure 1) in order to compute
a lower bound λ̃1 and an upper bound λ̃h+1 on the smallest and the largest eigenvalue
of the matrix Th in (3.6), we have to solve the nonlinear system

λ̃1 + λ̃h+1 = γh, λ̃1λ̃h+1 = σh.

It follows that

(5.17) λ̃1 =
γh − (γ2h − 4σh)1/2

2
, λ̃h+1 =

γh + (γ2h − 4σh)1/2

2
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are real values, because γ2h−4σh = (λ̃1− λ̃h+1)2. Now, from (5.1), the preconditioners
Mh(a,Wh) may be rewritten as in (5.2).

Note that the smallest and largest eigenvalues of the matrix

Gh =

[
Th 0
0 In−(h+1)

]
respectively are

λmin(Gh) = min {1, λ1} , λmax(Gh) = max {1, λh+1} .

Thus, it follows from (5.2) and the orthogonality of N that

‖Mh(a,Wh)A‖ ≤ λmax(A)‖N‖2λmax(G−1h ) =
λmax(A)

min {1, λ1}

and

‖(Mh(a,Wh)A)−1‖ ≤ λmax(A−1)‖N−1‖2λmax(Gh) =
max {1, λh+1}
λmin(A)

.

Hence, from (5.17) we obtain (5.12).

We observe that as expected, Wh in (3.5) strongly affects the distribution of the
eigenvalues of Mh(a,Wh)A, as shown by Theorem 5.1, and also its condition number,
as indicated by Proposition 5.4. It is worth noting that the bound on κ(Mh(a,Wh)A)
in (5.12) can be simplified as follows.

Proposition 5.5. Under the hypotheses of Proposition 5.4, inequality (5.12) is
reduced to

(5.18) κ(Mh(a,Wh)A) ≤ ξhκ(A),

where ξh = λ̃h+1/λ̃1, with λ̃h+1 and λ̃1 given by (5.13). Moreover,

i) ξh increases with |a|, and lim|a|↑ωh ξh = +∞, where ωh = (eTh |T̂h|−1eh)−1/2;
ii) when a = 0, ξh attains its minimum

(5.19) ξ∗h =
γh + βh
γh − βh

, βh =

(
γ2h − 4

det(|T̂h|)
µh−1
h

)1/2

.

Proof. Imposing the conditions λ̃1 ≤ 1 and λ̃h+1 ≥ 1 and using (5.13) we obtain
1− γh + σh ≤ 0. This inequality is fulfilled by coupling (5.14) and

tr(|T̂h|)− (h− 1)µ1 ≥
det(|T̂h|)
µh−1
h

.

Indeed, the last relation follows from properties of trace and determinant of |T̂h|, and
observing that its left-hand side is larger than µh, while its right-hand side is smaller
than µh. Hence, (5.12) implies (5.18).

For item i), consider (5.3). When |a| is increasing, ∆h is decreasing and hence
from (5.12)–(5.14) and (5.19), ξh is increasing. In addition, when |a| → ωh, we have
σh → 0. Then 2λ̃1 → 0 and 2λ̃h+1 → 2γh > 2. Thus, we directly have i).

For ii), since ξh is a continuous function of a, we have from item i) that ξh attains
its minimum at a = 0. Finally, substituting this value into (5.3) we have ∆h = 1 and

hence by (5.14) σh = det(|T̂h|)/µh−1
h , so that ξh is reduced by (5.13) to ξ∗h.
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6. Storage and computational cost of the AINVK preconditioners. Since
we are dealing with large-scale problems, we first observe that the case h ≈ n in the
proposed class of preconditioners (3.5) is not of interest. Indeed, in the literature of
preconditioners that make use of a “memory” [50, 51], the latter (which corresponds
to the value of h in AINVK) typically does not exceed 10 vectors. Yet this proves suf-
ficient in several applications. The recursion of any preconditioned Krylov-subspace
method never uses directly full matrices, because only the product of the precon-
ditioner times a vector is required. The AINVK class needs matrix-vector products
Mh(a,Wh)v, v ∈ Rn. From the structure of Mh(a,Wh) = In +Rh+1[T −1h −Ih+1]RT

h+1

in (3.5), it is evident that the computational effort in computing Mh(a,Wh)v is given
by

(6.1) (h+ 1)n+ n(h+ 1) + (h+ 1)2 ≈ 2(h+ 1)n,

as h� n, whether A is indefinite or positive definite. On the other hand, the cost in
(6.1) includes (h+ 1)2 multiplications that are due to the product of T −1h (see (3.6))
and a vector, using (5.5).

The quantity (6.1) is competitive with the cost of LMP [40], Ritz-LMP [39] and
PREQN preconditioners [50], considering that h� n. Indeed, with respect to LMP,
the proposed class requires only the (h + 1) vectors u1, . . . , uh+1, in place of the
2h vectors u1, Au1, . . . , uh, Auh. Even when A is positive definite, LMP requires
computing these 2h vectors with a procedure that needs h matrix-vector products, at
an additional cost of approximately 3h2n flops [40]. In addition, Ritz-LMP variant
requires the full computation of Ritz-pairs for an h×h (possibly indefinite) tridiagonal
matrix. Conversely, as by [39, section 3.5.3], Ritz-LMPs storage amounts to h + 2
vectors, while the application of Ritz-LMPs to a vector needs (4h+ 9)n flops: this is
more than twice the amount in (6.1). Finally, since PREQN is a special case of LMP,
the computational cost of the AINVK class is also preferable to that of PREQN.

7. Numerical experiments. We now report the results of extensive numerical
experimentation with the AINVK class of preconditioners (3.5). We first considered
the standard test matrices (BCSSTRUC4) from the Harwell-Boeing Sparse Matrix
Collection [25] (some results are reported in [31, 32]). We do not describe them here
because they were aimed at preliminarily i) validating the theory in Theorem 5.1, ii)
highlighting some similarities with the numerical results reported in [40] for the LMP
preconditioners.

We then embedded the AINVK class of preconditioners in a linesearch-based
truncated Newton method for the solution of large-scale unconstrained optimization
problems, which is our main topic of interest. It requires the solution of a sequence of
symmetric linear systems. We show that the overall optimization scheme is efficient,
even for h < 10 in (3.5). In particular, we use the algorithmic scheme in [33, 34], where
some implementation details are described. For simplicity, we set a = 0 in (3.5).
For Wh = diag{w2

1, . . . , w
2
h}, we choose w1 = w2 = · · · = wh = 100, with further

details given below. Unlike [34], where similar choices of the parameters were carried
out in the positive definite case, we tackle indefinite problems, so that the Lanczos
process is used in place of the CG algorithm. In particular, we use SYMMBK in
[56] for computing the gradient-related Newton-type search direction and iteratively
constructing a preconditioner in the AINVK class.

We assume that h steps of the Lanczos process have been performed. As discussed
in subsection 2.2, when A is indefinite, symmetric indefinite factorizations of Th in
(2.4) must be considered. Unlike [33], where use of the CG method might be ques-
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tionable, we adopt SYMMBK, which recursively computes the Bunch and Kaufman
indefinite factorization of Th (2.4). Note that the factors for Th+1 can be obtained
from those of Th. We recall two main features: i) a 2 × 2 pivot may be performed,
in place of a 1× 1 pivot; ii) the partial pivoting strategy of [12] is adopted for deter-
mining the pivot size, in order to guarantee numerical stability [14, 15, 19, 42]. By
means of this choice, Assumption 3.1 is fulfilled (unlike in [33]), so that the precondi-
tioners belonging to the AINVK class are still positive definite and can be efficiently
computed via the SYMMBK procedure.

All codes were written in Fortran and compiled with gfortran 6 under Linux
Ubuntu 18.04. The runs were performed on a PC with Intel Core i7-4790K quad-core
4.00 (up to 4.40) GHz Processor and 32 GB RAM. A Fortran routine that implements
SYMMBK is available from the HSL Mathematical Software Library [46] (formerly
the Harwell Subroutine Library), namely routine HSL MI02. This routine includes the
eigen-decomposition of any 2 by 2 block of Bh in (2.4) (obtained via DLAEV2 from
LAPACK), and incorporates the resulting eigenvectors into Lh, in the form (2.4),
given by

Th = LhBhL
T
h = L̃hD̃hL̃

T
h ,

where D̃h is diagonal and L̃ is lower triangular. Therefore, it is perfectly suited for
constructing preconditioners of the AINVK class. A preconditioner can be provided
to HSL MI02. Also observe that SYMMBK computes conjugate directions. Indeed,
the columns of Ph, being Rh = PhL̃

T
h , are scaled conjugate directions, and we set

Ph as in (4.2). Hence the preconditioners in (3.5) can be rewritten by replacing Rh

by PhL̃
T
h and, in particular, we have Rh|T̂h|−1RT

h = Ph(D−1h W−1h )PT
h . Then, the

preconditioners (3.5) are completely defined by Ph, L̃h and Dh, which are iteratively
constructed by SYMMBK.

The preconditioning strategy we adopt (at each outer iteration k) for solving the
Newton system ∇2f(xk)d = −∇f(xk) is similar to that in [33, 34], and it can be
briefly summarized as follows: the information gained after a very small number of it-
erations of SYMMBK is used to construct the preconditioner. Then, the iterations are
continued by applying preconditioned SYMMBK. More specifically, the iterations of
SYMMBK are stopped as soon as h̄� n iterations have been performed and the pre-
conditioner is built; then the inner iterations continue with preconditioned SYMMBK.
If the inner iterations are prematurely stopped (by a termination criterion) before h̄
steps, we estimate that not enough information is available to build a preconditioner.
As pointed out in Remark 5.2 of [33], we prefer this strategy over using information
obtained at the previous (k − 1)-th outer iteration, as in [50]. In this way, we use
fresh information from the current Hessian ∇2f(xk) rather than ∇2f(xk−1). Indeed,
the latter Hessian yields misleading information when xk is far from xk−1. After
careful tuning, we chose h̄ = 7 as a value analogous to that used for the “memory” of
the preconditioner PREQN in [50]. In the practical implementation, the threshold h̄
must be dynamically adjusted to avoid terminating the current iteration of SYMMBK
whenever a 2× 2 pivot is not yet completed.

We use the standard residual-based criterion for terminating the inner iterations
[17, 18, 53] and the usual stopping rule

‖∇f(xk)‖ ≤ 10−5 max{1, ‖xk‖}

for the outer iterations [50, 53]. We consider that a failure occurs on a test problem
when the CPU time (in seconds) exceeds 1800. As test set we considered all large-scale
unconstrained problems in the CUTEst collection [38]. For each variable-dimension
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Fig. 2. Comparison between the unpreconditioned and preconditioned (AINVK) truncated New-
ton method, in terms of inner iterations (top left), number of function evaluations (top right) and
CPU time (bottom)

problem we considered three different dimensions 1000, 10000 and 50000 (in some
cases 3000, 12000, 60000), depending on the problem in hand. The resulting test set
is composed of 201 test problems, which include convex and nonconvex problems. In
the sequel we report the results of this experimentation (the value of a to select in
(3.5) is given in [34], where the positive definite case and a lower dimension test set
are considered). We performed a new tuning of the parameter w on the whole CUTEst
test set described above and confirmed that the choice w1 = · · · = wh = 100 (adopted
in [34]) is still the best one, also on nonconvex problems. Therefore we used this
choice in our numerical experiments. We display results using performance profiles
[24].

The first results concern a comparison between the unpreconditioned truncated
Newton method and the preconditioned one that uses the AINVK preconditioner
(adopting the parameters above). Figure 2 illustrates the performance profiles. With
respect to inner iterations, the preconditioned algorithm is best in terms of both effi-
ciency and robustness. As regards the number of function evaluations and CPU time,
the efficiency of the two algorithms is comparable, while the preconditioned algorithm
is definitely more robust. This is because, even if the preconditioner involves addi-
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Fig. 3. Comparison between the AINVK and Ritz-LMP preconditioners on the whole set of
test problems, in terms of inner iterations (top left), number of function evaluations (top right) and
CPU time (bottom)

tional computation, it improves the behaviour of the algorithm especially on difficult
problems, so that a certain number of failures occurring in the unpreconditioned case
are avoided. It is worth noting that with respect to the proposals in [33, 34], here the
use of SYMMBK in place of CG enhances performance.

Other interesting results concern the comparison between two versions of the pre-
conditioned truncated Newton algorithm: the first using AINVK, the second adopting
Ritz-LMP [39]. The comparison between the resources used by the two is discussed
in section 6. Now we compare their numerical behaviour. It is worth recalling that
Ritz-LMP requires storage of h̄ + 2 vectors ([39]), while LMP needs 2h̄ vectors: this
suggests that information exploited by AINVK might be more similar to that used in
Ritz-LMP rather than LMP. The Ritz-LMP preconditioner is computed according to
(18)–(19) and (25) of [39], by exploiting the Lanczos procedure in SYMMBK and us-
ing Ritz pairs obtained through the LAPACK DSTEV routine. Of course other choices
(possibly more efficient) are allowed, including the use of the LMP preconditioners
with different first-level preconditioners (we did not investigate them here and we set
H0 = In in (4.1)).

Figure 3 illustrates the performance profiles on the whole test set. The bet-
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Fig. 4. Comparison between the AINVK and Ritz-LMP preconditioners on convex problems,
in terms of inner iterations (top left), number of function evaluations (top right) and CPU time
(bottom)

ter behaviour of truncated Newton algorithm using AINVK is evident. However,
this comparison is not completely “fair”. Indeed, on nonconvex problems, unlike
AINVK the Ritz-LMP preconditioners are possibly indefinite, so that the precondi-
tioned SYMMBK method we adopted might suffer from reduced performance. In this
regard, a similar drawback would also arise in case SYMMBK were replaced by CG.
Therefore we repeated the comparison by restricting the test set to all problems where
negative curvatures are not encountered. Figure 4 shows the corresponding perfor-
mance profiles. As expected, on convex problems, the gap between the two algorithms
is reduced, so that Ritz-LMP is also slightly preferable to AINVK, in terms of function
evaluations. Nevertheless, also in the convex case AINVK is on average preferable.
This suggests that possibly the second term in the right-hand side of (3.5) is care-
fully built through the Spectral Theorem, without spoiling the information implicitly
collected by the Krylov-subspace method on the inverse of A.

These comparisons highlight the effectiveness of the AINVK preconditioners on
indefinite linear systems, and their theoretical properties (stated in section 5) seem to
be confirmed, particularly the capability of clustering some eigenvalues of the precon-
ditioned matrix and avoiding expansion of its spectrum. In this sense, the AINVK
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Fig. 5. Comparison between the AINVK and Ritz-LMP preconditioners on huge convex prob-
lems, in terms of inner iterations (top left), number of function evaluations (top right) and CPU
time (bottom)

preconditioners represent a significant enhancement to the proposal in [34], where
only the positive definite case is considered, and where the spectral analysis is limited
to the singular values of the preconditioned matrix.

To further assess the AINVK class, we performed another numerical test versus
Ritz-LMP by considering problems of huge dimension. We selected all problems from
the CUTEst collection whose dimension can be set to 106 (allowing maximum CPU
time of 3600 seconds). Moreover, in order to carry out a fair comparison with the
Ritz-LMP preconditioners, we excluded those problems where negative curvatures
were encountered. The resulting test set includes 40 (convex) problems. Figure 5
gives the corresponding comparison between AINVK and Ritz-LMP. Comparing with
Figure 4, we see that the gap in terms of efficiency and robustness is confirmed
in favour of AINVK. This suggests that the effectiveness of the AINVK is not very
sensitive to the dimension of the test problems. The additional computational burden
due to preconditioning by AINVK is offset by the reduced number of inner iterations.
The effect of preconditioning is even more important on huge problems, when a great
number of outer iterations is performed. Indeed, this is the case when the number of
the Newton systems to be solved significantly increases.
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As illustrated by Figure 5, the value h̄ = 7 (a relatively low storage) is sufficient
for AINVK in order to collect enough information efficiently on the Hessian. On the
contrary, Ritz-LMP using the same number of vectors seems to be less competitive.
Indeed (see Appendix A), Ritz-LMP needs a larger number of inner iterations, in or-
der to provide even a more poorly scaled Newton-type direction. The larger number
of inner iterations also explains the performance of Ritz-LMP with respect to CPU
time. An insight into such behaviour follows from the subsequent reasoning: the
rightmost term in both expressions (3.5) and (4.1) attempts to capture information
on the inverse Hessian. However, also in view of Remark 4.1, on the Krylov subspace
spanned after the first h̄ iterations, Ritz-LMP seems to construct a less accurate ap-
proximation of the inverse Hessian compared to AINVK. We recall that, as outlined
at the end of section 4, the LMP preconditioners might notably improve their perfor-
mance by using a proper first-level preconditioner. Indeed, the use of H0 = In (no
information on matrix A available at the beginning) along with low memory could
limit the LMP preconditioners efficiency. On the other hand, this shows the good
performance of the AINVK preconditioners on convex problems even if low memory
is used and without requiring a first-level preconditioner. As for nonconvex problems,
a comparison between AINVK and LMP may be further enhanced, observing that
LMP can be fruitfully coupled with GMRES(m), as in [39, 49].

8. Conclusions. We have proposed a class of general-purpose positive definite
preconditioners for the solution of large-scale symmetric indefinite linear systems,
which can be extended to a sequence of symmetric systems. The main features of the
proposed AINVK preconditioner are: i) it can be built for both positive definite and
indefinite systems; ii) it is matrix-free and iteratively constructed as a by-product of
the Lanczos-based Krylov-subspace method; iii) spectral properties of the precondi-
tioned matrix can be provided; iv) fewer vectors of storage are needed compared to
LMP, Ritz-LMP and PREQN; v) the computational effort involved in computing the
product of the preconditioner times a vector is competitive with existing methods;
vi) the numerical performance of AINVK proved to be competitive with respect to
state-of-art methods. In particular, on large and huge optimization test problems,
the proposed preconditioners have shown remarkable effectiveness and robustness.
Finally, we believe that the combined use of AINVK preconditioners and damped
techniques [2] can be worth investigating.

Appendix A. Tables of numerical results. Here we report the complete
numerical results for AINVK (Table 1) and Ritz-LMP (Table 2) on the subset of huge
convex problems. Iter, Funct, Inner-it, Time respectively represent the number of
outer iterations, function evaluations, inner iterations and the overall computational
time (in seconds). Unfortunately, it is impossible to combine the two tables on one
page for facilitating the comparison of the results. However, the performance profile
in Figure 5 shows the improved performance of AINVK.
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Table 1
Results for AINVK on huge convex problems

Problem n Iter Funct Inner-it Time (s)
ARWHEAD 1000000 13 148 13 7.35
BDQRTIC 1000000 – – – > 3600
BRYBND 1000000 12 18 21 8.25
CRAGGLVY 1000000 27 62 126 24.21
CURLY10 1000000 – – – > 3600
DIXMAANA 1050000 8 13 8 1.54
DIXMAANB 1050000 6 11 7 1.50
DIXMAANC 1050000 6 12 8 1.56
DIXMAAND 1050000 6 8 8 1.49
DIXMAANE 1050000 21 24 5061 390.68
DIXMAANF 1050000 19 24 18099 1471.16
DIXMAANH 1050000 19 32 42356 3503.84
DIXMAANI 1050000 22 25 4790 373.70
DIXMAANK 1050000 22 35 1557 135.52
DIXMAANL 1050000 14 15 1720 147.61
DQDRTIC 1000000 10 31 17 3.20
DQRTIC 1000000 – – – > 3600
EDENSCH 1000000 14 54 25 5.52
ENGVAL1 1000000 8 21 21 3.26
FLETCBV2 1000000 1 1 0 0.15
FLETCHCR 1000000 17 55 72 11.64
FREUROTH 1000000 17 90 30 7.65
LIARWHD 1000000 37 466 43 19.75
MOREBV 1000000 1 1 0 0.09
NCB20B 1000000 23 105 2952 1710.88
NONDIA 1000000 9 170 8 4.57
NONDQUAR 1000000 19 48 136 15.86
PENALTY1 1000000 60 60 101 15.24
POWELLSG 1000000 31 101 88 7.80
POWER 1000000 – – – > 3600
QUARTC 1000000 – – – > 3600
SCHMVETT 1000000 7 9 26 14.85
SPARSQUR 1000000 32 38 159 136.37
SROSENBR 1000000 14 89 15 3.04
TESTQUAD 1000000 29 65 13219 733.27
TOINTGSS 1000000 2 3 1 0.25
TQUARTIC 1000000 2 2 1 0.32
TRIDIA 1000000 29 121 19159 1177.25
VAREIGVL 1000000 10 44 13 4.52
WOODS 1000000 16 78 21 4.08
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