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Abstract

In 2015, Guth proved that for any set of k-dimensional bounded complexity varieties in R
d

and for any positive integer D, there exists a polynomial of degree at most D whose zero set
divides Rd into open connected sets, so that only a small fraction of the given varieties intersect
each of these sets. Guth’s result generalized an earlier result of Guth and Katz for points.

Guth’s proof relies on a variant of the Borsuk-Ulam theorem, and for k > 0, it is unknown
how to obtain an explicit representation of such a partitioning polynomial and how to construct
it efficiently. In particular, it is unknown how to effectively construct such a polynomial for
bounded-degree algebraic curves (or even lines) in R

3.
We present an efficient algorithmic construction for this setting. Given a set of n input

algebraic curves and a positive integer D, we efficiently construct a decomposition of space into
O(D3 log3 D) open “cells,” each of which meets O(n/D2) curves from the input. The construc-
tion time is O(n2). For the case of lines in 3-space we present an improved implementation,
whose running time is O(n4/3 polylogn). The constant of proportionality in both time bounds
depends on D and the maximum degree of the polynomials defining the input curves.

As an application, we revisit the problem of eliminating depth cycles among non-vertical
lines in 3-space, recently studied by Aronov and Sharir (2018), and show an algorithm that cuts
n such lines into O(n3/2+ε) pieces that are depth-cycle free, for any ε > 0. The algorithm runs
in O(n3/2+ε) time, which is a considerable improvement over the previously known algorithms.
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1 Introduction

Partitioning Polynomials. In [24], Guth developed an efficient space decomposition adapted
to a set of varieties in Euclidean space. Specifically, he proved the following:

Theorem 1.1 (Polynomial Partitioning for Varieties [24]). Let Γ be a set of k-dimensional varieties
in R

d, each defined by at most m polynomials of degree at most b. For each D ≥ 1, there is a d-
variate non-zero “partitioning polynomial” f of degree at most D, so that R

d \ Z(f) is a union

of O(Dd) connected components, each of which intersects at most C |Γ|
Dd−k

varieties from Γ. Here
C > 0 is a constant that depends on b, m, and d.

In particular, when Γ is a set L of algebraic curves in R
3 (defined by polynomials of degree at

most b), or just lines, Theorem 1.1 guarantees the existence of a polynomial f of degree at most D
partitioning R

3 into O(D3) connected components, each of which intersect O(|L|/D2) curves of L.
Here and throughout this paper, we will think of b as being fixed as |L| grows, and all implicit
constants are allowed to depend on b.

Aronov, Miller, and Sharir [10] used Theorem 1.1 to prove that n pairwise disjoint non-vertical
triangles in R

3 can be cut into O(n3/2+ε) pieces that form a “depth order,” for any ε > 0 (see below
for the definition of depth order and a further discussion). This work extended an earlier result of
Aronov and Sharir [11], who proved a bound of O(n3/2 polylog n), for the analogous problem for
pairwise disjoint non-vertical lines in R

3. Apart from the ε loss in the exponent of the triangle
bound and polylog n factor in the line bound, these results are worst-case optimal.

Theorem 1.1 uses a variant of the Borsuk-Ulam theorem to obtain the partitioning polynomial.
However, there is no known effective method to construct such a polynomial. Therefore, despite
the recent progress on eliminating depth cycles, there is no matching algorithmic bound for the
result established in [10]. The best known result in this direction is the algorithm presented by
De Berg [16], which exploits a different technique and achieves a suboptimal bound on the number
of pieces, where these pieces are triangular fragments (in contrast to the procedure in [10], which
yields pieces bounded by algebraic curves). For the case of lines, the work in [11] describes several
slow polynomial-time algorithms to compute a depth order, among which is an approximation
algorithm by Aronov, De Berg, Gray, and Mumford [7, Theorem 3.1] that produces a set of cuts
whose size is larger than that of the smallest possible by only a polylogarithmic factor.

If Γ is replaced by a set of curves L in R
d in Theorem 1.1, then it is easy to find a degree D

polynomial f so that on average each connected component of R3 \ Z(f) meets O(|L|/D2) curves
from L (indeed, if f is a degree D polynomial, then by Warren [35, Theorem 2], the number
of connected components of R

d \ Z(f) is at most O(D3); every algebraic curve not contained
in Z(f) intersects Z(f) in O(D) points, and thus intersects only O(D) connected components
of Rd \ Z(f)). Enforcing the property that every connected component of Rd \ Z(f) intersects
O(|L|/D2) curves, however, is much more difficult. In fact, even achieving a more modest bound,
say, of the form O(|L|/D1+ε), for some ε > 0, is already challenging. Using ε-cuttings, one can

produce a space decomposition, such that each connected component meets roughly O
(

|L|
D

)

curves

of L (this bound is larger by an order of magnitude than our target bound), and such that the total
number of curve-connected component intersections is close to O(|L|D), see, e.g., [23,28]. However,
we are not aware of an approach based on ε-cuttings where the worst-case bound on the number

of curves meeting a connected component is o
(

|L|
D

)

.
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Theorem 1.1 is an extension of the polynomial partitioning theorem by Guth and Katz [25],
based on the polynomial ham-sandwich theorem of Stone and Tukey [33]. Namely, Guth and Katz
showed that, if Γ is a finite set of points in R

d and D ≥ 1 is an integer parameter, then there is a
non-zero polynomial f of degree at most D so that each connected component of Rd \Z(f) contains
O(|Γ|/Dd) points of Γ, with a constant of proportionality depending on d. Adapting a definition
from [5], let r = O(Dd) be an integer parameter with an appropriate constant of proportionality
(i.e., it is the number of connected components in R

d \Z(f) as follows by Warren [35, Theorem 2]).
We say in this case that f is an r-partitioning polynomial. Agarwal, Matoušek, and Sharir [5]
presented an algorithm that efficiently computes such a polynomial f :1

Theorem 1.2 (Effective Polynomial Partitioning for Points [5]). Given a set P of n points in R
d

and an integer parameter r ≤ n, an r-partitioning polynomial f for P of degree O(r1/d), with an
implicit constant depending on d, can be computed in randomized expected time O(nr + r3).

Although the authors in [5] do not state so explicitly, the proof of Theorem 1.2 also applies to
multisets of points, or, equivalently, sets of points with positive integer weights, where the weight
of a point corresponds to the number of times that it appears in the multiset, where now n denotes
the total weight of P . This multiset formulation will be useful for our analysis below.

Model of Computation. The algorithm in [5] uses the real RAM model of computation, where
the input data contains arbitrary real numbers and each arithmetic operation on them is charged
unit cost.

In this paper, we additionally assume that, for each b ≥ 1, the roots of a real univariate
polynomial of degree b can be computed in time that depends only on b. This model was first
introduced by Agarwal and Matoušek [4] in the context of range searching with semi-algebraic sets
(and in fact a variant of it was used as early as in 1983 by Atallah [12]), and it has become standard
for this type of problems.

Our Result. We present an efficient algorithm that, given a set of algebraic curves in R
3, parti-

tions R3 into disjoint open “cells” (plus a “boundary”) so that only a small fraction of the curves
intersect each cell. Informally, we prove a theorem of the following kind:

Theorem 1.3 (Informal Version). Let L be a collection of n irreducible algebraic curves (of constant
degree) in R

3 that satisfy a mild general position requirement2. Let D be a positive integer. Then
there is a decomposition of R3 into O(D3 log3D) disjoint open cells, plus a boundary, so that each
cell intersects O(n/D2) curves of L. The boundary is the union of an algebraic variety of degree
O(D logD) and dimension two, plus an additional semi-algebraic set (with empty interior) that has
finite and well-behaved intersection with all but a small number of curves from L. Moreover, this
decomposition can be computed in O(n2) randomized expected time. For the special case where L is
a set of lines in R

3, the expected running time improves to O(n4/3 polylog n).

A precise statement of Theorem 1.3 appears in Section 2 (Theorem 2.9). The proof of Theo-
rem 1.3 is based on a two-level decomposition. The first level produces a polynomial partitioning
for points using Theorem 1.2, and in the second level we apply the method of “ε-cuttings” in order

1 We note that the polynomial f computed in [5] forms a partition approximating the one shown in [25] in that
the constant of proportionality in the degree bound in Theorem 1.2 is slightly worse than that in [25].

2See Section 2.
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to construct an efficient planar decomposition for curve segments, provided that few pairs of curves
intersect. This technique also allows us to efficiently partition curve segments in R

3, provided few
pairs of curves intersect when projected to the xy-plane. These two ingredients are combined as
follows. For each curve in L, we consider all points on the curve whose projection onto the xy-plane
lies on the projection of another curve from L; we call such points “points of vertical visibility.”
Using Theorem 1.2, we partition R

3 into connected open cells, so that each cell either intersects
few curves from L, or it contains few points of vertical visibility. Cells of the first kind satisfy the
conclusions of our theorem. Cells of the second kind are further decomposed using the ε-cutting
machinery mentioned above.

Theorem 1.3 produces a space decomposition with very similar properties to that of Theorem 1.1
for the case d = 3, k = 1, though our decomposition is weaker by a polylogarithmic factor. However,
because our theorem employs a two-level construction, the “boundary” of the cells is not an algebraic
variety. Instead, it is the union of an algebraic variety (representing the zero set of an appropriate
polynomial obtained at the primary partition) and a semi-algebraic set resulting from the secondary
partition.

An application: Eliminating depth cycles for lines in R
3. Let L be a set of n pairwise-

disjoint non-vertical lines in R
3. If ℓ, ℓ′ ∈ L, we say that ℓ passes above ℓ′ if a vertical line that

meets both ℓ and ℓ′ intersects ℓ at a point that has larger z-coordinate than that of its intersection
with ℓ′; this line is unique if ℓ and ℓ′ have non-parallel xy-projections. We denote this relation as
ℓ′ ≺ ℓ. This relation is not necessarily transitive, and is likely to form cycles that consist of three
or more lines.

Our goal is to efficiently cut the lines in L into a finite number of pieces that do not form any
cycles under the relation ≺; this is also referred to as depth order. In our setting, these resulting
pieces are line segments, rays, or just lines in 3-space. Aronov and Sharir [11] used Theorem 1.1 for
the case d = 3, k = 1 to obtain a near optimal subquadratic bound on the number of cuts required
to create a depth order for lines, provided that the lines are non-vertical and no two lines intersect.
Specifically, they showed that O(n3/2 logO(1) n) cuts suffices. This nearly matches the best-known
lower bound Ω(n3/2). We present an efficient implementation of their method, which follows from
Theorem 1.3.

Theorem 1.4. Let L be a collection of n pairwise-disjoint non-vertical lines in R
3. Suppose that

no pair of projected lines coincide. Then, for any prescribed ε > 0, we can cut the lines in L

into O(n3/2+ε) pieces whose depth relation is acyclic. This cutting can be computed in expected
O(n3/2+ε) time, where the constant of proportionality depends on ε.

The algorithm in Theorem 1.4 is considerably faster than the algorithms presented in [11]
and by De Berg [16], though the resulting collection of segments is slightly larger (our algorithm
produces (n3/2+ε) segments, versus O(n3/2 logO(1) n) segments in [11] and [16]), and note that the
algorithms in [11,16] do not require any general position assumptions on the collection of lines (i.e.,
line projections may coincide).

The main motivation for eliminating depth cycles comes from hidden surface removal—a tech-
nique for rendering a scene in computer graphics [17]. We refer the reader to the earlier work
in [9,20], as well as the more recent studies in [10,11,16] for a comprehensive overview, which also
includes the more intricate problem of eliminating depth cycles among pairwise disjoint triangles in
3-space. In [10], the first author, Miller, and Sharir used Theorem 1.1 for the case d = 3, k = 1 in
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order to obtain a near optimal subquadratic bound on the number of pieces required to eliminate
depth cycles for triangles in 3-space. In contrast to the case of lines, however, Theorem 1.3 cannot
be used directly to efficiently implement their technique for triangles. This is due to the fact that
the structure resulting from Theorem 1.3 is different than the one resulting from Theorem 1.1.
After the publication of the proceedings version of this paper [8], Agarwal and the authors [2] have
shown, using a different set of tools, that the polynomial partitioning stated in Theorem 1.1 can
be computed in an efficient manner. Integrating this result with the mechanism in [10] eventually
yields an efficient algorithm for the setting of triangles, and, as a result, for the setting of lines
(which is considered as a special case of triangles). We do not discuss this further here.

While the follow-up work [2] provides general methods for performing partitioning, the current
work has several advantages: (i) It gives a relatively simple solution to the setting of algebraic
curves in R

3, and, in particular, bypasses the complicated topological machinery of Guth [24] based
on the Borsuk-Ulam theorem. So far the only work we are aware of, which bypasses the Borsuk-
Ulam theorem, is the one in [5] addressing the setting of points in R

d. (ii) The running time of
the algorithm in [2] is linear in the number of input curves, but exponential in the degree D of the
polynomial partitioning. On the other hand, the running time of our algorithm is polynomial in D,
and therefore it is considerably more efficient when the degree D is non-constant. (iii) Last but
not least, our work contains novel techniques that give insight into the geometry specific to curve
arrangements. There are still many open problems related to curve arrangements, and we hope
these ideas will be helpful for future work in this direction.

2 Polynomial Partitioning for Algebraic Curves in 3-Space

In this section we prove Theorem 1.3. Let L be a collection of n irreducible algebraic curves
in R

3, each defined by polynomials of degree at most b. We will think of b as being fixed, so all
implicit constants may depend on b. In particular, we write X(n) = O(Y (n)) to mean that there
exists a constant C depending only on b so that X(n) ≤ CY (n) for all positive integers n. We
write X(n) = Ot(Y (n)) to mean that there exists a constant C depending only on b and t so that
X(n) ≤ CY (n) for all positive integers n.

For a set X ⊂ R
3, we denote by X∗ its projection onto the xy-plane. Let L

∗ = {γ∗ | γ ∈ L};
this is the set of xy-projections of the curves of L.

General position assumptions. Let L be a set of irreducible curves in R
3. We say that the

curves in L are in general position if the xy-projection of each pair of distinct curves from L have
finite intersection. If in addition none of the curves in L are vertical lines (i.e., lines parallel to the
z-axis), then we say that the curves in L are in non-vertical general position.

Definition 2.1. Let γ, γ′ be two distinct irreducible curves in R
3. A pair of points (p, p′) ∈ γ × γ′,

are called points of “vertical visibility” (with respect to γ and γ′) if p∗ = (p′)∗.

If neither γ nor γ′ is a vertical line, and the projections of γ and γ′ have a finite intersection,
then γ and γ′ have finitely many pairs of points of vertical visibility.

For the set L of irreducible curves defined above, we denote by V (L) the multiset of all points of
vertical visibility admitted by the curves in L. If the curves in L are in non-vertical general position,
then each pair of curves from L contribute O(1) points to V (L), and thus |V (L)| = O(n2).

4



Our main algorithm assumes that the curves in L are in non-vertical general position. Later in
the paper we show how this assumption can be weakened to merely assume that the curves are in
general position.

Remark. We do not make any further general position assumptions. In particular, the curves in
L are allowed to intersect, and the xy-projections of three or more curves from L are allowed to
intersect at a point. If a point p ∈ V (L) is contained in m curves from L and its xy-projection p∗

is contained in the xy-projection of k ≥ m curves from L, then p will have multiplicity m(k− 1) in
V (L), i.e., it will have weight m(k−1). This observation will be exploited when we apply Theorem
1.2. Note also that a single curve γ ∈ L may intersect itself. Moreover, a vertical line may intersect
γ at several points, implying that the xy-projection of γ intersects itself. However, we do not view
these points as points of vertical visibility. In fact, this self-intersection might be a semi-algebraic
set of positive dimension (this will occur, for example, if γ is a circle whose projection to the xy-
plane is a line segment), in which case there is an overlap in the xy-projection of γ. We revisit this
scenario in Section 2.2, where we describe how to incorporate that into our analysis.

We will need a number of tools to analyze the collection of curves L. In [13], Barone and Basu
used considerations from real algebraic geometry in order to obtain several analogues of Bézout’s
theorem and Harnack’s curve theorem, which are useful when studying algebraic space curves. We
will state two special cases of their results here.

Theorem 2.2 (Bézout’s theorem for real algebraic space curves). For each integer b ≥ 1, there
is a constant C1(b) so that the following holds. Let γ be an irreducible algebraic curve in R

3 that
is defined by polynomials of degree at most b. Let P be a trivariate polynomial of degree D. Then
either P vanishes on γ (i.e., γ ⊂ Z(P )) or |γ ∩ Z(P )| ≤ C1(b)D.

Theorem 2.3 (Harnack’s curve theorem for real algebraic space curves). For each integer b ≥ 1,
there is a constant C2(b) so that the following holds. Let γ be an irreducible algebraic curve in R

3

that is defined by polynomials of degree at most b. Then γ is a union of at most C2(b) connected
components. The same result holds if γ ⊂ R

2 is an irreducible algebraic plane curve.

We remark that the constants C1(b) and C2(b) can be computed explicitly, but this is not
required by our analysis.

Hereafter we fix a parameter D ≥ 1, which will play a role analogous to the parameter D from
Theorem 1.1. As a minor technicality, we would like to assume that D is not much larger than n1/2.
The following lemma allows us to dispense with the case when D is large compared to n1/2

Lemma 2.4. For each integer b ≥ 1, there is a constant C3(b) so that the following holds. Let L
be a collection of n irreducible algebraic curves in R

3, each defined by polynomials of degree at most
b, and let D > C3(b)n

1/2. Then there is a polynomial P of degree at most D that vanishes on each
curve in L. This polynomial can be constructed in O(poly(D)) time.

Proof. Select C1(b)D + 1 points on each curve from L, where C1(b) is the constant from Theorem
2.2, and let P be a polynomial of degree D that vanishes at these points. Since the vector space of
polynomials of degree at most D has dimension

(D+3
3

)

, if C3(b) is sufficiently large (depending only

on C1(b), which in turn depends only on b) then the condition D > C3(b)n
1/2 implies that

(D+3
3

)

>
n(C1(b)D + 1), so there must exist a non-zero polynomial that vanishes at the specified points.
The coefficients of such a polynomial can be computed in O(poly(D)) time (using, e.g., Gaussian
elimination). Since P vanishes on at least C1(b)D + 1 points from each curve in L, Theorem 2.2
implies that P vanishes on each curve from L.
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Henceforth we will assume that D = O(n1/2). Our space decomposition is constructed by two
main partitioning steps. In the first, we iteratively partition space by overlaying the zero sets
of polynomials of degree D ≥ 1, each of which partitions a subset of V (L), so that the overall
majority of resulting cells meet only O(n/D2) curves of L each, and the remaining cells together
cover a small fraction of V (L) (Lemma 2.5). By applying this process O(logD) times, we obtain
a trivariate polynomial P of degree O(D logD), which partitions space into O((D logD)3) open
connected cells, each of which either intersects only O(n/D2) curves from L, or contains O(n2/D4)
points of V (L) (or both). Cells that intersect O(n/D2) curves from L are called acceptable, while
the remaining cells are deemed unacceptable. This step is performed in Corollary 2.6.

An unacceptable cell intersects a large number of curves, but the fact that it contains O(n2/D4)
points from V (L) allows us to further decompose it into a small number of acceptable subcells.
This leads to the second decomposition step, in which we build an ε-cutting within each such cell
(the ε-cutting is constructed in the xy-projection of the cell, but then we apply a lifting in the
z-direction in order to obtain a three-dimensional decomposition). This is described in Section 2.2.
The construction is based on the random sampling technique of Clarkson and Shor [22] and of
Chazelle and Friedman [21], which was later adapted by De Berg and Schwarzkopf [18] to yield
output-sensitive decompositions.

2.1 The First Decomposition Step: Iteratively Partition Space

We first show the following main property.

Lemma 2.5. For each integer b ≥ 1, there is a constant C4(b) so that the following holds. Let L be
a collection of n irreducible algebraic curves in R

3 in non-vertical general position, each defined by
polynomials of degree at most b. Let D be a positive integer. For each non-negative integer k ≥ 0,
there is a set Vk ⊂ V (L) and a polynomial Fk with the following properties:

(A) deg(Fk) ≤ kD.

(B) |Vk| ≤ |V (L)|/2k.

(C) For each open connected component Ω of R3 \ Z(Fk), at least one of the following holds:

(C.1) Ω intersects at most C4(b)n/D
2 curves from L, or

(C.2) Ω ∩ V (L) ⊂ Vk.

Proof. First note that the curves from L fully contained in Z(Fk) can be disregarded, since they do
not meet any connected components of R3 \ Z(Fk), and are therefore irrelevant for the assertions
of the lemma.

We prove properties (A)–(C) by induction on k. For k = 0, the assertions are satisfied by putting
V0 = V (L) and F0 = 1. For k ≥ 1, let Vk−1 be a set of points and let Fk−1 be a polynomial satisfying
properties (A)–(C) above (with k − 1). Apply Theorem 1.2 to find a partitioning polynomial f of
degree at most D for the multiset of points Vk−1. Each connected component of R3 \Z(f) contains
O(|Vk−1|/D

3) points from Vk−1.
We call a connected component of R3\Z(f) an acceptable cell if it intersects at most C4(b)n/D

2

curves from L (we specify the choice of C4(b) shortly); otherwise we call it an unacceptable cell.
By Theorem 2.3, each curve γ ∈ L contains at most C2(b) irreducible components. If γ is not

contained in Z(f) then by Theorem 2.2, we have |γ ∩ Z(f)| ≤ C1(b)D + 1. This implies that each
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curve γ ∈ L that is not contained in Z(f) intersects at most C1(b)D+C2(b) connected component
from R

3 \ Z(f), and thus there are at most n(C1(b)D + C2(b)) pairs (γ,Ω), where γ ∈ L is a
curve, Ω is a connected component from R

3 \ Z(f), and γ intersects Ω. Since each unacceptable

cell accounts for at least C4(b)n/D
2 of these pairs, at most n(C1(b)D+C2(b))

C4(b)n/D2 ≤ C1(b)+C2(b)
C4(b)

D3 cells are

unacceptable. Since each unacceptable cell contains O(|Vk−1|/D
3) points from Vk−1, if we select

the constant C4(b) sufficiently large (depending only on C1(b), C2(b) and thus on b), then at most
|Vk−1|/2 points from Vk−1 are contained in unacceptable cells.

Define
Vk :=

⋃

τ unacceptable

τ ∩ Vk−1, (1)

with the union taken over all unacceptable cells τ of R3 \Z(f). To complete the inductive step, we
define Fk := Fk−1 · f . In other words, Z(Fk) = Z(Fk−1) ∪ Z(f).

Then
deg(Fk) = deg(Fk−1) + deg(f) ≤ (k − 1)D +D = kD,

so property (A) is satisfied. We have |Vk| ≤ |Vk−1|/2 ≤ |V0|/2
k, thus property (B) is satisfied. It

remains to verify property (C). Let Ω be a connected component of R3 \ Z(Fk); this component
is contained in the intersection of some connected component Ω′ of R3 \ Z(Fk−1) and a connected
component τ of R3 \ Z(f). If Ω′ intersects at most C4(b)n/D

2 curves from L, so does Ω, and
(C.1) holds. On the other hand, if Ω′ intersects more than C4(b)n/D

2 curves from L, then by
property (C.2) of the induction hypothesis, Ω′ ∩ V (L) ⊂ Vk−1, and, in fact, Ω′ ∩ V (L) = Ω′ ∩ Vk−1.
If Ω is unacceptable, then so is τ ⊇ Ω and (1) implies

Ω ∩ Vk = Ω ∩ Vk−1 = Ω ∩ V (L),

since Ω ⊂ Ω′. Therefore (C.2) holds. Otherwise, Ω is acceptable, so it intersects at most
C4(b)n/D

2 curves from L and (C.1) holds. Thus property (C) is satisfied, which concludes the
inductive argument.

Remark: We note that, since we apply Theorem 1.2 to a multiset of points, it in particular implies
that a point with a high multiplicity is more likely to appear on the zero set of the partitioning
polynomial.

Applying Lemma 2.5 to L with parameter D and k = 4⌈log2 D⌉, and recalling that our implicit
constants are allowed to depend on b, so in particular C4(b) = O(1), we conclude:

Corollary 2.6. Let L be a collection of n irreducible algebraic curves in R
3 in non-vertical general

position, each defined by polynomials of degree at most b. Let D be a positive integer. Then there
is a polynomial P ∈ R[x, y, z] of degree O(D logD) such that R3 \Z(P ) is a union of O((D logD)3)
open connected components, which we will call the cells of the decomposition, so that for each such
cell Ω, at least one of the following holds: either Ω intersects O(n/D2) curves from L, or Ω contains
O(n2/D4) points of V (L) (or both).

Remark: Although at this point the constant 4 in the choice of k seems arbitrary, it will become
clearer in Section 2.2. In particular, this choice is exploited in the proof of Claim 2.8.

Next, we will weaken the requirement that the curves in L are in non-vertical general position,
and replace it with the requirement that the curves are in general position.
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Corollary 2.7. Let L be a collection of n irreducible algebraic curves in R
3 in general position,

each defined by polynomials of degree at most b. Write L = L1 ∪ L2, where the curves in L1 are
vertical lines and none of the curves in L2 are vertical lines. By assumption, the xy-projections
of each pair of curves from L2 have finite intersection. Let D be a positive integer. Then there is
a polynomial P ∈ R[x, y, z] of degree O(D logD) such that R3 \ Z(P ) is a union of O((D logD)3)
open connected components, which we will call the cells of the decomposition, where each cell Ω
intersects O(n/D2) curves from L1. Furthermore, for each such cell Ω, at least one of the following
holds: either Ω intersects O(n/D2) curves from L2, or Ω must contain at most O(n2/D4) points
of V (L2) (or both).

Proof. Let L
∗
1 ⊂ R

2 be the set of points obtained by intersecting the curves in L1 with the xy-
plane. Apply Theorem 1.2 to find a partitioning polynomial P1 of degree at most D for L∗

1. Each
connected component of R2 \ Z(P1) contains O(|L∗

1|/D
2) points from L

∗
1. We now consider P1

as a polynomial P1(x, y, z) of three variables (P1(x, y, z) is independent of z, so Z(P1(x, y, z)) is
obtained by lifting Z(P (x, y)) in the z-direction). Let P2 be the output of Corollary 2.6 applied to
L2, and define P := P1P2.

2.2 The Second Decomposition Step: Random Sampling

In this section we show how to further refine the decomposition obtained in Corollary 2.7, so that
all cells are acceptable.

Write L = L1 ∪ L2, as in the statement of Corollary 2.7. Fix an unacceptable cell Ω ∈
R
3 \ Z(P ). From Corollary 2.6, it follows that Ω contains O(n2/D4) points of V (L2) (counting

with multiplicity). Let LΩ ⊆ L2 be the subset of curves that meet Ω. We now intersect each
curve γ ∈ LΩ with Ω. Let SΩ be the collection of the resulting open curve segments lying in
Ω, and let S∗

Ω be the set of their projections onto the xy-plane. Recall that we allow the curves
in L2 to self-intersect. Moreover, a vertical line might intersect a curve of L2 at several points.
This implies that the projected curves in S∗

Ω may form self-intersections, of which we dispose as
follows. Each projected curve γ ∈ S∗

Ω is contained in the zero set of a square-free polynomial gγ of
degree O(1), where the implicit constant depends only on b. By Theorem 2.3, Z(g) contains O(1)
connected components. By [32, Lemma 2.3] and Bézout’s theorem, Z(g)\Z(∂yg) is a union of O(1)
x-monotone (open) Jordan arcs, where the implicit constant depends only on b. Let WΩ be the set
of such arcs; we have |WΩ| = O(|S∗

Ω|), where again, the constant of proportionality depends on the
degree b.

Planar arrangements and (1/r)-cuttings. We will recall a few standard definitions about
arrangements of curves; see [6] for further details. Given a set W of algebraic arcs in the plane,
the arrangement A(W ) of W is the partition of the plane induced by the arcs in W into vertices,
edges, and faces, where a vertex is either an endpoint of an arc or the intersection point of a
pair of arcs, an edge is a (relatively open) portion of an arc delimited by two consecutive vertices,
and a face is a maximal connected open planar region that is disjoint from the arcs and vertices
in W . We say that a face meets an edge from A(W ) if the face intersects the edge. The total
complexity of the arrangement A(W ) is the overall number of its vertices, edges, and faces. The
vertical decomposition of A(W ) is a partition of the faces of A(W ) into pseudo-trapezoidal faces,
by erecting upward and downward vertical walls from each vertex of A(W ) until it hits the first
vertex or edge of A(W ), or continuing to ∞ (or −∞) if there is no such edge or vertex.
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Let r > 0 be a real parameter to be fixed shortly. Our goal is to construct a (1/r)-cutting for
the arcs in WΩ. This is a partition of the plane into constant-complexity faces (in our case these
are pseudo-trapezoidal faces determined by the vertical decomposition of the two-dimensional ar-
rangement of some arcs from WΩ [6]), each of which meets at most |WΩ|/r of the arcs in WΩ.
From [18, Lemma 2.2] it follows that there is a (1/r)-cutting for WΩ consisting of O(τ(r)) pseudo-
trapezoidal faces. Here τ(r) is the expected number of faces in the vertical decomposition3 A

q(R∗
Ω)

of the arrangement A(R∗
Ω) of a random subset R∗

Ω ⊆ WΩ, where every arc in WΩ is drawn inde-

pendently with probability p := cD2

n for a fixed constant c > 0. We set r := p|WΩ|. The expected
number of pseudo-trapezoidal faces in A

q(R∗
Ω) is proportional to the expected complexity of the

arrangement A(R∗
Ω) [6]). We next show the following claim.

Claim 2.8. Letting mΩ := E[|R∗
Ω|], the expected complexity of A(R∗

Ω) is O(mΩ + 1), where E[·]
denotes expectation.

Proof. Let X be the set of vertices of A(WΩ). For each vertex x ∈ X, let w(x) be the weight of x,
that is, the number of pairs of curves from the arrangement A(WΩ) that contain x. Since Ω contains
O(n2/D4) points of V (L) (counting with multiplicity), we have that

∑

x∈X w(x) = O(n2/D4), and
thus in particular4 |X| = O(n2/D4).

Let R∗
Ω be a random subset of WΩ, where every arc in WΩ is drawn independently with prob-

ability p := cD2

n . Since by our earlier assumption D = O(n1/2), if c is chosen sufficiently small
(depending on b), then we can ensure that p < 1/2. For each x ∈ X, let w∗(x) be the weight of the
vertex x in this random set. Since p < 1, we have

E[w∗(x)] =

w(x)
∑

k=2

(

k

2

)

pk <

∞
∑

k=2

(

k

2

)

pk =
p2

(1− p)3
.

By linearity of expectation, the expected combined weight of the vertices in A(R∗
Ω) is

E

[

∑

x∈X

w∗(x)
]

=
∑

x∈X

E[w∗(x)] <
∑

x∈X

p2

(1− p)3
=

p2

(1− p)3
|X|.

Having p < 1/2 as above, we obtain |X| p2

(1−p)3
≤ 8p2|X| = O(1). The claim now follows from

the fact that the arrangement complexity of A(R∗
Ω) is bounded (up to multiplicative constants)

by the number of elements in R∗
Ω plus the number of intersections between pairs of curves in the

corresponding arrangement.

We next bound the total expected complexity of A(R∗
Ω) (and thus the total number of faces

in A
q(R∗

Ω)), over all unacceptable cells Ω ∈ R
3 \ Z(P ). Put

W :=
⋃

Ω unacceptable

WΩ,

3The original formulation in [18] is for canonical triangulations, but in our case, they can be replaced with vertical
decompositions.

4The number of vertical visibilities might be considerably smaller, as such a visibility is relevant for a pair of curve
segments γ1, γ2 ∈ SΩ only if both points v1 ∈ γ1 and v2 ∈ γ2 (which lie vertically above the other) are contained in
Ω, but it may happen that only one of v1, v2 is in Ω.
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with the disjoint union taken over all unacceptable cells Ω of R3 \ Z(P ), and recall that within

each such cell Ω an arc of WΩ is selected independently with probability p = cD2

n . Since deg(P ) =
O(D logD), we have |W | = O(nD logD+n), as we started with n curves and cut them into pieces
at the O(nD logD) points of intersection with Z(P ). We also recall that we cut the xy-projections
of these pieces into x-monotone Jordan arcs (which only increases the number of arcs by a constant
factor that depends on b). Therefore the total expected number of arcs in the samples R∗

Ω, over all
unacceptable cells Ω, is O(pnD logD) = O(D3 logD).

Claim 2.8 now implies that

E

[

∑

Ω

(|R∗
Ω|+ 1)

]

= O(D3 log3 D), (2)

with the summation taken over all unacceptable cells Ω of R3 \Z(P ). In other words, we have just
shown that the expected total number of faces in A

q(R∗
Ω) over all such cells Ω is O(D3 log3 D).

We finally describe the actual refinement of the unacceptable cells Ω. Each pseudo-trapezoidal
face ∆∗

Ω ∈ A
q(R∗

Ω) is turned into a vertical prism σ by taking its Cartesian product with the z-axis.
We now form intersections of Ω with each prism σ; Ω is only intersected with prisms arising from
the pseudo-trapezoidal faces of its own decomposition A

q(R∗
Ω). We refer to these intersections as

the (open) second-stage cells and observe that they might not be connected, since Ω needs not be
xy-monotone. Despite this oddity, our decomposition does have the desired properties.

Indeed, since each second-stage cell ξ = Ω∩σ corresponds to a unique pseudo-trapezoid ∆∗
Ω, the

overall expected number of second-stage cells is O(D3 log3 D). By the properties of (1/r)-cuttings,

each pseudo-trapezoidal face ∆∗
Ω ∈ A

q(R∗
Ω) meets |WΩ|/r arcs of WΩ. Since r = cD2

n · |WΩ|, each
∆∗

Ω meets O(n/D2) arcs of WΩ. Therefore ∆∗
Ω meets O(n/D2) curves of L∗

2.
5 So the number of

curves from L2 met by σ, and, in particular, by the actual cell ξ = Ω ∩ σ is O(n/D2), as claimed.
Since ξ is a subset of a cell from Corollary 2.7, we have that ξ intersects O(n/D2) curves from L1.
Thus ξ intersects O(n/D2) curves from L.

Recall that, by Corollary 2.7, the number of the remaining (that is, acceptable) cells in R
3\Z(P )

is O(D3 log3 D), and each of these cells meets O(n/D2) curves from L. To summarize, in both levels
of the decomposition we obtain O(D3 log3D) cells in total, each meeting O(n/D2) curves of L.

Wrapping up. We claim that the cell decomposition described above satisfies the properties
stated in Theorem 1.3. We state these properties more formally below.

Theorem 2.9 (Theorem 1.3 restated). Let L be a collection of n irreducible algebraic curves in R
3,

each defined by polynomials of degree at most b. Suppose that the projections of each pair of curves
from L to the xy-plane have finite intersection. Let D be a positive integer. Then there is a number
N = O(D3 log3 D) and a partition R

3 = Z ∪
⋃N

i=1Ki (into a boundary Z and cells Ki) with the
following properties.

• Each Ki is an open (not necessarily connected) cell, consisting of a union of connected com-
ponents of R3 \ Z.

• Each such cell intersects O(n/D2) curves from L.

• The interior of Z is empty, and there is a trivariate polynomial P of degree O(D logD), with
Z(P ) ⊂ Z.

5This is potentially an overestimate, since ∆∗
Ω may meet several arcs of the same original curve of L2.
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• The curves from L not contained in Z(P ) intersect Z in relatively few points, excluding a
subset L′ ⊂ L of O(D3 logD) curves. Specifically,

∑

γ∈L\L′

γ 6⊂Z(P )

|γ ∩ Z| = O(nD log3 D). (3)

This partition can be computed in OD(n
2) randomized expected time, where the algorithm outputs

for each cell Ki the list of curves from L that it intersects. For the special case where L is a set of
lines in 3-space that satisfy a mild general position requirement6 the expected running time improves
to OD(n

4/3 polylog n).

The analysis of (1/r)-cuttings in [18] guarantees that there exists a choice of the random sam-
ples R∗

Ω, such that each of the unacceptable cells has been subdivided into subcells that intersect
O(n/D2) curves from L. If a curve γ ∈ L is not contained in Z(P ), then it intersects Z(P ) in
O(D logD) points. Thus the total number of intersections between curves in L not contained
in Z(P ) and Z(P ) is O(nD logD). A curve γ (not contained in Z(P )) intersects a vertical wall of a
second-level cell in O(1) points, if γ∗ does not have any curve segments comprising the sets WΩ de-
fined above, which participate in the samples R∗

Ω. Otherwise, γ intersects some of the vertical walls
of the second-level cells constructed within Ω in a curve segment. Curves γ of the latter kind com-
prise the set L′ ⊂ L, and, as argued above, their total expected number is O(D3 logD). Thus the
total number of intersections between curves from L\L′ (not contained in Z(P )) and cells, resulting
either in the first or second stage of the decomposition, is O((D logD)3(n/D2)) = O(nD log3D).
This establishes (3).

The implementation details concerning the expected running time of the algorithm, as stated
in Theorem 2.9, are given in Section 2.3 below.

Remark. In higher dimensions, the analogue of Theorem 2.9 is a decomposition of Rd into O((D logD)d)
cells, each of which intersects O(n/Dd−1) curves from L. We remark that most of the steps from
the proof of Theorem 2.9 extend to higher dimensions. The main difficulty in this extension is
handling a curve from L that projects to a point in the xy-plane. Unlike the three-dimensional
case, such a curve is not necessarily “vertical” (i.e., parallel to an axis), and therefore the solution
from Corollary 2.7 does not apply.

One simple way to resolve this issue is to impose an additional general position assumption
on the curves in L. For example, we could require that for each curve γ ∈ L, any fiber of the
projection map π : γ → R

2 from γ to the xy-plane has finite cardinality. With this additional
assumption, the proof of Theorem 2.9 extends with only minor modifications. Indeed, Lemma 2.5
extends to R

d by applying it with k = (2d− 2)⌈log2 D⌉, which yields an analogue of Corollary 2.6,
where each acceptable cell intersects O(n/Dd−1) curves from L, and each unacceptable cell con-
tains O(n2/D2d−2) points of vertical visibility. The analysis of the second-level cell decomposition
proceeds almost verbatim where we produce a planar vertical decomposition. In this extension the
sampling probability p becomes cDn−1/n (we can assume that D = O(n1/(d−1)) and thus p < 1/2,
since otherwise there exists a polynomial of degree O(D) whose zero set contains all of the curves
in L), and the planar pseudo-trapezoids (once constructed) are lifted to prisms in R

d in all d − 2
residual coordinates.

6 See Section 2.4.
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2.3 Algorithmic Aspects

We now outline how to efficiently implement Theorem 2.9. This involves identifying curves that are
non-vertical lines and constructing V (L) (which can be accomplished in quadratic time by brute-
force examination of all pairs of curves), followed by several rounds of invocation of Theorem 1.2;
the random sampling step and the construction of vertical decomposition in the plane are standard
and are not the bottleneck of the algorithm. A major technicality arises from the fact that we need
to keep track of the points of V (L) contained in each cell, to determine which cells are acceptable.

Recall that, as described in the introduction, we are using the real RAM model of computation,
with the additional assumption that the roots of a univariate polynomial of degree b can be com-
puted in Ob(1) time. The other common alternative is to assume integer coefficients and express
the running time in the number of bit operations, as a function of the size of input and the bit
length of the input coefficients; see [14, Chapter 8] for a discussion of such models of computation.
We chose to proceed with the former model.

As a main tool, we use a result of Basu, Pollack, and Roy [14, Algorithm 16.6] concerning
arrangements of zero sets of polynomials (see also [5, Theorem 4.1] for a similar formulation):

Theorem 2.10 (Basu, Pollack, and Roy [14]). Let F = {f1, . . . , fs} be a set of s real d-variate
polynomials, each of degree at most D. Then the arrangement A(F) in R

d has O(1)d(sD)d connected
components, and it can be computed in time at most T = sd+1DO(d4). Each connected component
is described as a semi-algebraic set using at most T polynomials of degree bounded by DO(d3).

Following the notation of Lemma 2.5, at each step k > 1, we are given a subset Vk−1 ⊆ V (L)
and a previously computed partitioning polynomial Fk−1. We first apply Theorem 1.2 to compute
a partitioning polynomial f of degree D for the point set Vk−1. Then, to determine if a cell τ
in R3 \ Z(f) is acceptable, we test whether τ intersects at most C4(b)n/D

2 curves from L. By
applying Theorem 2.10 to our polynomial f , we represent each cell τ ∈ R

3 \ Z(f) as a semi-
algebraic set (a Boolean formula with polynomial sign tests as atoms), and then test, for each
curve γ ∈ L, whether γ intersects τ . This can be done in two steps. First, we use Theorem 2.10
to compute all of the connected components of γ\Z(f) (recall that γ is defined by polynomials of
degree at most b, and this can in fact be replaced by a single polynomial of degree at most 2b),
and we assign each of these components to the corresponding cell τ (the latter can be done by
computing a point on each of the connected components, and checking which cell contains this
point). Overall, this can be done in time DO(1) (see also [5] for similar considerations). Thus the
total running time, over all curves in L, is nOD(1) + nDO(1) = OD(n). Next, we compute the new
polynomial Fk = f ·Fk−1, and then form the subset Vk, by testing for each point of Vk−1 whether it
lies in an unacceptable cell, using the membership test already discussed. Applying Theorem 2.10
and the fact that |Vk−1| ≤ |V (L)| = O(n2), we can complete this task in time OD(n

2). The process
repeats O(logD) times and takes OD(n

2) time in total.
We next need to construct a decomposition into vertical prisms within each unacceptable

cell Ω ∈ R
3 \ Z(P ). This involves the computation of (1/r)-cutting within Ω. Recall that we

apply the randomized algorithm described in [18, Theorem 2.1], which constructs a (1/r)-cutting
in an arrangement of m arcs in expected time O(m log r + A · r/m), where A is the total number
of intersections among these arcs. Applying this to each of the arrangements A(WΩ), by sub-
stituting m := |WΩ|, A := |V(WΩ)| (where |V(WΩ)| is the number of vertices in the underlying

arrangement), we obtain an expected running time of O
(

|WΩ| log r + |V(WΩ)| ·
r

|WΩ|

)

. Recall that
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|V(WΩ)| = O(|WΩ| + n2/D4). Then it is easy to verify that the expected running time, over all
unacceptable cells Ω, is proportional to

∑

Ω

(

|WΩ| log r + |V(WΩ)| ·
r

|WΩ|

)

=
∑

Ω

(

(|WΩ| log r + (|WΩ|+ n2/D4) ·
r

|WΩ|

)

=
∑

Ω

(

(|WΩ| log r + r +
n2

D4
·

r

|WΩ|

)

.

Next, we recall that r = cD2

n · |WΩ| and
∑

Ω|WΩ| = O(nD logD + n) (mentioned in the discus-
sion preceding (2)), in order to conclude that the above sum is OD(n), where the constant of
proportionality depends polynomially on D.

We conclude the construction by associating with each second-stage cell ξ = Ω ∩ σ the set of
curves Lξ ⊂ L that it intersects, by testing for each curve γ ∈ LΩ whether it also meets the prism σ.
Omitting any further details, we have shown:

Theorem 2.11. The decomposition described in Theorem 2.9 can be computed in randomized
expected time OD(n

2).

Remark. A major open problem is to improve the running time to subquadratic. The bottleneck
is having to explicitly process V (L), or, more generally Vk, at each iteration k. In the worst
case, this set could contain Θ(n2) points. The remaining steps of the algorithm can be completed
in OD(n) time. Thus the key to obtaining subquadratic running time lies in having an efficient
implicit representation for V (L). We next present such an efficient implementation, based on a
range-search mechanism, for the case where L is a set of lines in 3-space.

2.4 A Faster Construction for the Case of Lines

In this section, we present an improved implementation of our algorithm for the case of lines in
R
3 in general position, or, more generally, line segments in 3-space. To begin, we will present an

algorithm that works for lines (or line segments) in non-vertical general position. We will then show
how this can be extended to lines in general position. Adapting our general position assumptions
from the beginning of this section, this implies that no pair of projected lines (or line segments)
coincide.

Our approach is to use a compact representation for the points of vertical visibility instead
of storing them explicitly. We note that, in contrast with the algorithm of Theorem 1.3, we are
able to track only those pairs of vertically visible points that lie in the same cell of the current
decomposition, we refer to them as unsplit visibility pairs: pairs in which the two points end up in
different cells are not tracked at all, we refer to them as split visibility pairs. We also comment that
since the cells τ ∈ R

3 \ Z(f) may not be xy-monotone, we may also track unsplit visibility pairs
where the two endpoints are not visible to each other inside τ (in case the two corresponding lines
intersect in the xy-projection of τ). This, however, does not violate the analysis of Sections 2.1
and 2.2, and the assertions in Theorem 1.3 for the case of lines continue to hold.

We exploit the mechanism of Agarwal [1] to efficiently represent (and count) intersections among
line segments in the plane.7 We revisit the algorithm of Agarwal, Matoušek, and Sharir [5] summa-

7The mechanism in [1] counts points with multiplicity in case there are three or more concurrent lines (or line
segments). This, however, is not an issue in our analysis since the algorithm in [5] can handle points with multiplicity—
see below.
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rized in Theorem 1.2 and modify the procedures that were originally designed to manipulate the
input points explicitly, to instead perform the required operations implicitly. A closer inspection of
the analysis in [5] shows that we need to support the following two operations: (i) select uniformly
a point at random among a collection of points contained in a specific cell τ ∈ R

3 \ Z(f), for an
appropriate polynomial f , and (ii) count the number of points contained in τ .

Fix such a cell τ . As in Section 2.2, let Lτ be the subset of lines meeting τ . We take the
intersection of each line in Lτ with τ (this takes constant time in our model of computation), obtain
a collection Sτ of open line segments contained in τ , and consider the set of their projections S∗

τ

to the xy-plane. Put sτ := |S∗
τ |. Using the algorithm in [1] we construct a compact representation

for the pairwise intersecting segments in S∗
τ in overall O(s

4/3
τ polylog sτ ) time. In particular, this

implies that operation (ii) can be completed in the same time bound. Concerning operation (i), the
resulting compact representation consists of a union of complete bipartite intersection graphs (each
such graph is stored as a pair (A,B) of sets of segments, in which every segment of A intersects
every segment of B; the pair is stored using Θ(|A|+ |B|) space rather than Θ(|A| × |B|); hence the
space savings). Once such an implicit representation is available, it is possible to randomly sample
a point of intersection in logarithmic time, by first picking the bipartite graph and then randomly
and uniformly picking a segment from A and a segment of B—see [1] for more details concerning
this construction.

The algorithm in [5] constructs a polynomial partitioning in several iterative steps. The ma-
jority of the algorithm’s running time is spent on a procedure that computes a polynomial f that
simultaneously dissects8 a collection A1, . . . , Ak of sets of points, and also computes the sign of f
on each point of each set Ai. The polynomial f is formed by lifting the points in A1, . . . , Ak into a
higher-dimensional Euclidean space using the Veronese mapping, taking a small random sample of
the points, and then computing the hyperplane passing through these randomly sampled points in
the lifted space. The analysis in [5] shows that the composition of this hyperplane with the Veronese
mapping is a polynomial that with high probability (with respect to the randomly chosen subsets
of A1, . . . , Ak) dissects at least half of the sets A1, . . . , Ak. Recall that in the setting of our problem
the points in A1, . . . , Ak are not given explicitly. Instead we can use our efficient implementation
of steps (i)–(ii) in order to construct f as above, as well as counting how many points of vertical
visibility among L (or, more generally, a collection of sets of line segments in R

3) are contained
in the regions {f > 0} and {f < 0}. This is done over iterations as follows. At iteration j of the
computation of the partitioning polynomial, we have k := 2j sets of points of vertical visibility, each
of which is represented as the disjoint union of complete bipartite graphs of line-segments (we begin
with a trivial representation corresponding to the lines in L). We randomly sample points in the
lifted space from each set A1, . . . , Ak, compute the corresponding polynomial fj, and then compute
the sign of each point from each Ai, i = 1, . . . , k, w.r.t. fj. In order to do so, we need to cut the
line-segments participating in the representation of each A1, . . . , Ak with Z(fj), and obtain a new
collection of sets of line segments—these sets represent the points of vertical visibility at the next
iteration j + 1, that is, the new sets A′

1, . . . , A
′
2k. We next compute a compact representation for

each of these new sets in order to (i) count how many points of vertical visibility lie in the regions
{fj > 0} and {fj < 0}, and (ii) randomly sample points in A′

1, . . . , A
′
2k in order to compute fj+1.

While there are a few additional technical details, these issues do not impact the running time of
the algorithm. Indeed, the overall expected running time is dominated by the total complexity of
the compact representation for the pairwise intersecting segments, and is thus OD(n

4/3 polylog n).

8A polynomial f dissects a set A if f > 0 on at most (7/8)|A| points from A and f < 0 on at most (7/8)|A| points.
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We once again emphasize that with this implementation we can only guarantee to control the
number of unsplit visibility pairs inside a cell (that is, both defining lines meet that cell and the
two vertically visible points are contained in the cell). The number of split visibility points within
a cell can be arbitrarily large. To summarize we have shown:

Lemma 2.12. Let L be a collection of n line segments in R
3 in non-vertical general position, and

let V (L) be the set of points of their vertical visibilities. Let D be a positive integer. Then one
can compute in expected OD(n

4/3 polylog n) time a partitioning polynomial f of degree D, such that
each connected component of R3 \ Z(f) contains O(|V (L)|/D3) pairs of unsplit points of vertical
visibility from V (L).

We next describe the modifications to Lemma 2.5 and Corollary 2.6 needed to apply our algo-
rithm. Beginning with the first decomposition step, we observe that Lemma 2.5 continues to hold
if instead of considering the entire set Vk, we consider only the subset of unsplit visibility pairs with
respect to unacceptable cells, that is, those points of vertical visibility, for which both defining lines
intersect the same unacceptable cell generated at step k. With this refinement of Vk, we modify
property (C.2) in the statement of Lemma 2.5 accordingly, and inside Ω consider only the unsplit
visibility pairs of Vk. Then in the assertion of Corollary 2.6 concerning Ω we can guarantee that
either Ω intersects O(n/D2) curves from L, or Ω contains O(n2/D4) pairs of (unsplit) points of
vertical visibility from V (L), or both.

The implementation of the procedure to compute the partitioning polynomial P (using the
notation of Corollary 2.6) is performed by repeatedly invoking Lemma 2.12, initially on the input
lines in L, and at step k > 1, on the set of the line segments obtained by intersecting the lines
of L with the unacceptable cells from step k − 1 (this replaces the explicit representation of Vk−1).
At each step the number of line segments is only linear in n and in D (more specifically, every
line is cut into at most D + 1 segments), and therefore the total running time of computing the
partitioning polynomial for Vk, over all O(logD) iterations, is OD(n

4/3 polylog n). In addition, we
need to apply some of the operations already discussed above, including the classification of the
cells as being either acceptable or unacceptable; this takes OD(n

4/3 polylog n) time in total.
The execution of the second decomposition step proceeds verbatim as above, since we consider

only the unsplit pairs of vertical visibility in a cell Ω.
Finally, we will remove the the assumption that the lines are non-vertical, by computing a

partitioning polynomial Q for the xy-projections of the vertical lines using Theorem 1.2, which
takes OD(n) time in this case. Then we take the product of Q and P and continue with the
execution of the second decomposition step as just described. We thus conclude:

Theorem 2.13. The decomposition described in Theorem 2.9 for the case of n lines or line segments
in R

3 in general position can be computed in randomized expected time OD(n
4/3 polylog n).

3 An Application: Eliminating Depth Cycles among Lines

In [11], Aronov and Sharir obtained a combinatorial bound on the number of cuts needed to
eliminate cycles in a collection of pairwise-disjoint non-vertical lines in R

3.
The main obstruction to converting Aronov and Sharir’s combinatorial bound into an algorith-

mic procedure was the absence of a constructive version of Theorem 1.1. More specifically, their
proof proceeds by partitioning R

3 using a polynomial f of degree D (see more below on the choice
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of D), and then cutting each line not contained in Z(f) at the points where it crosses Z(f) (lines
contained in Z(f) need slightly different treatment; we omit the details here; this does not affect the
asymptotics of the algorithm runtime or of the number of cuts required). This procedure produces
at most D cuts per line; these are cuts of the first type. Every line ℓ is also cut at O(D2) additional
points, which correspond to locations where ℓ passes above a critical point of f ; more precisely, this
is a point (x0, y0, z0) ∈ ℓ such that f and ∂f/∂z are simultaneously zero at (x0, y0, z1) for some
z1 < z0. This results in a total of O(D2n) second-type cuts.

Now, for each connected component τ of R3 \ Z(f), Aronov and Sharir [11] collect the set Lτ

of the lines of L meeting τ , and each set Lτ is handled recursively, producing a recurrence of the
form

C(n) = O(D3) · C(cn/D2) +O(D2n)

for the number of cuts C(n) sufficient to eliminate all cycles in a set of n lines, for a suitable
absolute constant c. The bound of O(n3/2 logO(1) n) is obtained by setting D to Θ(n1/4).

We next sketch how to efficiently implement the steps outlined above. We construct the par-
titioning in time OD(n

4/3 polylog n), using Theorem 2.13, where we are now forced to choose D
a constant; our polynomial P has degree at most D logD, which increases the number of cuts to
O((D logD)2n) and the number of cells to O((D logD)3). Determining the first-type cuts of each
line can be done in time OD(1) as described in Section 2.3. Finding the cuts of the second type
along a line can be done by constructing the solution set of the system {P = 0, ∂P/∂z = 0} in the
vertical halfplane bounded by the line, in time OD(1); this follows from our assumption about the
model of computation. Additional work required to process the secondary subdivision involves sim-
ply cutting each line meeting a primary subdivision cell Ω (recall that the sets LΩ are constructed
by the algorithm of Theorem 2.13) at the points where it crosses the boundary of each prism σ, or
equivalently finding the points where the projection of such a line enters and exits each trapezoid
of the vertical decomposition A

q(R∗
Ω); this computation is already performed in Theorem 2.13. We

thus obtain O(D3 log3D) additional cuts for each line.
A close examination of [11] shows that, even though our partition is not a strictly polynomial

one, due to the presence of the secondary subdivision, the correctness argument of Aronov and
Sharir [11] carries through here as well. Indeed, after the application of the first- and second-type
cuts, as well as the cuts with the boundary of each prism σ, we are left to process the remaining
cycles in each second-stage cell in recursion. In this case we collect all lines meeting a cell to form
a new subproblem. To summarize, the number of cuts made by our algorithm is described by the
recurrence

C(n) = O(D3 log3 D) · C(cn/D2) +OD(n),

where c is an absolute constant and D is a constant of our choice. The expected running time on
the other hand is governed by the recurrence

T (n) = O(D3 log3D) · T (cn/D2) +OD(n
4/3 polylog n).

They both solve to OD(n
3/2+ε(D)), once we pick a sufficiently large constant D > 0; ε = ε(D) > 0

depends on D and can be made arbitrarily small by increasing D, so we can rewrite the bound
as Oε(n

3/2+ε). Note that, since D cannot be set to grow with n, the number of cuts guaran-
teed by our algorithm is slightly larger than that guaranteed by the upper bound of [11], namely
O(n3/2 logO(1) n).
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Theorem 3.1. Let L be a collection of n pairwise-disjoint non-vertical lines in R
3 so that no pair

of lines have coinciding xy-projections. Then one can apply Oε(n
3/2+ε) cuts eliminating all depth

cycles among the lines in L. These cuts can be computed in expected time Oε(n
3/2+ε), for any ε > 0.

The number of cuts is near optimal in the worst case.

Remarks. (a) Previous algorithms that solve this problem apply an approximation algorithm of
Aronov, De Berg, Gray, and Mumford [7], which involves matrix multiplication. The running time
is close to O(n4+2ω), where ω < 2.373 is the exponent of matrix multiplication; this was later
improved by De Berg [16] to O(n3+ω). In spite of the fact our bound O(n3/2+ε) on the number of
cuts is slightly inferior to the bound O(n3/2 logO(1) n) in [11] as well as the bound resulting from [7],
our algorithm is considerably more efficient.

(b) Note that the algorithm described above works equally well with non-vertical pairwise-
disjoint algebraic curves of constant degree, with only superficial modifications, mirroring the com-
binatorial analysis of Aronov and Sharir [11] as well as of Sharir and Zahl [32]. The current analysis,
however, can only guarantee quadratic running time (see Theorem 2.11).
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