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STABILITY AND UNIQUENESS FOR PIECEWISE SMOOTH

SOLUTIONS TO BURGERS–HILBERT AMONG A LARGE CLASS OF

SOLUTIONS

SAM G. KRUPA AND ALEXIS F. VASSEUR

Abstract. In this paper, we show uniqueness and stability for the piecewise-smooth
solutions to the Burgers–Hilbert equation constructed in Bressan and Zhang [Commun.

Math. Sci., 15(1):165–184, 2017]. The Burgers–Hilbert equation is ut + (u
2

2
)x = H[u]

where H is the Hilbert transform, a nonlocal operator. We show stability and uniqueness
for solutions amongst a larger class than the uniqueness result in Bressan and Zhang. The
solutions we consider are measurable and bounded, satisfy at least one entropy condition,
and verify a strong trace condition. We do not have smallness assumptions . We use
the relative entropy method and theory of shifts (see Vasseur [Handbook of Differential
Equations: Evolutionary Equations, 4:323 – 376, 2008]).
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2 KRUPA AND VASSEUR

1. Introduction

We consider a scalar balance law in one space dimension with a source term,{
∂tu+ ∂xA(u) = G(u(·, t))(x), for x ∈ R, t > 0,

u(x, 0) = u0(x)
(1.1)

The unknown is u : R× [0, T ) → R. The function A : R → R is the flux function. In this
paper, we only consider A ∈ C3(R) which are strictly convex. The function G : L2(R) →
L2(R) is Lipschitz continuous and translation invariant. The initial data is u0 : R → R.

We consider both bounded classical and bounded weak solutions to (1.1). A weak
solution u is bounded and measurable and satisfies (1.1) in the sense of distributions. I.e.,
for every Lipschitz continuous test function Φ : R× [0, T ) → R with compact support,

(1.2)

T∫

0

∞∫

−∞

[
∂tΦu+ ∂xΦf(u)

]
dxdt+

∞∫

−∞

Φ(x, 0)u0(x) dx

= −
T∫

0

∞∫

−∞

ΦG(u(·, t))(x) dxdt.

A pair of functions η, q : R → R are called an entropy, and entropy-flux pair, respectively,
for (1.1) if they satisfy the compatibility relation q′ = A′η′. We only consider solutions u

which are entropic for the entropy η. That is, they satisfy the following entropy condition:

∂tη(u) + ∂xq(u) ≤ η′(u)G(u(·, t))(x),(1.3)

in the sense of distributions. I.e., for all positive, Lipschitz continuous test functions
φ : R× [0, T ) → R with compact support:

(1.4)

T∫

0

∞∫

−∞

[
∂tφ
(
η(u(x, t))

)
+∂xφ

(
q(u(x, t))

)
]
dxdt+

∞∫

−∞

φ(x, 0)η(u0(x)) dx ≥

−
T∫

0

∞∫

−∞

φη′(u(x, t))G(u(·, t))(x) dxdt.

We study solutions u to (1.1) among the class of functions verifying a strong trace
property (first introduced in [23]):

Definition 1.1. Fix T > 0. Let u : R × [0, T ) → R verify u ∈ L∞(R × [0, T )). We say
u has the strong trace property if for every fixed Lipschitz continuous map h : [0, T ) → R,
there exists u+, u− : [0, T ) → R such that

lim
n→∞

t0∫

0

ess sup
y∈(0, 1

n
)

∣∣u(h(t) + y, t)− u+(t)
∣∣ dt = lim

n→∞

t0∫

0

ess sup
y∈(− 1

n
,0)

∣∣u(h(t) + y, t)− u−(t)
∣∣ dt = 0

(1.5)
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for all t0 ∈ (0, T ).

Note that for example a function u ∈ L∞(R×[0, T )) will satisfy the strong trace property
if for each fixed h, the right and left limits

lim
y→0+

u(h(t) + y, t) and lim
y→0−

u(h(t) + y, t)(1.6)

exist for almost every t. In particular, a function u ∈ L∞(R× [0, T )) will have strong traces
according to Definition 1.1 if u has a representative which is in BVloc. However, the strong
trace property is weaker than BVloc.

Our method is the relative entropy method, a technique created by Dafermos [9, 8] and
DiPerna [12] to give L2-type stability estimates between a Lipschitz continuous solution
and a rougher solution, which is only weak and entropic for a strictly convex entropy (the
so-called weak-strong stability theory). For a system (1.1) endowed with an entropy η, the
technique of relative entropy considers the quantity called the relative entropy, defined as

η(u|v) := η(u) − η(v)− η′(v) · (u− v),(1.7)

for u, v ∈ R.
Similarly, we define relative entropy-flux,

q(u; v) := q(u)− q(v)− η′(v) · (f(u)− f(v)).(1.8)

Remark that for any constant v ∈ R, the map u 7→ η(u|v) is an entropy for the system
(1.1), with associated entropy flux u 7→ q(u; v). Furthermore, if u is a weak solution to
(1.1) and entropic for η, then for a fixed v ∈ R, u will also be entropic for η(·|v). This can
be calculated directly from (1.1) and (1.3) – note that the map u 7→ η(u|v) is basically η

plus a linear term.
Moreover, by virtue of η being strictly convex, the relative entropy is comparable to the

L2 distance, in the following sense:
Due to the strict convexity of η ∈ C2(R), for a, b ∈ R in a fixed compact set, there exists

c∗, c∗∗ > 0 such that

c∗(a− b)2 ≤ η(a|b) ≤ c∗∗(a− b)2.(1.9)

The constants c∗, c∗∗ depend on the fixed compact set and bounds on the second derivative
of η.

For a Lipschitz solution ū to (1.1), and a weak, entropic solution u, the method of
relative entropy gives estimates on the growth in time of the quantity

∥∥ū(·, t)− u(·, t)
∥∥
L2(R)

(1.10)

by considering the time derivative ∂t
∫
η(u|ū) dx and using that (1.9) gives the L2 stability.

When a discontinuity is introduced into the otherwise smooth ū, the method of relative
entropy breaks down. In fact, simple examples for the scalar conservation laws show that
we cannot hope to get stability between ū and u in the form of the classical weak-strong
estimates when ū has a discontinuity.

However, we can get weak-strong stability results via the relative entropy method when
we allow the discontinuity in ū to move with a speed which is artificially dictated and
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depends on u. This is the theory of stability up to a shift – a program started in [30] for
combining shifts with the method of relative entropy. The theory of stability up to a shift
has been undergoing heavy development through the last decade. The first result was for
pure shock wave initial data for the scalar conservation laws [22]. Then, by introducing
the technique of a-contraction, progress has been made on pure shock wave initial data for
systems [16, 29, 31, 27, 23]. Furthermore, there are results for scalar viscous conservation
laws in both one space dimension [17] and multiple [18]. Recent work for scalar has allowed
for many discontinuities to exist in the otherwise smooth ū and shift each discontinuity
independently as needed to keep L2 stability, and in this way the method of relative entropy
has in fact been used to show uniqueness for an arbitrary weak entropic solution (entropic
for a single entropy) amongst the class of all weak solutions entropic for the same entropy.
See [20]. For a general overview of theory of shifts and the relative entropy method,
see [28, Section 3-5]. The theory of stability up to a shift has also been used to study
the asymptotic limits when the limit is discontinuous (see [7] for the scalar case, [32] for
systems). There are many other results using the relative entropy method to study the
asymptotic limit. However, without the theory of shifts these results can only consider
limits which are Lipschitz continuous (see [24, 25, 3, 1, 33, 2, 4, 13] and [30] for a survey).

The present paper is another step in this program of stability up to a shift.
A case of (1.1) of particular interest is the Burgers–Hilbert equation,

ut +

(
u2

2

)

x

= H[u],(1.11)

u(x, 0) = u0(x),(1.12)

where H[u] is the Hilbert transform of u and u0 : R → R is the initial data. The Hilbert
transform of a function f ∈ L2(R) is defined as

Ĥ[f ](ξ) := −i
ξ

|ξ| f̂(ξ).(1.13)

Note that the Hilbert transform is an isometry on L2(R), and hence Lipschitz of course.
Note also the Hilbert transform is nonlocal. For initial data u0 ∈ H2(R), local existence
and uniqueness for (1.11) is given in [14], along with a precise estimate on how long the
solution remains regular (for a shorter proof, see [15]). For general initial data u0 ∈ L2(R),
the global existence in time of weak, entropic solutions to (1.11) is shown in [5]. In [5],
the authors consider entropy solutions which are entropic for the large family of Kruzhkov
entropies {ηk}k∈R, where

ηk(u) := |u− k| .(1.14)

See [21]. The paper [5] gives a partial uniqueness: uniqueness for entropic solutions to
(1.11) which are spatially periodic and have locally bounded variation. On the contrary,
the results we present in this paper work without smallness assumptions and do not require
that solutions have locally bounded variation. This is due to the method of relative entropy
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not being a perturbative theory – smallness does not play a role in the relative entropy
method or the theory of shifts and a-contraction.

Further, in [6] the authors prove short-time existence and uniqueness for piecewise-
smooth solutions ū to (1.11) which have a single discontinuity in space, along a shock
curve in space-time. They consider ‘entropic’ solutions of the form





ū(x, t) = φ(x− s(t)) + w(x− s(t), t),

where t 7→ s(t) is the location of the shock, w(·, t) ∈ H2(R \ {0}), and
φ(x) := 2

π |x| ln(|x|)m(x)

for the smooth bump function with compact support m ∈ C∞
C (R), with m(x) = m(−x),

and verifying 



m(x) = 1 if |x| ≤ 1,

m(x) = 0 if |x| ≥ 2,

m′(x) ≤ 0 if x ∈ [1, 2].

Note, φ has compact support in [−2, 2] and is smooth for x 6= 0. Further, their definition

of a solution ū requires that ū(s(t)−, t) > ū(s(t)+, t) and
∥∥w(·, t)

∥∥
H2(R\{0})

is bounded

uniformly in time (see [6, p. 168] for details). Their solutions are smooth at

(x, t) whenever x 6= s(t).

(1.15)

The form (1.15) is the class of solutions in [6] on which uniqueness for piecewise-smooth
solutions is shown.

Note that smooth solutions to (1.1) will be entropic (see (1.3)) for any strictly convex
entropy η, and will in fact satisfy (1.3) as an exact equality. Moreover, solutions of the
form (1.15) will also be entropic for any strictly convex entropy (see Lemma 2.1).

The difficulty in the analysis of the Burgers–Hilbert equation is that for the classical
conservation laws without a source term, there is the well-known L1-contractive semigroup
property for solutions. Adding a source term which is Lipschitz continuous from L1 → L1

allows the semigroup to stay continuous (see [5]). However, the Hilbert transform is a
bounded linear operator on L2 and not on L1.

We apply the relative entropy method. The relative entropy method is well adapted to
handling this kind of source term, since the relative entropy method is an L2-based theory.

In this paper, we consider solutions which are entropic for one strictly convex entropy η.

In the case of G = H (the Hilbert transform), we consider the unique entropy η(u) = u2

2 .
If G is a possibly nonlinear bounded operator from L∞ to L∞ we can consider an η which
is any strictly convex entropy. To be precise, we consider η and G such that at least one



6 KRUPA AND VASSEUR

of the following hold:




• η(u) = αu2 + βu+ γ for some α ∈ (0,∞), β ∈ R, γ ∈ R,

or

• G (from the right hand side of (1.1)) is bounded from

L∞(R) → L∞(R).

(1.16)

The requirement (1.16) is due to technical concerns.
In this paper, we prove the following theorem for scalar balance laws in the form (1.1), for

stability of solutions ū in the form (1.15) which are smooth on {(x, t) ∈ R× [0, T )|x < s(t)}
and on {(x, t) ∈ R× [0, T )|x > s(t)}, where s : [0, T ) → R is a Lipschitz function.

The result we prove is:

Theorem 1.2 (Main theorem – L2 stability for entropic piecewise-Lipschitz solutions to
scalar balance laws). Fix T > 0.

Consider u, ū weak solutions to (1.1). Assume u ∈ L2(R × [0, T )) ∩ L∞(R × [0, T ))
verifies the strong trace property (Definition 1.1) and is entropic for the strictly convex
entropy η ∈ C3(R), where η and G verify (1.16). Further, assume ū is in the form (1.15).

Assume also that there exists δ > 0 such that

ū(s(t)−, t)− ū(s(t)+, t) > δ(1.17)

for all t ∈ [0, T ).
Then, there exists constants C > 0 and ρ, γ > 1 and a Lipschitz continuous function

X : [0, T ) → R with X(0) = 0 such that for b ∈ [0, T ),

(1.18)

∫

R

η(u(x, b)|ū(x+X(b), b)) dx

≤ C

[(∫

R

η(u(x, 0)|ū(x, 0)) dx
)1/γ

+

(∫

R

η(u(x, 0)|ū(x, 0)) dx
)ρ]

e
Cb+C

b∫

0
‖∂xū(·,t)‖2

L2(R\{x=s(t)})
dt
.

Moreover,

X(t) = s(t)− h(t),(1.19)

where h(t) is a generalized characteristic of u, and we have the following L2-type control
on X:

T∫

0

(Ẋ(t))2 dt ≤ C̃

[(∫

R

η(u(x, 0)|ū(x, 0)) dx
)1/γ̃

(1.20)
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+

(∫

R

η(u(x, 0)|ū(x, 0)) dx
)ρ̃]

,(1.21)

for constants C̃ > 0 and ρ̃, γ̃ > 1.
The constants C, γ, ρ depend on T and δ. The constants C̃, γ̃, ρ̃ depend on T , δ and

T∫
0

∥∥∂xū(·, t)
∥∥2
L2(R\{x=s(t)})

dt.

Remark.

• The map [0, T ) ∋ t 7→
∥∥∂xū(·, t)

∥∥2
L2(R\{x=s(t)})

is in L1([0, T )) because ∂xū ∈ L2((R×
[0, T )) \ {(x, t)|x = s(t)}) by the assumption that ū is in the form (1.15).

• Although the main application for Theorem 1.2 is to take G = H the Hilbert
transform, Theorem 1.2 holds for all translation invariant, Lipschitz continuous G
and whenever ū is in the form (1.15).

• Instead of (1.16), the proof ofTheorem 1.2 will actually go through whenever we
have an estimate of the form∣∣∣∣∣∣∣

x2∫

x1

η′(u(x, t)|ū(x+X(t), t))G(u(·, t))(x) dx

∣∣∣∣∣∣∣
≤ C

x2∫

x1

∣∣η′(u(x, t)|ū(x+X(t), t))
∣∣ dx,(1.22)

for x1, x2 ∈ R and some constant C > 0. Remark that for u ∈ L∞, (1.16) implies
(1.22). This is due to η′(a|b) ≡ 0 for all a, b ∈ R whenever η is a quadratic
polynomial.

• If ū is Lipschitz continuous on R \ {x = s(t)} and there exists a constant C > 0
such that

∥∥∂xū(·, t)
∥∥
L2(R\{x=s(t)})

≤ C(1.23)

for all t ∈ [0, T ) , which in particular are common assumption for solutions to the
scalar conservation laws without a source term, then with slight modifications to
the argument used to prove Theorem 1.2 (in fact simpler), we can get stability
estimates of the form

∫

R

∣∣u(x, t0)− ū(x+X(t0), t0)
∣∣2 dx ≤ CeCt0

∫

R

∣∣∣u0(x)− ū0(x)
∣∣∣
2
dx,(1.24)

for a constant C > 0 and for all t0 > 0. Further, we get control on the shift in the
form of L2-type control on X:

t0∫

0

(Ẋ(t))2 dt ≤ C

∫

R

∣∣∣u0(x)− ū0(x)
∣∣∣
2
dx,(1.25)

for all t0 > 0. These calculations are done explicitly for the systems case in a
forthcoming paper [19]. When ū is Lipschitz continuous on

(
R\{x = s(t)}

)
×[0,∞),
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the constant C does not depend on the time interval [0, T ) on which the solution
exists. Note that (1.25) shows that the shiftX converges to zero as t → ∞ whenever
u0 − ū0 ∈ L2(R). Further, note that the estimate (1.25) can be applied to the
scalar conservation law (1.1) (with G ≡ 0) and when ū is a pure shock wave with
two constant states, (1.25) shows that all of the generalized characteristics of u
eventually converge in speed to the shock speed of ū if u0 − ū0 ∈ L2(R) (by noting
that translations of u are also L2-close to ū we can study all the characteristics of
u, not just the characteristics h verifying h(0) = s(0)). In particular, we have given
an answer to Leger’s conjecture on the large-time behavior of the shift [22, p. 763].

• From Hölder duality, note that (1.25) implies an estimate of the form

1

t0

t0∫

0

∣∣∣Ẋ(t)
∣∣∣ dt ≤ C√

t0

∥∥∥u0(·)− ū0(·)
∥∥∥
L2(R)

,(1.26)

and similarly (1.20) implies

1

T

T∫

0

∣∣∣Ẋ(t)
∣∣∣ dt ≤ C√

T

[(∫

R

η(u(x, 0)|ū(x, 0)) dx
)1/γ̃

(1.27)

+

(∫

R

η(u(x, 0)|ū(x, 0)) dx
)ρ̃]1/2

.(1.28)

By applying Theorem 1.2 with A(u) = u2

2 , η(u) =
u2

2 , and G the Hilbert transform, we
are able to show that the piecewise-smooth solutions to the Burgers–Hilbert equation are
unique among a much larger class of solutions than those considered in [6]: For a fixed
T > 0, we show uniqueness for the solutions from[6] amongst all weak solutions u to (1.11)
verifying the strong trace property (Definition 1.1), u ∈ L2(R × [0, T )) ∩ L∞(R × [0, T )),

initial data u0 ∈ L2(R), and entropic for η(u) = u2

2 .
Note we can apply Theorem 1.2 to the piecewise-smooth solutions constructed in [6] (the

ū in the context of Theorem 1.2) because due to the smoothness of the solutions in [6], for
each finite time T we can use compactness to find a δ to verify (1.17).

In particular, we do not require the lines worth of entropies (1.14) to show uniqueness.
By virtue of the relative entropy method, we use only a single entropy condition. The single
entropy condition for the classic Burgers equation is itself a relatively new development
(see [26, 11, 20]) and is of interest because for systems of conservation laws or balance
laws, often only one nontrivial entropy exists, and we certainly cannot hope for all of the
Kruzhkov entropies (1.14). In particular, due to our use of the relative entropy method,
there is hope that the techniques developed in this paper will extend to systems.

Our stability and uniqueness result Theorem 1.2 is sharp in the following sense: in [5]
they construct a source term G for (1.1) which is Lipschitz continuous L2 → L2. They

use the quadratic flux, A(u) = u2

2 . However, for this G they construct initial data which
has multiple solutions, all with bounded variation and uniformly compact support. They
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conjecture then that any proof of uniqueness for (1.11) must rely on specific properties
of the Hilbert transform. And indeed, our proof of Theorem 1.2 relies on the translation
invariance of G, a property also of the Hilbert transform.

As noted in [6] and [5], the well-posedness and uniqueness of solutions for (1.11) remain
largely open questions.

All the previous results in the program of stability up to a shift work by rewriting the
piecewise smooth ū as two solutions to (1.1), both defined on all of R, and then letting the
shift function decide how much of each solution (in x) to use at each particular time t. This
is in particular how [20] works. Creating these two different solutions is often easy enough
when the ū is piecewise constant or (1.1) is scalar. But it is less obvious how to create
these two separate solutions when (1.1) has multiple conserved quantities or when (1.1) is
nonlocal. When (1.1) is nonlocal, we cannot simply extend each half (to the left/right of
the jump discontinuity) of ū to all of R.

Thus, in this paper we introduce the idea of not moving the discontinuity in ū to keep
stability in L2, but instead translating the entire ū in x, as a function of u and t. There is a
key difficulty in this: translating ū causes entropy production so large (see Lemma 2.2) we
can no longer close the key Gronwall argument to get L2 stability. To solve this problem,
we give a novel construction of the shift function which actually creates negative entropy
– comparable in amount to the excess growth in the Gronwall (see Lemma 3.1 and the
proof of Theorem 1.2). This closes the Gronwall argument and gives the main theorem,
Theorem 1.2.

The key insight into the construction of the new shift function is that for the scalar
case, if u(·, t) (the function in the first slot of the relative entropy) and ū(·, t) (the function
in the second slot) both have a discontinuity at x0 ∈ R, then we can always kill the
entropy growth between ū and u in L2 by moving the discontinuity in ū at the speed
of the discontinuity in u. This is exactly what Lemma 3.1 is saying. In other words,
the shift function is the generalized characteristic of u (see Dafermos [10, Chapter 10]
for generalized characteristics). Further, this very natural shift function does more than
neutralize all growth in L2 that would otherwise occur due to the discontinuity in ū: it
creates additional negative entropy. This negativity allows us to translate ū in x. Further,
this negative entropy is responsible for the novel L2 control presented on the shifts in this
paper (see (1.20) and (1.25)). It is striking that we can use a generalized characteristic as
a shift function.

Assume ū has a discontinuity along the curve x = s(t). Then when computing ∂t
∫
η(u|ū) dx

using (1.3), the discontinuity in ū dissipates entropy relative to u, in the amount of

(1.29) q(u+; ū+)− q(u−; ū−)− σ(ū+, ū−)
(
η(u+|ū+)− η(u−|ū−)

)
,

where u± := u(s(t)±, t), ū± := ū(s(t)±, t), and σ(ū+, ū−) is the speed of the shock con-
necting ū− and ū+ (see Lemma 2.2 for details).

Loosely speaking, previous shift functions, including as used in previous a-contraction
papers and in [22], were more ad hoc and worked by making σ(ū+, ū−) an unknown, setting
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the dissipation (1.29) equal to zero and solving for σ(ū+, ū−), giving something like

(1.30) σ(ū+, ū−)
defined

=
max{0, q(u+; ū+)− q(u−; ū−)}

η(u+|ū+)− η(u−|ū−)
(see [27] or [22] for more details). Then we study the map,

(u, uL, uR) 7→
max{0, q(u;uR)− q(u;uL)}

η(u|uR)− η(u|uL)
(1.31)

(motivated by the case where u(·, t) is continuous at s(t)). Unfortunately, the map (1.31) is
unyielding to analysis. Simple bounds on this map are difficult to obtain (see for example
the proof of Lemma 3.4 in [20]). Moreover, the map (1.31) is not continuous or upper
semi-continuous in u, which creates the need for a secondary mollification argument not
needed in the present paper.

Further, by design, when u(·, t) is continuous at s(t), the shift function created based
on the above ideas ((1.30) and (1.31)) will make the entropy growth between u and ū

identically zero, which is not good for us. We want some additional negativity.
An intuitive way to see that the generalized characteristic of u is the correct shift function

is this: Fix a v ∈ R. Note that if u is entropic for the entropy η, u is also entropic for the
entropy

u 7→ η(u|v).(1.32)

This is due to the map (1.32) being just η(u) plus a constant term and a term linear in u.
Then, if the shock (uL, uR, σ(uL, uR)) is entropic for η, we also have for (1.32):

q(uR; v)− q(uL; v)− σ(uL, uR)(η(uR|v)− η(uL|v)) ≤ 0.(1.33)

Note the speed in (1.33) is σ(uL, uR) – the speed of the discontinuity in the first slot of the
relative entropy. The speed is not σ(v, v) = A′(v).

The outline of the paper is as follows. First, in Section 2 we present some technical
lemmas and some structural lemmas on the system (1.1) which we will need. Then, in Sec-
tion 3 we present the proof of the additional negative entropy the generalized characteristic
causes when used as a shift function (see Lemma 3.1). Finally, in Section 4 we translate the
piecewise-smooth solution in x artificially to prove Theorem 1.2, and we cancel the entropy
caused by the translation using the negative entropy from the generalized-characteristic-
based shift function.

2. Technical Lemmas

Throughout this paper, we will use as notation and define the relative flux,

A(u|ū) := A(u)−A(ū)−A′(ū)(u− ū).(2.1)

We will also use the relative entropy derivative,

η′(u|ū) := η′(u)− η′(ū)− η′′(ū)(u− ū).(2.2)

For completeness, we state the following basic fact:
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Lemma 2.1. A solution ū to (1.1) of the form (1.15) will be entropic, i.e. satisfy (1.3),
for any strictly convex entropy η ∈ C2(R).

Proof. This follows because smooth solutions to (1.1) will satisfy (1.3) as an exact equality
for any smooth entropy η. Further, solutions of the form (1.15) are smooth except along the
shock curve t 7→ s(t), along which they verify ū(s(t)−, t) > ū(s(t)+, t). Thus, Lemma 2.4
ensures that ū satisfies (1.3). �

The following lemma gives the relative entropy dissipation produced by three sources: a
shock, the source term G, and translating the piecewise smooth solution ū by a function
t 7→ X(t).

Lemma 2.2 (Global entropy dissipation rate). Fix T > 0.
Consider u, ū weak solutions to (1.1). Assume u ∈ L2(R×[0, T ))∩L∞(R×[0, T )) verifies

the strong trace property (Definition 1.1) and is entropic for the strictly convex entropy
η ∈ C3(R). Further, assume ū is in the form (1.15). Also, assume that u0 − ū0 ∈ L2(R).

Let h : [0, T ) → R be a Lipschitz continuous map.
Define

X(t) := s(t)− h(t),(2.3)

where s is as in (1.15).
Then for almost every a, b ∈ [0, T ) verifying a < b,

(2.4)
∞∫

−∞

η(u(x, b)|ū(x+X(b), b)) dx −
∞∫

−∞

η(u(x, a)|ū(x+X(a), a)) dx

≤
b∫

a

q(u(h(t)+, t); ū(s(t)+, t)) − q(u(h(t)−, t); ū(s(t)−, t))

− ḣ(t)
(
η(u(h(t)+, t)|ū(s(t)+, t)) − η(u(h(t)−, t)|ū(s(t)−, t))

)
dt

−
b∫

a

∞∫

−∞

[(
∂x

∣∣∣∣
(x+X(t),t)

η′(ū(x, t))

)
A(u(x, t)|ū(x+X(t), t))

+

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)Ẋ(t)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

− η′(u(x, t)|ū(x+X(t), t))G(u(·, t))(x)

+

(
G(ū(·, t))(x +X(t))−G(u(·, t))(x)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

]
dxdt.

Moreover, (2.4) holds for a = 0 and almost every b ∈ (0, T ).
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Proof.
Step 1

We first prove the following relative version of the entropy inequality:
For all positive, Lipschitz continuous test functions φ : R × [0, T ) → R with compact

support and that vanish on the set {(x, t) ∈ R× [0, T )|x = s(t)−X(t)}, we have
(2.5)

T∫

0

∞∫

−∞

[∂tφη(u(x, t)|ū(x+X(t), t)) + ∂xφq(u(x, t); ū(x+X(t), t))] dxdt

+

∞∫

−∞

φ(x, 0)η(u0(x)|ū0(x)) dx ≥

T∫

0

∞∫

−∞

φ

[(
∂x

∣∣∣∣
(x+X(t),t)

η′(ū(x, t))

)
A(u(x, t)|ū(x+X(t), t))

+

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)Ẋ(t)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

− η′(u(x, t)|ū(x+X(t), t))G(u(·, t))(x)

+

(
G(ū(·, t))(x +X(t)) −G(u(·, t))(x)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

]
dxdt.

Note that (2.5) is the analogue in our case of the key estimate used in Dafermos’s proof of
weak-strong stability, which gives a relative version of the entropy inequality (see equation
(5.2.10) in [10, p. 122-5]). The proof of (2.5) is based on the famous weak-strong stability
proof of Dafermos and DiPerna [10, p. 122-5].

We now prove (2.5).
Note that on the complement of the set {(x, t) ∈ R× [0, T )|x = s(t)}, ū is smooth and

so we have the exact equalities,

∂t

∣∣∣∣
(x,t)

(
ū(x, t)

)
+ ∂x

∣∣∣∣
(x,t)

(
A(ū(x, t))

)
= G(ū(·, t))(x),(2.6)

∂t

∣∣∣∣
(x,t)

(
η(ū(x, t))

)
+ ∂x

∣∣∣∣
(x,t)

(
q(ū(x, t))

)
= η′(ū(x, t))G(ū(·, t))(x).(2.7)
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Thus for any Lipschitz continuous function X : [0, T ) → R with X(0) = 0 we have on
the complement of the set {(x, t) ∈ R× [0, T )|x = s(t)−X(t)},

(2.8)

∂t

∣∣∣∣
(x,t)

(
ū(x+X(t), t)

)
+ ∂x

∣∣∣∣
(x,t)

(
A(ū(x+X(t), t))

)
=

(
∂x

∣∣∣∣
(x+X(t),t)

(
ū(x, t)

)
)
Ẋ(t) +G(ū(·, t))(x +X(t)),

and

(2.9)

∂t

∣∣∣∣
(x,t)

(
η(ū(x+X(t), t))

)
+ ∂x

∣∣∣∣
(x,t)

(
q(ū(x+X(t), t))

)
=

η′(ū(x+X(t), t))

(
∂x

∣∣∣∣
(x+X(t),t)

(
ū(x, t)

)
)
Ẋ(t) + η′(ū(x+X(t), t))G(ū(·, t))(x +X(t)).

We can now imitate the weak-strong stability proof in [10, p. 122-5], using (2.8) and
(2.9) instead of (2.6) and (2.7).

Recall (2.1), which says

A(u|ū) := A(u)−A(ū)−A′(ū)(u− ū).(2.10)

Remark that A(u|ū) is locally quadratic in u− ū.
Fix any positive, Lipschitz continuous test function φ : R × [0, T ) → R with compact

support. Assume also that φ vanishes on the set {(x, t) ∈ R × [0, T )|x = s(t) − X(t)}.
Then, we use that u satisfies the entropy inequality in a distributional sense:

(2.11)

T∫

0

∞∫

−∞

[
∂tφ
(
η(u(x, t))

)
+∂xφ

(
q(u(x, t))

)
]
dxdt+

∞∫

−∞

φ(x, 0)η(u0(x)) dx ≥

−
T∫

0

∞∫

−∞

φη′(u(x, t))G(u(·, t))(x) dxdt

We also view (2.9) as a distributional equality:
(2.12)

T∫

0

∞∫

−∞

[
∂tφ
(
η(ū(x+X(t), t))

)
+ ∂xφ

(
q(ū(x+X(t), t))

)
]
dxdt+

∞∫

−∞

φ(x, 0)η(ū0(x)) dx =

−
T∫

0

∞∫

−∞

φ

[
η′(ū(x+X(t), t))

(
∂x

∣∣∣∣
(x+X(t),t)

(
ū(x, t)

)
)
Ẋ(t)+

η′(ū(x+X(t), t))G(ū(·, t))(x +X(t))

]
dxdt.
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To get (2.12), we do integration by parts twice on the right hand side of (2.9). Once
on the domain {(x, t) ∈ R × [0, T )|x < s(t) − X(t)} and once on the domain {(x, t) ∈
R × [0, T )|x > s(t) − X(t)}. We don’t have a boundary term along the set {(x, t) ∈
R× [0, T )|x = s(t)−X(t)} because φ vanishes on this set.

We subtract (2.12) from (2.11), to get

(2.13)
T∫

0

∞∫

−∞

[∂tφη(u(x, t)|ū(x+X(t), t)) + ∂xφq(u(x, t); ū(x+X(t), t))] dxdt

+

∞∫

−∞

φ(x, 0)η(u0(x)|ū0(x)) dx

≥ −
T∫

0

∞∫

−∞

(
∂tφη

′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]+

∂xφη
′(ū(x+X(t), t))[A(u(x, t)) −A(ū(x+X(t), t))]

)
dxdt

−
∞∫

−∞

φ(x, 0)η′(ū0(x))[u0(x)− ū0(x)] dx

+

T∫

0

∞∫

−∞

φ

[
η′(ū(x+X(t), t))

(
∂x

∣∣∣∣
(x+X(t),t)

(
ū(x, t)

)
)
Ẋ(t)+

η′(ū(x+X(t), t))G(ū(·, t))(x +X(t)) − η′(u(x, t))G(u(·, t))(x)
]
dxdt

The function u is a distributional solution to the system of conservation laws. Thus, for
every Lipschitz continuous test function Φ : R× [0, T ) → R with compact support,

(2.14)

T∫

0

∞∫

−∞

[
∂tΦu+ ∂xΦA(u)

]
dxdt+

∞∫

−∞

Φ(x, 0)u0(x) dx

= −
T∫

0

∞∫

−∞

ΦG(u(·, t))(x) dxdt.
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We also can rewrite (2.8) in a distributional way, for Φ which have the additional property
of vanishing on {(x, t) ∈ R× [0, T )|x = s(t)−X(t)}:

(2.15)

T∫

0

∞∫

−∞

[
∂tΦū(x+X(t), t) + ∂xΦA(ū(x+X(t), t))

]
dxdt+

∞∫

−∞

Φ(x, 0)ū0(x) dx

= −
T∫

0

∞∫

−∞

Φ

[(
∂x

∣∣∣∣
(x+X(t),t)

(
ū(x, t)

)
)
Ẋ(t) +G(ū(·, t))(x +X(t))

]
dxdt.

To prove (2.15), on the right hand side of (2.8) we again do integration by parts twice.
Once on the domain {(x, t) ∈ R× [0, T )|x < s(t)−X(t)} and once on the domain {(x, t) ∈
R × [0, T )|x > s(t) − X(t)}. We lose the boundary terms along {(x, t) ∈ R × [0, T )|x =
s(t)−X(t)} because Φ vanishes there.

Then, we can choose

φη′(ū(x+X(t), t))(2.16)

as the test function Φ, and subtract (2.15) from (2.14). We can extend the function (2.16)
to the set {(x, t) ∈ R× [0, T )|x = s(t)−X(t)} by defining it to be zero. This extension is
still Lipschitz continuous.

This yields,

(2.17)

T∫

0

∞∫

−∞

[
∂t[φη

′(ū(x+X(t), t))][u(x, t) − ū(x+X(t), t)]+

∂x[φη
′(ū(x+X(t), t))][A(u(x, t)) −A(ū(x+X(t), t))]

]
dxdt

+

∞∫

−∞

φ(x, 0)η′(ū0(x))[u0(x)− ū0(x)] dx

=

T∫

0

∞∫

−∞

φη′(ū(x+X(t), t))

[(
∂x

∣∣∣∣
(x+X(t),t)

(
ū(x, t)

)
)
Ẋ(t)

+G(ū(·, t))(x +X(t))−G(u(·, t))(x)
]
dxdt.
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Recall ū is a classical solution on the complement of the set {(x, t) ∈ R× [0, T )|x = s(t)}
and verifies (2.8). Thus, on the complement of the set {(x, t) ∈ R× [0, T )|x = s(t)−X(t)},
(2.18)

∂t

∣∣∣∣
(x,t)

(
η′(ū(x+X(t), t))

)
=

(
∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)Ẋ(t) + ∂t

∣∣∣∣
(x+X(t),t)

ū(x, t)

)
η′′(ū(x+X(t), t))

=

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)Ẋ(t)

− ∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)
[
A′(ū(x+X(t), t))

]
+G(ū(·, t))(x +X(t))

)
η′′(ū(x+X(t), t))

=

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)Ẋ(t) +G(ū(·, t))(x +X(t))

)
η′′(ū(x+X(t), t))

− ∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)η′′(ū(x+X(t), t))A′(ū(x+X(t), t)).

Thus, by (2.18) and the definition of the relative flux in (2.1),

(2.19)

∂t

∣∣∣∣
(x,t)

(
η′(ū(x+X(t), t))

)
[u(x, t)− ū(x+X(t), t)]

+ ∂x

∣∣∣∣
(x,t)

(
η′(ū(x+X(t), t))

)
[A(u(x, t)) −A(ū(x+X(t), t))]

= ∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t))

+

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)Ẋ(t) +G(ū(·, t))(x +X(t))

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)].
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We combine (2.13), (2.17), and (2.19) to get
(2.20)

T∫

0

∞∫

−∞

[∂tφη(u(x, t)|ū(x+X(t), t)) + ∂xφq(u(x, t); ū(x+X(t), t))] dxdt

+

∞∫

−∞

φ(x, 0)η(u0(x)|ū0(x)) dx

≥
T∫

0

∞∫

−∞

φ

[
η′(ū(x+X(t), t))

(
∂x

∣∣∣∣
(x+X(t),t)

(
ū(x, t)

)
)
Ẋ(t)+

η′(ū(x+X(t), t))G(ū(·, t))(x +X(t)) − η′(u(x, t))G(u(·, t))(x)

+

(
∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)

)
η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t))

+

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)Ẋ(t)

+G(ū(·, t))(x +X(t))

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

− η′(ū(x+X(t), t))
[(

∂x

∣∣∣∣
(x+X(t),t)

(
ū(x, t)

)
)
Ẋ(t) +G(ū(·, t))(x +X(t)) −G(u(·, t))(x)

]]
dxdt

=

T∫

0

∞∫

−∞

φ

[
− η′(u(x, t))G(u(·, t))(x)

+

(
∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)

)
η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t))

+

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)Ẋ(t)

+G(ū(·, t))(x +X(t))

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

− η′(ū(x+X(t), t))
[
−G(u(·, t))(x)

]]
dxdt.
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Note that we can add zero, to get
(2.21)
− η′(u(x, t))G(u(·, t))(x) +G(ū(·, t))(x +X(t))η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

− η′(ū(x+X(t), t))
[
−G(u(·, t))(x)

]

= −G(u(·, t))(x)
(
(
η′(u(x, t))

)
−
(
η′(ū(x+X(t), t))

)
− η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

)

+

(
G(ū(·, t))(x +X(t)) −G(u(·, t))(x)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

= −G(u(·, t))(x)(η′(u(x, t)|ū(x+X(t), t)))

+

(
G(ū(·, t))(x +X(t)) −G(u(·, t))(x)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

= −η′(u(x, t)|ū(x+X(t), t))G(u(·, t))(x)

+

(
G(ū(·, t))(x +X(t)) −G(u(·, t))(x)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)].

Note that this computation is from [30].
Then, from (2.20) and (2.21), we get (2.5).

Step 2

Recall (2.47), which says h(t) = s(t) −X(t). Choose 0 < ǫ < T − b, and R sufficiently
large such that −R < h(t)− ǫ for all t ∈ [0, T ).

We now show (2.4) for the case when a = 0 and almost every b ∈ (0, T ).
Write (2.5) for the test function ω0(t)χ(x, t), where

ω0(t) :=





1 if 0 ≤ t < b
1
ǫ (b− t) + 1 if b ≤ t < b+ ǫ

0 if a+ ǫ ≤ t,

(2.22)

and

χ(x, t) :=





0 if x < −2R
1
R (x+ 2R) if − 2R ≤ x < −R

1 if −R ≤ x ≤ h(t)− ǫ

−1
ǫ (x− h(t)) if h(t)− ǫ < x ≤ h(t)

0 if h(t) < x.

(2.23)
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The function ω0 is modeled from [10, p. 124]. The function χ is borrowed from [22,
p. 766]. Note χ(h(t), t) = 0. We get,

(2.24)
b∫

0

−R∫

−2R

1

R
q(u(x, t); ū(x+X(t), t)) dxdt

+

−R∫

−2R

1

R
(x+ 2R)η(u0(x)|ū0(x+X(0)) dx −

b+ǫ∫

b

−R∫

−2R

1

ǫR
(x+ 2R)η(u(x, t)|ū(x+X(t), t)) dxdt

+

h(0)∫

−R

η(u0(x)|ū0(x+X(0))) dx −
b+ǫ∫

b

h(t)∫

−R

1

ǫ
η(u(x, t)|ū(x+X(t), t)) dxdt

+

b∫

0

h(t)∫

h(t)−ǫ

1

ǫ
ḣ(t)η(u(x, t)|ū(x+X(t), t)) dxdt −

b∫

0

h(t)∫

h(t)−ǫ

1

ǫ
q(u(x, t); ū(x+X(t), t)) dxdt

−
h(0)∫

h(0)−ǫ

1

ǫ
(x− h(0))η(u0(x)|ū0(x)) dx + Error(ǫ)

≥
b∫

0

−R∫

−2R

1

R
(x+ 2R)RHS dxdt+

b∫

0

h(t)∫

−R

RHS dxdt,

where RHS represents everything being multiplied by φ in the integral on the right hand
side of (2.5). The term Error(ǫ) represents all terms which go to 0 as ǫ → 0, for R fixed.

We let ǫ → 0 in (2.24). We use the dominated convergence theorem, the Lebegue
differentiation theorem, and recall that u satisfies the strong trace property (Definition 1.1).
We can also drop the term

−
b+ǫ∫

b

−R∫

−2R

1

ǫR
(x+ 2R)η(u(x, t)|ū(x+X(t), t)) dxdt(2.25)

because it is negative. This gives,
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(2.26)
b∫

0

−R∫

−2R

1

R
q(u(x, t); ū(x+X(t), t)) dxdt +

−R∫

−2R

1

R
(x+ 2R)η(u0(x)|ū0(x)) dx

+

h(0)∫

−R

η(u0(x)|ū0(x)) dx −
h(b)∫

−R

η(u(x, b)|ū(x+X(b), b)) dx

+

b∫

0

ḣ(t)η(u(h(t)−, t)|ū((h(t) +X(t))−, t)) dt −
b∫

0

q(u(h(t)−, t); ū((h(t) +X(t))−, t)) dt

≥
b∫

0

−R∫

−2R

1

R
(x+ 2R)RHS dxdt+

b∫

0

h(t)∫

−R

RHS dxdt,

for almost every b.
To take the limit R → ∞, we first note that RHS ∈ L1(R × [0, T )). To see RHS

∈ L1(R × [0, T )), remark that by virtue of the natural logarithm being locally square
integrable, solutions ū in the form (1.15) verify ∂xū ∈ L2((R × [0, T )) \ {(x, t)|x = s(t)}).
Further, recall that η(a|b), q(a; b), and A(a|b) are locally quadratic in a − b and that
u, ū ∈ L2(R× [0, T ))∩L∞(R× [0, T )). In particular, to show this term in the RHS is finite:

∞∫

−∞

L2(R)

(
∂x

∣∣∣∣
(x+X(t),t)

η′(ū(x, t))

) L2(R)

A(u(x, t)|ū(x+X(t), t)) dx,(2.27)

we use the indicated Hölder duality, recall ∂xū ∈ L2((R × [0, T )) \ {(x, t)|x = s(t)}), and
then use the basic Lp interpolation inequality

∞∫

−∞

(
u(x, t)− ū(x+X(t), t)

)4
dx(2.28)

=

∞∫

−∞

(
u(x, t)− ū(x+X(t), t)

)2(
u(x, t)− ū(x+X(t), t)

)2
dx(2.29)

≤
∞∫

−∞

(
u(x, t)− ū(x+X(t), t)

)2
dx

∥∥∥∥
(
u(·, t) − ū(·+X(t), t)

)2∥∥∥∥
L∞(R)

,(2.30)

where we have used Hölder’s inequality (recall that A(a|b) is locally quadratic in a− b so
(A(a|b))2 is quartic).
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We let R → ∞ in (2.26). Recall the monotone convergence theorem, dominated conver-
gence theorem, and that u0 − ū0 ∈ L2(R). We get,

(2.31)
h(0)∫

−∞

η(u0(x)|ū0(x+X(0))) dx −
h(b)∫

−∞

η(u(x, b)|ū(x+X(b), b)) dx

+

b∫

0

ḣ(t)η(u(h(t)−, t)|ū((h(t) +X(t))−, t)) dt −
b∫

0

q(u(h(t)−, t); ū((h(t) +X(t))−, t)) dt

≥
b∫

0

h(t)∫

−∞

RHS dxdt.

This gives the entropy dissipation on the left.
Similarly, we can calculate the entropy dissipation on the right,

(2.32)
∞∫

h(0)

η(u0(x)|ū0(x+X(0))) dx −
∞∫

h(b)

η(u(x, b)|ū(x+X(b), b)) dx

−
b∫

0

ḣ(t)η(u(h(t)+, t)|ū((h(t) +X(t))+, t)) dt +

b∫

0

q(u(h(t)+, t); ū((h(t) +X(t))+, t)) dt

≥
b∫

0

∞∫

h(t)

RHS dxdt.

Recall that h(t) = s(t) − X(t). Then, we add (2.31) and (2.32) to get (2.4) for a = 0
and almost every b ∈ (0, T ).

On the other hand, for almost every a, b ∈ (0, T ) with a < b we write (2.5) for the test
function ω(t)χ(x, t), where χ(x, t) is as above in (2.23) but instead of the ω0(t) used above
we use

ω(t) :=





0 if 0 ≤ t < a
1
ǫ (t− a) if a ≤ t < a+ ǫ

1 if a+ ǫ ≤ t < b
1
ǫ (b− t) + 1 if b ≤ t < b+ ǫ

0 if b+ ǫ ≤ t.

(2.33)

Writing (2.5) for the test function ω(t)χ(x, t) and following a very similar argument to
the one above for a = 0 completes the proof of (2.4).



22 KRUPA AND VASSEUR

�

Lemma 2.3 (Structural lemma from [27]). Let u+, u−, ū+, ū− ∈ R satisfy u− ≥ u+ and
ū− ≥ ū+.

Define

σ(u+, u−) :=

{
A(u+)−A(u−)

u+−u−
if u+ 6= u−

A′(u+) if u+ = u−.
(2.34)

To simplify notation, we write σ = σ(u+, u−).
Define the following real-valued map B on the set of intervals I ⊂ R:

B(I) :=

∫

I

[
η′′(u)

[
(A(u)− σu)− (A(u)− σu)±

]]
du,(2.35)

where (A(u)− σu)± denotes that

A(u+)− σu+ = A(u−)− σu−,(2.36)

due to the Rankin-Hugoniot relation (2.34). Note B(∅) = 0. Let I and J be disjoint
intervals such that

I ∪ J = ((u+, u−) ∪ (ū+, ū−)) \ ((u+, u−) ∩ (ū+, ū−)).(2.37)

We allow for I and/or J = ∅. Further, define ǫ(I) to be +1 if I ⊂ (u+, u−) and −1
otherwise.

Then,

q(u+; ū+)− q(u−; ū−)− σ(η(u+|ū+)− η(u−|ū−)) = ǫ(I)B(I) + ǫ(J)B(J).(2.38)

Proof. This proof is from [27, p. 9-10]. In the article [27], the authors develop a condition
for the general systems case which they label equation number 7 [27, p. 4]. They claim to
use this condition in the argument for the scalar conservation laws which we are using here
to prove Lemma 2.3. In fact, they do not need condition number 7 for the scalar case and
their proof goes through unchanged without the condition. We do not use the condition
here. The authors in [27] also restrict themselves to scalar solutions given by Kruzhkov’s
theory of scalar conservation laws (see [21]), but again their proofs go through unchanged
without this assumption.

We use the following notation, inspired by [27]: If F is a function of u, then we define

[F ] := F (ū+)− F (ū−) and F± := F (u±).(2.39)

Assume for now that u+ 6= u−.
Denote

D := q(u+; ū+)− q(u−; ū−)− σ(η(u+|ū+)− η(u−|ū−)).(2.40)

From Rankine-Hugoniot (2.34) (as remarked in [27, p. 5]),

D = [η′(u)A(u) − q(u)]− σ[η′(u)u− η] + q+ − q− − σ(η+ − η−)− [η′](A(u) − σu)±,

(2.41)
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where (A(u)− σu)± denotes the fact that

A(u+)− σu+ = A(u−)− σu−(2.42)

due to the Rankine-Hugoniot relation (2.34).
The fundamental theorem of calculus and integration by parts yield,

D =

u−∫

u+

[
η′′(u)

[
(A(u) − σu)− (A(u) − σu)±

]]
du(2.43)

−
ū−∫

ū+

[
η′′(u)

[
(A(u)− σu)− (A(u)− σu)±

]]
du.(2.44)

This proves (2.38) for u+ 6= u−.
We prove (2.38) for u+ = u− by using (2.43) and continuity, in particular the continuity

of the σ function (see Lemma 2.6). This proves the lemma.
�

Lemma 2.4 (Structural lemma on entropic shocks from [20]). Assume the system (1.1) has
a strictly convex flux A ∈ C2(R), and is endowed with a strictly convex entropy η ∈ C2(R),
with an associated entropy flux q. Let uL, uR, σ ∈ R verify

A(uL)−A(uR) = σ(uL − uR).(2.45)

Then,

q(uR)− q(uL) ≤ σ(η(uR)− η(uL))(2.46)

if and only if uL ≥ uR. I.e., the shock (uL, uR, σ) is entropic for the entropy η if and only
if uL ≥ uR.

Remark. For the system (1.1) with a strictly convex flux A, the “physical” condition on a
shock with left-hand state uL and right-hand state uR is to require that uL > uR. This is
the Lax entropy condition for the scalar systems. Lemma 2.4 says that the shock (uL, uR, σ)
being entropic for the the entropy η is equivalent to satisfying the Lax entropy condition.

We do not prove Lemma 2.4 here. For a proof, see [20, p. 13].

Lemma 2.5 (Structural lemma on approximate limits in time from [20]). Fix T > 0.
Assume that u, ū are weak solutions to (1.1). Assume that u is entropic for the entropy

η ∈ C3(R). Assume that ū is in the form (1.15). Assume that u ∈ L2(R× [0, T ))∩L∞(R×
[0, T )). Further, assume that u0− ū0 ∈ L2(R). Assume also that u verifies the strong trace
property (Definition 1.1).

Let h : [0, T ) → R be a Lipschitz continuous map.
Define

X(t) := s(t)− h(t),(2.47)

where s is as in (1.15).
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Then the approximate right- and left-hand limits

ap lim
t→t0±

∞∫

−∞

η(u(x, t)|ū(x+X(t), t)) dx(2.48)

exist for all t0 ∈ (0,∞) and verify

ap lim
t→t0−

∞∫

−∞

η(u(x, t)|ū(x+X(t), t)) dx ≥ ap lim
t→t0+

∞∫

−∞

η(u(x, t)|ū(x+X(t), t)) dx.(2.49)

The approximate right-hand limit also exists for t0 = 0 and verifies

∞∫

−∞

η(u0(x)|ū0(x+X(0))) dx ≥ ap lim
t→0+

∞∫

−∞

η(u(x, t)|ū(x+X(t), t)) dx.(2.50)

The proof of Lemma 2.5 is very similar to the proof of Lemma 2.4 in [20, p. 11]. For
completeness, a proof of Lemma 2.5 is in the appendix (Section 5.2).

Lemma 2.6. Let f : R → R be in C3(R).
Let

H(x, y) :=

{
f(x)−f(y)

x−y if x 6= y

f ′(x) if x = y.

Then H ∈ C1(R2).

Proof. We show the first partials of H exist and are continuous.
Note that H(x, y) = H(y, x) so we only have to show that Hx is continuous.
For (x, y) ∈ R2, x 6= y,

Hx(x, y) =
f ′(x)

x− y
− f(x)− f(y)

(x− y)2
.(2.51)

We calculate Hx at points (x, x) ∈ R2:

Hx(x, x) = lim
h→0

f(x+h)−f(x)
h − f ′(x)

h
.(2.52)

We use Taylor’s theorem to evaluate the limit (2.52). Write

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +R(h)h2,(2.53)

where limh→0R(h) = 0.
From (2.53), we have

Hx(x, x) = lim
h→0

[
f ′′(x)

2
+R(h)

]
=

f ′′(x)

2
.(2.54)
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Next, we show that

lim
(x,y)→(x0,x0)

Hx(x, y) = lim
(x,y)→(x0,x0)

f ′(x)

x− y
− f(x)− f(y)

(x− y)2
=

f ′′(x0)

2
.(2.55)

We use Taylor’s theorem again. Write

f(y) = f(x) + f ′(x)(y − x) +
f ′′(x)

2
(y − x)2 +Q(x, y).(2.56)

The remainder term Q(x, y) satisfies

Q(x, y) =
f (3)(ξ(x, y))

3!
(y − x)3,(2.57)

where ξ(x, y) ∈ R is between y and x.
Then, we substitute the formula for f(y) (from (2.56)) into (2.55). This yields,

f ′(x)

x− y
− f(x)− f(y)

(x− y)2
=

f ′′(x)

2
+

Q(x, y)

(x− y)2
.(2.58)

For (x, y) close to (x0, x0), ξ(x, y) is close to x0. Thus, f
(3)(ξ(x, y)) is bounded for (x, y)

in a neighborhood of (x0, x0).
Thus,

∣∣∣∣
Q(x, y)

(x− y)2

∣∣∣∣ =
∣∣∣∣∣
f (3)(ξ(x, y))

3!

∣∣∣∣∣|y − x| → 0(2.59)

as (x, y) → (x0, x0).
Putting together (2.55), (2.58), and (2.59), we get

lim
(x,y)→(x0,x0)

Hx(x, y) =
f ′′(x0)

2
.(2.60)

This shows that Hx and Hy are continuous on R2. We conclude H ∈ C1(R2). �

3. Structural lemma on the negativity of entropy dissipation

The following Lemma says that if a discontinuity in the second slot of relative entropy
is being artificially shifted at the speed of a discontinuity in the first slot of the relative
entropy, we get entropy dissipation proportional to the square of the shift.

Lemma 3.1 (Structural lemma on the negativity of entropy dissipation). Fix δ,B > 0.
Let u+, u−, ū+, ū− ∈ R satisfy u− ≥ u+, ū− − ū+ ≥ δ and

|u+| ,|u−| ,|ū+| ,|ū−| ≤ B.(3.1)

Define

σ(u+, u−) :=

{
A(u+)−A(u−)

u+−u−
if u+ 6= u−

A′(u+) if u+ = u−.
(3.2)
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Then,

(3.3)
q(u+; ū+)− q(u−; ū−)− σ(u+, u−)(η(u+|ū+)− η(u−|ū−))

≤ −c
(
(u+ − ū+)

2 + (u− − ū−)
2
)
,

where c > 0 is a constant that depends on B and δ.

Proof. Denote

D := q(u+; ū+)− q(u−; ū−)− σ(u+, u−)(η(u+|ū+)− η(u−|ū−)).(3.4)

Note that D is continuous.
We use Lemma 2.3.
Note that η′′ > 0. Note also that the map Γ:

u 7→
[
(A(u)− σu)− (A(u)− σu)±

]
(3.5)

is strictly convex and satisfies Γ(u+) = Γ(u−) = 0 due to (2.36). Thus for the two intervals
I and J in Lemma 2.3, we have ǫ(I)B(I) ≤ 0 and ǫ(J)B(J) ≤ 0.

In particular, for any
{
u+, u−, ū+, ū− ∈ R with 0 ≤ u− − u+ ≤ δ

2 , ū− − ū+ ≥ δ

and max{|u+| ,|u−| ,|ū+| ,|ū−|} ≤ B,
(3.6)

we must have D strictly less than zero because the measure of the interval (ū+, ū−) is at
least δ, while the measure of the interval (u+, u−) is less than or equal to δ

2 . The set of
such u+, u−, ū+, ū− is closed and bounded. Thus, we know the infimum of the continuous
function D over this set (3.6) is also strictly negative,

infD < 0.(3.7)

Due to (3.1), we can make c small enough such that (3.3) holds for the set (3.6).
Consider now the set of all




u+, u−, ū+, ū− ∈ R with u− − u+ ≥ δ
2 , ū− − ū+ ≥ δ,

max{|u+| ,|u−| ,|ū+| ,|ū−|} ≤ B

and at least one of the following is true:

(i) |u+ − ū+| ≥ δ
2 ,

(ii) |u− − ū−| ≥ δ
2 .

(3.8)

Recall Lemma 2.3 and that the map Γ (see (3.5)) is strictly convex. Then for u+, u−, ū+, ū−
in the set (3.8), by inspection of the possible cases,

• (u+, u−) ∩ (ū+, ū−) = ∅

• ū+ ≤ u+ ≤ ū− ≤ u−
• u+ ≤ ū+ ≤ ū− ≤ u−
• ū+ ≤ u+ ≤ u− ≤ ū−
• u+ ≤ ū+ ≤ u− ≤ ū−,
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it is clear that D will always be strictly less than zero.
The set (3.8) is closed and bounded. To show it is closed, consider a sequence {(u+,n, u−,n, ū+,n, ū−,n)}n∈N

in the set (3.8) converging to a point (u+, u−, ū+, ū−). If both

(i) |u+ − ū+| <
δ

2
,(3.9)

(ii) |u− − ū−| <
δ

2
,(3.10)

are true, then there exists some N ∈ N such that

(i)
∣∣u+,N − ū+,N

∣∣ < δ

2
,(3.11)

(ii)
∣∣u−,N − ū−,N

∣∣ < δ

2
,(3.12)

which is a contradiction. It is obvious that the set (3.8) is closed with respect to the rest
of its properties. Thus the set (3.8) is closed and bounded, and again we conclude the
infimum of the continuous function D on this set must be strictly negative. Thus, due to
(3.1) we can make c sufficiently small such that (3.3) holds.

We now make note of a few rudimentary facts.
Due to the strict convexity of Γ and Γ(u+) = Γ(u−) = 0, there are positive constants c∗

and c∗∗ such that for u ∈ [−B,B],

c∗(u− u+)(u− u−) ≤ Γ(u) ≤ c∗∗(u− u+)(u− u−).(3.13)

We define F : R2 → R,

F (a, b) :=

b∫

a

(u− u+)(u− u−) du,(3.14)

for a, b ∈ R.
Note that,

(3.15)

F (a, b) =

b∫

a

(u− u+)(u− u−) du

= (b− u+)
2
(b− u+

3
+

u+ − u−

2

)
− (a− u+)

2
(a− u+

3
+

u+ − u−

2

)
,

and from the symmetry u+ ↔ u−,

= (b− u−)
2
(b− u−

3
+

u− − u+

2

)
− (a− u−)

2
(a− u−

3
+

u− − u+

2

)
.
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Consider now the final set,




u+, u−, ū+, ū− ∈ R with u− − u+ ≥ δ
2 , ū− − ū+ ≥ δ,

max{|u+| ,|u−| ,|ū+| ,|ū−|} ≤ B,

and we have both:

(i) |u+ − ū+| < δ
2 ,

and

(ii) |u− − ū−| < δ
2 .

(3.16)

For each (u+, u−, ū+, ū−) in the set (3.16), we show (3.3) by analyzing each of the
possible cases:

• (u+, u−) ∩ (ū+, ū−) = ∅

• ū+ ≤ u+ ≤ ū− ≤ u−
• ū+ ≤ u+ ≤ u− ≤ ū−
• u+ ≤ ū+ ≤ ū− ≤ u−
• u+ ≤ ū+ ≤ u− ≤ ū−

Case: (u+, u−) ∩ (ū+, ū−) = ∅

Rudimentary geometric arguments show this case is not possible (for a fixed u+ and u−,
consider where on the real line would ū+ be?).

Case: ū+ ≤ u+ ≤ ū− ≤ u−
From Lemma 2.3, (3.13), and (3.14) we get,

D ≤ −c∗[inf η′′]F (ū+, u+) + c∗∗[inf η′′]F (ū−, u−)(3.17)

≤ −1

4
δc∗[inf η′′](ū+ − u+)

2 − 1

12
δc∗∗[inf η′′](ū− − u−)

2,(3.18)

from (3.15) and (3.16).
This shows (3.3).
Case: ū+ ≤ u+ ≤ u− ≤ ū−
From Lemma 2.3, (3.13), and (3.14) we get,

D ≤ −c∗[inf η′′]F (ū+, u+)− c∗[inf η′′]F (u−, ū−)(3.19)

≤ −1

4
δc∗[inf η′′](ū+ − u+)

2 − 1

4
δc∗[inf η′′](ū− − u−)

2,(3.20)

from (3.15) and (3.16). This shows (3.3).
Case: u+ ≤ ū+ ≤ ū− ≤ u−
From Lemma 2.3, (3.13), and (3.14) we get,

D ≤ c∗∗[inf η′′]F (u+, ū+) + c∗∗[inf η′′]F (ū−, u−)(3.21)

≤ − 1

12
δc∗∗[inf η′′](ū+ − u+)

2 − 1

12
δc∗∗[inf η′′](ū− − u−)

2,(3.22)

from (3.15) and (3.16). This shows (3.3).
Case: u+ ≤ ū+ ≤ u− ≤ ū−
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From Lemma 2.3, (3.13), and (3.14) we get,

D ≤ c∗∗[inf η′′]F (u+, ū+)− c∗[inf η′′]F (u−, ū−)(3.23)

≤ − 1

12
δc∗∗[inf η′′](ū+ − u+)

2 − 1

4
δc∗[inf η′′](ū− − u−)

2,(3.24)

from (3.15) and (3.16). This shows (3.3).
This completes the proof of Lemma 3.1. �

4. Proof of the main theorem (Theorem 1.2)

To prove the main theorem for solutions defined on the finite time interval [0, T ) (The-
orem 1.2), we first prove it for any time interval of length 1

C for a uniform constant C (the
main proposition – Proposition 4.1). Then we use induction (Section 4.1) to extend the
time interval to [0, T ). The constants will depend on the magnitude of the time T , but
since T is always assumed to be finite in this article (and in [6]), we are okay.

Proposition 4.1 (Main proposition – L2 stability for entropic piecewise-Lipschitz solutions
to scalar balance laws for uniformly small time). Fix T > 0.

Consider u, ū weak solutions to (1.1). Assume u ∈ L2(R × [0, T )) ∩ L∞(R × [0, T ))
verifies the strong trace property (Definition 1.1) and is entropic for the strictly convex
entropy η ∈ C3(R), where η and G verify (1.16). Further, assume ū is in the form (1.15).
Furthermore, assume that u0 − ū0 ∈ L2(R).

Assume also that there exists δ > 0 such that

ū(s(t)−, t)− ū(s(t)+, t) > δ(4.1)

for all t ∈ [0, T ).
Then, there exists a constant C > 0 and a Lipschitz continuous function X : [0, T ) → R

with X(0) = 0 and such that for a, b ∈ [0, T ) with 0 ≤ b− a ≤ 1
C ,

(4.2)

ap lim
t→b−

∫

R

η(u(x, t)|ū(x+X(t), t)) dx

≤ C

[(
ap lim

t→a+

∫

R

η(u(x, t)|ū(x+X(t), t)) dx

)1/4

+

(
ap lim

t→a+

∫

R

η(u(x, t)|ū(x+X(t), t)) dx

)3]
e
C(b−a)+C

b∫

a
‖∂xū(·,t)‖2

L2(R)
dt
,

where ap lim denotes the approximate limit.
Moreover,

X(t) = s(t)− h(t),(4.3)

where h(t) is a generalized characteristic of u.
The constant C depends on δ and T .
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Proof. Note that because ū is in the form (1.15), it is smooth on {(x, t) ∈ R×[0, T )|x < s(t)}
and on {(x, t) ∈ R× [0, T )|x > s(t)}, where s : [0, T ) → R is a Lipschitz function . Further,
∂xū ∈ L2((R× [0, T )) \ {(x, t)|x = s(t)}) and ū ∈ L2(R× [0, T )) ∩ L∞(R× [0, T )).

We let C denote a generic constant, in particular depending on δ.
Step 1 We solve the following ODE in the Filippov sense:

{
ḣ(t) = A′(u(h(t), t))

h(0) = s(0).
(4.4)

We use the following lemma.

Lemma 4.2 (Existence of Filippov flows). Let V (u, t) : R × [0,∞) → R be bounded on
R × [0,∞), continuous in u, and measurable in t. Let u be a bounded, weak solution to
(1.1), entropic for the entropy η. Assume also that u verifies the strong trace property
(Definition 1.1). Let x0 ∈ R. Then we can solve

{
ḣ(t) = V (u(h(t), t), t)

h(0) = x0,
(4.5)

in the Filippov sense. Which is to say, there exists a Lipschitz function h : [0,∞) → R

such that

Lip[h] ≤‖V ‖L∞ ,(4.6)

h(0) = x0,(4.7)

and

ḣ(t) ∈ I[V (u+, t), V (u−, t)],(4.8)

for almost every t. We denote u± := u(h(t)±, t). We use I[a, b] to denote the closed
interval with endpoints a and b.

Furthermore, for almost every t,

f(u+)− f(u−) = ḣ(u+ − u−),(4.9)

q(u+)− q(u−) ≤ ḣ(η(u+)− η(u−)).(4.10)

I.e., for almost every t, either (u+, u−, ḣ) is a shock entropic for η or u+ = u−.

The proof of (4.6), (4.7), and (4.8) follows closely the proof of Proposition 1 in [23] and
the proof of Lemma 3.5 in [20]. See Section 5.1 for a proof of (4.6), (4.7), and (4.8).

It is well known that (4.9) and (4.10) are true generally for any Lipschitz continuous
function h : [0,∞) → R when u is BV. When instead u is only known to have strong traces
(Definition 1.1), then (4.9) and (4.10) are stated in Lemma 6 in [23]. For proofs of (4.9)
and (4.10), see the appendix in [23]. We do not prove the properties (4.9) and (4.10) here.

Remark that the function h is a generalized characteristic for the solution u (see [10,
Chapter 10]).

Step 2
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Denote

(4.11)
u± := u(h(t)±, t),

ū± := ū(s(t)±, t).

Then Lemma 2.4, (4.9), and (4.10) imply that u− ≥ u+. Further, (1.17) implies that

ū− > ū+. From (4.4), (4.8), (4.9), and (3.2), we see ḣ(t) = σ(u+, u−). Thus, from
Lemma 3.1 we have

q(u+; ū+)− q(u−; ū−)− ḣ(t)(η(u+|ū+)− η(u−|ū−)) ≤ −c
(
(u+ − ū+)

2 + (u− − ū−)
2
)
,

(4.12)

where c is the constant from the right hand side of(3.3) and it depends on
∥∥u±(t)

∥∥
L∞([0,T ))

,∥∥ū(s(t)±, t)
∥∥
L∞([0,T ))

and δ.

Because A ∈ C3(R), the function σ : R2 → R, defined as

σ(v,w) :=

{
A(v)−A(w)

v−w if v 6= w

A′(v) if v = w,
(4.13)

is in C1(R2) by Lemma 2.6. Thus, from Taylor’s theorem,

∣∣σ(ū+, ū−)− σ(u+, u−)
∣∣ ≤ sup

∣∣∂vσ(ξ)
∣∣
(∣∣ū+ − u+)

∣∣+|ū− − u−|
)
,(4.14)

where the supremum of
∣∣∂vσ(ξ)

∣∣ runs over the set of ξ such that |ξ| ≤ max{‖u‖L∞ ,‖ū‖L∞}.
Note that we have used the symmetry of σ. In particular, ∂vσ(ξ) = ∂wσ(ξ).

From (4.14), we get

∣∣σ(ū+, ū−)− σ(u+, u−)
∣∣2 ≤ 2(sup

∣∣∂vσ(ξ)
∣∣)2
(∣∣ū+ − u+)

∣∣2 +|ū− − u−|2
)
.(4.15)

From (4.12) and (4.15), we receive

q(u+; ū+)− q(u−; ū−)− ḣ(t)(η(u+|ū+)− η(u−|ū−)) ≤ − c

2(sup
∣∣∂vσ(ξ)

∣∣)2
∣∣σ(ū+, ū−)− σ(u+, u−)

∣∣2 .
(4.16)

Step 3
Define

A(u|ū) := A(u)−A(ū)−A′(ū)(u− ū),(4.17)

X(t) := s(t)− h(t).(4.18)

Note that A(u|ū) is locally quadratic in u− ū.
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Then from Lemma 2.2, we have for almost every a∗, b∗ ∈ [0, T ) verifying a∗ < b∗,
(4.19)

∞∫

−∞

η(u(x, b∗)|ū(x+X(b∗), b∗)) dx −
∞∫

−∞

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx

≤
b∗∫

a∗

q(u(h(t)+, t); ū(s(t)+, t))− q(u(h(t)−, t); ū(s(t)−, t))

− ḣ(t)
(
η(u(h(t)+, t)|ū(s(t)+, t))− η(u(h(t)−, t)|ū(s(t)−, t))

)
dt

−
b∗∫

a∗

∞∫

−∞

[(
∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)

)
η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t))

+

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)Ẋ(t)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

− η′(u(x, t)|ū(x+X(t), t))G(u(·, t))(x)

+

(
G(ū(·, t))(x +X(t)) −G(u(·, t))(x)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

]
dxdt.

Recall that because ū is in the form (1.15), we can write ū(x, t) = φ(x− s(t)) + w(x −
s(t), t), for φ and w as in (1.15). Then the term

b∗∫

a∗

∞∫

−∞

(
∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)

)
η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t)) dxdt(4.20)

from (4.19) becomes

b∗∫

a∗

∞∫

−∞

(
∂x

∣∣∣∣
(x+X(t),t)

φ(x) + w(x− s(t), t)

)
η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t)) dxdt

=

b∗∫

a∗

∞∫

−∞

2

π

(
1 + ln

∣∣x+X(t)
∣∣
)
sgn(x+X(t))m(x +X(t))η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t)) dxdt

+

b∗∫

a∗

∞∫

−∞

2

π

∣∣x+X(t)
∣∣ ln
∣∣x+X(t)

∣∣m′(x+X(t))η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t)) dxdt
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+

b∗∫

a∗

∞∫

−∞

(
∂x

∣∣∣∣
(x+X(t),t)

w(x− s(t), t)

)
η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t)) dxdt.

To handle the term,

b∗∫

a∗

∞∫

−∞

2

π
ln
∣∣x+X(t)

∣∣ sgn(x+X(t))m(x+X(t))η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t)) dxdt,

(4.21)

we do the following:

b∗∫

a∗

∞∫

−∞

2

π
ln
∣∣x+X(t)

∣∣ sgn(x+X(t))m(x+X(t))η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t)) dxdt

(4.22)

=

b∗∫

a∗

∫

Bǫ(−X(t))

L1(R)

2

π
ln
∣∣x+X(t)

∣∣ sgn(x+X(t))m(x +X(t))

L∞(R)

η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t)) dxdt

(4.23)

+

b∗∫

a∗

∫

(Bǫ(−X(t)))c

L∞(R)

2

π
ln
∣∣x+X(t)

∣∣ sgn(x+X(t))m(x +X(t))η′′(ū(x+X(t), t))

L1(R)

A(u(x, t)|ū(x+X(t), t)) dxdt

(4.24)

for 0 < ǫ, and estimate these two terms by using the indicted Hölder dualities (in the x

coordinate). Recall the support of m is contained in [−2, 2].
Note that for ǫ > 0,

∥∥∥ln
∣∣·+X(t)

∣∣
∥∥∥
L1(Bǫ(−X(t)))

≤ 6ǫ+ 2ǫ
∣∣ln(ǫ)

∣∣ ,(4.25)

and for 0 < ǫ < 2

∥∥∥ln
∣∣·+X(t)

∣∣
∥∥∥
L∞(ǫ−X(t),2−X(t))

≤ ln(2) +
∣∣ln(ǫ)

∣∣ .(4.26)
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Then, from these estimates, we get
(4.27)∣∣∣∣∣∣∣

b∗∫

a∗

∞∫

−∞

[
2

π
ln
∣∣x+X(t)

∣∣ sgn(x+X(t))m(x +X(t))η′′(ū(x+X(t), t))A(u(x, t)|ū(x+X(t), t))

]
dxdt

∣∣∣∣∣∣∣

≤ C

b∗∫

a∗

[(
ǫ+ ǫ

∣∣ln(ǫ)
∣∣
)∥∥A(u|ū)

∥∥
L∞(R)

+
(
ln(2) +

∣∣ln(ǫ)
∣∣
)∥∥A(u|ū)

∥∥
L1(R)

]
dt.

Besides just the term (4.21), we then want to estimate from above the rest of the terms
in (4.19):
(4.28)

∞∫

−∞

∣∣∣∣∣

L∞(R)

(
sgn(x+X(t))m(x+X(t)) +

∣∣x+X(t)
∣∣ ln
∣∣x+X(t)

∣∣m′(x+X(t)) +

(
∂x

∣∣∣∣
(x+X(t),t)

w(x− s(t), t)

))
η′′(ū)

L1(R)

A(u|ū)

+ Ẋ(t)

L2(R)

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)

) L∞(R)

η′′(ū(x+X(t), t))

L2(R)

[u(x, t) − ū(x+X(t), t)]

−

L1(R)

η′(u(x, t)|ū(x+X(t), t))

L∞(R)

G(u(·, t))(x)

+

L2(R)

(
G(ū(·, t))(x +X(t)) −G(u(·, t))(x)

) L∞(R)

η′′(ū(x+X(t), t))

L2(R)

[u(x, t) − ū(x+X(t), t)]

∣∣∣∣∣ dx.

To estimate (4.28), we use the Hölder dualities indicated.
Note that to handle the term

L1(R)

η′(u(x, t)|ū(x+X(t), t))

L∞(R)

G(u(·, t))(x)(4.29)

seen in (4.28), we use (1.16). Note that if η(u) = αu2 + βu+ γ, then η′(a|b) ≡ 0 for all a, b
so we do not require that G be bounded from L∞(R) → L∞(R).

Further, due to G being translation invariant and Lipschitz continuous from L2(R) →
L2(R),

∥∥G(ū(·, t))(· +X(t)) −G(u(·, t))(·)
∥∥
L2(R)

=
∥∥G(ū(·+X(t), t))(·) −G(u(·, t))(·)

∥∥
L2(R)

(4.30)

≤ Lip[G]
∥∥ū(·+X(t), t) − u(·, t)

∥∥
L2(R)

.(4.31)
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For
∥∥∂xū(·+X(t), t)

∥∥
L2(R)

∥∥η′′(ū)
∥∥
L∞ 6= 0 we have, due to ‘Young’s inequality with ǫ,’

(4.32)∣∣∣Ẋ(t)
∣∣∣
∥∥u(·, t) − ū(·+X(t), t)

∥∥
L2(R)

≤
c

8(sup
∣∣∂vσ(ξ)

∣∣)2
∥∥∂xū(·+X(t), t)

∥∥
L2(R)

∥∥η′′(ū)
∥∥
L∞

(Ẋ(t))2

+
2(sup

∣∣∂vσ(ξ)
∣∣)2
∥∥∂xū(·+X(t), t)

∥∥
L2(R)

∥∥η′′(ū)
∥∥
L∞

c

∥∥u(·, t)− ū(·+X(t), t)
∥∥2
L2(R)

,

where c is from the right hand side of (4.12). Continuing, we get from (4.32),
(4.33)

2
∣∣∣Ẋ(t)

∣∣∣
∥∥∂xū(·+X(t), t)

∥∥
L2(R)

∥∥η′′(ū)
∥∥
L∞

∥∥u(·, t) − ū(·+X(t), t)
∥∥
L2(R)

≤ c

4(sup
∣∣∂vσ(ξ)

∣∣)2 (Ẋ(t))2

+
4(sup

∣∣∂vσ(ξ)
∣∣)2
∥∥∂xū(·+X(t), t)

∥∥2
L2(R)

∥∥η′′(ū)
∥∥2
L∞

c

∥∥u(·, t) − ū(·+X(t), t)
∥∥2
L2(R)

.

For any t such that
∥∥∂xū(·+X(t), t)

∥∥
L2(R)

∥∥η′′(ū)
∥∥
L∞ = 0, we don’t have to estimate the

term

Ẋ(t)

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)].(4.34)

Note that by the Rankine-Hugoniot relation, ṡ(t) = σ(ū+, ū−). And, due to (4.4), (4.8),

(4.9), and (4.13), we have ḣ(t) = σ(u+, u−). Thus,

Ẋ(t) = ṡ(t)− ḣ(t) = σ(ū+, ū−)− σ(u+, u−).(4.35)

We then combine (4.16), (4.33), and (4.35) to get that
(4.36)
q(u(h(t)+, t); ū(s(t)+, t))− q(u(h(t)−, t); ū(s(t)−, t))

− ḣ(t)
(
η(u(h(t)+, t)|ū(s(t)+, t)) − η(u(h(t)−, t)|ū(s(t)−, t))

)

+
c

4(sup
∣∣∂vσ(ξ)

∣∣)2 (Ẋ(t))2

+
4(sup

∣∣∂vσ(ξ)
∣∣)2
∥∥∂xū(·+X(t), t)

∥∥2
L2(R)

∥∥η′′(ū)
∥∥2
L∞

c

∥∥u(·, t) − ū(·+X(t), t)
∥∥2
L2(R)

≤
4(sup

∣∣∂vσ(ξ)
∣∣)2
∥∥∂xū(·+X(t), t)

∥∥2
L2(R)

∥∥η′′(ū)
∥∥2
L∞

c

∥∥u(·, t) − ū(·+X(t), t)
∥∥2
L2(R)

− c

4(sup
∣∣∂vσ(ξ)

∣∣)2 (Ẋ(t))2.

Recall that A(c|d) and η(c|d) are locally quadratic in c−d. Similarly, remark that η′(c|d)
is locally quadratic in c− d by virtue of η ∈ C3(R). Moreover, due to the strict convexity
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of η, for c and d in a fixed compact set, there exists c∗ > 0 such that η(c|d) ≥ c∗(c − d)2.
Then, from (4.19), (4.28), (4.27), (4.30), and (4.36), we find

(4.37)

C∗

b∗∫

a∗

[(∣∣ln(ǫ)
∣∣+
∥∥∂xū(·, t)

∥∥2
L2(R)

+ ln(2)
) ∫

R

∣∣u(x, t)− ū(x+X(t), t)
∣∣2 dx+

(
ǫ+ ǫ

∣∣ln(ǫ)
∣∣
)∥∥A(u|ū)

∥∥
L∞(R)

]
dt

+ C∗

∫

R

∣∣u(x, a∗)− ū(x+X(a∗), a∗)
∣∣2 dx−

b∗∫

a∗

1

C∗
(Ẋ(t))2 dt ≥

∫

R

∣∣u(x, b∗)− ū(x+X(b∗), b∗)
∣∣2 dx.

We have relabeled the constant C to C∗, to denote that C∗ depends on the way that ū
depends on the logarithm (in particular, see (4.27)).

In particular, we can drop the last integral on the left hand side of (4.37) to get
(4.38)

C∗

b∗∫

a∗

[(∣∣ln(ǫ)
∣∣+
∥∥∂xū(·, t)

∥∥2
L2(R)

+ ln(2)
) ∫

R

∣∣u(x, t)− ū(x+X(t), t)
∣∣2 dx+

(
ǫ+ ǫ

∣∣ln(ǫ)
∣∣
)∥∥A(u|ū)

∥∥
L∞(R)

]
dt

+ C∗

∫

R

∣∣u(x, a∗)− ū(x+X(a∗), a∗)
∣∣2 dx ≥

∫

R

∣∣u(x, b∗)− ū(x+X(b∗), b∗)
∣∣2 dx.

Remark that the map [0, T ) ∋ t 7→
∥∥∂xū(·, t)

∥∥2
L2(R)

is in L1([0, T )) due to ∂xū ∈ L2((R×
[0, T )) \ {(x, t)|x = s(t)}) by the assumption that ū is in the form (1.15).
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We apply the Gronwall inequality to (4.38). This gives
(4.39)∫

R

η(u(x, b∗)|ū(x+X(b∗), b∗)) dx

≤ e
C∗
(
|ln(ǫ)|+ln(2)

)
(b∗−a∗)+C∗

b∗∫

a∗

‖∂xū(·,t)‖2

L2(R)
dt
(
C∗

∫

R

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx

+ C∗T
(
ǫ+ ǫ

∣∣ln(ǫ)
∣∣
))

Remarking that for ǫ > 0, e|ln(ǫ)| ≤ ǫ+ 1
ǫ , we get,

≤ e
C∗ ln(2)(b∗−a∗)+C∗

b∗∫

a∗
‖∂xū(·,t)‖2

L2(R)
dt
(
ǫC

∗(b∗−a∗) +
1

ǫC
∗(b∗−a∗)

)(
C∗

∫

R

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx

+ C∗T
(
ǫ+ ǫ

∣∣ln(ǫ)
∣∣
))

Because ǫ > 0 is arbitrary, we can choose

ǫ :=

∫

R

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx(4.40)

in (4.39). This gives

(4.41) ∫

R

η(u(x, b∗)|ū(x+X(b∗), b∗)) dx

≤ C∗e
C∗(b∗−a∗)+C∗

b∗∫

a∗
‖∂xū(·,t)‖2

L2(R)
dt
[(∫

R

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx

)C∗(b∗−a∗)

+

(∫

R

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx

)−C∗(b∗−a∗)](∫

R

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx

+

∫

R

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx

∣∣∣∣∣∣∣
ln

(∫

R

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx

)∣∣∣∣∣∣∣

)
.

We have absorbed the factor T into C∗ (recall that T is fixed).
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Note that for α ∈ [0,∞) the map

α 7→ α
∣∣ln(α)

∣∣
√
α+ α2

(4.42)

is bounded. Thus, there is a constant C∗ > 0 such that

α
∣∣ln(α)

∣∣ ≤ C∗(
√
α+ α2).(4.43)

Also note that

αβ ≤ α1/4 + α3(4.44)

for all α ∈ [0,∞) and β ∈ [14 , 3].

Then, for b∗ − a∗ ≤ 1
2C∗ , we get from (4.43), (4.44), and (4.41),

∫

R

η(u(x, b∗)|ū(x+X(b∗), b∗)) dx

(4.45)

≤ C∗e
C∗(b∗−a∗)+C∗

b∗∫

a∗
‖∂xū(·,t)‖2

L2(R)
dt
[(∫

R

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx

) 1
4

(4.46)

+

(∫

R

η(u(x, a∗)|ū(x+X(a∗), a∗)) dx

)3]
.

(4.47)

Finally, take the approximate limits as a∗ → a+ and b∗ → b−. Recall the dominated
convergence theorem and Lemma 2.5 (which in particular gives the existence of the ap-
proximate limits of the space integral of relative entropy). This gives (4.2). �

4.1. Proof of the main theorem (Theorem 1.2): Induction. In this section, we use
induction to extend the stability result in Proposition 4.1 to allow for the two times of
interest a and b to be greater than 1

C time apart (where 1
C is from Proposition 4.1), thus

proving Theorem 1.2.
Throughout this proof, C will denote a generic constant depending on T .
We prove the following claim,

Claim. There exists constants C > 0 and ρ, γ > 1 depending on T such that for all
a, b ∈ [0, T ),
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(4.48)

ap lim
t→b−

∫

R

η(u(x, t)|ū(x, t)) dx

≤ C

[(
ap lim

t→a+

∫

R

η(u(x, t)|ū(x, t)) dx
) 1

γ

+

(
ap lim

t→a+

∫

R

η(u(x, t)|ū(x, t)) dx
)ρ]

e
C(b−a)+C

b∫

a
‖∂xū(·,t)‖2

L2(R)
dt
.

Let us comment on how this claim implies the main theorem (Theorem 1.2): By Lemma 2.5,

∞∫

−∞

η(u0(x)|ū0(x+X(0))) dx ≥ ap lim
t→0+

∞∫

−∞

η(u(x, t)|ū(x+X(t), t)) dx.(4.49)

Further, by convexity of η,
∞∫

−∞

η(u(x, b)|ū(x+X(b), b)) dx ≤ ap lim
t→b−

∞∫

−∞

η(u(x, t)|ū(x+X(t), t)) dx.(4.50)

Then (4.48), (4.49) and (4.50) imply (1.18) in the main theorem (Theorem 1.2). Recall
also that X(0) = 0.

To get (1.20) in the main theorem, note that from (4.37) we get
(4.51)

C

b∗∫

a∗

[(∣∣ln(ǫ)
∣∣+
∥∥∂xū(·, t)

∥∥2
L2(R)

+ ln(2)
) ∫

R

∣∣u(x, t)− ū(x+X(t), t)
∣∣2 dx+

(
ǫ+ ǫ

∣∣ln(ǫ)
∣∣
)∥∥A(u|ū)

∥∥
L∞(R)

]
dt

+ C

∫

R

∣∣u(x, a∗)− ū(x+X(a∗), a∗)
∣∣2 dx ≥

b∗∫

a∗

1

C
(Ẋ(t))2 dt.

Then, for ǫ we choose

ǫ :=

∫

R

η(u(x, 0)|ū(x, 0)) dx.

And then we bootstrap, and use (1.18) to estimate the term
∫

R

∣∣u(x, t)− ū(x+X(t), t)
∣∣2 dx

in (4.51). We then use estimates similar to (4.43) and (4.44).
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We now prove the claim.
Proof of Claim. We prove the claim by induction. We show that for each n ∈ N, if
S ∈ [n−1

C , n
C ], then there exists C > 0 and ρ, γ > 1 both depending on n such that (4.48)

holds for all a, b ∈ [0, T ) with b− a ∈ (0, S).

Base case The base case follows directly from Proposition 4.1.

Induction step

Assume that for a fixed n ∈ N, if S ≤ n
C , then there exists C > 0 and ρ, γ > 1 both

depending on n such that (4.48) holds for all a, b ∈ [0, T ) with b− a ∈ (0, S).
We now show that if S ∈ [ nC ,

n+1
C ], then there exists C > 0 and ρ, γ > 1 both depending

on n such that (4.48) holds for all a, b ∈ [0, T ) with b− a ∈ (0, S).
If b−a < n

C , then by the induction hypothesis we are done. Thus, assume b−a ∈ [ nC ,
n+1
C ).

Then, by the induction hypothesis,

(4.52)

ap lim
t→b−

∫

R

η(u(x, t)|ū(x, t)) dx

≤ C

[(
ap lim

t→(b−n)+

∫

R

η(u(x, t)|ū(x, t)) dx
) 1

γ

+

(
ap lim

t→(b−n)+

∫

R

η(u(x, t)|ū(x, t)) dx
)ρ]

e
Cn+C

b∫

(b−n)

‖∂xū(·,t)‖2

L2(R)
dt

.

Similarly, from the induction hypothesis, we have that

(4.53)

ap lim
t→(b−n)−

∫

R

η(u(x, t)|ū(x, t)) dx

≤ C

[(
ap lim

t→a+

∫

R

η(u(x, t)|ū(x, t)) dx
) 1

γ

+

(
ap lim

t→a+

∫

R

η(u(x, t)|ū(x, t)) dx
)ρ]

e
C(b−n−a)+C

b−n∫

a
‖∂xū(·,t)‖2

L2(R)
dt
.

Remark that for any α > 0,

(α1/γ + αρ)ρ ≤ 2ρ(αρ/γ + αρ2).(4.54)

This is derived by considering when α < 1 and when α > 1.
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Similarly, for any α > 0,

(α1/γ + αρ)1/γ ≤ 21/γ(α
1
γ2 + αρ/γ).(4.55)

Combining (4.54) and (4.55), we get

(α1/γ + αρ)ρ + (α1/γ + αρ)1/γ ≤ 2ρ+2(α
1
γ2 + αρ2).(4.56)

This is similarly derived by considering when α < 1 and when α > 1.
We combine (4.53) and (4.56) to get

(
ap lim

t→(b−n)+

∫

R

η(u(x, t)|ū(x, t)) dx
) 1

γ

+

(
ap lim

t→(b−n)+

∫

R

η(u(x, t)|ū(x, t)) dx
)ρ

(4.57)

≤ C

[(
ap lim

t→a+

∫

R

η(u(x, t)|ū(x, t)) dx
) 1

γ2

(4.58)

+

(
ap lim

t→a+

∫

R

η(u(x, t)|ū(x, t)) dx
)ρ2]

e
C(b−n−a)+C

b−n∫

a
‖∂xū(·,t)‖2

L2(R)
dt
.

(4.59)

Then, we plug (4.57) into (4.52), to get

(4.60)

ap lim
t→b−

∫

R

η(u(x, t)|ū(x, t)) dx

≤ C

[(
ap lim

t→a+

∫

R

η(u(x, t)|ū(x, t)) dx
) 1

γ2

+

(
ap lim

t→a+

∫

R

η(u(x, t)|ū(x, t)) dx
)ρ2]

e
C(a−b)+C

b∫

a
‖∂xū(·,t)‖2

L2(R)
dt
.

This shows that the claim holds for S ∈ [ nC , n+1
C ].

Thus, by the principle of induction we have shown the claim. �

5. Appendix

5.1. Proof of Lemma 4.2. We prove (4.6), (4.7), and (4.8). Our proof is based on the
proof of Proposition 1 in [23], the proof of Lemma 2.2 in [27], and the proof of Lemma 3.5
in [20]. The properties (4.9) and (4.10) are not proved here; see Lemma 6 in [23] and the
proofs in the appendix in [23].

Define
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vn(x, t) :=

1∫

0

V

(
u(x+

y

n
, t), t

)
dy.(5.1)

Let hn be the solution to the ODE:
{
ḣn(t) = vn(hn(t), t), for t > 0

hn(0) = x0.
(5.2)

Due to the boundedness of V , vn is bounded. Further, vn is Lipschitz continuous in x

due to the mollification by 1
n . We also have that vn is measurable in t. Thus (5.2) has a

unique solution hn in the sense of Carathéodory.
The hn are Lipschitz continuous with Lipschitz constants uniform in n, due to the vn

being uniformly bounded in n (‖vn‖L∞ ≤‖V ‖L∞). By Arzelà–Ascoli we conclude the hn
converge in C0(0, T ) for any fixed T > 0 to a Lipschitz continuous function h (passing to

a subsequence if necessary). Note that ḣn converges in L∞ weak* to ḣ.
We define

Vmax(t) := max{V (u−, t), V (u+, t)},(5.3)

Vmin(t) := min{V (u−, t), V (u+, t)},(5.4)

where u± := u(h(t)±, t).
To show (4.8), we will first prove that for almost every t > 0

lim
n→∞

[ḣn(t)− Vmax(t)]+ = 0,(5.5)

lim
n→∞

[Vmin(t)− ḣn(t)]+ = 0,(5.6)

where [ · ]+ := max(0, ·).
The proofs of (5.5) and (5.6) are similar. Let us show only the first one.

[ḣn(t)− Vmax(t)]+(5.7)

=

[ 1∫

0

V

(
u(hn(t) +

y

n
, t), t

)
dy − Vmax(t)

]

+

(5.8)

=

[ 1∫

0

V

(
u(hn(t) +

y

n
, t), t

)
− Vmax(t) dy

]

+

(5.9)

≤
1∫

0

[
V

(
u(hn(t) +

y

n
, t), t

)
− Vmax(t)

]
+
dy(5.10)
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≤ ess sup
y∈(0, 1

n
)

[
V

(
u(hn(t) + y, t), t

)
− Vmax(t)

]
+

(5.11)

≤ ess sup
y∈(−ǫn,ǫn)

[
V

(
u(h(t) + y, t), t

)
− Vmax(t)

]
+
,(5.12)

where ǫn :=
∣∣hn(t)− h(t)

∣∣ + 1
n . Note ǫn → 0+.

Fix a t ≥ 0 such that u has a strong trace in the sense of Definition 1.1. Then by the
continuity of V in the u slot,

lim
n→∞

ess sup
y∈(0, 1

n
)

[
V

(
u(h(t) ± y, t), t

)
− V

(
u±, t

)]
+
= 0,(5.13)

where u± = u(h(t)±, t).
From (5.13), we get

lim
n→∞

ess sup
y∈(0, 1

n
)

[
V

(
u(h(t)± y, t), t

)
− Vmax(t)

]
+
= 0.(5.14)

We can control (5.12) from above by the quantity

(5.15)

ess sup
y∈(−ǫn,0)

[
V

(
u(h(t) + y, t), t

)
− Vmax(t)

]
+
+

ess sup
y∈(0,ǫn)

[
V

(
u(h(t) + y, t), t

)
− Vmax(t)

]
+
.

By (5.14), we have that (5.15) goes to 0 as n → ∞. This proves (5.5).

Recall that ḣn converges in L∞ weak* to ḣ. Thus,

T∫

0

[ḣ(t)− Vmax(t)]+ dt ≤ lim inf
n→∞

T∫

0

[ḣn(t)− Vmax(t)]+ dt,(5.16)

because the function [ · ]+ is convex.
We have from the dominated convergence theorem and (5.5),

lim inf
n→∞

T∫

0

[ḣn(t)− Vmax(t)]+ dt = 0.(5.17)

We conclude,

T∫

0

[ḣ(t)− Vmax(t)]+ dt = 0.(5.18)
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From a similar argument,

T∫

0

[Vmin(t)− ḣ(t)]+ dt = 0.(5.19)

This proves (4.8).

5.2. Proof of Lemma 2.5. We present a proof of Lemma 2.5, based on the proof of
Lemma 2.4 in [20, p. 11].

Define Γ : [0, T ) → R,

Γ(t) :=

∞∫

−∞

η(u(x, t)|ū(x+X(t), t)) dx

−
t∫

0

q(u(h(t)+, t); ū(s(t)+, t))− q(u(h(t)−, t); ū(s(t)−, t))

− ḣ(t)
(
η(u(h(t)+, t)|ū(s(t)+, t))− η(u(h(t)−, t)|ū(s(t)−, t))

)
dt

+

t∫

0

∞∫

−∞

[(
∂x

∣∣∣∣
(x+X(t),t)

η′(ū(x, t))

)
A(u(x, t)|ū(x+X(t), t))

+

(
2∂x

∣∣∣∣
(x+X(t),t)

ū(x, t)Ẋ(t)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]−

η′(u(x, t)|ū(x+X(t), t))G(u(·, t))(x)

+

(
G(ū(·, t))(x +X(t)) −G(u(·, t))(x)

)
η′′(ū(x+X(t), t))[u(x, t) − ū(x+X(t), t)]

]
dxdt.

By (2.4), Γ(t) ≥ Γ(s) for almost every t and s verifying t < s. We conclude that there
exists a function which equals Γ almost everywhere and is non-increasing. Thus, Γ has
approximate left and right limits. In particular, via the dominated convergence theorem,
the approximate right- and left-hand limits (2.48) exist for all t0 ∈ (0, T ) and satisfy (2.49).
Note the approximate right-hand limit also exists for t0 = 0. Furthermore, because (2.4)
holds for the time a = 0, the approximate right-hand limit verifies (2.50) at time zero.
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[18] Moon-Jin Kang, Alexis F. Vasseur, and Yi Wang. L
2-contraction of large planar shock waves for

multi-dimensional scalar viscous conservation laws. ArXiv e-prints, September 2016.
[19] Sam G. Krupa. Criteria for the a-contraction and stability for the piecewise-smooth solutions to hy-

perbolic balance laws. In preparation.
[20] Sam G. Krupa and Alexis F. Vasseur. On Uniqueness of Solutions to Conservation Laws Verifying a

Single Entropy Condition. J. Hyperbolic Differ. Equ. To appear.
[21] Stanislav Nikolaevich Kruzhkov. First order quasilinear equations in several independent variables.

Mat. Sb. (N.S.), 81 (123):228–255, 1970. English transl. in Math. USSR, Sb., 10:217–243, 1970.
[22] Nicholas Leger. L2 stability estimates for shock solutions of scalar conservation laws using the relative

entropy method. Archive for Rational Mechanics and Analysis, 199(3):761–778, 2011.
[23] Nicholas Leger and Alexis F. Vasseur. Relative entropy and the stability of shocks and contact discon-

tinuities for systems of conservation laws with non-BV perturbations. Archive for Rational Mechanics
and Analysis, 201(1):271–302, 2011.

[24] Pierre-Louis Lions and Nader Masmoudi. From the Boltzmann equations to the equations of incom-
pressible fluid mechanics. I, II. Arch. Ration. Mech. Anal., 158(3):173–193, 195–211, 2001.

[25] Nader Masmoudi and Laure Saint-Raymond. From the Boltzmann equation to the Stokes-Fourier
system in a bounded domain. Comm. Pure Appl. Math., 56(9):1263–1293, 2003.

[26] Evgueni Yu. Panov. Uniqueness of the solution of the Cauchy problem for a first order quasilinear
equation with one admissible strictly convex entropy. Mat. Zametki, 55(5):116–129, 159, 1994. English
transl. in Mathematical Notes, 55(5):517–525, 1994.



46 KRUPA AND VASSEUR

[27] Denis Serre and Alexis F. Vasseur. L2-type contraction for systems of conservation laws. J. Éc. polytech.
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