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Abstract. We consider the problem of 3D shape reconstruction from multi-modal data, given uncertain cali-
bration parameters. Typically, 3D data modalities can come in diverse forms such as sparse point
sets, volumetric slices, 2D photos and so on. To jointly process these data modalities, we exploit
a parametric level set method that utilizes ellipsoidal radial basis functions. This method not only
allows us to analytically and compactly represent the object, it also confers on us the ability to
overcome calibration-related noise that originates from inaccurate acquisition parameters. This es-
sentially implicit regularization leads to a highly robust and scalable reconstruction, surpassing other
traditional methods. In our results we first demonstrate the ability of the method to compactly rep-
resent complex objects. We then show that our reconstruction method is robust both to a small
number of measurements and to noise in the acquisition parameters. Finally, we demonstrate our
reconstruction abilities from diverse modalities such as volume slices obtained from liquid displace-
ment (similar to CT scans and XRays), and visual measurements obtained from shape silhouettes
as well as point-clouds.

Key words. 3D Shape Reconstruction, Parametric Level Sets, Dip Transform, Joint Reconstruction, Shape
from Silhouettes, Point Clouds, Compactly Supported Radial Basis Functions.
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1. Introduction. The reconstruction of 3D objects is an important task in many disci-
plines like computer graphics [1, 4, 6, 52, 54], computer vision [27, 16, 26], geophysics [32],
computational biology [41], civil engineering, medical applications, architecture, and archae-
ology, among others. Typically, we have incomplete data measurements of a physical object,
and wish to reconstruct the full and continuous object that corresponds to these measure-
ments. In addition to being incomplete, the measurements are usually noisy, and therefore,
the aim of the reconstruction process is to find a model that optimally fits the data. This can
be done by solving a computational optimization problem, the aim of which is to fit simulated
data to existing measurements. These problems are usually ill-posed and non-convex, and
solving them with existing methods is often challenging. In many cases—especially when the
available data set is small—we need to include some prior information in the reconstruction
problem to guide the optimization toward a more plausible solution.

In this work, we focus on problems of 3D shape reconstruction from multi-modal data.
That is, measurements of objects that originate from several domains, such as volumetric
slices [1, 8, 24, 13, 25, 30, 55], multiview images and object silhouettes [27, 16, 26], and point-
clouds [7, 35]. Our aim is to define a robust unifying framework that can jointly process
such data to obtain a best fitting shape model. In the shape reconstruction problem, we are
essentially searching for a piecewise constant binary function in some domain, which indicates
whether there is an object or background at each location. A common approach to such
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piecewise constant reconstructions exploits level set methods [39, 40], which have been used
for shape reconstruction [50] and image segmentation [47]. A particular version of these
methods is the parametric level set (PaLS) method [2, 3], an approach that has been used
for inverse problems, particularly for medical [28, 18] and geophysical [23, 31] applications.
The PaLS method suggests that the level set function is approached analytically rather than
by using a computational grid. That is, the shape is analytically parameterized by a linear
combination of radial basis functions (RBFs) with limited support, e.g., Gaussian functions.
The benefit of using RBFs stems from their ability to compactly yet accurately represent the
shape and to adapt it as part of the optimization process. Furthermore, we use compactly
supported RBFs. This has a tremendous computational benefit when computing a shape from
its parameters, leading to sparse Jacobian matrices, and an efficient optimization process for
reconstructing high-resolution objects. This method acts as an implicit regularization towards
a reconstruction of an dense object.

In the context of graphical applications, RBFs were previously used for surface recon-
struction. The work of [14] suggests using RBFs for surface reconstruction from a point
cloud, where the centers and radii of the basis functions are assumed to be known, and the
optimization is performed only for the linear coefficients of the RBFs. A later work [33] pro-
posed a multi-scale reconstruction that is obtained with RBFs to capture both the global and
local structures of the object, after which the reconstructed shape is obtained by interpolat-
ing between the scales. However, such approaches require a large number of basis functions
for the reconstruction, in the tens of thousands, conferring a high computational cost on the
method. A recent work addressed this issue by devising an efficient GPU implementation of
RBF interpolation [17]. As we will show later, our method requires many fewer RBFs (only a
few hundred parameters) to represent whole objects, and not just the surface. A recent work
[15] proposed employing a deep RBF neural network to encode the spatial distribution of
point-clouds for classification. This approach yields competitive classification accuracy (i.e.,
similar to standard networks [35]), while reducing both the number of learned parameters and
the computational costs.

In this work we leverage the PaLS method for shape reconstruction, in which the object
is analytically represented as a composition of RBFs, and is made piece-wise constant by
applying a smoothed step-like function. The parameters of this representation, which is a
collection of spheres, include the centers, radii, and linear coefficients of the RBFs. To the
best of our knowledge, we are the first group to use PaLS for graphical applications. To
that end, our first contribution to this subject features an enriched PaLS representation that
comprises a collection of ellipsoids instead of spheres. This is needed since the conventional
PaLS method in 3D often results in blob-like artifacts caused by the spherical basis functions.
This can be seen in the work of [28], which performed 3D medical reconstructions using
PaLS. While it is arguable whether such artifacts are acceptable in a medical scenario, they
are definitely unacceptable in problems where the reconstructed object should be as close as
possible to the original (e.g., reconstruction of a piece of art). To avoid undesired artifacts,
therefore, we extend the PaLS representation to be ellipsoidal, so that the PaLS method can
compactly represent flat and long objects. As we demonstrate later, our framework is capable
of accurately representing complexly shaped objects with sharp elements by using several
hundred parameters only. Our approach thus reduces complex reconstruction problems of
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potentially several million parameters using standard volumetric grid values, to problems of a
few thousands parameters at most using PaLS to represent the object. The markedly smaller
number of parameters using PaLS makes the optimization process efficient and better-posed.
As a result, the parametric representation implicitly regularizes the reconstruction and enables
us to reconstruct shapes from small data sets. Another, albeit smaller benefit of the compact
PaLS representation is the savings in storage—we only need to store the PaLS parameters
rather than the volumetric grid values of the object.

An additional significant contribution made by our work relates to handling uncertainty in
the calibration (or alignment) parameters. For each measurement, data acquisition methods
include certain parameters, e.g., the angle and location relative to the camera at which an
image was photographed. The accuracy with which these parameters are known (if they are
known at all) varies, generating uncertainty that essentially creates non-trivial noise in the
simulated data. Inevitable in real life scenarios, such noise is difficult to model statistically
and may hamper the reconstruction if not addressed properly. This is especially evident
in cases where the measured data is small. This calibration problem is evident in many
reconstruction problems of interest. One may approximate the calibration parameters in
addition to the reconstruction, but the process is not straightforward for some problems.
For example, in tomography problems there are cases where it is theoretically possible to
estimate the calibration (or alignment) parameters and the shape together [5]. Indeed, [21]
and [34] apply a procedure that alternates between updating the alignment parameters and
the tomographic reconstruction. The work of [51] optimizes for both the shape and the
alignment parameters using a Quasi-Newton method, and the derivatives with respect to
the alignment parameters are numerically approximated by finite differences. Similarly, the
work of [11] tackles the problem with the Levenberg-Marquardt algorithm using a spline
representation of the shape to treat the derivatives of the alignment parameters. Similarly,
[46] uses a bi-cubic interpolation of the shape and a variety of first order methods for the joint
reconstruction of the shape and alignment parameters. A similar situation is also evident
in shape reconstruction from point clouds, which also requires a registration in cases where
multiple point clouds are given as data. There, the alignment parameters are usually estimated
by the Iterative Closest Point (ICP) methods separately from the reconstruction—see [9, 37,
43, 7, 45, 42] and references therein. While the current methods are considered to be quite
accurate, there may often be small alignment errors, especially if the overlap between the
point clouds is small, or if multiple misaligned clouds are considered. In such cases, having
additional data sources of the same object can help correcting the alignment. Our solution
to this issue is rooted in the PaLS method whose compact analytic representation allows
us to apply transformations or deformations to the object. Thus, we can also include the
acquisition parameters in the optimization process as part of the multi-modal reconstruction
problem, allowing the reconstruction to adapt to the real acquisition parameters, and handle
this uncertainty.

We demonstrate both the issue of the accurate object representation, and the handling
of uncertainty in the acquisition parameters by performing rigorous experiments using our
method for reconstruction from visual and non visual measurements. For the non visual data,
we use the acquisition method of “dip transform”, where the data are obtained by repeatedly
dipping the object in liquid, such that each time the object is dipped, it is oriented at a different
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angle relative to the dipping axis [1]. Using dip transform, though the data acquisition is a
simple task, it is tedious to execute, as the data generated from each dip are typically small.
To complement this small data, we also experiment with joint shape reconstruction from both
the dipping data and visual data, the latter of which comprised silhouette images which are
relatively easy to obtain. The visual part of the reconstruction is applied via a modified version
of shape from silhouettes (SfS) proposed in [16, 26]. In addition, we perform experiments of
shape reconstruction from point clouds.

Our paper is organized as follows: In Section 2, we provide the mathematical formulations
of the problems that we investigate. Then, in Section 3, we present the PaLS method, after
which we address calibration uncertainty in Section 4. Next in Section 5, we discuss the use
of two modalities to perform shape reconstruction using the PaLS method. Finally, in Section
6 we present our empirical results.

2. Problem Formulation. The typical shape reconstruction problem that we consider here
is formulated as a binary piecewise constant optimization problem of the form

(2.1) arg min
u∈{0,1}n1×n2×n3

F (u) =
1

2

nex∑
j=1

∥∥∥dj(u)− dobs
j

∥∥∥2

2
+ λR(u),

where nex denotes the number of experiments (e.g., photos), dobs
j is the data measurement

that corresponds to experiment j, u is the binary vector representing the object, and dj(u)
is the simulation of the data measurement j according to a given object u. We assume that
dj(utrue) ≈ dobs

j , that is, the simulated data for the true object utrue is approximately equal
to the observed data dobs

j . In the first term of F we wish to measure and minimize the
simulation error d(u) − dobs in a least squares sense, which also means that we assume that
the simulation error is independent and identically Gaussian distributed soutand ı.i.d.. Since
the reconstruction problem is often ill-posed, we usually incorporate in it prior information
in the form of the regularization term R(u) and its associated parameter λ > 0, the latter of
which balances between the data fidelity term and the regularization [48].

The type of regularization R(u) used can be a simple Tikhonov regularization (as in [1]),
or it can be a total variation regularization [36], the latter of which promotes smoothness in
the reconstructed image but is also able to tolerate edges. To solve the problem (2.1), a variety
of optimization algorithms can be used, most of which are gradient-based iterative methods
such as gradient descent or Gauss-Newton. Such algorithms are suitable only in cases where
u is continuous and real-valued. When using these algorithms, therefore, the problem (2.1) is
solved under the assumption that u ∈ Rn1×n2×n3 , and u is artificially promoted to be binary
by using penalty terms, smoothing regularization and other iterative procedures. This is the
case, for example, in [26, 27], which deal with reconstructions of shapes from silhouettes and
multi-view data. Generally, assigning u to be binary can be a challenge, and may require
some heuristics. We demonstrate our framework on the problems below.

2.1. Shape Reconstruction from Tomographic Measurements. A promising recent to-
mographic acquisition and shape reconstruction technique is the “dip transform” [1]. Designed
to reconstruct a shape from liquid displacement measurements that correspond to volumetric
slices of the shape, dip transform is similar to other tomographic modalities like X-ray scans,
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Figure 1: The data acquisition process in the dip transform. An object is repeatedly dipped in
water in different orientations. The changes in water level effected by each dip are measured
to obtain a signature that describes the object’s volume.

for example, and, in particular, it is not based on visual or surface measurements. Also closely
related is the work of [13], involving reconstruction from 2D slices. The dip transform exploits
Archimedes law to reconstruct the volume of the object by repeatedly dipping it in a con-
tainer full of liquid, such that each time the object is dipped, it is oriented at a different angle
relative to a given axis. Each dip along an axis creates a trace of liquid volume displacement
that represents the volumes of thin slices of the shape along the dipping axis (see Fig. 1).
In essence, this technique performs tomographic measurements of the object’s slices. Such
measurements enable us to reconstruct hidden elements or transparent shapes, which cannot
be measured by rays of light.

Using our notation, the dip transform reconstruction problem is defined as:

(2.2) arg min
u


ndips∑
j=1

∥∥∥SPju− dobs
j

∥∥∥2

2
+ λR(u)

 , u ∈ {0, 1}n1×n2×n3 .

where Pj is a rotation matrix, rotating the object u at horizontal and vertical angles θj and
φj , respectively, and essentially is a permutation matrix. S is the “summation over slices”
matrix, which generates the water displacement measurements given the rotated u, and R
is the regularization term. Given the angles (θj , φj) and ignoring the binary reconstruction
requirement, this is a linear inverse problem.

A significant drawback to this approach is that it necessitates a large number of measure-
ments, as each dip only generates a one-dimensional trace, though we need to reconstruct a
three dimensional object. In addition, the mechanical and manual acquisition method begets
high uncertainty in the acquisition parameters. In actuality, the angles and centering of the
object during dipping are only roughly known. In the next sections, we will show how our
method resolves both of these problems.

2.2. Shape Reconstruction from Surface Measurements. Another channel of data input
used in this paper comprises visual (or surface) measurements. We consider two data modal-
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Figure 2: Visual Hull obtained via Shape from Silhouettes, colored in red. The object is
colored in blue.

ities. One is the SfS model [29, 27, 16, 26], whose input includes photographs of the object
taken from several different angles. These photographs are then binarized to be shadow-like,
and subsequently used to estimate the volumetric shape of the object. Another data modality
is point clouds, which are commonly used for object scanning and reconstruction [7] using
of-the-shelf sensors. Point clouds consist of sets of points which lie on the (visible) surface of
the object. The reconstruction from both modalities may be defined similarly to (2.1) as

(2.3) arg min
u

∑
j

lossj(u) + λR(u)

 , u ∈ {0, 1}n1×n2×n3 ,

where lossj(u) combines model principles (either SfS or point cloud) for the j-th experiment,
and R is again a regularization term. Both modalities are not perfect and have limitations.
For example, in SfS we cannot satisfactorily reconstruct concavities in the shape, and indeed,
in most cases the hidden areas of the shape, like holes or hollows, are artificially filled during
the reconstruction process. In point clouds, certain areas of the surface are often scanned in
poor resolution, leaving inaccuracies or holes in the reconstructed surface [1]. Nevertheless,
both surface models have the advantages of simplicity and ease of the acquisition.

2.3. Joint Reconstruction. Each of the data modalities mentioned above has its draw-
backs. Therefore, in this work we use multiple modalities to improve the quality of the
reconstruction given the available data. For example, we use the SfS to complement the data
we acquire via the dip transform, and demonstrate the joint reconstruction of the shape within
our framework. To obtain this, we define the joint problem:

(2.4) arg min
u


n
dip∑
j=1

lossdipj (u) + γ

n
sfs∑
l=1

losssfsl (u) + λR(u)

 ,

where lossdip corresponds to the objective in Eq. (2.2), and γ > 0 balances the impact of the two
loss functions. γ is usually chosen such that the two losses are comparable. This combination
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of SfS with dip transform enables us to achieve a high quality reconstruction using significantly
fewer dipping measurements compared to using the dip transform exclusively. In this case,
however, we have to neglect the assumption of a full model that is typical for SfS, since the
dip measurements are able to capture an object’s holes and concavities, which are missed by
SfS. Therefore, we propose an adapted SfS model that lacks such assumptions (more details
in Section 5). In addition, in Section 6 we demonstrate the joint surface reconstruction from
SfS and point clouds, to overcome registration problems in point clouds.

3. Parametric Level Sets using Radial Basis Functions. The PaLS approach [2] was
originally proposed to solve inverse problems involving a reconstruction of a constant valued
body and its background. In our case, in (2.1) we have a background of zero, and we focus
on retrieving the constant-valued object. The choice of the basis functions has a significant
impact on the dimensionality and expressiveness of the PaLS representation. Herein, we
choose radial basis functions [2], which have been shown to represent 3D models well [14]. To
this end, the PaLS representation is defined by:

(3.1) u(~x, {αi, βi, ~ξi}nRBF
i=1 ) = σ

(∑
i

αiψ

(∥∥∥βi (~x− ~ξi)∥∥∥†
2

))

where σ : R → [0, 1] is a Heaviside function used to binarize u. There are a few functions
that can be used for this purpose, like the atan() function used in [2]. We leverage a piecewise
polynomial Heaviside function as shown in Fig. 3a to improve the condition number of the
Hessian and increase the sparsity of the Jacobian [22]. The function ψ : R+ → [0, 1] is one
of the Wendland RBF functions that appear in Fig. 3b. For precise definitions of ψ and σ,

refer to the Appendix in Section 8.1. The pseudo-norm ‖~v‖†2 =
√
‖~v‖22 + ε is used to prevent

division by zero when computing the derivatives for our model.
The RBF together with the `2 distance as an operand leads to a sphere in space. Thus, the

representation (3.1) is a linear combination of spheres, each one with a radius of approximately
1
βi

, centered around ~ξi. Each basis function has five unknown parameters. We denote:

(3.2) m = {αi, βi, ~ξi}nRBF
i=1 ∈ R5nRBF

to be the vector of the unknown RBF parameters in the optimization process, and u(m) to
be the discrete version of u(~x,m) which is equivalent to (3.1).

Next, the problem in Eq. (2.1) is replaced with its PaLS version:

(3.3) arg min
m

F̂ (m) =

nex∑
j=1

∥∥∥dj(u(m))− dobsj

∥∥∥2

2
+ λR(m), m ∈ R5nRBF .

To solve such a reconstruction problem using a gradient-based method, we need to compute
the discrete u(m) and its derivatives with respect to the parameters. That is, we need the
Jacobian J = ∂u

∂m , which we define in Appendix 8.2 in detail. Since our RBFs are compactly
supported, the contribution of each basis function is limited by its support, leading to a sparse
Jacobian. In addition, each of the derivatives in the Jacobian has a term involving σ′, which
is mostly zero except for the object boundaries, hence the Jacobian matrix J is very sparse,
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(a) (b)

Figure 3: The components of the PaLS representation: (a) A smooth vs. piecewise polynomial
heaviside function. Top row shows the functions, bottom row shows their derivatives. (b)
Wendland’s radial basis functions of orders 1,2 and 3.

enabling high resolution reconstructions. While any gradient-based method is suitable to solve
a problem like (3.3), in this work we use the Gauss-Newton (GN) method, which gives the
following iteration step:

(3.4) m(k+1) = m(k) − µ(k)(JTJ + λ∇2R)−1∇mF̂ ,

where µ(k) is obtained by a standard Armijo line-search procedure. For R, in this case, we use
a simple iterated Tikhonov regularization R(m) = ‖m −m(k)‖22. This regularization is less
sensitive to the choice of λ than standard Tikhonov regularization, which does not depend on
the iteration k [20]. Since nRBF—the number of basis functions—is typically small (several
hundreds), it is computationally feasible to solve it by using an exact GN, i.e., invert the
Hessian JTJ + λ∇2R at each iteration. Here, λ has to be chosen substantial enough so that
the Hessian matrix is numerically inevitable and the optimization is stable. Other suitable
options to solve this problem include the non-linear conjugate gradients or LBFGS methods.
However, these methods will not be able to fully exploit the low dimension and sparsity of
the Hessian, and hence are typically slower in this case.

We start the solution process with a small number of RBFs located at random locations
around the center of the grid. Then, at each iteration we add a fixed number of new RBFs
to the solution and compute the compact representation of the object on-the-fly. The newly
added RBFs are located using the gradient of the misfit function w.r.t u and multiplied by
σ′(u). A non-zero σ′(u) indicates the areas on the surface of the object where the sensitivities
of the PaLS representation are visible (these are the values where 0 < u < 1). We also
restrict the choice of the new RBF centers to voxels that are distant by at least two grid
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cells from each other in order not to add basis functions that are too close to each other. We
use this heuristic insofar as it is designed to use the least number of parameters possible to
reconstruct the object, it guides us to locations in the reconstructed object where its volume
is either missing or in excess. The new RBFs are added with the coefficient αi = 0, and
thus, initially they do not influence the objective of the modeling, resulting in a monotone
optimization process. At last, we threshold the solution to make it strictly binary. Algorithm
3.1 summarizes the process.

Algorithm 3.1 3D Shape Reconstruction using PaLS

Input : An objective function F (m).
Init : Randomly choose p0 basis functions around the center of the grid.
Params: p0, p : The number of the initial and incremental RBFs (default: 20, 5).

itGN : The number of inner Gauss-Newton iterations (default: 5).
δ: a binarization threshold (default: 0.7).

for k=1,2,... do

• Compute u = u(m(k)), and ∇uF : the gradient of the objective with respect to u.
• Define the vector s = |σ′(u)∇F (u)|. (σ: the heaviside function).
• Add p new RBFs to m(k), centered at points that correspond to large s.
• Set up the iterated Tikhonov regularization.
• Apply itGN Gauss-Newton iterations for minimizing F̂ (m):

m(k+1) = arg min
m

F̂ (m),

end

Binarize u(m) by thresholding: u =

{
1 if u > δ
0 otherwise

.

3.1. Ellipsoidal Radial Basis Functions. Using the standard RBF representation in (3.1)
restricts us to a spherical basis that results in limited expressiveness and spherical effects in
the reconstructed objects, as can be observed in [28]. Clearly, this outcome is undesirable in
computer graphics applications, especially when objects with flat or sharp elements such as
arms, legs or horns, are involved. To render the basis functions more expressive, we suggest
that they be enriched to enable them to represent ellipsoids in space rather than spheres.
Such enrichment is done by replacing the parameters βi in (3.1) with symmetric and positive
definite (SPD) matrices Bi ∈ R3×3. Our ellipsoidal PaLS representation reads:

(3.5) u(~x,m) = σ

(∑
i

αiψ

(∥∥∥(~x− ~ξi)∥∥∥†
Bi

))
,

where the weighted pseudo norm is given by ‖~v‖†Bi
=
√
‖~v‖2Bi

+ ε, and similar to (3.2), the

ellipsoidal parameter vector is

(3.6) m = {αi, Bi, ~ξi}nRBF
i=1 ∈ R10nRBF .
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(a) Input (b) PaLS with spherical RBFs (c) PaLS with ellipsoidal RBFs

Figure 4: Comparison between reconstructions with spherical vs. ellipsoidal PaLS. Both
reconstructions use 200 parameters, that is, 40 RBFs for (b) and 20 RBFs for (c).

Our enriched representation denotes a collection of ellipsoids, each with 10 unknowns. For
a description of how the derivatives are computed, see the Appendix in Section 8.2. In this
case, we also require a regularization to ensure that the matrices Bi remain SPD. To this
end, in addition to the Tikhonov regularization on m, we use a standard log barrier function
(−
∑

i log(det(Bi))) to keep the determinants of Bi away from zero. This regularization is
effective, as we do not expect Bi to be too close to singular. In other cases where Bi are
expected to be close to singular, the more sophisticated alternative approach of optimization
over manifolds [12] may be more suitable. To demonstrate the advantages of the ellipsoidal
over the spherical RBFs, we reconstruct a model of a foot that has both detailed and smooth
elements (Fig. 4). The figure clearly shows that the proposed ellipsoidal PaLS captures greater
detail than the PaLS with basic RBFs, even though the two reconstruction algorithms used
the the same number of parameters.

4. Robustness to Calibration Uncertainty and Scalability. Object reconstruction algo-
rithms typically consume data of the object captured in several orientations, e.g., pictures of
the object taken at different angles [16]. A major drawback of many algorithms is the assump-
tion that the orientations at which the data were acquired are accurately known and that the
noise in the measurements corresponds to a simple probability distribution, e.g., Gaussian.
This assumption may be practical in some cases—especially when the data set is large—but
it may not be ideal in real-world scenarios with small data. The absence of accurately known
acquisition parameters creates noise in the measurements that is difficult to model or predict.
Such noise can also be introduced due to a human factor in the data acquisition process, e.g.,
hands shaking while capturing the object, or due to mechanical inaccuracies in the machine
that rotate the object for data collection as in [1]. This often leads to poor reconstruction,
especially in cases where the data set is small. To solve these problems, we use the analytic
PaLS representation of the object, which allows us to analytically manipulate the object’s
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position parameters, and we estimate the acquisition parameters as part of the optimization
process for the data fit. This is possible because we can differentiate the PaLS representation
of u with respect to the parameters of the data acquisition.

Consider, for example, the dip transform problem in (2.2). The PaLS formulation of this
problem (analogous to that of the general problem in (3.3)), is

(4.1) arg min
m


ndips∑
j=1

∥∥∥SPju(m)− dobsj

∥∥∥2

2
+ λR(m)

 .

Here Pj is a permutation matrix designed to capture the object from different angles and
locations that correspond to the j-th measurements of the shape, and S is a projection oper-
ator that simulates the data after the object has been situated according to the acquisition
parameters. The operator SPj in (2.2) is linear. The matrices SPj , however, may require
large amounts of storage or be expensive to apply. More importantly, such fixed operators
introduce non trivial noise if the acquisition parameters are not accurately known. Therefore,
in addition to m, we also search for the acquisition parameters encapsulated in Pj and define
the rotation and translation operator Pj analytically.

To define the rotation and translation in Pj analytically, we first define the linear trans-
formation of our coordinates

Tj(~x) = Q(θj , φj)(~x− ~xmid) + ~bj + ~xmid.(4.2)

Here Q(θj , φj) is a 3× 3 orthogonal rotation matrix in azimuth angle θj and polar angle φj .
~bj ∈ R3 is a translation vector, and ~xmid is the center of the domain that is used as the center
of the rotation. This is the transformation that guides the definition of Pj in (2.2). Next, we
define the analytically translated and rotated shape u via backward warping according to the
transformation (4.2): u(T−1

j (~x),m). The backward warping is used to avoid discretization
problems in the rotation. Note, that the rotated u is the analytical definition of the discrete
operator Pj , which, up to discretization errors on the mesh, satisfy

(4.3) u(T−1
j (~x),m) ≈ Pju(m).

Obviously, the rotated shape can also be represented by PaLS by using what we refer to as
“rotated parameters”

(4.4) rotj(m) = rot(m, θj , φj , ~bj),

where rotj is the function for rotating the parameters m in the angles θj , φj and translation

vector ~bj , which together correspond to the j-th measurements of the shape. We define
rotj below for both versions of the PaLS. To define an inverse problem with analytically
rotated parameters (instead of using Pj), we can simply replace the term Pu(m) in (4.1) with
u(rotj(m)). As in (4.1), this will lead to a reconstruction with fixed acquisition parameters,
which we incorporate into the inversion, described in the following section. Next, we explicitly
define rotj(m) for each of the considered formulations, and the definition of their associated
Jacobians appears in the Appendix in Section 8.3.
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Rotation for Spherical RBFs. In the simpler version of the PaLS, we plug (4.3) into (3.1)
and obtain

u(T−1(~x),m) = σ

(∑
i

αiψ

(∥∥∥βi (T−1(~x)− ~ξi
)∥∥∥†

2

))
(4.5)

= σ

(∑
i

αiψ

(∥∥∥βi (~x− Tj(~ξi))∥∥∥†
2

))
(4.6)

The last equality holds because Q is an orthogonal matrix that does not change the `2 norm
of a vector. Hence, rotj(m) only rotates the center of each basis function i and is defined by

(4.7) rotj

(
αi, βi, ~ξi

)
= rot

(
αi, βi, ~ξi, θj , φj , ~bj

)
=
(
αi, βi, Tj(~ξi)

)
Rotation for the Ellipsoidal RBFs. The rotation with respect to the ellipsoidal RBFs is

slightly more complicated than in the spherical case, and is given by

u(T−1(~x),m) = σ

(∑
i

αiψ

(∥∥∥(T−1(~x)− ~ξi
)∥∥∥†

Bi

))
(4.8)

= σ

(∑
i

αiψ

(∥∥∥((~x− ~xmid −~bj) + Tj(~ξi)
)∥∥∥†

Q−T
j BiQ

−1
j

))
.(4.9)

Here, for the i-th basis function defined by (αi, Bi, ~ξi), we denote its rotation and translation
according to the j-th acquisition parameters as

(4.10) rotj

(
αi, Bi, ~ξi

)
=
(
αi, Q

−T
j BiQ

−1
j , Tj(~ξi)

)
= (αi, QjBiQ

T
j , Tj(

~ξi)),

where the last equality holds since Q is orthogonal.

4.1. Handling Calibration Uncertainty in the Data Acquisition. So far the acquisition
parameters were kept fixed, and we did not address the non-trivial noise that originates from
inaccuracies in those parameters. Adequately handling such noise is important to produce
an accurate reconstruction. Therefore, as part of the reconstruction we also manipulate the
PaLS representation parameters of u with respect to the parameters of the data acquisition
{(θj , φj ,~bj)}nex

j=1.
To include the data acquisition parameters in the reconstruction, we first extend our

(ellipsoidal) inversion parameters:

(4.11) mext =
[
(αi, Bi, ξi)

nRBF
i=1 , (θj , φj ,~bj)

nex

j=1

]
∈ R10nRBF +5nex .

The treatment with respect to the spherical RBFs is similar. To have the parameters of the i-
th basis function rotated by the predicted j-th data acquisition parameters, we use the function
rot() in (4.10), but now let the acquisition parameters change throughout the optimization
process. By combining Eqs. (4.1)-(4.4) together, we obtain our final inverse problem

(4.12) arg min
mext


nex∑
j=1

∥∥∥Su (rot (m, (θj , φj , bj)))− dobsj

∥∥∥2

2
+ λR(mext)

 .
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This is a version of (4.1), which applies the rotation of the object by rotating its RBF pa-
rameters instead of using the matrices Pj , and includes the data acquisition parameters as
unknowns for the optimization. Similar to the previous cases, we use a Tikhonov regularization
for the parameters in mext .

To solve problem (4.12), we calculate the sensitivities of the rotated m with respect to
up-to-date predictions of (θj , φj ,~bj) and (αi, Bi, ~ξi). To that end, we define the Jacobian of
(4.10) with respect to all of its parameters:

(4.13) Jrot =
∂(αi, QjBiQ

T
j , Tj(

~ξi))

∂(θj , φj ,~bj , αi, Bi, ~ξi)
.

This Jacobian is defined for all pairs of basis functions and acquisition parameters, and using
the chain rule it is multiplies with the PaLS Jacobian ∂u

∂m to capture the sensitivity of u with
respect to all the parameters. All the definitions of Jrot are found in Appendix 8.4.

5. Joint Reconstruction using PaLS under Calibration Uncertainty. In sections 2.1-
2.2, we present two models that are used to reconstruct a three-dimensional object. One of
the models, the dip transform, includes information on the volume of the object, but it is
also characterized by a complex data acquisition mechanism. The second model, SfS, can
only provide information about the object’s surface (as it is visual), but the data are cheap
and easy to acquire. Here we demonstrate how, in our framework, these two models can
complement one another. Specifically, using the SfS model together with the dip transform
can significantly reduce the number of dips required to achieve good volume reconstruction,
thus promoting the dip transform to be a more practical technique. The main problem with
current SfS models, however, is that they artificially assume that a shape is full underneath its
visible surface [29, 27]. Since SfS cannot “see” areas on the shape that are hidden from direct
view, this assumption can potentially prevent us from obtaining an accurate assessment of an
object’s volume, while such hidden parts may be recovered well by the dip transform. Thus,
to complement the dip transform we modify the SfS model to generate its data based only on
the object’s surface. To this end, we suggest to use a Softmax function with SfS model, which
ensures that the SfS tracks the rays and generates the silhouettes based on a projection of the
object’s surface only. This procedure is summarized is Section 5.1.

For the joint reconstruction, we combine the data misfit functions of the two modalities.
Refering again to the example of Eq. (2.4), we obtain:

(5.1) arg min
m

joint


n
dip∑
j=1

lossdipj (Q
dip
mjoint) + γ

n
sfs∑
l=1

losssfsl (Q
sfs
mjoint) + λR(mjoint)

 ,

where mjoint is the joint vector of parameters for the two problems, and therefore, it contains
the set of PaLS parameters and separate sets of dip and SfS data acquisition parameters:

(5.2) mjoint =
[
(αi, Bi, ξi)

nRBF
i=1 , (θj , φj ,~bj)

n
dip

j=1, (θl, φl,
~bl)

n
sfs

l=1

]
.

The matrices Q
dip

and Q
sfs

extract the relevant parameters from mjoint for each of their corre-
sponding modalities, and γ > 0 is used to balance the impact of the different objectives. Note
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that by using this approach we could, theoretically, combine more than two input channels
in our problem. This joint reconstruction is easily set up by using the jInv inversion package
[38], which we use for our computations. Joint multi modal inversions using this package were
also recently applied in a geophysical context [44, 19].

5.1. No-fill Shape from Silhouettes. The second input source is a modified version of
the SfS algorithm that was suggested in [27]. Each pixel in a picture taken by the camera
is computed by a ray extending from the camera to that pixel, possibly hitting the object.
We denote the constructing ray of the (i, j)-th pixel by ri,j , and its value by dij (rij is the
set of indices that constitute the ray). Ideally, we would have a binary 3D object and a 2D
silhouette, and if the ray rij hits the object’s edge or surface, the model should output 1.
That is, if we observe two adjacent voxels in the direction of the ray, wherein the value of
the first is 0 and that of the other is 1, it indicates that we hit the surface of the object and
should output 1. For a real-life silhouette simulation, the part of the object that lies beyond
the surface does not influence the result produced by the model.

In practice, we need to work with a smooth transition from 0 to 1, and hence, any voxel that
is near the boundary of the object registers a gradual change as it moves from the background
to the object itself. Similarly to the ideal case, we wish to recognize this boundary layer and
to output the maximum value in that layer for the silhouette. Additionally, we would like the
silhouette value to depend on all the voxels in the boundary layer, an element that is of critical
importance to the optimization process in the PaLS framework. To achieve such dependence,
we define a voting process according to the ray’s first increasing sequence of values u, which
indicates the rays encountered the object’s boundary.

Our voting process for computing dij entails performing a softmax of the values of u over
the first boundary layer in the ray rij (increasing values of u). That is:

(5.3) dij(u) =
∑

k∈Ω(rij)

u[rij [k]] exp (ηu[rij [k]])∑
t∈Ω(rij) exp (ηu[rij [t]])

,

where Ω(rij) is the subset of indices that correspond to increasing values in u in the ray rij .
The behavior of the softmax function is controlled by setting η > 0 (η = 50 in our tests). We
note that insofar, since the process in (5.3) is designed to be realistic and is defined only by the
shape’s boundaries, the model cannot determine the invisible inner parts of the shape. These
parts are left to regularization only. Alternatively, as in our case, one can complement this
model with a tomographic model like the dip transform to fill the missing inner information.

5.2. Mesh-free implementation for reconstruction from point clouds. Suppose we are
given a set of points C = {~xi}Ni=1 that lie on the surface of the object. Because our PaLS
framework provides a smooth transition from 0 to 1 using the Heaviside function in Fig. 3a,
our objective is to find the PaLS parameters m, s.t.

(5.4) ∀~xi ∈ C : u(~xi,m) ≈ δ,

where δ is our binarization threshold parameter in Alg. 3.1. In order to consistently define
the inner and outer sides of the shape for all the points, we use the common technique of
[14], as follows. Using the points in C we estimate surface normals {~ni}Ni=1, and define two
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additional sets: C
fwd

= {~xi + ε~ni}Ni=1, and C
bwd

= {~xi − ε~ni}Ni=1. Then, in our loss function we
try to fit (in a least squares sense) u(~xi,m) = 0 for ~xi ∈ Cfwd , and u(~xi,m) = 1 for ~xi ∈ Cbwd ,
in addition to (5.4).

Using the approach above, our loss depends only on the points defined in the three given
sets, and there is no need to define a volumetric grid as in the other problems. Hence, we use
our PaLS model with a collection of points, in a mesh-free manner. That is, the parameters
m are estimated using a mesh free minimization of the loss over the points in the clouds,
and the shape can be constructed later on an arbitrarily fine mesh. The value of ε is chosen
according to the width of the transition from 0 to 1 in the Heaviside function. In addition, to
have a fast implementation, the procedure that computes u(m) has to efficiently determine
which points in the clouds are relevant for each basis function. We obtain this using a nearest
neighbor data structure implemented in the Julia package NearestNeighbors.jl, which is
available on GitHub.

6. Results. To validate our proposed framework for 3D shape reconstruction, we con-
ducted several experiments. The first experiment aims to demonstrate that even though the
PaLS framework contains a representation using smooth RBFs, it can also be used to represent
sharp objects, which are typically difficult to define using basis functions. In the subsequent
experiments, we exploit the dip transform model for tomographic data acquisition and com-
pare the reconstructions obtained with our framework to those obtained with the original
reconstruction method in [1]. In our third batch of experiments, we demonstrate the robust-
ness of the reconstruction algorithm to uncertainty in the acquisition parameters. Following
that, we show that multi-modal shape reconstruction is possible with our framework via the
combination of the modified SfS model described in Section 5.1 with the dip transform model.
This experiment not only shows that we are able to perform a joint shape reconstruction, it
also demonstrates how the large number of experiments required for the dip transform can
be substantially reduced. Finally, we show the reconstruction of an object from two given
misaligned and non-overlapping point-clouds, and show that their combination with SFS can
lead to a correct reconstruction.

All the shape reconstructions are obtained using Gauss-Newton in Algorithm 3.1 with
iterated Tikhonov and log-determinant barrier regularization. Our framework is implemented
in the Julia language [10], and we use the inversion package jInv [38] to perform the com-
putations, which are parallelelized over the experiments. We use MeshLab as a final step to
post-process the volumetric meshes we obtained. The post-processing steps include Laplacian-
smoothing and voxel sub-sampling to avoid artifacts, which can be caused by over-sampling
the continuous representation obtained using our framework. Our code for reproducing the
results in this work is available online at:

https://github.com/BGUCompSci/ShapeReconstructionPaLS.jl

6.1. Shape Representation using PaLS. The outcome of this experiment serves as a proof
of concept for the modeling capabilities of the ellipsoidal PaLS. Given an object u defined on a
mesh (of size 120×120×120), we search for u(m) and assess the quality with which the PaLS
representation models the object (based on a moderate number of RBFs). Since our goal is
to enable objects to be modeled with the lowest possible number of parameters, we initialize
the reconstruction with 5 RBFs and add only one RBF at each iteration. The results of this

https://github.com/BGUCompSci/ShapeReconstructionPaLS.jl
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(a) Input object (b) Smoothed Input (c) 78 RBFs (d) 120 RBFs

Figure 5: Sharp object representation. (a) The volumetric input as it is consumed by our
framework. (b) Smoothed version of the volumetric input. (c) and (d) Reconstructions using
78 and 120 RBFs, respectively.

experiment can be seen in Fig. 5. We intentionally chose an input object with both flat areas
and sharp angles to demonstrate the expressiveness of our model. The results show that our
model can faithfully reconstruct both the sharp and the flat elements, tasks that are considered
particularly challenging in shape reconstruction. Furthermore, despite the relative complexity
of the shape, its reconstruction is done using a small number of parameters. As expected and
can be seen in Fig. 5, increasing the number of basis functions (while maintaining a relatively
low number of parameters) improves the reconstruction.

Shape Reconstruction Setting and Default Parameters. In Sections 6.2-6.4 we present a few
shape reconstruction experiments. To make the experiments realistic, all the data measure-
ments are generated from a binary object using a 240 × 240 × 240 grid. The data are then
down-sampled, and we perform the reconstruction on a 120× 120× 120 grid. We also include
uncertainty in the acquisition parameters (detailed later) and Gaussian white noise of variance
σ = 2V , where V is the volume of a voxel. For the reconstruction, we use algorithm 3.1 and
its default parameters. That is, in all the experiments, we start with 20 randomly located
RBFs (p0 = 20), and at each iteration, we add 5 basis functions to improve the reconstruction
(p = 5). We perform 40 iterations that result in 220 radial basis functions, and a typical
reduction of 3 order of magnitude in the data term. The value of the regularization λ is ini-
tially chosen to be 10−3 and we reduce it by a factor of 0.8 after each iteration. Note that in
every GN iteration, the regularization is zeroed according to the iterated Tikhonov approach
described in Section 3. We set the grid domain to be the [0, 5]3 cube. Each of the initial
RBFs is initialized as sphere with a radius of 1 (i.e., Bi = I3×3), located randomly around the
center of the grid. Its coefficient αi is initialized with a small random number. When adding
RBFs during the optimization process, we set them with a smaller radius of 1

3 , and zero their
coefficient αi, such that we obtain monotonically non-increasing optimization routine. The
location of the added RBFs is determined via the gradient of the objective function w.r.t u,
such that new basis functions are added at grid points where the magnitude of the gradient
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Known calibration Uncertain calibration

PaLS TV PaLS TV

Figure 6: Comparison between dip transform reconstruction similar to [1] and our method.
Noisy data consists of 2 degrees and 4% translation noise. Top: reconstruction from 1000 dips
(large data). Bottom: reconstruction from 400 dips (small data). All the experiments also
include i.i.d. Gaussian white noise.

is largest to improve the representation of the object where it lacks the most.

6.2. Volumetric vs. PaLS Reconstruction. In this batch of experiments, we demonstrate
that our framework can significantly enhance object reconstruction when there is not enough
data. We compare the original work [1] using TV regularization and our RBF-based dip
transforms for different numbers of dips (small vs. large data) and different degrees of noise
in the acquisition parameters. The results are summarized in Fig. 6. First, to accurately
reconstruct the object, the number of dips required in our framework (400) is significantly
lower compared to the original method, which requires at least 1000 data measurements to
produce a good reconstruction (this is aligned with the results in [1]). Secondly, and perhaps
more importantly, our method is able to overcome uncertainty in the acquisition parameters,
which, in the case of small data, completely ruins the TV reconstruction. In contrast to the
tremendous impact that the calibration uncertainty has on reconstruction when using the
conventional method, when using our method, its effect is small to insignificant.

6.3. Robustness to Calibration Uncertainty. In this section, we demonstrate the robust-
ness of our reconstruction method to calibration uncertainty as discussed in Section 4.1. We
start with an experiment of a reconstruction assuming all the acquisition parameters are
known. Then, we gradually increase the calibration uncertainty level until it degrades the
results to the extent that the reconstruction no longer resembles the object. Fig. 7 shows that
our framework is capable of handling a significant amount of calibration noise—more than 10
degrees of noise in the object’s rotation and 17 percent in its translation. To assess the effect
of the data size on the final reconstruction and robustness to noise, we conduct the experi-
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a b c

Figure 7: Robustness to calibration uncertainty in the PaLS reconstruction. First row: 200
dips. Second row: 600 dips. (a) Known calibration. (b) 4 degrees noise and 7% translation
noise (c) 10 degrees noise and 17% translation noise.

Figure 8: Data misfit histories of the reconstruction with 200 and 600 dips (shown in Fig. 7),
with various noise levels in the acquisition parameters .

ment for low (200) and high (600) numbers of measurements. As expected, as the number of
measurements increases, the reconstructions become more robust to calibration noise.

Here we also show the decay of the loss function as we increase the number of RBFs to
reconstruct the object (Fig. 8). Note that the loss values do not include the regularization
term, and hence they are not necessarily monotonically non-increasing. Our optimization
method guarantees a monotonically non-increasing solution for the objective in Eq. (4.12).



SHAPE RECONSTRUCTION UNDER CALIBRATION UNCERTAINTY 19

Figure 9: Silhouettes of the object from different orientations obtained using our modified SfS
approach described in 5.1.

a b c d

Figure 10: Joint reconstruction from tomographic and visual data. (a) Input object. Recon-
structions based on (b) 800 dips, (c) 200 dips, and (d) 200 dips and 16 silhouettes.

6.4. Multi-modal Joint Reconstruction. Using the formulation in Eq. (5.1), we are able
to use data from two different models to perform joint shape reconstruction. The first model
that we use is the dip transform as in the previous experiments. The second input source is a
modified version of the SfS algorithm that was suggested in Section 5.1. Figure 10 shows that
the use of the dip transform technique alone necessitates a large number of measurements (800)
to obtain a good reconstruction, and achieves poor quality when fewer measurements (200)
are used. The addition of the visual source significantly improves the reconstruction while
reducing the number of the required dips. Thus, we conclude that the joint inversion algorithm
is superior in terms of reconstruction accuracy. In addition, perhaps more importantly its use
enables a considerable reduction in the number of data measurements needed, a favorable
outcome that could promote such experiments which are typically expensive, difficult and/or
dangerous to conduct (e.g., CT scans) when using conventional techniques.

6.5. Shape reconstruction from Point Cloud. In this experiment we demonstrate our
method for shape reconstruction from point clouds, as well as registration of point clouds.
Often, two or more point clouds are given, possibly with some overlapping regions, and the
goal is to align them such that they can be viewed as one point cloud for performing tasks like
shape reconstruction. To demonstrate the registration and reconstruction from point clouds
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(a) (b) (c) (d)

Figure 11: Reconstruction from two point clouds. (a) The aligned point clouds. (b) The
misaligned point clouds used as input. (c) A reconstruction from the misaligned point clouds
only. (d) A joint reconstruction from the misaligned point clouds together with SfS.

we generate two non-overlapping point clouds from the shape in Fig. 5a—see Fig. 11a. Then
we significantly move one of the point clouds as shown in Fig. 11b, and try to reconstruct
the shape. Since there is no overlap in the point distribution, methods like ICP often struggle
to find the correct alignment. Fig. 11c shows the a reconstruction using our mesh-free
implementation. From an optimization perspective, this reconstruction is good even though
it is misaligned—the data term in this experiment was reduced by two orders of magnitude
in the optimization process. The drop-like artifacts that appear in the reconstruction are
not visible in the misfit term involving the point cloud. We note that our method is able
to recover the right alignment for some cases of initialization and choice of parameters, but
that is not guaranteed by a low data term, and is not robust. To guarantee the correct
reconstruction following a successful optimization, we add another data modality, SfS, which
includes silhouettes of the complete shape. Fig 11d shows a joint reconstruction from both
the point clouds and 8 figures of silhouettes. This time, the point clouds are aligned by the
optimization since it has the SfS to guide it towards the right shape, and recover the alignment
parameters.

7. Conclusions and Future Work. In this paper, we proposed a general framework for
robust and efficient 3D shape reconstruction using parametric level set methods with ellip-
soidal radial basis functions. Using a compact PaLS representation, our reconstruction process
estimates a relatively low number of parameters, and therefore, it requires a correspondingly
small number of data measurements. Our framework has the ability to accurately estimate
acquisition parameters as part of the reconstruction, and it is robust to noise that originates
from inaccuracies in these parameters. Our framework also supports multi-modal reconstruc-
tion, and thus, it can be adapted to incorporate several models in a single shape estimation.
The proposed method is capable of reducing the number of required measurements, which can
generally be beneficial for models where experiments are expensive, difficult or dangerous to
conduct (e.g., MRI scans).

The compact analytical PaLS representation can be used to enhance various applications.
For example, it is a natural approach to apply reconstruction from tomographic measurements
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under deformation [53], where the deformations can be treated analytically using the PaLS
representations, and the number of measurements can be reduced. The PaLS can also be
considered as a regularization inside a deep neural network architecture, where the insights
from this work can be incorporated to reduce the computational cost for 3D shape analysis
and image segmentation.

8. Appendix.

8.1. The Wendland’s and Heaviside Functions. The Wendland’s compactly supported
radial basis functions [49] constitute a family of polynomial RBFs ψi whose range is [0, 1] and
zero outside [0, 1] (for r > 1, ψi(r) = 0). A common choice to be used in R2 and R3 is one of
the following:

ψ0(r) = (1− r)2
+ ∈ C0(8.1)

ψ1(r) = (1− r)4
+(4r + 1) ∈ C2(8.2)

ψ2(r) = (1− r)6
+

1
3(35r2 + 4r + 3) ∈ C4(8.3)

ψ3(r) = (1− r)6
+(32r3 + 25r2 + 8r + 1) ∈ C6(8.4)

where ()+ denotes the max(x, 0) function. In this work, we use ψ1 because it is the simplest
differentiable function and we did not see any change in our experiments when using functions
of higher order.

The Heaviside function σ smoothly transitions between 0 and 1. As shown in Fig. 3a and
mentioned in [22], we wish to make the derivative of this function (the delta function) as flat
as possible to render our Gauss-Newton Hessian better conditioned. We define our Heaviside
function to be a smoothed linear transition from 0 to 1 using a piecewise polynomial function.
More precisely, it is defined by a transition width δ and a smoothness width ε as follows:

(8.5) σδ,ε(x) =


0 x < −δ − ε

1
8δε(x+ δ + ε)2 −δ − ε ≤ x < −δ + ε

1
2δ (x+ δ) −δ + ε ≤ x < δ − ε

− 1
8δε(δ + ε− x)2 + 1 δ − ε ≤ x < δ + ε

1 δ + ε < x

This function and its first derivative are continuous, and it is very similar to the function
proposed in [22], using a sin function to define the transition smoothness. We prefer a
polynomial approximation because of computation considerations. As default parameters
throughout all the experiments in this paper, we choose δ = 0.1, ε = 0.01, and use the letter
σ to denote the function.

8.2. Derivatives of the Ellipsoidal PaLS Function. Here we show the derivatives of the
ellipsoidal PaLS function, and the derivatives of the standard PaLS in (3.1) are defined in [2].
The i-th basis function in the sum of (3.5) is defined by αi, Bi, ~ξi. For each RBF (containing
10 parameters), we define its radius by:

(8.6) ri(~x) =
∥∥∥~x− ~ξi∥∥∥†

Bi

.
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Dropping the index i, the matrix B is defined by 6 parameters due to symmetry:

B =

 B1 B2 B3

B2 B4 B5

B3 B5 B6

 .(8.7)

We define the operator

P =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(8.8)

to be the operator that takes the vector [B1, ..., B6]> and by multiplication transfers it into a
vector of size 9 that corresponds to the symmetric matrix B in (8.7). With this notation, the
derivatives of ri(~x) are computed by:

∂ri

∂~ξi
= −Bi~zi

r(~x)
∈ R3(8.9)

∂ri
∂Bi

=
1

r(~x)
P>vec(~zi~z

>
i ) ∈ R6(8.10)

where ~zi = ~x − ~ξi, and the operator vec is the column-stack operator transferring a 3 × 3
matrix into a vector of size 9. Now we can easily define the derivatives of u, as the additional
terms are just scalars:

∂u

∂αi
(~x) = σ′(u(~x))ψ(ri(~x))(8.11)

∂u

∂~ξi
(~x) = αiσ

′(u(~x))ψ′(ri(~x))
∂ri

∂~ξi
(8.12)

∂u

∂Bi
(~x) = αiσ

′(u(~x))ψ′(ri(~x))
∂ri
∂Bi

(8.13)

8.3. The derivatives of the rotated PaLS. As noted before, the radial basis functions
can be rotated analytically. Thus, instead of rotating u(m) we can simply rotate each of the
basis functions according to its rotation parameters. For the spherical RBFs, we have the
rotation function in (4.7) for rotating the i-th basis function at angles θj , φj and translation

vector ~bj , which corresponds to the j-th measurements of the shape. The Jacobian of (4.7)

with respect to (αi, βi, ~ξi) is equal to

(8.14)
∂rotj(αi, βi, ~ξi)

∂(αi, βi, ~ξi)
=

 1 0 ~0T

0 1 ~0T

~0 ~0 Qj

 ∈ R5×5.
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For the ellipsoidal RBFs, the rotation function is defined in (4.10) and its Jacobian is
defined by

∂rotj(αi, Bi, ~ξi)

∂(αi, Bi, ~ξi)
=

 1 01×6 01×3

06×1 tril(Qj ⊗QjP )6×6 06×3

03×1 03×6 Qj

 ∈ R10×10,(8.15)

where P is the matrix defined in (8.8) and tril(A) is an operator that chooses the 6 out of
9 rows of A corresponding to the indices of the lower-triangular elements of a 3 × 3 matrix.
With this operator, the term tril(Qj ⊗QjP ) ∈ R6×6.

8.4. Derivatives with respect to acquisition parameters. To incorporate the rotation
parameters in the optimization process, we need to compute the derivatives of u according to
them. This way, we are able to overcome uncertainty of the calibration in the data-acquisition
process. For spherical RBFs, we have to take the derivatives of (4.7) with respect to the
additional 5 parameters in (θj , φj ,~bj). We obtain:

∂rot(αi, βi, ~ξi, θj , φj ,~bj)

∂θj
= [0, 0,

∂Qj
∂θj

(~x− ~xmid)]T = [0, 0, ~zθj ]
T ∈ R5(8.16)

∂rot(αi, βi, ~ξi, θj , φj ,~bj)

∂φj
= [0, 0,

∂Qj
∂φj

(~x− ~xmid)]T = [0, 0, ~zφj ]
T ∈ R5(8.17)

∂rot(αi, βi, ~ξi, θj , φj ,~bj)

∂~bj
=

[
02×3

I3×3

]
∈ R5×3(8.18)

where

(8.19) ~zθj =
∂Qj
∂θj

(~x− ~xmid), and ~zφj =
∂Qj
∂φj

(~x− ~xmid).

Placing all the partial derivatives together in the Jacobian we obtain:

(8.20)
∂rot(αi, βi, ~ξi, θj , φj ,~bj)

∂(αi, βi, ~ξi, θj , φj ,~bj)
=

[
I2×2 02×3 02×1 02×1 02×3

03×2 Qj ~zθj ~zφj I3×3

]
5×10

For ellipsoidal RBFs, the derivatives of (4.10) include:

∂rot(αi, Bi, ~ξi, θj , φj ,~bj)

∂(θj , φj)
=

 0 0
~Tθj

~Tφj
~zθj ~zφj

 ∈ R10×2,(8.21)

where

~Tθj = tril

(
QjBi

∂QTj
∂θj

+
∂Qj
∂θj

BiQ
T
j

)
∈ R6(8.22)

~Tφj = tril

(
QjBi

∂QTj
∂φj

+
∂Qj
∂φj

BiQ
T
j

)
∈ R6,(8.23)
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and the derivative with respect to ~bj is similar to (8.18). Altogether, we obtain the Jacobian:

(8.24)
∂rot(αi, Bi, ~ξi, θj , φj ,~bj)

∂(αi, Bi, ~ξi, θj , φj ,~bj)
=

 1 01×6 01×3 0 0 01×3

~0 tril(Qj ⊗QjP )6×6 06×3
~Tθj

~Tφj 06×3

~0 03×6 Qj ~zθj ~zφj I3×3


10×15

.
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