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Abstract. In this paper, we analyze optimal control problems governed by semilinear parabolic
equations. Box constraints for the controls are imposed, and the cost functional involves the state and
possibly a sparsity-promoting term, but not a Tikhonov regularization term. Unlike finite dimensional
optimization or control problems involving Tikhonov regularization, second order sufficient optimality
conditions for the control problems we deal with must be imposed in a cone larger than the one used
to obtain necessary conditions. Different extensions of this cone have been proposed in the literature
for different kinds of minima: strong or weak minimizers for optimal control problems. After a
discussion on these extensions, we propose a new extended cone smaller than those considered until
now. We prove that a second order condition based on this new cone is sufficient for a strong local
minimum.
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1. Introduction. Let us consider a domain Q C R™ n < 3, with a Lipschitz
boundary I'. Given T' > 0, we denote Q = Q% (0,7) and ¥ = T'x (0, 7). In this paper,
we investigate second order sufficient optimality conditions for the control problem

(P) min J(u) == F(u) + uj(u),

u€U,q

where p > 0. Additionally, for g > 0, we will further suppose that o < 0 < f3,
Usg = {u e L®(Q): a <wu(z,t) < B for a.a. (z,t) € Q}

with —oo < a < 8 < 400,
F(u) = / L(z,t,y,(z,t)) de dt + VQ/ Lo(z,yu(z,T))dz,
Q Q

vo € {0,1}, and j : L' (Q) — R is given by j(u) = |Jul11(g)-
Above y, denotes the state associated to the control u related by the following
semilinear parabolic state equation:

0Yu .
ey Ay + fletyy) = v mQ,
: Yo = 0 on X,
yu(0) = gyo inQ.
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586 EDUARDO CASAS AND MARIANO MATEOS

Assumptions on the data A, f, yg, L, and Lq are specified in section 2.
It is well known that if @ is a local minimum, then first order necessary optimality
conditions can be written as

J'(tu—1) >0 Yu € Uy,
while second order necessary optimality conditions read as
F'"(@)v*> >0 Yuc Cy,
where Cj is the cone

Cy = {v € L*(Q) satisfying the sign condition (1.2) and J'(@;v) = 0},

(1.2) U(J;,t){ fo alz,t) =,

The reader is referred to [11, Theorem 3.7] for the elliptic case or [12, Theorem 3.1.
Case I] for the parabolic case.

It is well known that in finite dimensional optimization the cone used to establish
necessary second order necessary optimality conditions is the same as the one used for
sufficient second order conditions. However, this not the case in general for optimiza-
tion problems in infinite dimension; see the example by Dunn [24]. Despite this, if the
Tikhonov term 7 ||u||. (@) With v > 0'is present in the cost functional of the control
problem, we can take the same cone for both necessary and sufficient conditions; see,
e.g., [4], [19], or [20] for the case p = 0, or [11], [12], or [17] for x > 0. Other works
that consider second order sufficient conditions for problems with no Tikhonov regu-
larization are [16], [21], [22], and [23]. The results in these works cannot be applied to
our problem due to the facts that we deal with a semilinear parabolic equation, our
controls depend both on space and time, and we do not have any assumption on the
structure of the adjoint state.

In this paper, the Tikhonov term is not present. Then, an approach to deal with
second order sufficient conditions, as suggested by Dunn [24] or Maurer and Zowe
[27] among others, consists of extending the cone of critical directions Cy. As far as
we know, two ways to enlarge the cone have been proposed in the literature. In the
context of abstract optimization problems, following Maurer and Zowe [27], one could
replace the condition J'(@;v) = 0 by J'(a;v) < 7||v||L2(g) for some small 7 > 0. In
optimal control problems we can take advantage of the structure of the problem to
define a slightly smaller cone by taking
(1.3)

El = {v = LQ(Q) satisfying (1.2) and J'(@;v) < T(HZUHL2(Q) + yQsz(-,T)HLz(Q))},

where z, is the derivative of the control-to-state mapping in the direction v; see
(2.1) below. A second alternative to extend Cj is based on the observation that for
functions v € L?(Q) satisfying the sign condition (1.2) we have

for p=0: J'(z;v) =0 <> v(z,t) =0 if |p(z,t)| > 0,
>0 if g(z,t) = —p and a(z,t) =0,
for p>0: J'(a;0) =0 < v(x,t)8 <0 if g(z,t) = +p and a(z,t) =0
S T

)
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where @ is the adjoint state associated with @, defined in (2.10) below; see [6], [17],

[20], [21], [22]. Then a natural extension can be done specifying a smaller set of points
where the functions v should vanish: given 7 > 0 we define the extended cone

for p =0: DI ={v € L*(Q) satisfying (1.2) and v(z,t) = 0 if |@(x,t)| > 7},

for p > 0: D] {v € L*(Q) satisfying (1.2) and

>0 if g(x,t) = —p and @(z,t) =0
v(z,t){ = 0 if ¢(x,t) = +p and u(x,t) = }
0 i ||pl@. )~ p| > 7

The following question immediately arises: is one of these two extensions better
than the other? The answer seems to be difficult because they are not easy to compare.
However, we solve this issue by choosing D7 N EZ. The main goal of this paper is to
prove that a second order optimality condition based on this cone along with the first
order optimality conditions imply the strong local optimality of .

The plan of the paper is as follows. In section 2 we establish the assumptions
on the functions defining (P), recall some regularity results on the state equation
and the linearized state equation, and establish the differentiability properties of the
control-to-state mapping. We also state necessary optimality conditions. In section
3 we prove our main result, namely Theorem 3.1. In section 4 we comment about
extensions and limitations of our main result.

Before ending this introduction let us mention that the methods used in this
paper cannot be applied to the case of control problems governed by the Navier—
Stokes system. This is due to the fact that our approach requires L*((Q) bounds for
the states; see Theorem 2.1. For quasilinear parabolic equations, it seems possible to
obtain similar bounds using the results in [9]. Also it seems reasonable that estimates
analogous to that of (2.4) or (2.9) hold, but the extension is not immediate and is
beyond the scope of this paper. We refer the reader interested in optimal control
problems governed by these types of equations to [7], [8], [9], [10], [15], [18], [28] for
the case where the Tikhonov term is present in the cost functional.

2. Assumptions and preliminary results. On the PDE (1.1), we make the
following assumptions.

(A1) A denotes the elliptic operator

Ay == Ou,(05;(2)00,y) + D bj (2, 6)0u,y,
i,j=1 j=1
where b; € L>®(Q), a; ; € L>(1), and the uniform ellipticity condition

g >0: M€ < Z a; ;j(x)&€ VEER™ and a.a. x € Q

ij=1

holds.
(A2) We assume that f: Q x R — R is a Carathéodory function of class C? with

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/20/20 to 154.59.124.233. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

588 EDUARDO CASAS AND MARIANO MATEOS
respect to the last variable satisfying the following properties:

E|Cf eER: ﬁ($,t,y) ZCf Yy € R,

dy

; : o 1 d
f(,-,0) € LP(0,T; L9(Q2)) for some p,q > 2 with = + 57 <1,

D q
o f .
VM >03Cyn >0: 8—yj(x,t,y) <Cfm Yy <Mandj=1,2,
Vp >0 and VM > 0 Je > 0 such that
0% f 0?

<p Vil ly2] £ M with |y; —yo| <,

Tyg(x7tay1) - Ty.];(xvtay2)

for almost all (z,t) € Q.
Examples of functions f satisfying the above assumptions are the polynomials of
odd degree with positive leading coefficients or the exponential function f(z,t,y) =
g(z,t)exp(y) with g € L>®(Q), g(x,t) > 0 for almost all (z,t) € Q.
(A3) For the initial datum we assume yo € L ().

On the functions L and Lq defining the differentiable part F' of the cost functional
J, we assume the following:

(A4) L : Q@ xR — R is a Carathéodory function of class C? with respect to the
last variable satisfying the following properties:

L(+,-,0) € LY(Q) and VM > 0 3V, € LP(0,T; L4()) and Co m
such that
L L
et < Wl and |2 et < o ¥l <1
Vp > 0 and VM > 0 Je > 0 such that
0L 0L
Tyg(%tayl) - Tﬁ(x’t’yZ)

2

<p ¥yl ly2| £ M with |y; —y2| <e,

for almost all (z,t) € Q.
(A5) Lo : Q x R — R is a Carathéodory function of class C? with respect to the
last variable satisfying the following properties:

Lqo(+,0) € LY(Q) and VM > 0 3Cq s such that

i L
‘aang (2.9)| < Canr Vly| < M and j=1,2,
Vp > 0 and VM > 0 Je > 0 such that

<p Yyl |y2| <M with |y1 —ye| <e,

0?Lq 0%Lg
Tyg(m7y1) - Tyg(xva)

for almost all x € Q.

Let us comment that the classical tracking-type cost functional

1

Py = 5 [ o) =t 1) vt + 5 [ (a0 T) — ot o

satisfies the above assumptions if y4 € LP(0,T; L4(Q)) and yo € L*(9).

Hereafter, these hypotheses will be assumed without further notice throughout
the rest of the work.
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2.1. Analysis of the state equation. In this section we analyze the existence,
uniqueness, and some regularity properties for the solution of (1.1) as well as its
dependence with respect to the control u. We also prove some technical results to be
used in the proof of our main result, Theorem 3.1.

THEOREM 2.1. For every u € LP(0,T;L4(Q)) there exists a unique solution of
(1.1), yu € L*(0,T; H}(2)) N L>=(Q). Moreover, there exist positive constants K 4,
Cp.4, and Mo, such that for all u, % € Uyq,

Yull 220,713 () + Yull L= (@)

< Ky glullpso,mszacy) + 1 (s 0)l Lo o,rina)) + 1Yollzee @)
19u = yallL=(@) < Cpgllu = tllLoo,r;14(0)),
1YullL=(@) < Moo-

Finally, if ur, — u weakly in LP(0,T; L1(SY)), then the strong convergence

1Y = YullLoe (@) + 1Yun = Yull20,75m32)) + 19 (5 T) = 9 Tl oo () = 0
0

holds.

Proof. To deal with the nonlinearity in the state equation we can proceed as in
[, Theorem 5.1]. Combining this approach with the well-known results for linear
equations, see, e.g., [26, Chapter III], existence, uniqueness, regularity, and the first
and third estimates follow easily.

To deduce the second estimate and the convergence properties, we introduce
Wy = Yy, — Yu. Subtracting the equations satisfied by y,, and y, and using the mean
value theorem, we get the existence of measurable functions gx = vy + Ok (Yu, — Yu),
0 < 8g(x,t) <1, such that

% + Awk + %(x7tagk)wk = U —Uu in Qa
w, = 0 on X,
we(0) = 0 in Q.

From [26, Theorem III-10.1], we deduce the existence of Cp4 > 0 and v € (0,1)
such that ||wkl|crv/2g) < Cpgllur — ullLeo,r;Laca))- This proves the second esti-
mate. Finally, since C7/2(Q) is compactly embedded in C(Q), it is immediate to
see that ||wk|cg) — 0. In particular, ||wk(-,T)||L=) — 0 holds. Using this fact
and multiplying the above equation by w; and making integration by parts, we infer
convergence wy, — 0 in L2(0,T; HY(Q)). ad

Hereafter, we denote Y = L2(0, T; H}(Q))NL>(Q) and G : LP(0,T; Li(Q)) — YV
as the mapping associating to each control the corresponding state G(u) = y,.

THEOREM 2.2. The mapping G is of class C?. Moreover, for every u,v, vy, vy €
LP(0,T; Li(Q)), we have that z, = G'(u)v is the solution of

o= + Az 4+ g(m,t, Yu)z = v inQ,

(2.1) ot oy
' z = 0 onk,
z(0) = 0 inQ,
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and zy, v, = G"(u)(v1,v2) solves the equation

0z of O*f

En + Az + a—(x,t,yu)z = —8—y2(a?,t,yu)zvlzvz mn Q,
z = 0 on X,

where z,, = G'(w)v;, i = 1,2. Moreover z, and zy, v, are continuous functions in Q.

For the proof the reader is referred, for instance, to [19, Theorem 5.1].

From the classical theory for linear parabolic PDEs, we know that for every
v € L?(Q) there exists a unique solution z, of (2.1) in the space C([0,T], L?(Q2)) N
L2(0,T; H}(Q)). Therefore the linear mapping G’ (u) can be extended to a continuous
linear mapping G’ (u) : L2(Q) — C([0,T), L?(2)) N L?(0,T; H (2)).

The following estimates for z, will be used in the next sections.

LEMMA 2.3. Let u € Unq and v € L*(Q) be arbitrary, and let z, = G'(u)v be the
solution of (2.1). Then, there exist constants Cg 2 and Cgq 1 independent of u and v
such that

(2.2) [20llz2(@) + 120 (- D)l 2(0) <
(2.3) [20llL1(@) + llz0 (- T)

(Q)-

If, further, v € LP(0,T; LY(Q)), then there exists a constant Cg ~ independent of u
and v such that

(2.4) ||qu||C(Q) < CQ7OO‘|U||L13(O,T;L@(Q))-

Proof. First let us note that from Theorem 2.1 and our assumption on f, (A2),
we have that

o f

(2.5) 5

—(z,t,yu(z,1))| < Cpm., Yu €Uqq and ae. (z,t) €Q, j=1,2.
Then (2.2) and (2.4) are classical; see, for instance, [26, Chapter I11].

The estimate (2.3) for ||z, ||z1(q) follows from [13]; see also [3, 5].

To prove the estimate for ||z, (-, T)[|1(q) we proceed as follows. Consider the
function 7 = sign(z,(-,T)) € L*>®(Q), and let ¢ € L°(Q) N L?(0,T; H}(£2)) be the
unique solution of the problem

Sravs L =0 we,
v = 0 on X,
YI) = dr o,

where A* is the adjoint of A given by

(2.6) A% = Z D, (a4 zn:a% (z,t)y

i,j=1 j=1

Multiplying the equation satisfied by z, by % and integrating over (), we obtain

(2.7) / ) (@zv + Az, + W(m,t,y@%) dxdt = / vpdxdt.
Q Iy Q
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Integrating by parts in the first integral, we have

/ 1[1(6,521, + Az, + af(x,t,yu)zv> dxdt = / (W(z, T)zy(z,T) — 1(x,0)2,(x,0)) dz
Q dy Q

of

+ /Q Zy <3t¢ + A*d) + @(xata yu)qz/}) dxdt

:/ Y (x)zy (2, T)dx = / sign(zy(z,T)) 2y (2, T)dx = ||2,(-, T) | 1 () -
Q Q
Now using (2.7), we have that

lzo (-, D)l 1) < 19z @)Vl L1 (@)-

Finally, it is enough to realize that for some constant C' we have

¥l (@) < CllYr|lLe(@) =C

and the proof is complete. ]
The following technical result will be used in the proof of Theorem 3.1.

LEMMA 2.4. Consider u, u € U,q with associated states vy, and g, respectively.
Set zy—q = G'(u)(u — u), and consider the constants Cy . satisfying (2.5) and
CQ,00 introduced in Lemma 2.3. Then the following estimates hold:

2
) < iT1/p’
Cr e CQo0[QH/ TP

lzu-allc@@) < 2lyu — UllLe(q)-

then

(2.8) If llyu=ll=@

(2.9) If lyu=9lLe(q) < , then

Cr .. Cg oo
lzu-allL2@) +vallzu-al, T)llL2 (@)

1 _ _
> 5 (Il = 2@ +vallya (. T) = 5. Dllzagey )-

Proof. Define n =y, — (§ + zu—a)- The function n satisfies the equation

on . of _ - .
E +A77+f(m7tayu) f($7t7y) aiy(x7t7y)zufu =0 m Q7
n = 0 onl,
n(0) = 0 inQ.

Using a second order Taylor expansion, we have that there exists a measurable func-
tion 0 < 6(z,t) < 1 such that if we name § = ¢ + 0(y, — 7), we have that

an af 102f ) IV
o T An+ By (z,t,9)n 5 0y2 (z,t,9)(yu —y)" inQ,
n =0 on I,
n(0) = 0 in Q.

Let us prove the first estimate. With the help of assumption (A2), we deduce
from (2.4) and (2.5) that

1 s _
Inllegy < §Cf>MooCQ,oo|Q\1/qT1/”Hyu — gll7~(q)-
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Using this and (2.8), we infer
lzu—allc@) < Inlle@) + 1yu = Ullz= (@)
< %Cf,MooCQ,oo|Q\1/éT1/ﬁ||yu - Z7||%oo(Q) + 1Yu — Fllz=(@)
< 2/yu — Fll (@)

For the second inequality, notice that using the uniform boundness of the admis-
sible states, assumption (A2), and (2.2), we have that

1 . _
1llz2(@) +valln( Dlcz@) < 5CQ2C My = Flli= @ 1ve = Fll2@)-
Finally, using (2.9), we have that

lyu=0ll22@) + valyu (- T) =4, )l 20
M2 @) + valln( T2y + lzu—allz2@) + vallzu—al, T) L2

IN

IN

1 _ _
50020 M. lyu — Flloe )1y — llz2(@) + I2u—all2(@) + vallzu—a(, T)llL2 (o)

IN

1 _
§||yu —llr2@) + llzu-allL2@) + vallzu—al-, T)|L2(0),

and the second inequality follows. O

2.2. First and second order optimality conditions for (P). We recall the
definition of the cost functional J(u) = F(u) + uj(u). Before establishing the opti-
mality conditions satisfied by a local solution we address the differentiability of the
functional F'.

The next theorem follows from the chain rule, Theorem 2.2, and assumptions
(A2) and (A3).

THEOREM 2.5. The functional F : LP(0,T; LY(Q)) — R is of class C? and for
every u,v,vy,vy € LP(0,T; L1(S2)),

F’(u)v:/ Puv du,
Q

0L 0?
F"(u)(vy,v9) = /Q <ay2(gc,t,yu) — gpu(?yjzc(a:,t,yu)) Zuyy 2oy dx dit

0%Lq

+va | g (@, yu(®,T))20, (2, T) 20, (2, T) du,
o Oy

where z,, = G'(w)v;, i = 1,2, and ¢, €Y is the adjoint state associated to u, i.e., it
is the solution of

O g Of oL ‘

E +A SD—’_ ay (xvtayu)w - ay (xvtayu) m Qv

(2.10) p =0 on %,
0Lq .

QO()T) = VQTy(x7yu('7T)) m Qv

and A* denotes the adjoint operator of A introduced in (2.6).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/20/20 to 154.59.124.233. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CRITICAL CONES IN PDE CONSTRAINED OPTIMIZATION 593

Assumptions (A1), (A4), and (A5) together with Theorem 2.1 imply (see [26,
Chapter II1]) that for every u € Una, pu € L2(0,T; H}(2)) N L*°(Q) and there exists
a constant K, > 0 independent of u such that

(2.11) leullzz0.1:m2 ) + PullLe(@) < Koo Vu € Una.

Remark 2.6. From the expressions for F'(u) and F”'(u) established in the previous
theorems it is immediate that they can be extended through the same formulas to
continuous linear and bilinear forms, respectively, in L?(Q). Moreover, assumptions
(A2) and (A3), Theorem 2.1, and inequality (2.11) imply the existence of some Mz > 0
such that
(2.12)

[F" (u)(v1, 02)| < Mz(\lzul 2@ llzvellz2(@) + vallzo, (- T)llL2 (@) 20, (- Tl 22(s))

for all u € U,q and v1,v2 € L?(Q), where z,, = G'(u)v;, i = 1,2.

Finally, we notice that the directional derivative of j at w in the direction v can
be computed as

(2.13) J'(uyv) = /u>ov + /u:o lv| — /u<0 v.

In what follows, we will write J'(u;v) = F'(u)v + pj’ (u;v). We will also denote 95 (u)
as the subdifferential of j at u in the sense of convex analysis.

Existence of a global solution of (P) follows in a standard way using Theorem 2.1;
see, e.g., [14]. Since (P) is not a convex problem, we consider local solutions as well.
Let us state precisely the different concepts of local solution.

DEFINITION 2.7. We say that @ € U,q is an L"(Q)-weak local minimum of (P),
with v € [1,4+00], if there exists some € > 0 such that

J(u) < J(u) Vu € Uag with ||t — ul|rg) < e

An element u € U,gq 1is said to be a strong local minimum of (P) if there exists some
€ > 0 such that

J(u) < J(u) Vu € Uaq with ||[ya — yullL=(q) < €.

We say that @ € U,q is a strict (weak or strong) local minimum if the above inequalities
are strict for u # .

As far as we know, the notion of strong local solutions in the framework of control
theory was introduced in [1] for the first time; see also [2].

LEMMA 2.8. The following properties hold:
1. 4 is an LY (Q)-weak local minimum of (P) if and only if it is an L"(Q)-weak
local minimum of (P) for every r € (1,400).
2. If @ is an L"(Q)-weak local minimum of (P) for some r < +00, then it is an
L>(Q)-weak local minimum of (P).
3. Ifu is a strong local minimum of (P), then it is an L™(Q)-weak local minimum
of (P) for allr € [1,00].

Proof. Statement 1 is a consequence of the equivalence of all the L"(Q) topologies
(1 <7 < +00) in Uaa. Since |[ullr-(q)y < TY7|QY"||ullr=(q), statement 2 follows.
To prove statement 3 we use the second estimate in Theorem 2.1:

lyu — 9llL~ (@) < Cpgllu —ullps0,1;00(0)) < Crllu —ullLr@)
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for all » > max{p,{}. Then statement 3 follows from statement 1 and the above
inequality. 0

Next we state first order optimality conditions.

THEOREM 2.9. Suppose @ is a local solution of (P) in any of the senses given in
Definition 2.7. Then

(2.14) J(@u—1u) >0 VYu€ Uup

holds. Moreover, there exist y and @ in'Y and \ € 0j(u) such that

P
SHAT+ [ty = @ inQ,
(2.15a) 7= 0 on%
37(,0) = Yo m Qv
o .. Of . . oL ‘
5 TAPH ay(%t,y)w = (z,t,9) in Q,
(2.15b) @ 0 on X,
2(,T) = v %(x g(z,T)) inQ
L - Q 8y ) ) )
(2.15¢) / (@+ pN)(u —a)drdt >0 Yu € Ung.
Q

Proof. To prove (2.14) it is enough to use the local optimality of @ and the con-
vexity of U,q as follows:

0 < Jim LB A=)

=J'(t3u —1u) Vu € Uyq.
PO 4

From the expression of F’ established in Theorem 2.5 and the convexity of j we infer

J(@+ p(u — a))

0 < lim
N0 P
_ Flu+pu—u) o
< hm _ -+ u) — u
< lim ; g (u) — pj(w)

:/ P(u—a)dedt + pj(u) — pj(a) Yu € Uaq.
Q
Hence, u solves the problem

min I(u) := / pudz dt + pj(u) + Iu,, (u),
ueL>(Q) Q

where Iy, is the indicator function of the convex set U,q. Therefore, using the
subdifferential calculus (see, e.g., [25, Chapter I, Proposition 5.6]), we obtain 0 €
0I(u) = ¢ + pdj(u) + 0y, (u), which implies (2.15¢) for some A € 9j(a). O

From (2.15c) we deduce the following corollary; see [12].
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COROLLARY 2.10. Under the assumptions of Theorem 2.9,

if @(x,t) > +u, then u(z,t) = «,
if ¢(z,t) < —p, then u(x,t) = B.

If 1 > 0, then
iF 150 < i, then a(a,) = 0,
< . 1_
A1) = Proj_y 4y (Mw,t)) ,

and €Y.

Let us write the second order necessary conditions. Given a control @ € Uyq
satisfying (2.14), we say that a function v € L?(Q) satisfies the sign condition if

(2.16) U(%t){ig ﬁgg 8.

Following [11, 12], we introduce the cone
Cy = {v € L*(Q) satisfying (2.16) and .J'(@;v) = 0}.

We have the following proposition; see [11, Lemma 3.5].

PROPOSITION 2.11. If u € Uaq satisfies (2.14), then
(2.17) J(w;0) >0 Vv e L*(Q) satisfying the sign condition (2.16).

As a consequence, it follows that Cy is a closed convex cone.

If u = 0, we deduce from Corollary 2.10 that @(z,t)v(z,t) = |@(z, t)v(x,t)| for
every v € L?(Q) satisfying the sign condition (2.16). Consequently the following
identity holds:

(2.18) Ca = {v € L*(Q) satisfying (2.16) and v(z,t) = 0 if |@(z,t)| > 0}.

For > 0, from Corollary 2.10 we also infer that

Ca= {v € L?(Q) satisfying (2.16)

(2.19) >0 if @(,t) = —p and @(z,t) =0
and v(z,t){ <0 if@(x,t)=+uand a(z,t) =0 }’
=0 if (@, 0] — u| > 0

see [17] for a proof.

The second order necessary conditions are established in [11, Theorem 3.7]. Al-
though that result is stated for elliptic problems and a Tikhonov regularization term,
the proof can be translated to our setting with the straightforward changes.

THEOREM 2.12. Suppose @ is a local solution of (P) in any of the senses given in
Definition 2.7. Then, F"(uw)v? > 0 for all v € Cy holds.
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3. Second order sufficient conditions. In this section, we establish the suf-
ficient second order optimality conditions. In what follows, @ will denote a control of
U.q satisfying (2.14). We denote by g and ¢ the associated state and adjoint state.

As mentioned in the introduction, we have to extend the cone Cj to formulate
the second order sufficient conditions for optimality.

Looking at J'(@;v) for every 7 > 0 we consider the extended cone

Gr = {v € L*(Q) satisfying (2.16) and J'(;v) < 7(||20] 11 (@) +yQ||zv(.7T)||L1(Q))}.

The extended cone E7 introduced in (1.3) has been used in the literature to formulate
the second order sufficient optimality conditions; see [17]. The cone GZ introduced
above is a smaller extension of Cy than E7. Indeed, given E7, for every

/ T

e ——
Q| max{1, T}

the embedding GZ' C EZ holds.
On the other hand, using the characterizations of the cone Cy given by (2.18)
and (2.19), the following extensions appear in a natural way as well:

if u =0, DI ={v € L*(Q) satisfying (2.16) and v(x,t) = 0 if |p(x,t)| > 7},

it >0, D :{v € L*(Q) satisfying (2.16)

and v(z,t)¢ <0 if ¢(x,t) = +p and u(z,t) =0

>0 if g(z,t) = —p and @(z,t) =0 }
—0 i g )] — p| > 7

For the use of the cones E7 and D7, to formulate the second order sufficient optimality
conditions and for a discussion of their application to the stability analysis of the
control problem, the reader is referred to [17]. In that paper it is proved that a
sufficient second order condition based on the cone DZ leads to an L?(Q)-weak local
minimum, while the same condition based on the cone E7 implies that @ is a strong
local minimum. Hereafter we will prove that the condition based on the cone

C7 =DpNay

yields a strong local minimum @. Our main result is as follows.

THEOREM 3.1. Let 4 € Unq satisfy the first order optimality condition (2.14).
Suppose in addition that there exist 6 > 0 and 7 > 0 such that

(31) P 2 6 (|l + vallz Dlizm) W e Cr,
where z, = G'(a)v. Then, there exist € > 0 and k > 0 such that

_ K _ _
32) I+ (e~ Ty +vallvulT) — 50T e < )

for all u € Uaq such that ||y, — y||L~(q) < &.

Throughout the proof of Theorem 3.1, we will use the following lemma. A proof
of an analogous result can be found in [16], [20], so we omit it.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/20/20 to 154.59.124.233. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CRITICAL CONES IN PDE CONSTRAINED OPTIMIZATION 597

LEMMA 3.2. For all p > 0 there exists €, > 0 such that for every u € U,yq
satisfying ||yu — ¥l L=(q) < €p, there holds

(83)  |[F"(@+0u—) - F'@]v*] < p(ll3eq) + vallz( Dz

for all v € L*(Q) and all 6 € [0,1], where z, = G'(@)v.

Proof of Theorem 3.1. Consider u € U,q such that |y, — §||L~(q) < €, where €
will be fixed later independently of w; see (3.17) below.
A second order Taylor expansion yields the existence of § € (0,1) such that

(3.4) F(u) =F (@) + F (@) (u — 5) + 3 F" (ug)(u — )",
where ug = @ + (u — @). Using this and the convexity of j(-), we have
J(u) = F(u) + pj(u)
= F(a) + F'(a)(u — a) + %F"(ue)(u — @)% + p(j(u) — (1)) + pj(u)
zﬂm+Fﬁmu—m+Mﬂmu—m+%F%qu—m2
(3.5) = J(u)+ J'(4;u—u) + %F”(ﬂ)(u —a)+ %(F”(ug) — F"(w))(u — ).

In a first step, we will prove the existence of g9 such that

_ )
(3.6) J(@) + 7 (Ilzu-allfe@) + vollzu-a( Dl ) < T()

for all u € Uaq such that ||y, — 7|~ (q) < €0. We will split the proof of this first step
into three cases.

Case 1: w—1u € CZ. Applying Lemma 3.2 with p = §/2, we deduce the existence
of €1 > 0 such that (3.3) holds for every u € U,q such that ||y, — ¥llz~(@) < &1
Inserting this inequality in (3.5) and using the variational inequality (2.14) and the
second order condition (3.1), we obtain

ﬂwzﬂm+g
0
= 3 (lzumalfa) +vallzu-a - D))

0
> 1 —
> (@) + §

(||Zu—ﬁH%2(Q) + VQHZu—ﬁ(7T)||%2(Q))

(qu—ﬁH%ﬁ(Q) + VQHZu—ﬁ(7T)||2L?(Q)>

Case 2: v —u ¢ GL. In this case, we consider

. 2 7-
€9 = min {517 Cf)MOCCQ,OOTl/ﬁIQP/q’ 0+ M, }7

where € is taken as in the previous case, and C¢ pr_, CQ 00, and M» are introduced in
(2.5), Lemma 2.3, and (2.12), respectively. Then, from Lemma 2.4, if ||y, — 9| (@) <
€2, we can estimate [|2y—allc(g) < 2e2. Therefore we have

B7) Nzu-altai+ralzual Dz < 20 (lew-allzr@+valzu-at. Dll)-
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Let us estimate the terms of (3.5). Since u — @ satisfies the sign condition (2.16)
and v — @ ¢ GZ, then with (3.7) we get

J(@u—a) > 7(lzu-allig) + valzuat Tl

\
(3:8) > 5 (lru-allfag) + vollzua(-Dla(@))-

For the remaining terms, according to the choice we made for £; in Case 1 and using
(2.12), we infer that

|[F7(@) (u — @)? |+ [ (ug) — F" (@) (u — 1)?|

é
(39 < (8424 3) (bau-sloy + allncsC D).

From (3.5), (3.8), and (3.9) we deduce for |y, — 9|1 () < €2 that

B T M. 1)
50 2 ) + (5 = 5 = 1) (lawmal + vollanal Do)

i )
> (@) + 5 (Izu-allfeg) + vallzu-a(, )2y ).

Case 3: u—u ¢ DI and u—u € GE. Now we cannot use the second order condition
(3.1), nor is the first derivative big enough to assure optimality. Hence, our method of
proof is different from the previous two cases. First we define 7% = 7/ max{1,Cqg 1} <
7, where Cg ; is introduced in (2.3). If u — @ & GZ holds, then we can argue as in
the proof of the Case 2 to deduce that (3.6) holds for ||y, — 9|z~ (g) < €3 with

£3 = min {62, 6;-]\4,2}

Assume now that v — @ € GZ'. Obviously DZ" C DI holds; hence u — @ ¢ DI . We
define the set V as follows:

ifu=0, V={(1teQ: ulx,t)—u(z,t)=0if |p(z,t)| > 7},

if u>0, V{(:E,t)EQ:

u(z,t) — u(x,t) ; 0 if (p(x,t) = +p and a(z,t) =

>0 if (p(z,t) = —p and a(z,t) = 0)
|
=0 if‘|@(x,t)|—u’>7'

Associated with V' we define the functions

B 0 if (x,t) €V,
v(z,t) = { u(w,t) —a(x,t) if (x,t) €

and w = (u —u) —v. We first notice three properties of w. In [17, Proposition 3.6] it
is proved that

(3.10) J' (a5 w) > 7wl Ly @\wvy = Tllwll L1 ()-
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Using this and the fact that the supports of w and v are disjoint, and noticing that v
satisfies the sign condition (2.16), which allows us to use (2.17), we obtain

(B11)  J(@u—a) = J(50) + 7 (5 w) > (@) + el > el
Finally, using (2.3), we have

312) 2wl + 2w D) < Coallwlir @) < max{l, CoatllwlLi )
Regarding v, it is clear that v € DZ. From (3.11) and (3.12) we get

-
max{1,Cq1}

= J'(@:9) + 7" (zullr@ + vallzu (Dl ) )-

J (50— @) 2 () + (Nzullzr@ + vallzul Tz )

Since u — @ € GI, we obtain
I (@u =) < 7 (Ilzu-al @ + zu-al: D)
< (ol + vallzu(, D)

+ 7 (Izull 2@ + vallzul Dl )-

Altogether, we conclude
J'(@0) < 7 (zalls@) +vallzo( ) )-

Therefore v € G C G7 and hence v € C7 holds.

Now we combine the techniques of Cases 1 and 2. On one hand, we have that
v belongs to CZ, so that we can use the second order condition (3.1). On the other
hand, the function w satisfies that its L'(Q)-norm bounds from below the directional
derivative j(u;u — u). Let us see in detail how to do this. We start at the inequality
(3.5). Applying Lemma 3.2 we deduce the existence of 4 > 0 such that

0
7 (lzuallfa@) + allzu—a DliFae)

for all u € Uaq such that [y, — 7z~ () < €4. Now, we take

7_*
€0 = min {83,64, 2}.
8M. 21
My + 252 + 28

From now on, we will assume that ||y, — 9|z (q) < €o. Using that u —@ = v+ w and
applying the inequalities (2.12), (3.1), (3.10), and (3.13), we deduce from (3.5) that

(3.13)  |[F"(ug) — F"(w)](u—u)?| <

J(w) > J(@) + 7l|lw| 11 q) + %F”(a)zﬂ + %F"(ﬂ)wQ
P ()0, w) — [ (ug) — F"(0))(u — )

B §

= J(u) + 7llwllyg) + 5(”%“%2(@) + ”Q”Zv("T)”%z(ﬂ))
M,

- M2<H2v||L2(Q)||Zw||L2(Q) + VQ||ZU(',T)||L2(ﬂ>|\zw("T)H”(Q))

]

(3.14) — = (Ilzuallfag) + vallzu—al Dz )-
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Using the inequality ab < 2a? + 1b% for appropriate real numbers a, b, we infer that
llzollz2(@) 12wllL2 (@) + vallzo( T2 @) 12w ( T) L2 @)

0
< m (HZUH%Z(Q) + VQHZU('7T)H%2(Q))

4M,
2 (leullZi) + vallzu DliF)-

Inserting this estimate in (3.14) and using (3.12) and the definition of 7%, we obtain

J(w) = 7@ + 7 (|2l @ + valzw( Do)

70
+ 6 (”ZUH%Z(Q) + VQ”ZU("T)Hiz(Q))

M,y M3
- (% +4%) (lalBacar + vallout Do)

1
(3.15) = gUlzu=allz2(q) + Vszllzufa(wT)Hiz(m)

8
Using that v — 4 = v + w, we get
HZvHQm(Q) + VQ||Zv('7T)H2L2(Q) = [lzu-a — ZwHQL?(Q) + vallzu-al, T) — Zw('>T)||%2(Q)
= (Nzu-allfag) + vollzu-al Dlliay) + (2wl + vallzu(: Dz )
= 2(lzu-alz@llzullze@) + vallzu—aC Dl ellzu (Dl )
6
> = (Ilzu-allFai) + vallzu—al- DlEa) ) = 6(lzullfa@) + vallzu (- DlEm))-

Combining this with (3.15), we obtain
J(w) = J(@) + 7 (|0l @) + vallz (i)

o
+ 7 (lzu-allfag) + vallzual Do)

(M2 M3 216

Using (3.7) and recalling that ey < €3, we deduce that

™ (leullzr@ + vallzu (Dl
M, M2 216
— (B2 + 4224 20 (el + vl Do)

T (My M2 215 ) )
> {250 - (2 + 47 + e <||Zw||L2(Q) + VQ||ZHJ('7T)||L2(Q)) >0,

where the last inequality follows from the definition of 9. This combined with (3.16)
yields (3.6).
To conclude the proof, using the second part of Lemma 2.4, with

1
3.17 £=min{ey, ———
(8.17) { 0 Cf,MooCQ,z}
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and taking into account that vq € {0, 1}, we infer that
||Zu7ﬁH%2(Q) + VQHZu*ﬁ(WT)”%?(Q)
> (Il = 920y + volln T) = 50T o)

Using this and (3.6), we obtain

., 0 _ _
() = J(@) + = (g = 3l20) + vallyuT) = 5. T)lE2())-
and (3.2) follows for x = §/16. 0

Notice that in Case 3 we did not use explicitly that u — @ ¢ DI . Observe that
in case u—u € D7 , then we would have that v = 0 and w = u — 4, and Case 1 could
be applied.

4. Further extensions and limitations. The method developed in the previ-
ous sections can be extended with the obvious modifications to the case of a control
problem governed by an elliptic equation, as well as to Neumann control problems for
both elliptic and parabolic equations. However, let us mention two situations where
it is unlikely that the second order sufficient condition (3.1) holds.

First, consider the situation where L = 0 and v = 1. In this case we have

1=\, 2 — 82f _\ 2 aQLQ _ 2
F'(a)v” = —/ cpﬁ(x,t,y)zv dz dt + ﬁ(%y(@T))zv(x,T) dz.
Q Y o oy

Looking at this expression it is easy to notice that the fulfillment of (3.1) would depend
on a lucky combination of the signs of the adjoint state and the second derivative of
the nonlinearity f. Consequently, Theorem 3.1 does not seem to be applicable to this
problem.

A similar situation may occur if a nonlinearity is introduced on the boundary
without a boundary observation. Consider, for instance, the problem governed by the

elliptic equation
1
min F(u) := = / (Yu — yd)zdx,
Q

UEUqq 2
where y4 € L?(Q) is given;
Usd ={u € L*(Q): a<u(z) < S forae ze}
with —oo < a < 8 < o0; and

—Ay, = u inQ,
Onyu + 9(x,yu(x)) = 0 onT.

With the straightforward adaptations to this problem of the notation used throughout
the paper, the second derivative of F' reads as

F'(@)v? = / 22dx — / @a—Qg(ac §)22do(z)
o T oy
In order to apply our theorem, the second order condition should be

F(@)0* 2 31203200 + Ilary) Yo € O
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Once again, this condition is unlikely to be fulfilled.

The situation would be different if we had a boundary observation yr € L>(T),

so that the functional F' is given by

1

F(u) = 5 [ (ula) = o (@) do o).

Then we would get

P = [ (1658w dsto),

and the second order sufficient condition

F'(@)o* 2 0|32y Vo € C

would have a chance to be fulfilled. For instance, if || — yr| z2(r) is small enough,
then ||@[| o (r) is small as well, and, consequently, we can deduce the existence of some

0 > 0 such that 1 — @%(m, y) > 0, which implies the above second order condition.

From the previous two cases we conclude that a nonlinearity in the whole domain

requires a distributed observation, and a boundary nonlinearity needs a boundary
observation for fulfillment of the second order sufficient condition.
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