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OSCILLATORY INTEGRALS AND PERIODIC HOMOGENIZATION OF

ROBIN BOUNDARY VALUE PROBLEMS

JUN GENG JINPING ZHUGE

Abstract. In this paper, we consider a family of second-order elliptic systems subject
to a periodically oscillating Robin boundary condition. We establish the qualitative
homogenization theorem on any Lipschitz domains satisfying a non-resonance condition.
We also use the quantitative estimates of oscillatory integrals to obtain the dimension-
dependent convergence rates in L2, assuming that the domain is smooth and strictly
convex.
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1. Introduction

The primary purpose of this paper is to study a family of elliptic systems with oscillating
Robin boundary condition in a bounded Lipschitz domain Ω ⊂ Rd, d ≥ 3,





Lε(uε) = F in Ω,

∂uε

∂νε
+ b(x/ε)uε = g on ∂Ω,

(1.1)
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where

Lε = −div

[
A
(x
ε

)
∇
]
= − ∂

∂xi

[
aαβij

(x
ε

) ∂

∂xj

]
, ε > 0, (1.2)

and uε = (u1
ε, u

2
ε, · · · , um

ε ) and 1 ≤ α, β ≤ m, 1 ≤ i, j ≤ d. The summation convention

is used throughout this paper. We assume that the coefficients A = (aαβij ) and b = (bαβ)
satisfy the following conditions

• Ellipticity condition: there exists µ > 0 such that

µ|ξ|2 ≤ aαβij (y)ξ
α
i ξ

β
j ≤ µ−1|ξ|2, for y ∈ R

d, ξ = (ξαi ) ∈ R
m×d, (1.3)

and

µ|η|2 ≤ bαβ(y)ηαηβ ≤ µ−1|η|2, for y ∈ R
d, η = (ηα) ∈ R

m. (1.4)

• Periodicity condition: for any y ∈ R
d, z ∈ Z

d,

A(y + z) = A(y), (1.5)

and
b(y + z) = b(y). (1.6)

• Continuity:

The coefficient matrix b is continuous in R
d. (1.7)

The equation (1.1) withm = 1 may be used to model, for example, the heat conductivity
problems of heterogeneous materials surrounded by a certain fluid. On the surface of the
material, a Robin boundary condition is needed due to the convection or phase transition.
Actually, a general convective boundary condition is described as

heat flux = b(T − Tliquid), on ∂Ω, (1.8)

where T is the temperature of the material surface, Tliquid is the temperature of the fluid
and b is known as the heat transfer coefficient established by measurements (depending
both on the material and liquid). Under the conditions (1.3) – (1.7) and assuming Tliquid is
a constant and uε = T −Tliquid, we know the heat flux is given by −∂uε

∂νε
and b takes a form

of b(x/ε), which is periodic. Therefore, the boundary condition (1.8) may be rewritten as

∂uε

∂νε
+ b(x/ε)uε = 0.

If Tliquid is not a constant and could be measured near the material surface, then (1.8) may
be reduced to a nontrivial oscillating Robin boundary data that takes a form of g(x, x/ε)
and g(x, y) is 1-periodic with respect to y. This case may also be handled by the method
in this paper.

Recall that the variational form of equation (1.1) may be written as
∫

Ω

A(x/ε)∇uε · ∇φ+

∫

∂Ω

b(x/ε)uε · φ =

∫

∂Ω

g · φ+

∫

Ω

F · φ, (1.9)

for any φ ∈ H1(Ω;Rm). Then, the Lax-Milgram Theorem implies the existence and
uniqueness of the weak solution of (1.1), provided F ∈ H−1(Ω;Rm) and g ∈ H−1/2(∂Ω;Rm).
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Moreover, the sequence {uε : ε > 0} is uniformly bounded in H1(Ω;Rm). Now, we may
ask a standard question in homogenization theory: as ε → 0, do the solutions uε converge
to some function u0 in H1(Ω;Rm), while u0 is the weak solution of the effective equation
with a certain effective Robin boundary condition? It turns out that the answer to this
question is quite different from the usual Dirichlet or Neumann boundary value problems,
due to the oscillating factor of b(x/ε) on the boundary. We mention that the Dirichlet and
Neumann problems have been well-studied in many literatures and we refer to a recent
excellent monograph [16] by Z. Shen.

The purpose of this paper is two-fold: (i) prove the qualitative homogenization the-
orem under very weak assumptions on the coefficients and domain; (ii) obtain the L2

convergence rates under sufficiently strong assumptions.

1.1. Qualitative homogenization. Our method of proving the qualitative homogeniza-
tion theorem is based on the direct asymptotic analysis of the variational equation (1.9).
In view of the second integral on the left-hand side of (1.9), the key for homogenization
to take place is the asymptotic behavior of the following oscillatory integral

∫

S

f(x, λx)dσ(x), as λ → ∞, (1.10)

where S = ∂Ω, dσ is the surface measure on S (namely, (d − 1)-dimensional Hausdoff
measure) and f(x, y) is a 1-periodic function in y ∈ Rd. The asymptotic behavior of
the integral (1.10) may be derived through the classical oscillatory integral theory if S
is smooth and possesses certain geometric conditions. For example, if S is smooth and

strictly convex and f is smooth, then (1.10) converges with error O(λ
1−d
2 ) as λ → ∞.

Recently, S. Kim and K.-A. Lee showed in [14] that if S is a C1 surface and satisfies a
non-resonance condition (which is called irrational direction dense condition in [14]), then
the integral (1.10) converges qualitatively as λ → 0. In this paper, we further weaken the
regularity of S to any Lipschitz surfaces, which is sharp in the sense that dσ is well-defined
and the following non-resonance condition makes sense.

Definition 1.1. Let S be a Lipschitz surface. We say S satisfies the non-resonance
condition with respect to Zd (or simply non-resonance condition), if

σ({x ∈ S : n(x) is well-defined and n(x) ∈ RZ
d}) = 0.

Here n(x) is the unit normal to S at x. (A vector a ∈ Rd is called rational if a ∈ RZd.)

The non-resonance condition in Definition 1.1, generalizing the notion in [14], covers all
the classes of domains people innovated to deal with PDEs subject to periodically oscil-
lating boundary value, including strictly convex smooth domains [11, 4, 18, 3], finite-type
domains [23], polygonal domains [10, 2] and more [9, 6] (also see Remark 3.2 for a possible
extension for layered or directional materials). Under this non-resonance condition, we are
able to prove Theorem 2.1, a (qualitative) version of the Weyl’s equidistribution theorem,
based on the fundamental ideas from [11] and [14]. Among many potential applications
of the Weyl’s equidistribution theorem in analysis and PDEs (see, e.g., Theorem 2.5), we
prove the qualitative homogenization theorem for (1.1).
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Theorem 1.2. Let (A, b) satisfy (1.3) - (1.7). Assume Ω is a bounded Lipschitz domain
satisfying the non-resonance condition with respect to Zd. Suppose that uε is the weak
solution of (1.1) with F ∈ H−1(Ω;Rm) and g ∈ H−1/2(∂Ω;Rm). Then, there exists some
function u0 ∈ H1(Ω;Rm) such that, as ε → 0,

{
uε → u0 weakly in H1(Ω;Rm) and strongly in L2(Ω;Rm),

Aε(x/ε)∇uε → Â∇u0 weakly in L2(Ω;Rm×d),
(1.11)

where Â is the homogenized coefficient matrix. Moreover, u0 is the weak solution of




−div(Â∇u0) = F in Ω,

∂u0

∂ν0
+ b̄u0 = g on ∂Ω,

(1.12)

where ∂
∂ν0

= n · Â∇ and b̄ =
∫
Td b(y)dy.

Theorem 1.2 is a straightforward corollary of Theorem 3.1 which is proved in a more
general setting. Note that the effective heat transfer coefficient in (1.12) is the average of
b. This fact may be extended without any real difficulty to more general Robin boundary
conditions, such as

∂uε

∂νε
+ b(x, x/ε)uε = g(x, x/ε),

where b(x, y) and g(x, y) are 1-periodic with respect to y. In this case, the homogenized
boundary condition reads

∂u0

∂ν0
+ b̄(x)u0 = ḡ(x),

where b̄(x) =
∫
Td b(x, y)dy and ḡ(x) =

∫
Td g(x, y)dy.

1.2. Convergence rates. The second part of the paper is concerned with the conver-
gence rates of uε to u0 in L2(Ω;Rm), which seems to be of more interest. The sharp
convergence rates for the Dirichlet and Neumann problems of elliptic systems have been
well-studied by a standard framework; see, e.g., [7, 20, 21, 17]. In particular, it has been
established for both the Dirichlet and Neumann problems that

‖uε − u0‖L2(Ω) ≤ Cε‖u0‖H2(Ω),

for any dimension d ≥ 2 and any bounded C1,1 domains. However, the convergence rates
for the Robin problem (1.1) is quite different due to the oscillating factor b(x/ε) on the
boundary which essentially requires an additional strong geometric assumption on ∂Ω in
order to carry out a quantitative analysis. In this paper, we will try to obtain the best
possible convergence rates under the strongest geometric assumption that is commonly
used in the quantitative analysis of the oscillating boundary layers [11, 4, 18, 3], namely,
Ω is smooth and strictly convex (in the sense that all the principle curvatures of ∂Ω are
positive).

The following is our main result.
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Theorem 1.3. Let (A, b) satisfy (1.3) – (1.6). In addition, assume b ∈ C∞(Td;Rm×m)
and Ω is a smooth and strictly convex domain. Let uε and u0 be the same as before and
u0 be sufficiently smooth. Then, for any σ ∈ (0, 1), there exists C > 0 such that

‖uε − u0‖L2(Ω) ≤





Cε
7
8
−σ

(
‖u0‖W 1,∞(Ω) + ‖u0‖H2(Ω)

)
if d = 3,

Cε1−σ
(
‖u0‖W 1,∞(Ω) + ‖u0‖H2(Ω)

)
if d = 4,

Cε
3
4
+ 3

4(d−1)
−σ‖u0‖W 2,d/2(Ω) if d ≥ 5.

(1.13)

It is crucial to point out that, in the above theorem, the convergence rate for d = 4 is
nearly sharp since σ > 0 can be arbitrarily small; but the rates are possibly not nearly
sharp for other dimensions, especially for d ≥ 5. The intrinsic reasons for the appearance
of the dimension-dependent exponents in (1.13) will be explained later. Nevertheless, we
provide an effective framework in this paper that allows further improvements. On the
other hand, if we consider the estimates of ‖uε−u0‖Lp(Ω) with some p ∈ (1, 2) depending on
d, then the almost sharp convergence rate O(ε1−σ) may still be obtained for all dimensions;
see Remark 5.6. Finally, we mention that, to be simple and more concentrated, we will
not try to optimize the norms of u0 on the right-hand side of (1.13).

The proof of Theorem 1.3 follows a line as the usual Dirichlet or Neumann problems
(see, e.g., [15, 16]), but relies essentially on the quantitative estimates of certain oscil-
latory integrals. Let wε = uε − u0 − εχ(x/ε)Sε(ηε∇u0) be the error of the first-order
approximation of uε (which is the same as Dirichlet or Neumann problems). Then a
direct computation shows that

∫

Ω

Aε∇wε · ∇ϕ+

∫

∂Ω

bεwε · ϕ =

∫

∂Ω

(b
αβ − bαβ(x/ε))uβ

0 · ϕαdσ

+ other familiar integrals over Ω,
(1.14)

where ϕ ∈ H1(Ω;Rm) is a test function. The key to (1.14) is the quantitative estimate of
the oscillatory integral on ∂Ω in the following form

∫

∂Ω

f(x/ε) · φ(x)dσ, (1.15)

where f(y) is a 1-periodic vector-value function with zero mean. At first sight, one may
expect to employ the oscillatory integral theory to analyze the quantitative behavior of
(1.15) as ε → 0, which is feasible if φ is smooth enough. However, in our application,
φ = u0ϕ is only supposed to be in certain Sobolev spaces that a direct using of oscillatory
integral theory will only give rough estimates. To establish the convergence rates as better
as possible, in this paper, we will develop a “duality approach” to analyze (1.15) via an
auxiliary Neumann problem. Precisely, let vε be the solution of the following Neumann
problem {

−div(Â∇vε) = 0 in Ω,

n · Â∇vε = f(x/ε)−Mε on ∂Ω.
(1.16)

where Â is the (constant) homogenized matrix and Mε is a constant vector such that
the compatibility condition is satisfied. Note that (1.16) may be formally viewed as a



6 J. GENG, AND J. ZHUGE

simplified version of the Robin problem (1.1). By the integration by parts, it is not hard
to see that the estimate of (1.15) is reduced to the estimates of vε; see (4.3). Unlike using
the oscillatory integral theory to (1.15) directly, our method completely get rid of the
difficulty caused by the lower regularity of φ.

The Neumann problem (1.16), of independent interest itself, has been studied in [3] by
H. Aleksanyan, H. Shahgholian and P. Sjölin. In particular, they obtained the estimates of
‖vε‖L1(Ω) and ‖∇vε‖L1(Ω) for system (1.16); see Theorem 4.1. To obtain better estimates
of ‖vε‖Lp(Ω) with general p > 1, which are critical in our application, we establish a new
estimate of ‖vε‖L∞(Ω) in this paper, namely,

‖vε‖L∞(Ω) ≤ Cε
1
2 . (1.17)

This estimate is proved by using the integral representation for (1.16) and taking ad-
vantage of the lower singularity of the Neumann function (compared to Poisson kernel).
Then, combing these estimates, we conclude by interpolation that (see Theorem 4.4)

‖vε‖L2(Ω) ≤





Cε
7
8
−σ if d = 3,

Cε if d = 4,

Cε
5
4 | ln ε| 12 if d ≥ 5.

(1.18)

Note that the estimates above are worse for lower dimensions due to the nature of oscilla-
tory integrals with non-degenerate phases. In particular, we point out that the rate ε

7
8
−σ

for d = 3 follows naturally by an interpolation of ‖∇vε‖L1(Ω) ≤ Cε1−σ and (1.17). This

explains why the convergence rate for d = 3 in Theorem 1.3 cannot exceed ε
7
8
−σ.

On the other hand, the estimate of the integral on the right-hand side of (1.14) definitely
depends on the regularity of u0 and ϕ. Under the assumption u0 ∈ H2(Ω;Rm), we have

∣∣∣∣
∫

∂Ω

(b− b(x/ε)−Mε)u0 · ϕdσ
∣∣∣∣ ≤





Cε
2
3
−σ‖u0‖H2(Ω)‖ϕ‖H1(Ω) if d = 3,

Cε
1
2
−σ‖u0‖H2(Ω)‖ϕ‖H1(Ω) if d = 4,

Cε
1
4
+ 3

4(d−1)
−σ‖u0‖H2(Ω)‖ϕ‖H1(Ω) if d ≥ 5.

(1.19)

See Lemma 5.1 (ii) for details. The above estimates are worse (than ε
1
2 ) for d ≥ 5,

because u0 ∈ H2(Ω;Rm) actually implies worse integrability of u0 and ∇u0 if d is larger;
see Remark 5.3. Consequently, by a duality argument, the L2 convergence rates may be

raised to ε
3
4
+ 3

4(d−1)
−σ for d ≥ 5 as shown in Theorem 1.3.

Finally, we would like to emphasize that even though the estimates of ‖vε‖L1(Ω) and
‖∇vε‖L1(Ω) in Theorem 4.1, as well as (1.17), are possibly optimal in view of the singularity
of the Neumann function, it is still open whether (1.18) and (1.19) are optimal, which are
very basic questions related to singular oscillatory integrals (see (4.11)) and of independent
interest. Clearly, through our framework, any further improvement of (1.18) for d = 3 or
(1.19) for d ≥ 5 will lead to an corresponding improvement for Theorem 1.3.



OSCILLATORY INTEGRALS AND HOMOGENIZATION 7

1.3. Organization of the paper. We prove a Weyl’s equidistribution theorem and The-
orem 1.2 in Section 2 and 3, respectively. In Section 4, we obtain the quantitative estimates
of the auxiliary Neumann system (1.16). In Section 5, we prove Theorem 1.3.

2. An Equidistribution Theorem

This section is devoted to the proof of a (qualitative) version of the Weyl’s equidistri-
bution theorem under the non-resonance condition.

Theorem 2.1. Let S be a closed Lipschitz surface satisfing the non-resonance condition
with respect to Zd. Assume f(x, y) : S × Td 7→ R is 1-periodic and continuous in y for
each x ∈ S. Moreover, assume

∫

S

‖f(x, ·)‖C(Td)dσ(x) < ∞.

Then

lim
λ→∞

∫

S

f(x, λx)dσ(x) =

∫

S

∫

Td

f(x, y)dydσ(x). (2.1)

For a given unit vector ξ ∈ Sd−1, denote by Hξ := {x ∈ Rm : ξ · x = 0} the hyperplane
perpendicular to ξ.

Lemma 2.2. Let ξ ∈ Sd−1 be irrational. If g ∈ C(Td) is a 1-periodic continuous function
and f ∈ L1(Hξ). Then

lim
λ→∞

sup
y∈Rd

∣∣∣∣
∫

Hξ

g(y + λx)f(x)dσ(x)− 〈g〉
∫

Hξ

f(x)dσ(x)

∣∣∣∣ = 0. (2.2)

Proof. First of all, it follows from the classical ergodic property of quasi-periodic functions
that

lim
λ→∞

∫

Hξ

g(λx)f(x)dσ(x) = 〈g〉
∫

Hξ

f(x)dσ(x), (2.3)

for 1-periodic g ∈ C∞(Td) and f ∈ C∞
0 (Hξ), where 〈g〉 =

∫
Td g(y)dy. Then the general

case with g ∈ C(Td) and f ∈ L1(Hξ) follows by an approximation argument. Now, we
prove (2.2) by contradiction. If (2.2) is not true, since g is 1-periodic, there exist δ > 0,
and sequences of yk ∈ Td and λk ∈ R such that limk→∞ λk = ∞ and

∣∣∣∣
∫

Hξ

g(yk + λkx)f(x)dσ(x)− 〈g〉
∫

Hξ

f(x)dσ(x)

∣∣∣∣ > δ, for any k ∈ N. (2.4)

Now, by the compactness of {g(y + ·) : y ∈ Td} in C(Td), we may choose a subsequence
of {kℓ} ⊂ N such that ykℓ → z ∈ Td and g(ykℓ + ·) → g(z + ·) in C(Td), as kℓ → ∞.
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Observe that ∣∣∣∣
∫

Hξ

g(ykℓ + λkℓx)f(x)dσ(x)− 〈g〉
∫

Hξ

f(x)dσ(x)

∣∣∣∣

≤
∣∣∣∣
∫

Hξ

[g(ykℓ + λkℓx)− g(z + λkℓx)]f(x)dσ(x)

∣∣∣∣

+

∣∣∣∣
∫

Hξ

g(z + λkℓx)f(x)dσ(x)− 〈g〉
∫

Hξ

f(x)dσ(x)

∣∣∣∣.

(2.5)

Clearly, the first integral in the right-hand side of (2.5) is bounded by ‖g(ykℓ + ·)− g(z +
·)‖C(Td)‖f‖L1(Hξ), which tends to zero as kℓ → ∞. Also, (2.3) implies that the second
integral in the right-hand side of (2.5) tends to zero as kℓ → ∞. It follows that

∣∣∣∣
∫

Hξ

g(ykℓ + λkℓx)f(x)dσ(x)− 〈g〉
∫

Hξ

f(x)dσ(x)

∣∣∣∣ → 0, as kℓ → ∞.

This contracts with (2.4) and hence proves (2.2). �

Now, we may use Lemma 2.2 to prove a simplified version of Theorem 2.1.

Theorem 2.3. Let S be a closed Lipschitz surface and satisfy the non-resonance condition
with respect to Zd. Then if g ∈ C(Td) and f ∈ L1(S),

lim
λ→∞

∫

S

g(λx)f(x)dσ(x) = 〈g〉
∫

S

f(x)dσ(x). (2.6)

Proof. Step 1: Reduction. First of all, we may assume g and f are smooth. The
general case follows by an approximation argument. By a partition of unity, we may
restrict ourself to a local coordinate system (parallel to the original coordinate system
so that the non-resonance condition is still valid with respect to Zd) such that for some
x0 = (x′

0, x0,d) ∈ S, B(x0, R0) ∩ S is the graph of

xd = φ(x′) for x′ ∈ Q(x′
0, R0) ⊂ R

d−1,

where Q(x′
0, R0) is a (d − 1)-dimensional cube parallel to coordinates and centered at x′

0

with radius R0. Put Q0 = Q(x′
0, R0). Without loss of generality, we assume |Q0| = 1.

Thus, it suffices to concentrate on
∫

{(x′,φ(x′)):x′∈Q0}

g(λx)f(x)dσ(x)

=

∫

Q0

g(λ(x′, φ(x′)))f(x′, φ(x′))
√

1 + |∇φ(x′)|2dx′

We may reset f(x′, φ(x′))
√

1 + |∇φ(x′)|2 to be f0(x′), and assume again that f0 is smooth.
Then, we only need to show

lim
λ→∞

∫

Q0

g(λ(x′, φ(x′)))f0(x
′)dx′ = 〈g〉

∫

Q0

f0(x
′)dx′.
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Or, more specifically, we would like to show that for any given η > 0, there exists λη > 0
such that for any λ > λη,∣∣∣∣

∫

Q0

g(λ(x′, φ(x′)))f0(x
′)dx′ − 〈g〉

∫

Q0

f0(x
′)dx′

∣∣∣∣ ≤ η. (2.7)

Step 2: Ruling out bad points. By our assumption, φ(x′) is a Lipschitz function
and thus ∇φ(x′) is well-defined for almost every x′ ∈ Q0. Let E ⊂ Q0 be the set that ∇φ
is not defined. Now, for x′ ∈ Q0 \ E, define

J(x′, r) = sup
|y′−x′|≤r

|φ(y′)− φ(x′)−∇φ(x′) · (y′ − x′)|
|y′ − x′|

Since φ(x′) is differentiable at x′, then

lim
r→0

J(x′, r) = 0, for any x′ ∈ Q0 \ E.

Now, by the Egoroff’s theorem, for a given δ > 0 (to be determined), there exists a
measurable subset F ⊂ Q0, E ⊂ F such that |F | < δ/2 and

J(x′, r) converges to 0 uniformly for any x′ ∈ Q0 \ F.
Define

ω1(r) = sup
x′∈Q0\F

J(x′, r).

Then, ω1(r) is a increasing function and

lim
r→0

ω1(r) = 0.

Next, we are going to use the non-resonance condition. Let n(x′) be the unit vector
normal vector of the graph xd = φ(x′) at (x′, xd), if there exists. Let

G = {(x′, xd) ∈ S : n(x′) is well-defined and n(x′) ∈ RZ
d}.

Clearly, by the non-resonance condition with respect to Zd, |G| = 0. Moreover, for
x′ ∈ Q0 \G, we know

n(x′) =
(∇φ(x′),−1)√
1 + |∇φ(x′)|2

is irrational.

Thus, we may define a good subset of Q0,

U = Q0 \ (F ∪G).

Step 3: Decomposition. We construct a family of dyadic cubes in Q0. Let {Qj
k :

j = 1, 2, 3, · · · , 2dk} be a collection of dyadic cubes at level k. Put

Pk = {Qj
k : U ∩Qj

k 6= ∅}.

Before we proceed, we claim that, there exists a decreasing step function ρ(λ), taking
discrete values in {2−k : k ∈ N}, such that ρ(λ) → 0 as λ → ∞. Moreover,

lim
λ→∞

λρ(λ)ω1(
√
dρ(λ)) = 0 and lim

λ→∞
λρ(λ) = ∞. (2.8)
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The existence of such ρ(λ) follows from a concrete construction. Actually, let

ρ(λ) := sup
{
2−k : k ∈ N, λ2−k

√
ω1(

√
d2−k) ≤ 1

}
. (2.9)

It is not hard to see ρ(λ) is a well-defined decreasing step function, since r
√
ω1(

√
dr), as a

function of r, is increasing. Moreover, ρ(λ) → 0 as λ → ∞. Now, note that (2.9) implies

λρ(λ)

√
ω1(

√
dρ(λ)) ≤ 1.

It follows

λρ(λ)ω1(
√
dρ(λ)) ≤

√
ω1(

√
dρ(λ)) → 0, as λ → ∞.

To see the second part of (2.8), by the definition (2.9), we know

λ2ρ(λ)

√
ω1(

√
d2ρ(λ)) > 1. (2.10)

which yields

λρ(λ) >
1

2
√

ω1(
√
d2ρ(λ))

→ ∞, as λ → ∞.

This proves the claim as desired.

Now, given any λ ≥ 1, let ρ(λ) be the decreasing step function as above such that
ρ(λ) = 2−k(λ), where k(λ) ∈ N. For x′ ∈ U ,

Q(x′, λ) = the dyadic cube in Pk(λ) containing x′.

Note that ρ(λ) is the side length of Q(x′, λ). Then, for each λ, U may be covered by a
sequence of dyadic cubes Q(x′, λ) with x′ ∈ U , at level k(λ).

Step 4: Local approximation. With ρ(λ) and Q(x′, λ) as constructed above, we
claim that for any x′ ∈ U ,

lim
λ→0

∣∣∣∣−
∫

Q(x′,λ)

g(λ(y′, φ(y′)))f0(y
′)dy′ − 〈g〉−

∫

Q(x′,λ)

f0(y
′)dy′

∣∣∣∣ = 0, (2.11)

To prove (2.11), we temporarily fix x′ and λ and consider

K(x′, λ) := −
∫

Q(x′,λ)

g(λ(y′, φ(y′)))f0(y
′)dy′. (2.12)

By the Taylor’s expansion at x′, for y′ ∈ Q(x′, λ)

φ(y′) = φ(x′) +∇φ(x′)(y′ − x′) +R(y′, x′) (2.13)

where, by the fact x′ ∈ Q0 \ F and the definition of ω1, the remainder satisfies

|R(y′, x′)| ≤ |y′ − x′|ω1(|y′ − x′|).
Thus, by the smoothness of g, we have∣∣g(λ(y′, φ(y′)))− g(λ(y′, φ(x′) +∇φ(x′) · (y′ − x′)))

∣∣ ≤ Lg|y′ − x′|ω1(|y′ − x′|)
≤ Lg

√
dρ(λ)ω1(

√
dρ(λ)),

(2.14)
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where Lg = sup |∇g|. Substituting (2.13) and (2.14) into (2.12), we have
∣∣∣∣K(x′, λ)−−

∫

Q(x′,λ)

g(λ(y′, φ(x′) +∇φ(x′)(y′ − x′)))f0(x
′)dy′

∣∣∣∣

≤ LgMf

√
dλρ(λ)ω1(

√
dρ(λ)) +MgLf

√
dρ(λ),

(2.15)

where Mf = sup |f0|,Mg = sup |g| and Lf = sup |∇f0|. Observe that the above error is
independent of x′. Thus, (2.15) tends to zero as λ → ∞ by the construction of ρ(λ) and
the first part of (2.8).

Next, we consider

I1(x
′, λ) := f0(x

′)−
∫

Q(x′,λ)

g(λ(y′, φ(x′) +∇φ(x′) · (y′ − x′)))dy′

= f0(x
′)−
∫

Q(x′,λ)

g(λ((x′, φ(x′)) + (y′ − x′,∇φ(x′) · (y′ − x′)))dy′.

By a change of variable w = (w′, wd) such that

w′ =
y′ − x′

ρ(λ)
and wd = ∇φ(x′) · w′,

we see

I1(x
′, λ) = f0(x

′)−
∫

Q̃(x′,λ)

g(λ(x′, φ(x′)) + λρ(λ)w)dσ(w)

where Q̃(x′, λ), the image of Q(x′, λ) under w, is some parallel polyhedron on the irrational
hyperplane (perpendicular to the irrational direction (∇φ(x′),−1), since x′ ∈ U). The

position of Q̃(x′, λ) may depends on λ; but its shape and size, depending only on ∇φ(x′),

are fixed. Moreover, |Q̃(x′)| = (
√
1 + |∇φ(x′)|2)−1. Since we have λρ(λ) → ∞ as λ → ∞,

by Lemma 2.2,

lim
λ→∞

|I1(x′, λ)− 〈g〉f0(x′)| = 0. (2.16)

On the other hand, it is clear that

lim
λ→0

∣∣∣∣〈g〉f0(x′)− 〈g〉−
∫

Q(x′,λ)

f0(y
′)dy′

∣∣∣∣ = 0, (2.17)

by the smoothness of f0.

Finally, combining (2.15), (2.16) and (2.17), we obtain (2.11)

Step 5: Completing the proof. Define

T (x′, λ) :=

∣∣∣∣−
∫

Q(x′,λ)

g(λ(y′, φ(y′)))f0(y
′)dy′ − 〈g〉−

∫

Q(x′,λ)

f0(y
′)dy′

∣∣∣∣

It has been prove in Step 4 that

lim
λ→∞

T (x′, λ) = 0, for any x′ ∈ U.
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By the Egoroff’s theorem, for a given δ > 0, there exists H ⊂ U such that |H| ≤ δ/2 and

ω2(λ) := sup
x′∈V

T (x′, λ) → 0 as λ → 0, (2.18)

where V = U \H . Note that |Q0 \ V | ≤ δ.

Now given η > 0, choose δ > 0 small enough so that

δ <
η

4MfMg
. (2.19)

By (2.18), we can choose λη large enough such that

T (x′, λ) < η/2 for any x′ ∈ V and λ > λη. (2.20)

For any given λ > λη, there exists a collection of Q(x′, λ), x′ ∈ V such that

V ⊂
⋃

x′∈V

Q(x′, λ).

Therefore, we can find finite Q(x′
j , λ) with 1 ≤ j ≤ N0 and x′

j ∈ V , such that

V ⊂ W :=
⋃

1≤j≤N0

Q(x′
j , λ) and Q(x′

i, λ) ∩Q(x′
j , λ) = ∅, if i 6= j. (2.21)

Obviously,
|Q0 \W | ≤ |Q0 \ V | ≤ δ. (2.22)

It follows that∣∣∣∣
∫

Q0

g(λ(x′, φ(x′)))f0(x
′)dx′ − 〈g〉

∫

Q0

f0(x
′)dx′

∣∣∣∣

≤
∣∣∣∣
∫

Q0\W

g(λ(x′, φ(x′)))f0(x
′)dx′ − 〈g〉

∫

Q0\W

f0(x
′)dx′

∣∣∣∣

+

N0∑

j=1

∣∣∣∣
∫

Q(x′

j ,λ)

g(λ(x′, φ(x′)))f0(x
′)dx′ − 〈g〉

∫

Q(x′

j ,λ)

f0(x
′)dx′

∣∣∣∣

≤ 2MfMg|Q0 \W |+
N0∑

j=1

|Q(x′
j , λ)|T (x′

j, λ)

≤ 2δMfMg +
η|W |
2

≤ η,

where we have used (2.20), (2.21) and (2.22) in the third inequality and used (2.19) in
the last inequality. This finishes the proof of (2.7). �

Proof of Theorem 2.1. We use an approximation argument. Let φ ∈ C∞
0 (B1(0)) such that∫

φ = 1 and let φδ(x) = δ−dφ(δ−1x) with 0 < δ < 1. Define

fδ(x, y) =

∫

Rd

f(x, y − z)φδ(z)dz.
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Then, it is easy to see that

‖fδ(x, ·)‖Cm(Td) ≤ Cm,δ‖f(x, ·)‖C(Td), for any x ∈ S,m ∈ N, (2.23)

and
|fδ(x, y)− f(x, y)| ≤ Cω(x, δ), for any (x, y) ∈ S × T

d, (2.24)

where ω(x, δ) is the modulo of the continuity of f(x, ·), and C is independent of δ. By
the fact ω(x, δ) → 0 as δ → 0 for each x ∈ S, and the dominant convergence theorem,
one obtains

lim
δ→0

∫

S

ω(x, δ)dσ(x) = 0.

Consequently, in view of (2.24), to see (2.1), it suffices to show

lim
λ→∞

∫

S

fδ(x, λx)dσ(x) =

∫

S

∫

Td

fδ(x, y)dydσ(x). (2.25)

By Fourier series expansion of fδ(x, y) in terms of y, we have

fδ(x, y) =
∑

k∈Zd

ak(x)e
2πik·y, where ak(x) =

∫

Td

fδ(x, y)e
2πik·ydy.

In view of (2.23), we have

|ak(x)| ≤ Cm,δ|k|−m‖f(x, ·)‖C(Td), for every m ∈ N.

It follows that∫

S

fδ(x, λx)dσ(x) =
∑

|k|≤M

∫

S

ak(x)e
2πiλk·xdσ(x) +

∑

|k|>M

∫

S

ak(x)e
2πiλk·xdσ(x).

Observe that the second term in the last equality is bounded by

Cd+1,δ

∑

|k|>M

|k|−(d+1)

∫

S

‖f(x, ·)‖C(Td)dσ(x) ≤
Cd+1,δ

M

∫

S

‖f(x, ·)‖C(Td)dσ(x).

On the other hand, by Theorem 2.3, we know

lim
λ→∞

∑

|k|≤M

∫

S

ak(x)e
2πiλk·xdσ(x) =

∫

S

a0(x)dσ(x) =

∫

S

∫

Td

fδ(x, y)dydσ(x).

As a result,∣∣∣∣ limλ→∞

∫

S

fδ(x, λx)dσ(x)−
∫

S

∫

Td

fδ(x, y)dydσ(x)

∣∣∣∣ ≤
Cd+1,δ

M

∫

S

‖f(x, ·)‖C(Td)dσ(x).

Since M may be chosen arbitrarily large, the above estimate implies (2.25) by letting
M → ∞. This ends the proof. �

Observe that the convergence in (2.6) may depend on the function f(x, y). However,
one may have a fixed convergence rate, provided some compactness on the underlying
function spaces. Let

L1(S;C(Td)) := {f(x, y) :
∫

S

‖f(x, ·)‖C(Td)dσ(x) < ∞}.
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Theorem 2.4. Let X be a Banach space compactly embedded into L1(S;C(Td)), endowed
with norm ‖·‖X . Then there exists a rate function ω(λ), depending only on d, S and X,
such that ω(λ) ↓ 0 as λ → ∞, and

∣∣∣∣
∫

S

f(x, λx)dσ(x)−
∫

S

∫

Td

f(x, y)dydσ(x)

∣∣∣∣ ≤ ω(λ)‖f‖X, (2.26)

for any f ∈ X.

Proof. Let BX = {f ∈ X : ‖f‖X ≤ 1}. To prove (2.26), it suffices to show

ω(λ) := sup
f∈BX

∣∣∣∣
∫

S

f(x, λx)dσ(x)−
∫

S

∫

Td

f(x, y)dydσ(x)

∣∣∣∣→ 0, as λ → ∞. (2.27)

The above statement may be proved by contradiction. Suppose (2.27) is not true. Then
there exist δ > 0 and a sequence {λk : k ∈ N} such that limk→∞ λk = ∞ and ω(λk) > δ.
This implies that there exists a sequence {fk : k ∈ N} ⊂ BX such that, for any k > 0

∣∣∣∣
∫

S

fk(x, λkx)dσ(x)−
∫

S

∫

Td

fk(x, y)dydσ(x)

∣∣∣∣ >
δ

2
. (2.28)

By the compactness of BX ⊂ L1(S;C(Td)), we may choose a subsequence {kℓ} ⊂ N and
f∞ ∈ L1(S;C(Td)) such that fkℓ → f∞ in L1(S;C(Td)), as kℓ → ∞. Now, observe that
∣∣∣∣
∫

S

fkℓ(x, λkℓx)dσ(x)−
∫

S

∫

Td

fkℓ(x, y)dydσ(x)

∣∣∣∣

≤
∣∣∣∣
∫

S

(
fkℓ(x, λkℓx)− f∞(x, λkℓx)

)
dσ(x)

∣∣∣∣

+

∣∣∣∣
∫

S

f∞(x, λkℓx)dσ(x)−
∫

S

∫

Td

f∞(x, y)dydσ(x)

∣∣∣∣

+

∣∣∣∣
∫

S

∫

Td

fkℓ(x, y)dydσ(x)−
∫

S

∫

Td

f∞(x, y)dydσ(x)

∣∣∣∣

≤
∣∣∣∣
∫

S

f∞(x, λkℓx)dσ(x)−
∫

S

∫

Td

f∞(x, y)dydσ(x)

∣∣∣∣+ 2

∫

S

‖fkℓ(x, ·)− f∞(x, ·)‖C(Td)dσ(x).

As kℓ → ∞, the first term in the last inequality tends to zero by Theorem 2.1, while the
second term tends to zero since {fkℓ} converge to f∞ in L1(S;C(Td)). This contradicts
to (2.28) and proves (2.27). �

As a straightforward application, we use Theorem 2.1 to derive a homogenization theo-
rem for harmonic functions with oscillating boundary data in Lipschitz domains satisfying
the non-resonance condition.

Theorem 2.5. Let Ω be a Lipschitz domain satisfying the non-resonance condition with
respect to Zd. Assume g(x, y) : ∂Ω × Td 7→ R is 1-periodic and continuous in y for each
x ∈ ∂Ω. Moreover, assume ∫

∂Ω

‖g(x, ·)‖2C(Td)dσ(x) < ∞. (2.29)
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Let uε be the solution of
{−∆uε = 0 in Ω,

uε(x) = g(x, x/ε) on ∂Ω.
(2.30)

Then, uε converges to u0 pointwise (and in L2(Ω)), where u0 is the solution of
{−∆u0 = 0 in Ω,

u0(x) = ḡ(x) on ∂Ω,
(2.31)

where ḡ(x) =
∫
Td g(x, y)dy.

Proof. First of all, observe that g(x, x/ε) ∈ L2(∂Ω). By the L2 theory for elliptic equations
in Lipschitz domains (see, e.g., [8, 22] or [12]), the Dirichlet problem (2.30) is solvable
and

‖N (uε)‖L2(∂Ω) ≤ ‖g(·, ·/ε)‖L2(∂Ω) ≤
(∫

∂Ω

‖g(x, ·)‖2C(Td)dσ(x)

)1/2

,

where N (uε) is the non-tangential maximal function. Moreover, the harmonic measure
ωz(x), with z ∈ Ω, is absolutely continuous with respect to σ(x) and

k(·, z) := dωz

dσ
∈ L2(∂Ω, dσ), (2.32)

and the solution uε may be represented by

uε(z) =

∫

∂Ω

g(x, x/ε)k(x, z)dσ(x), for z ∈ Ω.

Let fz(x, y) = g(x, y)k(x, z) and note that by (2.29) and (2.32),
∫

∂Ω

‖fz(x, ·)‖C(Td)dσ(x) =

∫

∂Ω

‖g(x, ·)‖C(Td)k(x, z)dσ(x)

≤
(∫

∂Ω

‖g(x, ·)‖2C(Td)dσ(x)

)1/2(∫

∂Ω

k2(x, z)dσ(x)

)1/2

≤ Cz

It follows from Theorem 2.1 that

lim
ε→0

uε(z) = lim
ε→0

∫

∂Ω

fz(x, x/ε)dσ(x)

=

∫

∂Ω

∫

Td

fz(x, y)dydσ(x)

=

∫

∂Ω

(∫

Td

g(x, y)dy

)
k(x, z)dσ(x)

= u0(z),

(2.33)

for each z ∈ Ω, where u0 is exactly the solution of (2.31). This gives the pointwise
convergence of uε.

Finally, we show that
lim
ε→0

‖uε − u0‖L2(Ω) = 0. (2.34)
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Actually, by the maximal principle, we have

− ū(z) ≤ uε(z) ≤ ū(z), (2.35)

where ū is the solution of

{−∆ū = 0 in Ω,

ū(x) = ‖g(x, ·)‖C(Td) on ∂Ω.
(2.36)

By (2.29) and the L2 solvability of (2.36) in Lipschitz domains (see [8, 22]), we know
‖ū‖L2(Ω) < ∞. Therefore, (2.34) follows readily from the pointwise convergence (2.33),
uniform estimate (2.35) and the dominant convergence theorem. �

3. Qualitative Homogenization

In this section, we will apply Theorem 2.1 to establish the qualitative homogenization
theorem for the Robin boundary value problem (1.1) in Lipschitz domains with a non-
resonance condition. We begin with the definitions of correctors and the homogenized co-
efficient matrix [5, 16]. For each 1 ≤ j ≤ d, 1 ≤ β ≤ m, let χ = (χβ

j ) = (χ1β
j , χ2β

j , · · · , χmβ
j )

denote the correctors for Lε, which are 1-periodic functions satisfying the cell problem





L1(χ
β
j + P β

j ) = 0 in T
d,

∫

Td

χβ
j = 0,

where P β
j (x) = xje

β with eβ being βth Cartesian basis in Rm. Recall that the homogenized

matrix Â = (âαβij ) is defined by

âαβij =

∫

Td

[
aαβij + aαγik

∂

∂xk
(χγβ

j )

]
dx,

and the homogenized operator is given by L0 = −div(Â∇).

The following is the main theorem of this section.

Theorem 3.1. Let {Aℓ, bℓ} be a sequence of coefficient matrices satisfying (1.3) – (1.7).
Moreover, we assume {bℓ} are equicontinuous. Assume Ω is a bounded Lipschitz do-
main whose boundary satisfies the non-resonance condition with respect to Z

d, {Fℓ} ⊂
H−1(Ω;Rm) and {gℓ} ⊂ H1/2(∂Ω;Rm). Suppose that {uℓ} are the weak solutions of

{ −div(Aℓ(x/εℓ)∇uℓ) = Fℓ in Ω,

n · Aℓ(x/εℓ)∇uℓ + bℓ(x/εℓ)uℓ = gℓ on ∂Ω,
(3.1)
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where εℓ → 0 as ℓ → ∞, uℓ ∈ H1(Ω;Rm). We further assume, as ℓ → ∞,




Fℓ → F in H−1(Ω;Rm),

gℓ → g in H− 1
2 (∂Ω;Rm),

uℓ ⇀ u weakly in H1(Ω;Rm),

Âℓ → A0,

bℓ → b0,

(3.2)

where Âℓ denotes the effective coefficient matrix of Aℓ and bℓ denotes the effective diffusive
matrix of bℓ. Then

Aℓ(x/εℓ)∇uℓ ⇀ A0∇u weakly in L2(Ω;Rm×d), (3.3)

Moreover, u is a weak solution of
{

−div(A0∇u) = F in Ω,

n · A0∇u+ b0u = g on ∂Ω.
(3.4)

Proof. Thanks to the qualitative homogenization for the operator Lε (see [16, Theorem
2.3.2]), our assumptions implies (3.3) and the equation −div(A0∇u) = F in Ω. Thus,
the key point is to verify the boundary condition. Note that the variational form of (3.1)
gives ∫

Ω

Aℓ(x/εℓ)∇uℓ · ∇φ+

∫

∂Ω

bℓ(x/εℓ)uℓ · φ =

∫

∂Ω

gℓ · φ+

∫

Ω

Fℓ · φ,

for any φ ∈ C∞
0 (Rd;Rm). Clearly, by (3.3), we have

∫

Ω

Aℓ(x/εℓ)∇uℓ · ∇φ →
∫

Ω

A0∇u · ∇φ, as ℓ → ∞.

To verify the variational form of (1.12), it suffices to show
∫

∂Ω

bℓ(x/εℓ)uℓ · φ →
∫

∂Ω

b0u · φ. (3.5)

First of all, by the equicontinuity and periodicity of bℓ, as well as the convergence
bℓ → b0, we know supℓ |bℓ(y)| ≤ C. Since uℓ converges to u weakly in H1(Ω;Rm), uℓ

converges to u strongly in Hs(Ω;Rm) with 1
2
< s < 1. By the trace theorem,

‖uℓ − u‖L2(∂Ω) → 0, as ℓ → ∞.

On the other hand, the Arzel - Ascoli theorem implies that the set {bℓ(y)u(x) ·φ(x)} is
compact in L1(S;C(Td)). Hence, by Theorem 2.4,

∣∣∣∣
∫

∂Ω

bℓ(x/εℓ)u · φ−
∫

∂Ω

bℓu · φ
∣∣∣∣ ≤ ω(εℓ),
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where ω(εℓ) → 0 as ℓ → ∞, and this rate depends at most on Ω, ‖u · φ‖H1(Ω) and the
modulus of equicontinuity of {bℓ}. Consequently,

∣∣∣∣
∫

∂Ω

bℓ(x/εℓ)uε · φ−
∫

∂Ω

b0u · φ
∣∣∣∣

≤ C‖uℓ − u‖L2(∂Ω)‖φ‖L2(∂Ω) + ω(εℓ) + |bℓ − b0|‖u‖L2(∂Ω)‖φ‖L2(∂Ω),

where the right-hand side converges to 0 as ℓ → ∞. This proves (3.5) and hence
∫

Ω

A0∇u · ∇φ+

∫

∂Ω

b0u · φ =

∫

∂Ω

g · φ+

∫

Ω

f · φ,

which ends the proof. �

Proof of Theorem 1.2. This is a simple corollary of Theorem 3.1. �

Remark 3.2. Many materials in practice may have special microscopic structures beyond
periodicity, such as layered materials (lamina) and directional materials (fiber, wood).
These additional stronger structures may allows us to weaken the non-resonance condi-
tion that is indispensable for homogenization to take place on the boundary. Consider a
material with a certain physical property, described by a function B, in a fixed coordinate
system. Assume that B depends only on k orthogonal directions p1, p2, · · · , pk, and re-
mains constant along the rest orthogonal directions pk+1, · · · , pd. Let P = (p1, p2, · · · , pk)
be a d × k matrix. Then, the previous assumption on B is equivalent to the following
structure equation

B(x) = B(PP Tx), for any x ∈ R
d. (3.6)

In particular, the layered and directional materials mentioned above are corresponding to
the special cases k = 1 and k = d− 1, respectively. We identify the structure equation for
these two interesting cases:

Layered materials: B(x) = B((p1 ⊗ p1)x);

Directional materials: B(x) = B((I − pd ⊗ pd)x).
(3.7)

Now, for such a material with structure (3.6), the periodicity condition for B will be
imposed only on the linear subspace spanned by {p1, p2, · · · , pk} (which is equivalent to
PP T

R
d). As a result, we may redefine a weaker non-resonance condition as follows.

Definition 3.3. Let Γ ⊂ PP T
R

d be a periodic lattice. We say a closed Lipschitz surface
S satisfies the non-resonance condition with respect to Γ if

σ({x ∈ S : n(x) is well-defined and n(x) ∈ RΓ}) = 0. (3.8)

Definition 3.3 is weaker than Definition 1.1 since we only need to verify (3.8) for “much
less” directions. For example, we only need to verify a single direction p1 (see (3.7)) for
a given layered material. Therefore, by a similar argument as before, the homogeniza-
tion theorem may be established on a larger class of domains for directional or layered
materials. The details will be omitted.
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4. Auxiliary Neumann Problems

This section and next one will be devoted to the quantitative convergence rates. As we
have noticed, the main difficulty in Robin boundary value problems is the analysis of the
integral in a form of ∫

∂Ω

f(x/ε) · φ(x)dσ(x), (4.1)

where f(y) is a 1-periodic Rm-valued function. In this paper, we will use a “duality
approach” to analyze (4.1) quantitatively. Precisely, let vε be the solution of the following
auxiliary Neumann problem

{
−div(Â∇vε) = 0 in Ω,

n · Â∇vε = f(x/ε)−Mε on ∂Ω.
(4.2)

where Â is the (constant) homogenized matrix and Mε is a constant vector such that the
compatibility condition is satisfied, i.e.,

∫

∂Ω

(
f(x/ε)−Mε

)
dσ(x) = 0.

Now, observing that by (4.2) and the integration by parts, one has
∫

∂Ω

f(x/ε) · φ(x)dσ(x) =
∫

Ω

Â∇vε(x) · ∇φ(x)dx+Mε

∫

∂Ω

φ(x)dσ(x)

= −
∫

Ω

vε(x) · div(Â∗∇φ(x))dx+

∫

∂Ω

vε(x)(n · Â∗∇φ(x))dσ(x)

+Mε

∫

∂Ω

φ(x)dσ(x).

(4.3)
Thus, the estimate of (4.1) is effectively reduced to the estimates of vε or ∇vε.

In this section, we focus on the estimates of vε given by (4.2). Actually, (4.2) has been
studied in [3] and we include their results (adapted to our situation) in the following
theorem.

Theorem 4.1 ([3], Theorem 5.1 & 5.3). Let Ω be strictly convex and smooth. If vε is the
solution of (4.2) satisfying

∫
∂Ω

vεdσ = 0, then

‖vε‖Lp(Ω) ≤





Cε
1
p if d = 3,

Cε
3
2p if d = 4,

Cε
2
p | ln ε| 1p if d ≥ 5.

(4.4)

and

‖∇vε‖Lp(Ω) ≤ Cσε
1
p
−σ, d ≥ 3 (4.5)

for any 1 ≤ p < ∞ and σ > 0.
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The proof of Theorem 4.1 is based on the integral representation for the solution and
the estimates of oscillatory integrals on the boundary. Precisely, the solution of (4.2) may
be given by

vε(x) =

∫

∂Ω

N0(x, y)(f(y/ε)−Mε)dσ(y). (4.6)

where N0(x, y) is the Neumann function of −div(Â∇) in Ω. Recall that the Neumann

function N0(x, y) = (Nαβ
0 (x, y)) is a matrix such that [13]




L0(N
β(·, y)) = eβδy in Ω,

∂

∂ν0
(N0(·, y)) = −eβ |∂Ω|−1 on ∂Ω,

∫

∂Ω

N0(x, y)dσ(x) = 0 ,

where Nβ
0 = (N1β

0 , N2β
0 , · · · , Nmβ

0 ) and eβ = (0, · · · , 1, · · · , 0) is the βth Cartesian basis
in R

m. Moreover, since Ω is smooth, we have

|∇i
x∇j

yN0(x, y)| ≤
Ci,j

|x− y|d−2+i+j
. (4.7)

for any i, j ≥ 0.

Remark 4.2. If x is an interior point of Ω, the oscillatory integral theory for non-

degenerate phase implies |vε(x)| ≤ Cε
d−1
2 (see [1]), which shows that the estimate in (4.4)

should be sharp for p = 1 and 3 ≤ d ≤ 5. On the other hand, however, if p > 1, the
estimates in (4.4) do not give the sharp convergence rates. In particular, (4.5) and a
Sobolev inequality lead to

‖vε‖Lp(Ω) ≤ Cε
1
p
+ 1

d
−σ, (4.8)

for any d
d−1

≤ p ≤ ∞ and any σ > 0. Compared to (4.4), this is a better convergence
rate for lower dimensions or larger p. In the most interesting case with p = 2, combining
(4.4) (for d ≥ 4) and (4.8) (for d = 3), we arrive at

‖vε‖L2(Ω) ≤





Cε
5
6
−σ if d = 3,

Cε
3
4 if d = 4,

Cε| ln ε| 12 if d ≥ 5.

(4.9)

In the following theorem, we make a key improvement on the estimate of vε.

Theorem 4.3. Let Ω and vε be the same as Theorem 4.1. Then, for d ≥ 3,

‖vε‖L∞(Ω) ≤ Cε
1
2 . (4.10)

Proof. The proof follows the idea of [3] and relies on the integral representation (4.6).
By subtracting a constant, we may simply assume the mean of f is zero. Also, since f
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is 1-periodic and smooth, by the Fourier series expansion, we may first consider f(x) =
gke

2πik·x with k ∈ Zd \ {0} and fk ∈ Rm is a constant vector. In this case

Mε =
fk
|∂Ω|

∫

∂Ω

e2πiε
−1k·xdσ(x).

Since Ω is smooth and strictly convex, |Mε| ≤ C|fk|ε
d−1
2 ; see [1, 19].

Hence, (4.6) gives

vε(x) =

∫

∂Ω

N0(x, y)fk
(
e2πiε

−1k·y −Mε

)
dσ(y)

=

∫

∂Ω

N0(x, y)fke
2πiε−1k·ydσ(y) +O(|fk|ε

d−1
2 ).

(4.11)

To obtain the pointwise estimate of the integral in (4.11), it suffices to consider a typical
case that x ∈ ∂Ω. Fix such an x ∈ ∂Ω. Let η be a smooth cut-off function such that
η(y) = 1 for y ∈ Br0(x) and η(y) = 0 for y /∈ B2r0(x), where r0 > 0 is an appropriately
chosen radius (depending only on d and Ω) that ∂Ω may be localized near x. Moreover,
|∇ℓη| ≤ Cℓ. To deal with the singularity of the Neumann function at x, we introduce
another cut-off function to rule out a small neighborhood of x. Let θε(y) = 0 in Bε1/2(x)

and θε(y) = 1 in Rd \B5ε1/2(x), and |∇ℓθε| ≤ Cℓε
− ℓ

2 . Consequently, we have
∫

∂Ω

N0(x, y)fke
2πiε−1k·ydσ(y) =

∫

∂Ω

η(y)θε(y)N0(x, y)fke
2πiε−1k·ydσ(y)

+

∫

∂Ω

(1− η(y))N0(x, y)fke
2πiε−1k·ydσ(y)

+

∫

∂Ω

(1− θε(y))N0(x, y)fke
2πiε−1k·ydσ(y)

= R1 +R2 +R3.

Note that (1 − η(y))N0(x, y) has no singularity on the boundary and therefore, |R2| ≤
C|fk|ε

d−1
2 . To estimate R3, note that 1− θε is supported in B5ε1/2(x) and thus

|R3| ≤ |fk|
∫

∂Ω∩B
5ε1/2

(x)

|N0(x, y)|dσ(y) ≤ C|fk|ε
1
2 ,

where we have used (4.7) with i = j = 0 in the last inequality. Hence, it suffices to
estimate R1. To do so, we first transform the surface integral to the usual one in Rd−1.
Precisely, we assume z = Qt(y−x) moves x ∈ ∂Ω to the origin and transform the tangent
plane at x to zd = 0, where Q ∈ Rd×d is an orthogonal matrix. As a result, ∂Ω∩B(x, 2r0)
is transformed to the local graph zd = φ(z′) which satisfies φ(0) = 0 and ∇φ(0) = 0. It
follows that

R1 =

∫

{|z′|<2r0}

η(x+Qz)θε(x+Qz)N0(x, x+Qz)fke
2πiε−1k·(x+Qz)

√
1 + |∇φ(z′)|2dz′

= Kx

∫

{|z′|<2r0}

η̃(z)θ̃ε(z)Ñ0(z)fke
2πiε−1Qtk·zdz′,
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where Kx = e2πiε
−1k·x, η̃(z) = η(x+Qz)

√
1 + |∇φ(z′)|2, θ̃ε(z) = θε(x+Qz) and Ñ0(z) =

N0(x, x+Qz). By our construction, one knows η̃(z) is a smooth cut-off function supported

in B2r0(0); θ̃ε(z) is a smooth cut-off function vanishing in Bε1/2(0) and |∇ℓθ̃ε| ≤ Cε−
ℓ
2 .

Moreover, (4.7) implies

|∇ℓÑ0(z)| ≤
C

|z′|d−2+ℓ
, ℓ ≥ 0. (4.12)

Now, let n = (n′, nd) =
Qtk
|Qtk|

. Using zd = φ(z′), we have

R1 = Kx

∫

{|z′|<2r0}

η̃(z)θ̃ε(z)Ñ0(z)fke
2πiε−1|k|(n′·z′+ndφ(z

′))dz′. (4.13)

Let F (z′) = n′ · z′ + ndφ(z
′). We need to discuss two cases separately.

Case 1: |n′| > C0|nd| for some C0 > 0. In this case, there exists nj with some
1 ≤ j ≤ d− 1 so that |nj | ≥ |n′|/(d− 1) > C0|nd|/(d− 1). Thus, if C0 is large enough,

∣∣∣ ∂

∂zj
F (z′)

∣∣∣ =
∣∣∣nj + nd

∂

∂zj
φ(z′)

∣∣∣ ≥ |nj|
2

≥ 1

4(d− 1)
. (4.14)

for any z′ with |z′| < 2r0. Then, by an integration by parts, (4.13) gives

R1 = −Kx

∫

{|z′|<2r0}

∂

∂zj

[
η̃(z)θ̃ε(z)Ñ0(z)fk

(
2πiε−1|k| ∂

∂zj
F (z′)

)−1
]
e2πiε

−1|k|F (z′)dz′.

It follows from (4.14) and (4.12) that

|R1| ≤
C|fk|ε
|k|

∫

{ε1/2<|z′|<2r0}

|Ñ0(z)|dz′ +
C|fk|ε

1
2

|k|

∫

{ε1/2<|z′|<5ε1/2}

|Ñ0(z)|dz′

+
C|fk|ε
|k|

∫

{ε1/2<|z′|<2r0}

|∇Ñ0(z)|dz′

≤ C|fk| · ε| ln ε|
|k| ,

which gives a desired bound for the first case.

Case 2: |n′| ≤ C0|nd| for some C0. Note that this implies |nd| ≥ 1/
√
1 + C2

0 . It turns
out that ∇2F (z′) = nd∇2φ(z′) is non-degenerate in {|z′| < 2r0}. Therefore, there exists
at most one point w′ ∈ {|z′| < 2r0} such that ∇F (w′) = 0. Without loss of generality, we
may assume ∇2F (w′) is diagonal with a minimum eigenvalue λ0 > 0 depending only on
the domain Ω (This can be done by making a rotation for z′). It follows that there exists
c0 > 0 such that if |z′ − w′| < c0,

∂2F (z′)

∂z2j
≥ 99

100
λ0,

∂2F (z′)

∂zi∂zj
≤ 1

100d
λ0, if i 6= j.

This implies that ∣∣∣∂F (z′)

∂zj

∣∣∣ ≥ c|zj |, (4.15)
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if |z′| < 2r0 and z′ − w′ ∈ Cj , where Cj is a cone defined by

Cj :=
{
z′ ∈ R

d−1 : |zj | >
1

2
√
d− 1

|z|
}
. (4.16)

For each j = 1, 2, · · · , d− 1, there exists smooth ρj supported in Cj \Bε1/2(0) such that

d−1∑

j=1

ρj(z
′) = 1, for any z′ ∈ R

d−1 \B2ε1/2(0),

and |∇ℓρj(z
′)| ≤ Cε−

ℓ
2 . Let ρ0 = 1−∑d−1

j=1 ρj.

To proceed, we write

R1 =

d−1∑

j=0

Kx

∫

{|z′|<2r0}

ρj(z
′ − w′)η̃(z)θ̃ε(z)Ñ0(z)fke

2πiε−1|k|F (z′)dz′.

Let Rj
1 be the integral above with j ≥ 0. Since ρ0(z

′ − w′) is supported in B2ε1/2(w
′), it

is easy to see

|R0
1| ≤ C|fk|

∫

B
2ε1/2

(w′)

|Ñ0(z)|dz′ ≤ C|fk|ε
1
2

For 1 ≤ j ≤ d− 1, applying the integration by parts twice, one has

Rj
1 =Kx(2πiε

−1|k|)−2

∫

{|z′|<2r0}

e2πiε
−1|k|F (z′)

× ∂

∂zj

[(∂F (z′)

∂zj

)−1 ∂

∂zj

[(∂F (z′)

∂zj

)−1

ρj(z
′ − w′)η̃(z)θ̃ε(z)Ñ0(z)fk

]]
dz′

It follows from (4.15) and (4.16) that

|Rj
1| ≤

C|fk|ε2
|k|2

∫

{ε
1
2 ≤|z′|<2r0, |z′−w′|≥ε

1
2 }

|Ñ0(z
′)|

|z′ − w′|4dz
′

+
C|fk|ε2
|k|2

∫

{ε
1
2≤|z′|<2r0, |z′−w′|≥ε

1
2 }

ε−
1
2 |Ñ0(z

′)|+ |∇Ñ0(z
′)|

|z′ − w′|3 dz′

+
C|fk|ε2
|k|2

∫

{ε
1
2≤|z′|<2r0, |z′−w′|≥ε

1
2 }

ε−1|Ñ0(z
′)|+ ε−

1
2 |∇Ñ0(z

′)|+ |∇2Ñ0(z
′)|

|z′ − w′|2 dz′

By using the (4.12), we see that each term above is bounded by C|k|−2|fk|ε
1
2 . This gives

a desired estimate of R1 in the second case.

Finally, combining the estimates for R1, R2 and R3, as well as the estimate of Mε, we
obtain |vε(x)| ≤ C|fk|ε

1
2 in the particular situation that f(x) = fke

2πik·x. For general
smooth 1-periodic function f =

∑
k 6=0 fke

2πik·x, the previous estimate leads to

|vε(x)| ≤ Cε
1
2

∑

k 6=0

|fk| ≤ Cε
1
2 ,

where the last inequality is valid because f is smooth. �
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Theorem 4.4. Let Ω and vε be the same as Theorem 4.1. Then,

‖vε‖Lp(Ω) ≤





Cεmin{ 1
2
+ 3

4p
,1}−σ if d = 3,

Cε
1
2
+ 1

p if d = 4,

Cε
1
2
+ 3

2p | ln ε| 1p if d ≥ 5,

(4.17)

where 1 ≤ p ≤ ∞ and σ > 0 may be arbitrarily small (σ = 0 if p = 1 or ∞).

Proof. If d = 3, the estimate ‖∇vε‖L1(Ω) ≤ Cε1−σ and the Sobolev inequality implies that

‖vε‖L 3
2 (Ω)

≤ Cε1−σ. (4.18)

Thus, the same estimate holds for ‖vε‖Lp(Ω) for any 1 < p < 3
2
. If 3

2
< p < ∞, interpolating

the estimate (4.18) and (4.10) gives

‖vε‖Lp(Ω) ≤ Cε
1
2
+ 3

4p .

For d = 4 or d ≥ 5, an interpolation between (4.4) with p = 1 and (4.10) gives the
desired estimates. �

Remark 4.5. For the special case p = 2, the above theorem gives

‖vε‖L2(Ω) ≤





Cε
7
8
−σ if d = 3,

Cε if d = 4,

Cε
5
4 | ln ε| 12 if d ≥ 5,

(4.19)

which is a significant improvement of (4.9). In this paper, the expected convergence rates
for the Robin problem (1.1) cannot be better than (4.19) in any dimensions.

The following estimate for the trace of vε will also be useful.

Lemma 4.6. Let Ω and vε be the same as Theorem 4.1. Then for any 1 ≤ p ≤ ∞,

‖vε‖Lp(∂Ω) ≤
{
Cε

1
2
+ 1

2p
−σ, if d = 3, 4,

Cεmin{ 1
2
+ 1

p
,1}−σ, if d ≥ 5.

(4.20)

Proof. The lemma is a straightforward of Theorem 4.4 and (4.5). First of all, for any
g ∈ C∞

0 (Rd), one has

‖g‖L1(∂Ω) ≤ C‖g‖L1(Ω) + C‖∇g‖L1(Ω).

Applying g = vε to the above inequality and using Theorem 4.1, we have ‖vε‖L1(∂Ω) ≤
Cε1−σ. Then the general estimates of ‖vε‖Lp(Ω) for d = 3 or 4 follows from an interpolation
with (4.10).

To handle the case d ≥ 5, we claim that for any q ∈ (1,∞),

‖g‖L2(∂Ω) ≤ C‖g‖L2(Ω) + C‖g‖
1
2

Lq(Ω)‖∇g‖
1
2

Lq′(Ω)
. (4.21)
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It turns out that the above trace estimate implies ‖vε‖L2(∂Ω) ≤ Cε1−σ for d ≥ 5. Actually,
applying (4.21) to vε and using Theorem 4.1, we obtain that

‖vε‖L2(∂Ω) ≤ C‖vε‖L2(Ω) + C‖vε‖
1
2

Lq(Ω)‖∇vε‖
1
2

Lq′ (Ω)

≤ Cε| ln ε| 12 + Cε
1
q | ln ε| 1

2q ε
1

2q′

≤ Cε
1
q .

The desired estimate follows by choosing q sufficiently close to 1 such that 1
q
= 1 − σ.

Finally, the estimate of ‖vε‖Lp(∂Ω) for p > 2 follows from the interpolation with (4.10). �

5. Convergence Rates

This section is devoted to the convergence rates for the Robin problem (1.1) under
perfect conditions. Precisely, we assume that b ∈ C∞(Td;Rm×m) and Ω is a smooth and
strictly convex domain. Since we do not impose any regularity on the matrix A, as usual,
we need a smoothing operator to deal with this situation. Let φ ∈ C∞

0 (B1(0)) such that∫
φ = 1. Define φε(x) = ε−dφ(ε−1x) and

Sε(f)(x) =

∫

Rd

φε(y)f(x− y)dy.

Many useful properties of operator Sε may be found in, e.g., [15, 16].

Assume uε and u0 are the solutions of (1.1) and the corresponding homogenized system
(1.12). First of all, we construct the first-order expansion and establish the convergence
rate in H1. Let ηε be a cut-off function such that ηε = 1 in {x ∈ Ω : dist(x, ∂Ω) > 2ε},
η = 0 in {x ∈ Ω : dist(x, ∂Ω) < ε} and |∇ηε| ≤ Cε−1. Define the error of the first-order
approximation by

wε = uε − u0 − εχ(x/ε)Sε(ηε∇u0). (5.1)

By the variational equations for uε and u0, for any ϕ ∈ H1(Ω;Rm), one has
∫

Ω

Aε∇uε · ∇ϕ+

∫

∂Ω

bεuε · ϕ =

∫

Ω

Â∇u0 · ∇ϕ+

∫

∂Ω

bu0 · ϕ,

where Aε(x) = A(x/ε). Then, a straightforward computation shows that wε satisfies
∫

Ω

Aε∇wε · ∇ϕ+

∫

∂Ω

bεwε · ϕ =

∫

Ω

(Â−Aε − Aε∇χ(x/ε))Sε(ηε∇u0) · ∇ϕ

+

∫

Ω

(Â−Aε)(∇u0 − Sε(ηε∇u0)) · ∇ϕ

+

∫

Ω

εAεχ(x/ε)∇Sε(ηε∇u0) · ∇ϕ

+

∫

∂Ω

(b− b(x/ε))u0 · ϕ

= I1 + I2 + I3 + I4.

(5.2)
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The estimates for I1, I2 and I3 follow from the same argument as Dirichlet or Neumann
problems; see, e.g., [17, Lemma 3.5]. Indeed, one can prove that

|I1|+ |I2|+ |I3| ≤ Cε
1
2‖u0‖H2(Ω)

(
ε

1
2‖∇ϕ‖L2(Ω) + ‖∇ϕ‖L2(Ω2ε)

)
, (5.3)

where Ωt = {x ∈ Ω : dist(x, ∂Ω) < t}.
The main difficulty caused by the Robin boundary condition is the estimate of I4. To

handle this term, we write

I4 =

∫

∂Ω

(b− b(x/ε)−Mε)u0 · ϕ+

∫

∂Ω

Mεu0 · ϕ, (5.4)

where Mε ∈ Rm×m is a constant matrix given by

Mε = −
∫

∂Ω

(b− b(x/ε))dσ(x).

Since Ω is strictly convex and smooth, we may employ the classical results in oscillatory
integral theory (with non-degenerate phases) to obtain

|Mε| ≤ Cε
d−1
2 , (5.5)

where the constant C depends only on b and Ω. It follows that
∣∣∣∣
∫

∂Ω

Mεu0 · ϕ
∣∣∣∣ ≤ Cε‖u0‖L2(∂Ω)‖ϕ‖L2(∂Ω). (5.6)

for d ≥ 3.

Thus, it is sufficient to consider the first integral of (5.4), namely,

Iosc =

∫

∂Ω

(b− b(x/ε)−Mε)u0 · ϕ.

As we have mentioned, this can be done by a “duality approach” via a Neumann problem.
For each β with 1 ≤ β ≤ m, let bβ = (b1β , b2β , · · · , bmβ). Let vβε be the solution of

{
−div(Â∇vβε ) = 0 in Ω,

n · Â∇vβε = b
β − bβ(x/ε)−Mβ

ε on ∂Ω.
(5.7)

where b̄β and Mβ
ε are the βth column of b̄ and Mε. Under the assumption that Ω is

strictly convex and smooth, all the estimates in the previous section are valid for vε =
(v1ε , v

2
ε , · · · , vmε ).

Lemma 5.1. Let ϕ ∈ H1(Ω;Rm).

(i) If u0 ∈ W 1,d(Ω;Rm), then

|Iosc| ≤ Cε
1
2
−σ‖u0‖W 1,d(Ω)‖ϕ‖H1(Ω).
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(ii) If u0 ∈ H2(Ω;Rm), then

|Iosc| ≤





Cε
2
3
−σ‖u0‖H2(Ω)‖ϕ‖H1(Ω) if d = 3,

Cε
1
2
−σ‖u0‖H2(Ω)‖ϕ‖H1(Ω) if d = 4,

Cε
1
4
+ 3

4(d−1)
−σ‖u0‖H2(Ω)‖ϕ‖H1(Ω) if d ≥ 5.

(5.8)

Proof. (i) By the construction of vε in (5.7) and the integration by parts, one has

|Iosc| =
∣∣∣∣
∫

∂Ω

(n · Â∇vε)u0 · ϕ
∣∣∣∣

=

∣∣∣∣
∫

Ω

∇vε∇u0 · ϕ+

∫

Ω

∇vεu0 · ∇ϕ

∣∣∣∣
≤ C

(
‖∇vε‖L2(Ω)‖∇u0‖Ld(Ω) + ‖∇vε‖L2+σ(Ω)‖u0‖L 4

σ+2(Ω)

)
‖ϕ‖H1(Ω)

≤ Cε
1
2
−σ‖u0‖W 1,d(Ω)‖ϕ‖H1(Ω),

where we have used the Sobolev inequality and (4.5) with appropriate σ in the last two
inequalities.

(ii) If u0 ∈ H2(Ω;Rm), the argument in (i) only gives |Iosc| ≤ Cε
2
d
−σ‖u0‖H2(Ω)‖ϕ‖H1(Ω),

which gives the desired estimates for d = 3, 4. In the following, we use a more careful
argument to improve this estimate for d ≥ 5. We first assume ϕ ∈ H1(∂Ω;Rm). Then
the Sobolev inequality implies u0ϕ ∈ W 1,p0(∂Ω;Rm), where 1

p0
= 1− 3

2(d−1)
, and

‖u0ϕ‖W 1,p0(∂Ω) ≤ C‖u0‖H 3
2 (∂Ω)

‖ϕ‖H1(∂Ω). (5.9)

Now, we construct Φ = (Φβ) as the solution of
{
−div(Â∗∇Φβ) = 0 in Ω,

Φβ = uβ
0ϕ on ∂Ω.

(5.10)

By the regularity theory of (5.10) with W 1,p Dirichlet boundary value in smooth domains,
we have

‖∇Φ‖Lp0 (∂Ω) ≤ ‖N (∇Φ)‖Lp0(∂Ω) ≤ C‖∇tan(u0ϕ)‖Lp0(∂Ω). (5.11)

where N (∇Φ) is the non-tangential maximal function defined by

N (f)(Q) = sup{|f(x)| : x ∈ Ω, |x−Q| < (1 + α)dist(x, ∂Ω)},

where α > 0 is a fixed constant. Particularly, (5.11) implies that the Dirichlet-to-Neumann

map Φβ 7→ n · Â∗∇Φβ is bounded from W 1,p0(∂Ω;Rm) to Lp0(∂Ω;Rm). Also, it follows
from the Green’s second identity that

Iosc =

∫

∂Ω

(n · Â∇vε) · Φ =

∫

∂Ω

vε · (n · Â∗∇Φ).
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As a result, if d ≥ 5, (5.11) and (5.9) imply that

|Iosc| ≤ C‖vε‖Lp′
0 (∂Ω)

‖∇Φ‖Lp0(∂Ω)

≤ Cε
1
2
+ 1

p′
0
−σ‖u0‖H 3

2 (∂Ω)
‖ϕ‖H1(∂Ω)

≤ Cε
1
2
+ 3

2(d−1)
−σ‖u0‖H 3

2 (∂Ω)
‖ϕ‖H1(∂Ω),

(5.12)

where we have used (4.20) and the fact that 1
p′0

= 3
2(d−1)

.

Clearly, note that
|Iosc| ≤ C‖u0‖L2(∂Ω)‖ϕ‖L2(∂Ω). (5.13)

Thus, an interpolation between (5.12) and (5.13) gives

|Iosc| ≤ Cε
1
4
+ 3

4(d−1) ‖u0‖H 3
2 (∂Ω)

‖ϕ‖
H

1
2 (∂Ω)

≤ Cε
1
4
+ 3

4(d−1) ‖u0‖H2(Ω)‖ϕ‖H1(Ω).

This ends the proof. �

Theorem 5.2. Let uε and u0 be the same as before. Then

(i) If u0 ∈ H2(Ω;Rm),

‖wε‖H1(Ω) ≤





Cε
1
2‖u0‖H2(Ω) if d = 3,

Cε
1
2
−σ‖u0‖H2(Ω) if d = 4,

Cε
1
4
+ 3

4(d−1)
−σ‖u0‖H2(Ω) if d ≥ 5.

(ii) If d ≥ 5 and u0 ∈ H2 ∩W 1,d(Ω;Rm),

‖wε‖H1(Ω) ≤ Cε
1
2
−σ

(
‖u0‖W 1,d(Ω) + ‖u0‖H2(Ω)

)
. (5.14)

Proof. (i) In view of (5.2), (5.3), (5.6) and Lemma 5.1 (ii), one has
∣∣∣∣
∫

Ω

Aε∇wε · ∇ϕ+

∫

∂Ω

bεwε · ϕ
∣∣∣∣ ≤ C‖u0‖H2(Ω)

(
ε‖ϕ‖H1(Ω) + ε

1
2‖∇ϕ‖L2(Ω2ε)

)

+





Cε
2
3
−σ‖u0‖H2(Ω)‖ϕ‖H1(Ω) if d = 3,

Cε
1
2
−σ‖u0‖H2(Ω)‖ϕ‖H1(Ω) if d = 4,

Cε
1
4
+ 3

4(d−1)
−σ‖u0‖H2(Ω)‖ϕ‖H1(Ω) if d ≥ 5.

Now, choosing ϕ = wε in the above inequality and using (1.3) and (1.4), we obtain

‖∇wε‖2L2(Ω) + ‖wε‖2L2(∂Ω) ≤





Cε
1
2‖u0‖H2(Ω)‖wε‖H1(Ω) if d = 3,

Cε
1
2
−σ‖u0‖H2(Ω)‖wε‖H1(Ω) if d = 4,

Cε
1
4
+ 3

4(d−1)
−σ‖u0‖H2(Ω)‖wε‖H1(Ω) if d ≥ 5.

The desired estimate follows from a simple observation ‖wε‖H1(Ω) ≃ ‖∇wε‖L2(Ω)+‖wε‖L2(∂Ω)

and the Hölder inequality.

(ii) The estimate (5.14) follows from Lemma 5.1 (i) and a similar argument. �
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Remark 5.3. Lemma 5.1 and Theorem 5.2 shows that the estimate of I
osc

and the conver-
gence rates of wε are very sensitive to the regularity of u0. For instance, u0 ∈ H2(Ω;Rm)

implies that u0 ∈ W 1, 2d
d−2 (Ω;Rm), which gives worse integrability as d increases (d ≥ 5)

and hence causes lower convergence rates. On the other hand, u0 ∈ W 1,d(Ω;Rm) is a very
natural condition to guarantee good convergence rates for d ≥ 5.

Lemma 5.4. Assume d ≥ 5. Let ϕ ∈ H2(Ω;Rd) and u0 ∈ W 2, d
2 (Ω;Rm). Then

∣∣∣∣
∫

Ω

Aε∇wε · ∇ϕ+

∫

∂Ω

bεwε · ϕ
∣∣∣∣ ≤ Cε1−σ‖u0‖

W 2, d2 (Ω)
‖ϕ‖H2(Ω),

for any σ > 0.

Proof. As before, we still have (5.2) and (5.3), which yields

|I1|+ |I2|+ |I3| ≤ Cε‖u0‖H2(Ω)‖ϕ‖H2(Ω), for any ϕ ∈ H2(Ω;Rm). (5.15)

Therefore, the main difficulty is to estimate

Iosc =

∫

∂Ω

(b
αβ − bαβ(x/ε)−Mαβ

ε )uβ
0 · ϕα.

By the equations of vβε in (5.7) and the integration by parts, we have

Iosc =

∫

∂Ω

n · Âαγ∇vγβε uβ
0 · ϕα

=

∫

Ω

∇vγβε · Â∗γα∇(uβ
0ϕ

α)

= −
∫

Ω

vγβε · div(Â∗γα∇(uβ
0ϕ

α)) +

∫

∂Ω

vγβε (n · Â∗γα∇uβ
0 )ϕ

α +

∫

∂Ω

vγβε uβ
0 (n · Â∗γα∇ϕα)

= J1 + J2 + J3.

To handle J1, by (4.17) and the Sobolev inequality, we have

|J1| ≤ C‖vε‖L2+σ(Ω)‖u0‖
W 2, d2 (Ω)

‖ϕ‖H2(Ω)

≤ Cε1−σ‖u0‖
W 2, d2 (Ω)

‖ϕ‖H2(Ω),
(5.16)

provided d ≥ 4. On the other hand, if d ≥ 5, (4.20) and the trace theorem implies

|J2|+ |J3| ≤ C‖vε‖L2+σ(∂Ω)

(
‖∇u0ϕ‖W 1,2−σ1 (Ω) + ‖u0∇ϕ‖W 1,2−σ1 (Ω)

)

≤ Cε1−σ‖u0‖
W 2, d2 (Ω)

‖ϕ‖H2(Ω),
(5.17)

where σ, σ1 are small and 1
2+σ

+ 1
2−σ1

= 1. This finishes the proof by combining (5.16),

(5.17) and (5.15). �

Lemma 5.5. Assume d = 3 or 4. Let u0 ∈ H2∩W 1,∞(Ω;Rm). Let ϕ ∈ H2(Ω;Rd) be the
weak solution of {

−div(Â∗∇ϕ) = G in Ω,

n · Â∗∇ϕ+ b̄∗ϕ = 0 on ∂Ω.
(5.18)
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Then
∣∣∣∣
∫

Ω

Aε∇wε · ∇ϕ+

∫

∂Ω

bεwε · ϕ
∣∣∣∣ ≤

{
Cε

7
8
−σ

(
‖u0‖W 1,∞(Ω) + ‖∇2u0‖L2(Ω)

)
‖ϕ‖H2(Ω),

Cε1−σ
(
‖u0‖W 1,∞(Ω) + ‖∇2u0‖L2(Ω)

)
‖ϕ‖H2(Ω),

for any σ > 0.

Proof. The proof follows a line of Lemma 5.4. Note that (5.16) still holds if d = 4. If
d = 3, it is replaced by

|J1| ≤ Cε
7
8
−σ‖u0‖H2(Ω)‖ϕ‖H2(Ω),

thanks to (4.19).

The estimates for J2 and J3 will be sightly different since we only have a better rate for
‖vε‖L1(∂Ω) if d = 3 or 4, instead of ‖vε‖L2(∂Ω). Precisely, if d = 3, the Sobolev embedding
theorem implies that ‖ϕ‖L∞(Ω) ≤ C‖ϕ‖H2(Ω). Thus, (4.20) implies

|J2| ≤ C‖vε‖L1(∂Ω)‖∇u0‖L∞(∂Ω)‖ϕ‖L∞(∂Ω) ≤ Cε1−σ‖∇u0‖L∞(∂Ω)‖ϕ‖H2(Ω).

For J3, we take advantage of the boundary condition of ϕ in (5.18) and obtain

J3 = −
∫

∂Ω

vγβε uβ
0(b̄

∗ϕ)γ,

which yields

|J3| ≤ Cε1−σ‖u0‖L∞(∂Ω)‖ϕ‖H2(Ω).

If d = 4, ϕ is not bounded. Nevertheless, we still have

‖ϕ‖Lq(∂Ω) ≤ C‖ϕ‖H2(Ω), for any q < ∞.

Consequently,
|J2|+ |J3| ≤ C‖vε‖Lq′(∂Ω)‖u0‖W 1,∞(∂Ω)‖ϕ‖Lq(∂Ω)

≤ Cε1−σ‖u0‖W 1,∞(∂Ω)‖ϕ‖H2(Ω),

where in the last inequality, we have chosen q sufficiently large (hence, q′ is sufficiently
close to 1). Note that ‖vε‖Lq′ ≤ Cε1−σ if q′ is close enough to 1, due to (4.20). These
complete the proof. �

Now, we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. The proof is based on a duality argument. For a given function
G ∈ L2(Ω;Rm), let hε be the solution of

{ −div(A∗(x/ε)∇hε) = G in Ω,

n · A∗(x/ε)∇hε + b∗(x/ε)hε = 0 on ∂Ω.

Let h0 be the corresponding homogenized equation, namely,
{

−div(Â∗∇h0) = G in Ω,

n · Â∗∇h0 + b̄∗h0 = 0 on ∂Ω.
(5.19)
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Since Ω is smooth, the H2 regularity theory for (5.19) implies h0 ∈ H2(Ω;Rm) and
‖h0‖H2(Ω) ≤ C‖G‖L2(Ω). It follows from Theorem 5.2 (i) that

‖hε − h0 − εχ(x/ε)Sε(ηε∇h0)‖H1(Ω) ≤





Cε
1
2‖h0‖H2(Ω) if d = 3,

Cε
1
2
−σ‖h0‖H2(Ω) if d = 4,

Cε
1
4
+ 3

4(d−1)
−σ‖h0‖H2(Ω) if d ≥ 5.

(5.20)

Now, let wε be defined as (5.1) and consider
∫

Ω

wε ·G =

∫

Ω

Aε∇wε · ∇hε −
∫

∂Ω

wε · (n · A∗(x/ε)∇hε)dσ

=

∫

Ω

Aε∇wε · ∇(hε − h0 − εχ(x/ε)Sε(ηε∇h0))

+

∫

∂Ω

wε · b∗(x/ε)(hε − h0)·

+

∫

Ω

Aε∇wε · ∇h0 +

∫

∂Ω

b(x/ε)wε · h0dσ

+

∫

Ω

Aε∇wε · ∇(εχ(x/ε)Sε(ηε∇h0))

= K1 +K2 + (K3 +K4) +K5.

To estimate K1, we use Theorem 5.2 and (5.20) to obtain

|K1| ≤ ‖wε‖H1(Ω)‖hε − h0 − εχ(x/ε)Sε(ηε∇h0)‖H1(Ω)

≤





Cε‖u0‖H2(Ω)‖h0‖H2(Ω) if d = 3,

Cε1−σ‖u0‖H2(Ω)‖h0‖H2(Ω) if d = 4,

Cε
3
4
+ 3

4(d−1)
−σ(‖u0‖W 1,d(Ω) + ‖u0‖H2(Ω)

)
‖h0‖H2(Ω) if d ≥ 5.

To estimate K2, note that εχ(x/ε)Sε(ηε∇h0) vanishes on the boundary. Then, K2 has
the same bound as K1, by the trace theorem.

Next, using Lemma 5.4 and Lemma 5.5, we bound K3 +K4 by

|K3 +K4| =
∣∣∣∣
∫

Ω

Aε∇wε · ∇h0 +

∫

∂Ω

b(x/ε)wε · h0dσ

∣∣∣∣

≤





Cε
7
8
−σ

(
‖u0‖W 1,∞(Ω) + ‖u0‖H2(Ω)

)
‖h0‖H2(Ω) if d = 3,

Cε1−σ
(
‖u0‖W 1,∞(Ω) + ‖u0‖H2(Ω)

)
‖h0‖H2(Ω) if d = 4,

Cε1−σ‖u0‖
W 2, d2 (Ω)

‖h0‖H2(Ω) if d ≥ 5.

Finally, to estimate K5, we use the fact that εχ(x/ε)Sε(ηε∇h0) vanishes on a boundary
layer with thickness 2ε, if we choose the cut-off function ηε appropriately. In view of (5.2)
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and (5.3), we have

|K5| =
∣∣∣∣
∫

Ω

Aε∇wε · ∇(εχ(x/ε)Sε(ηε∇h0)) +

∫

∂Ω

b(x/ε)wε · εχ(x/ε)Sε(ηε∇h0)dσ|

≤ Cε
1
2‖u0‖H2(Ω)

(
ε

1
2‖∇(εχ(x/ε)Sε(ηε∇h0))‖L2(Ω) + ‖∇(εχ(x/ε)Sε(ηε∇h0))‖L2(Ω2ε)

)

= Cε‖u0‖H2(Ω)‖∇(εχ(x/ε)Sε(ηε∇h0))‖L2(Ω)

≤ Cε‖u0‖H2(Ω)‖h0‖H2(Ω),

where in the last inequality, we have used a property of Sε; see [16, Proposition 3.1.5] or
[15, Lemma 2.1].

As a result, we arrive at

∣∣∣∣
∫

Ω

wε ·G
∣∣∣∣ ≤





Cε
7
8
−σ

(
‖u0‖W 1,∞(Ω) + ‖u0‖H2(Ω)

)
‖h0‖H2(Ω) if d = 3,

Cε1−σ
(
‖u0‖W 1,∞(Ω) + ‖u0‖H2(Ω)

)
‖h0‖H2(Ω) if d = 4,

Cε
3
4
+ 3

4(d−1)
−σ‖u0‖

W 2, d2 (Ω)
‖h0‖H2(Ω) if d ≥ 5.

(5.21)

Recall that ‖h0‖H2(Ω) ≤ C‖G‖L2(Ω). Then, by duality, we see that ‖wε‖L2(Ω) is bounded by
the right-hand side of (5.21), which yields the desired estimate (1.13), since εχ(x/ε)Sε(ηε∇u0)
is clearly bounded by Cε‖u0‖H1(Ω). �

Remark 5.6. In this paper, we focus only on the estimate of ‖uε − u0‖L2(Ω). However,
the sharp convergence rates may be obtained if we consider ‖uε − u0‖Lp(Ω) with some
p ∈ (1, 2). For instance, if d = 3, (4.17) implies that ‖vε‖L 3

2 (Ω)
≤ Cε1−σ. This leads to

the improvement for the estimate of J1 in Lemma 5.5 and eventually yields

‖uε − u0‖L 3
2 (Ω)

≤ Cε1−σ(‖u0‖W 1,∞(Ω) + ‖u0‖H2(Ω)).

Similar results are also true for d ≥ 5.
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