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Abstract. The paper focuses on numerical solution of parametrized diffusion equations with scalar parameter-
dependent coefficient function by the stochastic (spectral) Galerkin method. We study precondition-
ing of the related discretized problems using preconditioners obtained by modifying the stochastic
part of the partial differential equation. We present a simple but general approach for obtaining
two-sided bounds to the spectrum of the resulting matrices, based on a particular splitting of the
discretized operator. Using this tool and considering the stochastic approximation space formed by
classical orthogonal polynomials, we obtain new spectral bounds depending solely on the proper-
ties of the coefficient function and the type of the approximation polynomials for several classes of
block-diagonal preconditioners. These bounds are guaranteed and applicable to various distributions
of parameters. Moreover, the conditions on the parameter-dependent coefficient function are only
local, and therefore less restrictive than those usually assumed in the literature.
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1. Introduction. Growing interest in uncertainty quantification of numerical solutions of
partial differential equations stimulates new modifications of standard numerical methods.
A popular choice for partial differential equations with parametrized or uncertain data is
the stochastic Galerkin method [4, 36]. Similarly to deterministic problems, approximate
solutions, which depend on physical and stochastic variables (parameters), are searched for
in finite-dimensional subspaces of the original Hilbert space. More precisely, the approxi-
mate solutions are orthogonal projections of the exact solution to the finite-dimensional sub-
spaces with respect to the energy inner product defined by the operator of the equation;
see, e.g., [5, 9, 10, 24]. The approximation subspaces are considered in the form of a tensor
product of a physical variable space (finite-element functions) and a stochastic variable space
(polynomials); see, e.g., [4, 14]. The form and qualities of the system matrix A of the dis-
cretized problem are determined by the structure of the uncertain data and the type of the
finite-dimensional solution spaces. For special classes of parameters, it was shown, see, e.g.,
[24, 32], that certain block-diagonal matrices are spectrally equivalent to A independently of
the degree of polynomials and the number of random parameters, and thus they can be used
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for preconditioning. Having a good preconditioning method or, in other words, a good and
feasible approximation of A−1, we may also efficiently estimate a posteriori the energy norm
of the error during iterative solution processes [1, 5, 6, 9, 17]. This estimate can be used in
adaptive algorithms [5, 7, 8]. In practice, matrix A is never built explicitly, only matrix-vector
products are evaluated ([25]).

In this paper, we focus on matrices arising in the discretized stochastic Galerkin method
and present new guaranteed two-sided bounds to the spectra of the preconditioned matrices
for several types of preconditioner. We consider only preconditioning with respect to the
stochastic parts of problems, and thus we assume that a suitable preconditioning method or
an efficient solver for the underlying deterministic problem is available; see, e.g., [12, 23, 33].
We formulate an idea of obtaining bounds to the spectra of the preconditioned matrix from the
spectrum of small Gram matrices depending solely on the stochastic part of the approximation
space. The motivation, however, comes from techniques and tools of the algebraic multilevel
preconditioning introduced in [11, 2]. Similar idea was, in a simpler form, used already
in [28, 29]. In the current paper, it is applied in a more general setting, and we believe
that the derived technique may lead to an improvement of some other recently introduced
estimates, such as [17, 23]. The derived technique is also applicable to systems in the form of
multi-term matrix equation (see [25, eq. (1.8)]).

The paper is organized as follows. In section 2, we briefly recall the stochastic Galerkin
method and the structure of the matrices A of the resulting systems of linear equations for
the tensor product polynomials and complete polynomials. Since the structure of A plays
a crucial role in the analysis, theoretical considerations will be accompanied by illustrative
examples throughout the paper. Section 3 formulates a general concept of proving spectral
equivalence for a broad class of (not only) stochastic Galerkin preconditioners. In section 4, we
apply this idea to preconditioners which are represented by a special type of block-diagonal (or
Schur complement) approximations of A, and show how to obtain the spectral bounds of the
preconditioned problems from the spectral bounds of small Gram matrices of the correspond-
ing polynomial chaos. We also evaluate those bounds explicitly for the considered polynomial
chaoses. Simple numerical examples demonstrating the obtained theoretical outcomes are
presented at the end of the section.

Throughout the paper, we denote by κ(M−1A), where A and M are symmetric positive
definite, the spectral condition number of M−1A, i.e., the standard condition number of
M− 1

2AM− 1
2 or, in other words, λmax(M−1A)/λmin(M−1A). By ei we denote the i-th

column of the identity matrix, where its size follows from the context.

2. Stochastic Galerkin matrices. Consider the variational problem of finding u ∈ Ṽ =
H1

0 (D)⊗ L2
ρ(Γ), such that

(2.1)∫
Γ

∫
D
a(x, ξ)∇u(x, ξ) · ∇v(x, ξ)ρ(ξ) dx dξ =

∫
Γ

∫
D
f(x)v(x, ξ)ρ(ξ) dxdξ for all v ∈ Ṽ

where D ⊂ Rd is a bounded polygonal domain, d = 1, 2 or 3, L2
ρ(Γ) is a parametric measure

space, Γ ⊂ RK , Γ =
∏K
k=1 Γk, a ∈ L∞(D)⊗ L∞ρ (Γ), and f ∈ L2(D). The gradient is applied

only with respect to the (physical) variable x ∈ D. Let ξ = (ξ1, . . . , ξK) ∈ Γ, where ξk ∈ Γk
are outcomes of independent random variables with probability densities ρk(ξk), k = 1, . . . ,K.
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The joint probability density is then ρ =
∏K
k=1 ρk. In the following, we consider ρk defined on

R such that ρk(ξk) = 0 outside Γk. Thus, instead of Γk and Γ, we further write R and RK ,
respectively. For the convenience of notation, the probability densities are not normalized,
see also Table 1, and we further refer to them as weights.

We assume a(x, ξ) in the affine form

(2.2) a(x, ξ) = a0(x) +

K∑
k=1

ak(x)ξk,

where ak ∈ L∞(D), k = 1, . . . ,K. While it is usually assumed that there exist constants a
and a such that

0 < a ≤ a(x, ξ) ≤ a <∞ for a.a. x ∈ D, ξ ∈ Γ,

in this paper we consider more general functions a. We will only require that the left-hand
side of (2.1) defines an inner product on a finite-dimensional approximation space V ⊂ Ṽ ; see
subsection 2.3. This will allow us to use random variables ξk with unbounded images and still
obtain positive definite system matrices. In other words, we can avoid truncation of supports
of distribution functions or any other modification of them. Of course, under such (weaker)
condition on a, (2.1) may not be well-defined. In this paper we, however, focus only on the
discretized problem obtained from (2.1); see also the discussion in [24].

We consider discretization using the tensor product space [3, 4, 14] of the form V =
V FE ⊗ P ⊂ Ṽ , where V FE ⊂ H1

0 (D) is an NFE-dimensional space spanned by the finite-
element (FE) functions φ1, . . . , φNFE

, and P is an NP-dimensional space spanned by K-variate
polynomials Ψ1, . . . , ΨNP

of variables ξ1, . . . , ξK . Denoting the basis functions φrΨj of V
by a couple of coordinates r = 1, . . . , NFE and j = 1, . . . , NP, we obtain the matrix A of the
system of linear equations of the discretized Galerkin problem (2.1) with elements

Ari,sj =

∫
RK

∫
D
a(x, ξ)∇φs(x) · ∇φr(x)Ψj(ξ)Ψi(ξ)ρ(ξ) dx dξ

=

∫
D
a0(x)∇φs(x) · ∇φr(x) dx

∫
RK

Ψj(ξ)Ψi(ξ)ρ(ξ) dξ

+

K∑
k=1

∫
D
ak(x)∇φs(x) · ∇φr(x) dx

∫
RK

ξkΨj(ξ)Ψi(ξ)ρ(ξ) dξ

=: (F0)rs(G0)ij +
K∑
k=1

(Fk)rs(Gk)ij ,

where for k = 0, 1, . . . ,K

(2.3) (Fk)rs =

∫
D
ak(x)∇φs(x) · ∇φr(x) dx and (Gk)ij =

∫
RK

ξkΨj(ξ)Ψi(ξ)ρ(ξ) dξ,

where we formally set ξ0 = 1. If the numbering of the basis functions φrΨi is anti-lexico-
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graphical, the structure of A is

(2.4) A =
K∑
k=0

Gk ⊗ Fk.

In other words, the matrix A is composed of NP ×NP blocks, each of size NFE ×NFE.

Example 2.1. Assume K = 1, the uniform distribution ρ(ξ) = ρ(ξ1) = χ[−1,1], and let
Ψ0(ξ1), Ψ1(ξ1) and Ψ2(ξ1) be the normalized Legendre orthogonal polynomials of degrees 0,
1, and 2, see Table 1. Then NP = 3 and

(2.5) A =

 F0
1√
3
F1 0

1√
3
F1 F0

2√
15
F1

0 2√
15
F1 F0

 = I ⊗ F0 +G1 ⊗ F1.

2.1. Approximation spaces and their bases. For approximation of the physical part of
the solution, we use an NFE-dimensional space V FE. To approximate the stochastic part of the

solution we use the NP-dimensional space P of K-variate polynomials Ψj(ξ) =
∏K
k=1 ψ

(k)
jk

(ξk),
j = 1, . . . , NP. To simplify the notation, we assume that the parameters ξ1, . . . , ξK are
identically distributed, i.e., ρ1 = · · · = ρK . Thus, we omit the superscripts and subscripts k

in ψ
(k)
j and ρk, respectively. The extension of the results to polynomial bases with different

ρ1, . . . , ρK is straightforward.
In practice, sets of complete polynomials (C) or tensor product polynomials (TP) are usually

used; see, e.g., [14, 24]. The set of the tensor product polynomials of the degree at most sk−1
in variable ξk, k = 1, . . . ,K, is defined as

PTP
s1,...,sK

= {p(ξ) =
K∏
k=1

pk(ξk); deg (pk) ≤ sk − 1, k = 1, . . . ,K} and NP =
K∏
k=1

sk.

Let us denote by V TP
s1,...,sK

= V FE ⊗ PTP
s1,...,sK

the corresponding approximation space of (2.1).
The set of complete polynomials of the maximum total degree s− 1 is defined as

PC
s = {p(ξ) =

K∏
k=1

pk(ξk);
K∑
k=1

deg (pk) ≤ s− 1} and NP =

(
K + s− 1

K

)
.

Let us denote by V C
s = V FE ⊗ PC

s the corresponding approximation space of (2.1).
For both PTP

s1,...,sK
and PC

s , the bases are usually constructed as products of K classical

orthogonal polynomials. More precisely Ψj(ξ) =
∏K
k=1 ψjk(ξk), j = 1, . . . , NP, where ψi are

normalized orthogonal polynomials of the degrees i = 0, 1, . . . , with respect to the weight
function ρ, i.e., ∫

R
ψi(ξ)ψj(ξ)ρ(ξ) dξ = δij .

The NFE ·NP basis functions of the discretization space V are then of the form

(2.6) φn(x)Ψj(ξ) = φn(x)ψj1(ξ1) . . . ψjK (ξK).
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For the tensor product polynomials, we consider the anti-lexicographical ordering of the basis
functions, i.e., the leftmost index (n) in (2.6) is changing the fastest, while the rightmost index
(jK) is changing the slowest. For the complete polynomials, we consider ordering by the total
degree of the polynomials, going from the smallest to the largest.

Another popular choice of the basis functions of P is a set of double orthogonal polyno-
mials [3, 4, 14]. If we use the double orthogonal polynomials as a basis of P , the matrix A
becomes block-diagonal with the diagonal blocks of the sizes NFE×NFE. Such block-diagonal
matrix A can be also obtained by simultaneous diagonalization of all matrices Gk, see [14].
This diagonal structure of the resulting matrices seems favourable for practical computations.
However, the double orthogonal polynomials cannot be used as a basis for complete polynomi-
als [14]. Moreover, for this basis, we cannot obtain methods for a posteriori error estimation
or adaptivity control in a straightforward way. In addition, to refine the space P , all diagonal
blocks of the matrix A must be recomputed. Therefore, in this paper, we only consider the
classical orthogonal polynomials to construct the bases of PC or PTP.

2.2. Matrices for classical orthogonal polynomials. The form of the matrices Gk, k =
0, 1, . . . ,K, in (2.3) depends on the choice of the basis of PC or PTP and will be important
for our future analysis. As will be described later, the matrices Gk can be constructed from
(the elements of) a sequence of smaller s× s matrices

(Gs,j)l+1,m+1 ≡
∫
R
ξjψl(ξ)ψm(ξ)ρ(ξ) dξ, j = 0, 1, l,m = 0, 1, . . . , s− 1.

Let the normalized orthogonal polynomials satisfy the well-known three-term recurrence

(2.7)
√
βn+1ψn+1(ξ) = (ξ − αn)ψn(ξ)−

√
βnψn−1(ξ), n = 1, 2, . . . , ψ−1 ≡ 0;

then Gs,0 = Is, where Is is the s × s identity matrix, and Gs,1 have the form of the Jacobi
matrix

(2.8) Gs,1 =


α0

√
β1

√
β1 α1

. . .

. . .
. . .

√
βs−1√

βs−1 αs−1

 .

The eigenvalues of this matrix are given by the roots of the polynomial ψs, which are distinct
and lie in the support of ρ; see, e.g., [15]. In Table 1, we list the classical orthogonal polynomi-
als with symmetric statistical distribution considered here together with the weight function
ρ corresponding to the non-normalized probability density. Note that due to the symmetry,
the diagonal entries of Gs,1 in (2.8) become trivially zero. These matrices will play a crucial
role in deriving spectral bounds, see section 4.
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statistical distribution weight function support polynomial chaos βn αn

Gaussian e−
x2

2 (−∞,∞) Hermite n
2

0

Symmetric Beta (1− x2)γ−
1
2 [−1, 1] Gegenbauer (n+2γ−1)n

(2n−2+2γ)(2n+2γ)
0

Wigner semicircle (1− x2)
1
2 [−1, 1] Chebyshev (2nd kind) 1

4
0

Uniform 1 [−1, 1] Legendre n2

(2n−1)(2n+1)
0

Table 1: Wiener–Askey table: symmetric statistical distributions together with the corre-
sponding polynomial chaos (classical orthogonal polynomials) and the three-term recurrence
coefficients.

For the tensor product polynomials, the matrices Gk, k = 0, 1, . . . ,K, are obtained as

G0 = GsK ,0 ⊗GsK−1,0 ⊗ · · · ⊗G2,0 ⊗G1,0(2.9)

G1 = GsK ,0 ⊗GsK−1,0 ⊗ · · · ⊗G2,0 ⊗G1,1

...

GK = GsK ,1 ⊗GsK−1,0 ⊗ · · · ⊗G2,0 ⊗G1,0,

see, e.g., [14, 26].

Example 2.2. Consider the tensor product Legendre polynomials of two variables ξ1 and
ξ2, with s1 = s2 = 3, then NP = 9 and the matrix A has the form
(2.10)

A =



F0
1√
3
F1 0 1√

3
F2 0 0 0 0 0

1√
3
F1 F0

2√
15
F1 0 1√

3
F2 0 0 0 0

0 2√
15
F1 F0 0 0 1√

3
F2 0 0 0

1√
3
F2 0 0 F0

1√
3
F1 0 2√

15
F2 0 0

0 1√
3
F2 0 1√

3
F1 F0

2√
15
F1 0 2√

15
F2 0

0 0 1√
3
F2 0 2√

15
F1 F0 0 0 2√

15
F2

0 0 0 2√
15
F2 0 0 F0

1√
3
F1 0

0 0 0 0 2√
15
F2 0 1√

3
F1 F0

2√
15
F1

0 0 0 0 0 2√
15
F2 0 2√

15
F1 F0


=

2∑
k=0

Gk ⊗ Fk,

where the blocks corresponding to the changing degree of the approximation polynomials of
the variable ξ2 are separated graphically.

For complete polynomials, the matricesGk lose the Kronecker product structure, since PC
s

is not a tensor product space. However, since PC
s ⊂ PTP

s,s,...,s, each matrix Gk is permutation-
similar to a submatrix of the matrices in (2.9), [14, Lemma 3].

Example 2.3. Consider the complete Legendre polynomials of two variables ξ1 and ξ2 and



BLOCK PRECONDITIONING IN STOCHASTIC GALERKIN 7

s = 3, then NP = 6 and the relevant submatrix of the tensor-product matrix (2.10) is

(2.11) A =



F0
1√
3
F1 0 1√

3
F2 0 0

1√
3
F1 F0

2√
15
F1 0 1√

3
F2 0

0 2√
15
F1 F0 0 0 0

1√
3
F2 0 0 F0

1√
3
F1

2√
15
F2

0 1√
3
F2 0 1√

3
F1 F0 0

0 0 0 2√
15
F2 0 F0


.

Reordering the entries by the total degree of the corresponding polynomial, we obtain

A =


F0

1√
3
F1

1√
3
F2 0 0 0

1√
3
F1 F0 0 2√

15
F1

1√
3
F2 0

1√
3
F2 0 F0 0 1√

3
F1

2√
15
F2

0 2√
15
F1 0 F0 0 0

0 1√
3
F2

1√
3
F1 0 F0 0

0 0 2√
15
F2 0 0 F0

 =
2∑

k=0

Gk ⊗ Fk,

where the blocks corresponding to the total degrees 0, 1, and 2 are separated graphically.

2.3. Positive definiteness. The left-hand side of the equation (2.1) defines the bilinear
form (·, ·)A on Ṽ . We present sufficient conditions on the function a, under which (·, ·)A
becomes an inner product (called energy inner product; see, e.g., [5, 9, 10]) on the finite-
dimensional space V . To achieve positive definiteness of the bilinear form (·, ·)A, we need
to assume some dominance of the deterministic part a0(x) over the stochastic part ak(x)ξk,
k = 1, . . . ,K. In this paper, we will assume that there exists a constant µ ≥ 0 such that

(2.12)
K∑
k=1

|ak(x)| ≤ µa0(x), for a.a. x ∈ D,

where the particular choice of µ depends on the weight ρ(ξ). For the Beta distribution on
[−1, 1], is suffices to take µ = 1, while for the Gauss distribution, we take µ = (2(s1 + · · · +
sK −K))−

1
2 for tensor product polynomials and µ = (2s − 2)−

1
2 for complete polynomials.1

Note that this choice of µ also trivially implies that Gs,0 + µGs,1 is positive definite. For
further discussion on bounds of Hermite and Legendre polynomials see, e.g., [24].

We emphasize that the assumption (2.12) is weaker than the classical assumption widely
used to obtain spectral estimates, e.g.,

(2.13)
K∑
k=1

‖ak(x)‖L∞(D) ≤ µclass ess inf
x∈D

a0(x)

1Since the eigenvalues of matrix Gs,1 are the zeros of the Hermite polynomials ψs and thus lie in the interval〈
−
√

2(s−1)2

s+2
,
√

2(s−1)2

s+2

〉
[34, p.120], the eigenvalues of (2s− 2)

1
2 Gs,0 + Gs,1 are strictly positive.
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for uniform distribution; see [13, 17, 23, 24, 35]. The main difference between (2.12) and (2.13)
is that the former is considered point-wise, while the latter uses the norms of ak over D. The
condition (2.12) allows us to obtain not only more accurate two-sided guaranteed bounds to
the spectra, but these bounds also apply to parameter distribution and functions ak for which
no estimate could be obtained using the standard approach; see subsection 4.4. Assumption
(2.12) is sufficient to achieve positive definiteness of A. In some applications, we can assume
a stronger dominance of a0, i.e.,

(2.14)
K∑
k=1

|ak(x)| ≤ µa0(x), for a.a. x ∈ D, 0 ≤ µ ≤ µ.

The smaller the µ, the more favourable spectral bounds of the matrices A and of the precon-
ditioned matrices M−1A are generally achieved. We will further assume that µ is the smallest
number for which (2.14) is satisfied.

3. Proving spectral equivalence of inner products on V . We consider preconditioning
methods based on inner products that are spectrally equivalent to the energy inner product
(·, ·)A on V , but are represented by matrices with more favourable non-zero structures such
as, for example, block-diagonal matrices. We base our approach on a splitting of the inner
products to subdomains (Lemma 3.3) and on a preconditioning of a tensor product matrix
(Lemma 3.5).

Let D be partitioned into arbitrary non-overlapping elements (subdomains) τj ,
j = 1, . . . , Nelem. Consider the following decomposition of A from (2.4)

A =
K∑
k=0

Gk ⊗ Fk =

Nelem∑
j=1

K∑
k=0

Gk ⊗ F
(j)
k =:

Nelem∑
j=1

A(j),

where

(F
(j)
k )rs =

∫
τj

ak(x)∇φs(x) · ∇φr(x) dx and A(j) =
K∑
k=0

Gk ⊗ F
(j)
k .

Assumption 3.1. We further assume that the functions ak(x), k = 0, 1, . . . ,K, (and thus
the function a(x, ξ)) are constant on every element (subdomain) τj , j = 1, . . . , Nelem. We
define

(3.1) a
(j)
k ≡ ak(x), x ∈ τj , j = 1, . . . , Nelem.

If ak(x) are not constant on elements, we would assume a stronger, element-wise, dominance
of a0(x) over ak(x), i.e.,

K∑
k=1

ess sup
x∈τj

|ak(x)| ≤ µ ess inf
x∈τj

a0(x), j = 1, . . . , Nelem,

instead of (2.14), which would result in a slight modification of the spectral estimates derived
in subsequent sections. To simplify the presentation, we do not describe these modifications
in more detail.
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Using (3.1), we obtain

(F
(j)
k )rs =

∫
τj

ak(x)∇φs(x) · ∇φr(x) dx = a
(j)
k

∫
τj

∇φs(x) · ∇φr(x) dx =: a
(j)
k (F (j))rs.

Therefore, we can write

A(j) =

K∑
k=0

Gk ⊗ F
(j)
k =

K∑
k=0

Gk ⊗ a
(j)
k F

(j) =

(
K∑
k=0

a
(j)
k Gk

)
⊗ F (j),

which gives

(3.2) A =

Nelem∑
j=1

A(j) =

Nelem∑
j=1

(
K∑
k=0

a
(j)
k Gk

)
⊗ F (j).

In other words, we obtained a decomposition of A in which the dependence of the FE matrices
on a(x) is compensated by splitting of the operator to elements.

In this paper, we consider preconditioners corresponding to an inner product (·, ·)M defined
on V whose matrix representation (with respect to the same basis) is of the form analogous
to (3.2), in particular

M =
K∑
k=0

G̃k ⊗ F̃k =

Nelem∑
j=1

K∑
k=0

G̃k ⊗ F̃
(j)
k =

Nelem∑
j=1

K∑
k=0

G̃k ⊗ ã
(j)
k F

(j)(3.3)

=

Nelem∑
j=1

(
K∑
k=0

ã
(j)
k G̃k

)
⊗ F (j) =:

Nelem∑
j=1

M (j),

where ã
(j)
k and G̃k ∈ RNP×NP are such that the matrices M (j) are positive semidefinite for all

j = 1, . . . , Nelem, and the resulting matrix M is positive-definite.
Note that while formally the structure of M is the same as that of the original matrix,

special choices of G̃k, k = 0, . . . ,K, can simplify the solves with M greatly, in comparison
with the solves with A. We will see in section 4 that many of the preconditioners that are used
in practice are indeed of the form (3.3). Recall that since the preconditioner only differs from
A in the stochastic part, we have to have an efficient solver for the underlying deterministic
problem.

The following theorem shows that the spectral equivalence between A and M can be ob-

tained from the spectral equivalence between
∑K

k=0 a
(j)
k Gk and

∑K
k=0 ã

(j)
k G̃k on each element

τj , j = 1, . . . , Nelem. The obtained spectral bounds do not depend on the type and the number
of the FE basis functions.

Theorem 3.2. Let the matrices A and M be defined by (3.2) and (3.3), respectively, and
let 0 < c ≤ c be such that

(3.4) cvT

(
K∑
k=0

ã
(j)
k G̃k

)
v ≤ vT

(
K∑
k=0

a
(j)
k Gk

)
v ≤ cvT

(
K∑
k=0

ã
(j)
k G̃k

)
v, for all v ∈ RNP ,
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j = 1, . . . , Nelem. Then also

(3.5) cvTMv ≤ vTAv ≤ cvTMv, for all v ∈ RNFENP .

The proof of Theorem 3.2 is based on the two following lemmas.

Lemma 3.3. Let (·, ·)A and (·, ·)M be two inner products on a Hilbert space V . Let the
inner products be composed as

(3.6) (u, v)A =
N∑
j=1

(u, v)A,j , (u, v)M =
N∑
j=1

(u, v)M,j , u, v ∈ V,

where (·, ·)A,j and (·, ·)M,j, j = 1, . . . , N , are positive semidefinite bilinear forms on V . Let
there exist two positive real constants c and c such that the induced seminorms are uniformly
equivalent in the following sense

(3.7) c (u, u)M,j ≤ (u, u)A,j ≤ c (u, u)M,j , for all u ∈ V, j = 1, . . . , N.

Then the induced (cumulative) norms are also equivalent with the same constants, i.e.,

0 < c ≤ (u, u)A
(u, u)M

≤ c, for all u ∈ V, u 6= 0.

Proof. The proof follows trivially from:

c (u, u)M
(3.6)
= c

N∑
j=j

(u, u)M,j

(3.7)

≤

(3.6)
= (u,u)A︷ ︸︸ ︷

N∑
j=1

(u, u)A,j
(3.7)

≤ c

N∑
j=1

(u, u)M,j
(3.6)
= c (u, u)M .

Remark 3.4. Lemma 3.3 can also be formulated in terms of matrices: If A =
∑

jA
(j),

M =
∑

jM
(j) and cvTM (j)v ≤ vTA(j)v ≤ cvTM (j)v for all v and j, then cvTMv ≤

vTAv ≤ cvTMv for all v.

Lemma 3.5. Let X,Y ∈ RN1×N1 be symmetric positive definite and Z ∈ RN2×N2 be sym-
metric positive semidefinite. Let

cvTY v ≤ vTXv ≤ cvTY v, for all v ∈ RN1 ,

hold for some positive real constants c and c. Then also

cuT (Y ⊗Z)u ≤ uT (X ⊗Z)u ≤ cuT (Y ⊗Z)u, for all u ∈ RN1N2 .

Proof. If Z is invertible, then the proof follows trivially from

(3.8) (Y ⊗Z)−1(X ⊗Z) = (Y −1 ⊗Z−1)(X ⊗Z) = (Y −1X)⊗ (Z−1Z) = (Y −1X)⊗ I,

see, e.g., [19, Section 13.3] or [26, Section 4.1], and the fact that the spectra satisfy σ((Y −1X)⊗
I) = σ(Y −1X). If Z is singular, then X⊗Z as well as Y ⊗Z are invertible on R(I⊗ (Z†Z))
and zero on R(I ⊗ (I −Z†Z)), where † denotes the Moore-Penrose pseudoinverse. Combined
with (3.8), the proof follows directly.
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We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Under the assumption (2.12) and the assumption on the precon-

ditioning matrix, the matrices
∑K

k=0 a
(j)
k Gk and

∑K
k=0 ã

(j)
k G̃k, j = 1, . . . , Nelem, are positive

definite, while F (j), j = 1, . . . , Nelem, are positive semidefinite. From (3.4) and Lemma 3.5,
we obtain uniform spectral equivalence between A(j) and M (j) on each element τj . Applying
Lemma 3.3 to the seminorms defined by A(j) and M (j) finishes the proof.

Let us demonstrate on an example how c and c are obtained using Theorem 3.2.

Example 3.6. Let A be the matrix from Example 2.1 and let the preconditioner M be
block-diagonal, i.e.,

M =

K∑
k=0

G̃k ⊗ Fk := G0 ⊗ F0.

For the element τj , j = 1, . . . , Nelem, we have

K∑
k=0

a
(j)
k Gk =


a

(j)
0

1√
3
a

(j)
1 0

1√
3
a

(j)
1 a

(j)
0

2√
15
a

(j)
1

0 2√
15
a

(j)
1 a

(j)
0

 and

K∑
k=0

ã
(j)
k G̃k =

 a
(j)
0 0 0

0 a
(j)
0 0

0 0 a
(j)
0

 .

For |a(j)
1 | ≤ a

(j)
0 , j = 1, . . . , Nelem, it is easy to prove that these matrices are spectrally

equivalent with

c = 1−
√

15

5
and c = 1 +

√
15

5
.

Thus, using Theorem 3.2, also(
1−
√

15

5

)
vTMv ≤ vTAv ≤

(
1 +

√
15

5

)
vTMv, for all v ∈ RNFENP ,

and

(3.9) κ(M−1A) ≤ 4 +
√

15 ≈ 7.87.

In other words, if |a1(x)| ≤ a0(x), i.e., µ = 1 in (2.14), the block-diagonal preconditioning of
A from (2.5) yields the condition number (3.9). If |a1(x)| ≤ 1

2a0(x), i.e., µ = 1
2 in (2.14), we

analogously get

(3.10) κ(M−1A) ≤ 23 + 4
√

15

17
≈ 2.26.

Using the classical assumption (2.13) and not employing the information about the spectrum
of G1, we obtain for |a1(x)| ≤ 1

2a0(x) the estimate κ(M−1A) ≤ 3, while for |a1(x)| ≤ a0(x),
the term κ(M−1A) cannot be bounded. In [24], one of the pioneering papers on spectral
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estimates of preconditioned stochastic Galerkin matrices, the spectral bounds for specific s
and K were derived, which for K = 1, µ = 1 and µ = 1

2 result in (3.9) and (3.10), respectively.
These bounds, however, do not reflect possible local properties of functions ak, and thus for
K ≥ 2, they are still less accurate than our estimates, as will be shown in subsection 4.4.

Note that the approach for obtaining spectral equivalence of the stochastic Galerkin ma-
trices presented in this section and summarized in Theorem 3.2 is independent of the choice of
the approximation spaces. In the following section, we apply these results to approximation
spaces introduced in subsection 2.1 and some inner products of the form (3.3) defined on them
to obtain new spectral bounds of the related preconditioned system matrix M−1A.

4. Preconditioning and spectral bounds. In the following part, we present three inner
products (·, ·)M on V and their matrix representations M that can serve as preconditioners
for A. For each of them, we compute constants c and c defined in (3.5), which bound the
spectrum of the preconditioned matrices M−1A.

The inner products and the corresponding matrices M presented in this section should
only serve as examples. Other preconditioning matrices of the form (3.3) can be studied and
corresponding bounds to the resulting spectra can be derived analogously.

4.1. Mean-based preconditioning. Due to (2.14), we can approximate the original inner
product by an inner product, where the function a(x, ξ) is substituted by a0(x), representing
for centralized distributions of ξ the mean value of a(x, ξ). The mean-based inner product is
defined as

(u, v)M =

∫
RK

∫
D
a0(x)∇u(x, ξ) · ∇v(x, ξ)ρ(ξ) dxdξ.

The corresponding preconditioning matrix

(4.1) M = G0 ⊗ F0

is then block-diagonal with the diagonal blocks of size NFE ×NFE.
This type of preconditioning can be used both for the complete and the tensor product

polynomials; see, e.g., [24, 25, 30, 35]. We first derive the bounds c and c for the tensor product
polynomials. These bounds also apply to the complete polynomials because V C

s ⊂ V TP
s,...,s.

Example 4.1. Consider the setting from Example 2.2 and Example 2.3. The non-zero
patterns of the preconditioning matrices defined in (4.1) are:

MTP =



X
X

X

X
X

X

X
X

X


, MC =


X

X
X

X
X

X

 ,

where X stands for a non-zero block of size NFE ×NFE.
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Lemma 4.2. Under assumption (2.14) and for M defined by (4.1), the constants c and c
defined in (3.5) can be obtained as

(4.2) c = 1− µλmax(Gs,1) and c = 1 + µλmax(Gs,1),

where s = max(s1, . . . , sK), and λmax(Gs,1) is the largest eigenvalue of Gs,1 defined in (2.8).

Proof. The proof consists of several rather straightforward steps, which we however prefer
to give in full detail, since analogous technique will be used in the proofs of some of the
subsequent lemmas.

Using Theorem 3.2, we only need to prove that for every v ∈ RNP , it holds that

(4.3) c a
(j)
0 vTG0v ≤ vT

(
a

(j)
0 G0 +

K∑
k=1

a
(j)
k Gk

)
v ≤ c a(j)

0 vTG0v, j = 1, . . . , Nelem.

Since Gs,0 = Is, equations (4.2) imply

cvTGs,0v ≤ vTGs,0v ± µvTGs,1v ≤ cvTGs,0v, v ∈ Rs.

Due to the interlacing property of the eigenvalues of Jacobi matrices, we immediately obtain

cvTGsk,0v ≤ v
TGsk,0v ± µv

TGsk,1v ≤ cv
TGsk,0v, v ∈ Rsk ,

for all sk ≤ s. Using the tensor structure (2.9) of the matrices Gk, we get

cvTG0v ≤ vTG0v ± µvTGkv ≤ cvTG0v, k = 1, . . . ,K, v ∈ RNP .

Multiplying by |a(j)
k |, we obtain

cvT |a(j)
k |G0v ≤ vT |a(j)

k |G0v + µa
(j)
k v

TGkv ≤ cvT |a
(j)
k |G0v, k = 1, . . . ,K,

which taking sum over k becomes

(4.4) cvT

(
K∑
k=1

|a(j)
k |G0

)
v ≤ vT

(
K∑
k=1

|a(j)
k |G0 + µ

K∑
k=1

a
(j)
k Gk

)
v ≤ cvT

(
K∑
k=1

|a(j)
k |G0

)
v.

Due to (2.14) and the fact that c ≤ 1 ≤ c, it also holds that

cvT

(
µa

(j)
0 −

K∑
k=1

|a(j)
k |

)
G0v ≤ vT

(
µa

(j)
0 −

K∑
k=1

|a(j)
k |

)
G0v(4.5)

≤ cvT
(
µa

(j)
0 −

K∑
k=1

|a(j)
k |

)
G0v.

Adding (4.4) and (4.5), we get

c µ a
(j)
0 vTG0v ≤ vT

(
µa

(j)
0 G0 + µ

K∑
k=1

a
(j)
k Gk

)
v ≤ c µ a(j)

0 vTG0v.

By dividing by µ > 0, we obtain the desired inequality (4.3).
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Since the eigenvalues of the Jacobi matrix Gs,1 are the roots of the polynomial ψs, the
spectral bounds c and c can be obtained directly from the maximal roots of the polynomial
ψs, which we denote by λmax(ψs). Thanks to this relation, we can formulate the following
corollary purely in terms of these extremal roots.

Corollary 4.3. Let (2.14) be satisfied and let the matrix M represent the mean-based pre-
conditioning (4.1). Then

(4.6) κ(M−1A) ≤ 1 + µλmax(ψs)

1− µλmax(ψs)
,

where for tensor product polynomials, we define s = max(s1, . . . , sK).

Note that if a is not significantly dominated by the term a0 in the sense of (2.14), we can
expect the mean-based preconditioning to perform rather poorly, see also [24]. This is reflected
in the bound (4.6) by the denominator 1− µλmax(ψs) being close to zero.

Remark 4.4. It is interesting to note that the obtained equivalence constants 0 < c ≤ c
can be also used for a posteriori estimates of the energy norm eTAe of the algebraic error.
Let e := x− x̃ be the error of inexact solutions x̃ of the linear systems Ax = b and let

cvTMv ≤ vTAv ≤ cvTMv

hold for all v of appropriate size. If solutions of the system with M are easily accessible, then
due to eTAe = rTA−1r, r := Ae, the bounds to the error can be obtained efficiently as

1

c
rTM−1r ≤ rTA−1r ≤ 1

c
rTM−1r;

see also [1, Theorem 5.3].

4.2. Preconditioning using truncated expansion of a. Instead of the block-diagonal
matrix (4.1), we can consider a block-diagonal matrix with larger blocks. This strategy can
be advantageous especially if only a small number of parallel processes can be employed.

If we consider the tensor product polynomials, we can obtain a new inner product by
omitting the last term of the expansion (2.2) of a(x, ξ), i.e.,

(u, v)M =

∫
RK

∫
D

(
a0(x) +

K−1∑
k=1

ak(x)ξk

)
∇u(x, ξ) · ∇v(x, ξ)ρ(ξ) dxdξ.

The corresponding preconditioning matrix

(4.7) M =
K−1∑
k=0

Gk ⊗ Fk

is then block-diagonal with the diagonal blocks of size NFE ·
∏K−1
k=1 sk ×NFE ·

∏K−1
k=1 sk.
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Example 4.5. Consider the setting from Example 2.2. The non-zero pattern of the pre-
conditioning matrix defined in (4.7) is:

MTP =



X X
X X X

X X

X X
X X X

X X

X X
X X X

X X


.

Note that one can consider many other truncation schemes, when a various number of
terms is truncated from the expansion (2.2). The mean-based preconditioning and the pre-
conditioning (4.7) represent only two extreme cases of this strategy. After proper reordering,
either of the expansion (2.2) or the resulting matrix A, we will again get a block diagonal
preconditioner M . The efficiency of omitting a particular term depends on a specific setting
(the corresponding stochastic approximation space).

It is also possible to apply this technique to complete polynomials. However, if we use the
natural ordering of complete polynomials, the preconditioning matrix will not have a block
diagonal form. If we consider complete polynomials ordered as in (2.11), the resulting bound
will be the same as in the case of tensor-product polynomials.

Lemma 4.6. Under assumption (2.14) and for M defined by (4.7), the constants c and c
defined in (3.5) can be obtained as

(4.8) c = 1− µλmax(GsK ,1) and c = 1 + µλmax(GsK ,1),

where λmax(GsK ,1) is the largest eigenvalue of GsK ,1 defined in (2.8).

Proof. Using Theorem 3.2, we only need to prove for every v ∈ RNP

(4.9)

cvT

(
K−1∑
k=0

a
(j)
k Gk

)
v ≤ vT

(
K∑
k=0

a
(j)
k Gk

)
v ≤ cvT

(
K−1∑
k=0

a
(j)
k Gk

)
v, j = 1, . . . , Nelem.

Analogously to Lemma 4.2, equations (4.8) imply

(4.10) cvT |a(j)
K |G0v ≤ vT |a(j)

K |G0v + µa
(j)
K v

TGKv ≤ cvT |a(j)
K |G0v.

From the definition of µ, we have

(4.11) vT (G0 ± µGk)v ≥ 0, k = 1, . . . ,K,

which multiplying by |a(j)
k | and taking sum over k = 1, . . . ,K − 1 becomes

(4.12) vT

(
K−1∑
k=1

|a(j)
k |G0 + µ

K−1∑
k=1

a
(j)
k Gk

)
v ≥ 0.
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Using c ≤ 1 ≤ c, we get from (4.12)

cvT

(
K−1∑
k=1

|a(j)
k |G0 + µ

K−1∑
k=1

a
(j)
k Gk

)
v ≤vT

(
K−1∑
k=1

|a(j)
k |G0 + µ

K−1∑
k=1

a
(j)
k Gk

)
v(4.13)

≤ cvT
(
K−1∑
k=1

|a(j)
k |G0 + µ

K−1∑
k=1

a
(j)
k Gk

)
v.

Adding (4.10), (4.13), and (4.5), we finally obtain

cvT

(
µa

(j)
0 G0 + µ

K−1∑
k=1

a
(j)
k Gk

)
v ≤ vT

(
µa

(j)
0 G0 + µ

K∑
k=1

a
(j)
k Gk

)
v(4.14)

≤ cvT
(
µa

(j)
0 G0 + µ

K−1∑
k=1

a
(j)
k Gk

)
v,

which dividing by µ yields the desired inequality (4.9).

Using this lemma, the spectral bounds c and c can be obtained directly from the roots of
the polynomial ψsK , similarly as in the previous section.

Corollary 4.7. Let (2.14) be satisfied and let the matrix M represent the (K − 1)-term
expansion preconditioning (4.7). Then

κ(M−1A) ≤ 1 + µλmax(ψsK )

1− µλmax(ψsK )
.

4.3. Splitting-based preconditioning. Another inner product can be obtained by splitting
the approximation space V into two complementary subspaces, V = U ⊕W , U ∩W = 0, so
that any v ∈ V can be uniquely decomposed as v = vU + vW , vU ∈ U , vW ∈ W . Using this
decomposition, we can define the new inner product component-wise, i.e.,

(4.15) (u, v)M = (uU , vU )A + (uW , vW )A.

For the space V TP
s1,...,sK

of the tensor product polynomials of the degrees s1− 1, . . . , sK − 1, we

can use the splitting U = V TP
s1,...,sK−1,sK−1 and W such that V TP

s1,...,sK
= U⊕W , i.e., W contains

the polynomials of V TP
s1,...,sK

of degree exactly sK − 1 in the variable ξK . The corresponding
preconditioning matrix M has then a two-by-two block-diagonal form, see, e.g., [30, 32], and
can be obtained as

(4.16) M =
K−1∑
k=0

Gk ⊗ Fk + G̃K ⊗ FK , G̃K = G̃sK ,1 ⊗GsK−1,0 ⊗ · · · ⊗G2,0 ⊗G1,0,

where the matrix G̃sK ,1 is obtained from GsK ,1 by annihilating the very last elements in both
the sub- and super-diagonal. For distributions with αn = 0, n = 1, 2, . . . in the recurrence
(2.7), this matrix satisfies

G̃sK ,1 =

(
GsK−1,1

0

)
.
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For the space V C
s of the complete polynomials of the total degree at most s−1, we can use

the splitting U = V C
s−1 and W = WC

s , where WC
s is the span of the complete polynomials of the

total degree exactly s− 1. Similarly to the previous case, the corresponding preconditioning
matrix M has then a two-by-two block-diagonal form and can be obtained as

(4.17) M =
K∑
k=0

G̃k ⊗ Fk = G0F0 +
K∑
k=1

G̃k ⊗ Fk,

where the matrices G̃k coincide with Gk up to the last sub- and super-diagonal blocks of the
sizes (NC

s−1 −NC
s−2)× (NC

s −NC
s−1) which are annihilated in G̃k.

If U and W are close to orthogonal, the preconditioning based on the splitting (4.15)
enables to estimate the error reduction when the approximation space U is enriched by W in
the Galerkin method. This can be exploited in adaptive algorithms, where W is sometimes
called the ‘detail’ space; see Remark 4.13 and, e.g., [5, 7, 27].

Example 4.8. Consider the setting from Example 2.2 and Example 2.3. The non-zero
patterns of the preconditioning matrices defined in (4.16) and (4.17) are:

MTP =



X X X
X X X X

X X X

X X X
X X X X

X X X

X X
X X X

X X


, MC =


X X X

X X
X X

X
X

X

.

As we will see later in this section, the efficiency of the splitting-based preconditioner, both
for the tensor-product and the complete polynomials, is determined by the spectral properties
of the matrix

(4.18) H±s =

(
Is ± µ

(
Gs−1,1

0

))−1

(Is ± µGs,1) ,

where either + or − sign is considered. We first investigate the spectrum of H±s . In the
subsequent lemma, we link the spectral properties of M−1A and that of H±s .

Lemma 4.9. At most two eigenvalues of H±s defined in (4.18) are different from unity.
These two eigenvalues do not depend on the sign considered and can be obtained as

λmin = 1−
√

1− ds, λmax = 1 +
√

1− ds,

where

ds =
1

eTs (Is + µGs,1)−1es
< 1.

Finally, for a fixed s, ds increases with µ ≥ 0 decreasing.
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Proof. Since

(4.19) (Is ± µGs,1) =

(
Is ± µ

(
Gs−1,1

0

))
± µ

√
βs−1(es−1e

T
s + ese

T
s−1),

i.e., the two matrices differ by a rank-2 matrix, the first statement follows directly. Further,
using (4.19), we have(

Is ± µ
(
Gs−1,1

0

))−1

(Is ± µGs,1)(4.20)

= Is ± µ
√
βs−1

(
Is ± µ

(
Gs−1,1

0

))−1

(es−1e
T
s + ese

T
s−1)

= Is ± µ
√
βs−1

(
(Is−1 ± µGs−1,1)−1

1

)
(es−1e

T
s + ese

T
s−1).

Therefore, to obtain those non-unit eigenvalues, it suffices to investigate the last two-by-two
diagonal block of (4.20), which has the form(

1 ±µ
√
βs−1e

T
s−1(Is−1 ± µGs−1,1)−1es−1

±µ
√
βs−1 1

)
.

The eigenvalues therefore satisfy

λmin = 1−
√
µ2βs−1eTs−1(Is−1 ± µGs−1,1)−1es−1,

λmax = 1 +
√
µ2βs−1eTs−1(Is−1 ± µGs−1,1)−1es−1.

Defining d−1
j = eTj (Ij + µGj,1)−1ej and applying the recursive formula for the last element of

a symmetric tridiagonal matrix, see [22, Theorem 2.3], we get

(4.21) d1 = 1, dj = 1− µ2βj−1

dj−1
, j = 2, 3, . . . ,

and analogously for the − sign, from which the second statement is obtained. The monotonic-
ity of ds in µ follows from the discussion below, in particular (4.27).

Remark 4.10. Since the eigenvalues of H±s are independent of the sign, to simplify the
notation, we further work with the matrix

Hs := H+
s .

Lemma 4.11. Assume the tensor product polynomials. Under assumption (2.14) and for
M defined by (4.16), the constants c and c defined in (3.5) can be obtained as

(4.22) c = λmin(HsK ) and c = λmax(HsK ),

where λmin(HsK ) and λmax(HsK ) are the smallest and the largest eigenvalue, respectively, of
HsK defined in (4.18).
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Proof. Using Theorem 3.2, we only need to prove for every v ∈ RNP , j = 1, . . . , Nelem,
(4.23)

cvT

(
K−1∑
k=0

a
(j)
k Gk + a

(j)
K G̃K

)
v ≤ vT

(
K∑
k=0

a
(j)
k Gk

)
v ≤ cvT

(
K−1∑
k=0

a
(j)
k Gk + a

(j)
K G̃K

)
v.

From (4.22) and Remark 4.10, using the same technique as in Lemma 4.6, we get

cvT
(
|a(j)
K |G0 + µa

(j)
K G̃K

)
v ≤ vT

(
|a(j)
K |G0 + µa

(j)
K GK

)
v ≤ cvT

(
|a(j)
K |G0 + µa

(j)
K G̃K

)
v.

Proceeding further as in (4.11)–(4.14) of the proof of Lemma 4.6, we obtain the desired
inequality (4.23).

Lemma 4.12. Assume the complete polynomials. Under assumption (2.14) and for M
defined by (4.17), the constants c and c defined in (3.5) can be obtained as

c = min
t=1,...,s

λmin(Ht) and c = max
t=1,...,s

λmax(Ht),

where λmin(Ht) and λmax(Ht) are the smallest and the largest eigenvalue, respectively, of Ht

defined in (4.18).

Proof. Using Theorem 3.2, we only need to prove for every v ∈ RNP

(4.24)

cvT

(
K∑
k=0

a
(j)
k G̃k

)
v ≤ vT

(
K∑
k=0

a
(j)
k Gk

)
v ≤ cvT

(
K∑
k=0

a
(j)
k G̃k

)
v, j = 1, . . . , Nelem.

It suffices to show

(4.25) cvT (G0 ± µ G̃k)v ≤ vT (G0 ± µGk)v ≤ cvT (G0 ± µ G̃k)v, k = 1, . . . ,K,

from which (4.24) can be obtained analogously as in Lemmas 4.2, 4.6, and 4.11.
Since now the matrices do not have the tensor product form, to prove (4.25), we cannot

proceed in the same way as in the previous lemmas. The constants c and c are obtained as
the extreme eigenvalues of the generalized eigenvalue problem

(4.26) (INC
s
± µGk)v = λ(INC

s
± µ G̃k)v,

where NC
t = (K+t−1

K ) denotes the size of the basis of K-variate complete polynomials of degree
at most t− 1.

Assume first k = 1. Let GR
1 and G̃R

1 be the matrices obtained from G1 and G̃1, respec-
tively, by reordering their rows and columns in such manner that the corresponding basis K-
variate orthonormal polynomials are ordered anti-lexicographically as, for example, in (2.11)
(instead of the ordering according to their growing total degree, which is used so far). Then
both GR

1 and G̃R
1 become block-diagonal. The diagonal blocks of GR

1 are tridiagonal matrices

It +Gt,1 of variable sizes t× t, t ∈ {1, . . . , s}. The corresponding diagonal blocks of G̃R
1 are

equal to those of GR
1 up to the last sub- and super-diagonal elements which are annihilated
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in G̃R
1 . The number and sizes of the diagonal blocks depend on K and s. For k 6= 1, we anal-

ogously choose ordering where the k-th index changes the fastest. Thus, using Remark 4.10,
the eigenvalue problem (4.26) reduces to a number of independent eigenvalue problems with
the matrices Ht of sizes t = 1, . . . , s defined in (4.18).

To obtain the actual spectral bounds c and c in Lemma 4.11 and in Lemma 4.12, we need
to evaluate d−1

s = eTs (Is + µGs,1)−1es. This can be done recursively, using (4.21), but it may
be advantageous to exploit the relation between Jacobi matrices and the Gauss-Christoffel
quadrature, as we will describe in this part. Defining

f(t) =
1

1 + µt
, Js =


1

1

. .
.

1

 , and Ĝs,1 = JsGs,1 J
−1
s ,

we can rewrite

d−1
s = eTs (Is + µGs,1)−1es = eTs f(Gs,1) es = eT1 Js f(Gs,1) J−1

s e1 = eT1 f(Ĝs,1) e1.

Since Ĝs,1 is again a Jacobi matrix, eT1 f(Ĝs,1) e1 can be computed as the Gauss–Christoffel
quadrature of the integral of f , i.e.,

eT1 f(Ĝs,1) e1 =
s∑
j=1

ω̂
(s)
j f(λ̂

(s)
j ) =

s∑
j=1

ω̂
(s)
j

1 + µλ̂
(s)
j

,

where λ̂
(s)
j and ω̂

(s)
j are the nodes and the weights, respectively, of the Gauss–Christoffel

quadrature defined by Ĝs,1; see [20, Chap. 3] for a comprehensive overview of relations between
Jacobi matrices, orthogonal polynomials, underlying distribution functions, and the Gauss–
Christoffel quadrature.

Due to symmetry of the considered distributions, the weights and nodes are also symmet-
ric, and we can write

(4.27) d−1
s =

s∑
j=1

ω̂
(s)
j

1 + µλ̂
(s)
j

=

s∑
j=1

ω̂
(s)
j

1− µ2(λ̂
(s)
j )2

.

Since the weights of the Gauss–Christoffel quadrature are positive, we also obtain mono-
tonic dependence on µ, meaning that the conditioning of M−1A improves with decreasing
µ. However, for a given µ, one can have decreasing as well as increasing behavior in s. In
the following part, we provide more explicit expressions for the weights and nodes for the

considered approximation polynomials. It is well known that the nodes are the roots {λ(s)
j }

of the highest-degree polynomial ψs. Moreover, the weights can be obtained from ψs as well;
see [20, p. 120].
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Gegenbauer polynomials. For the Gegenbauer polynomials, the weights are given by

ω̂
(s)
j =

2s+ 2γ − 2

s+ 2γ − 1

1− (λ
(s)
j )2

s
,

yielding

d−1
s =

2s+ 2γ − 2

s+ 2γ − 1

1

s

s∑
j=1

1− (λ
(s)
j )2

1− µ2(λ
(s)
j )2

,

which for µ = 1 simplifies to

d−1
s =

2s+ 2γ − 2

s+ 2γ − 1
.

Substituting γ = 1 and γ = 1
2 , we obtain the spectral bounds of Hs for the Chebyshev and

Legendre polynomials, respectively.
Hermite polynomials. For the Hermite polynomials, the weights are given by

ω̂
(s)
j =

1

s
,

yielding

d−1
s =

1

s

s∑
j=1

1

1− µ2(λ
(s)
j )2

.

Remark 4.13. For the splitting-based preconditioning, the constants c and c can be used
to estimate the strengthened Cauchy-Bunyakowski-Schwarz inequality constant γCBS ∈ [0, 1),
defined as the smallest γ satisfying

(vU , vW )A ≤ γ(vU , vU )A(vW , vW )A, vU ∈ U, vW ∈W ;

see, e.g., [2, 5, 18, 27]). In particular, it holds that

γCBS ≤ c− 1 ( = 1− c ).

The constant γCBS can be used in the two-by-two block Gauss-Seidel preconditioning (also
called the Schur-complement or multiplicative two-level preconditioning), with the resulting
condition number bounded as

κ(M−1
GS2A) ≤ 1

1− γ2
CBS

(
≤ 1

1− (c− 1)2
=

1

dt

)
;

see, e.g., [2, Chapter 9], [18, Sections 2.2 and 2.3], [31, 32], and the examples in subsection 4.4
with the results summarized in Tables 5 and 6.
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Figure 1: Functions ak(x), k = 1, . . . ,K, for the settings from Table 2.

Further, if uU and uV represent the solutions of our problem in the spaces U and in V ,
respectively, then the ‘solution improvement’ uV − uU can be estimated as

(4.28) ‖eW ‖2A ≤ ‖uV − uU‖2A ≤
1

1− γ2
CBS

‖eW ‖2A.

where eW is a solution of a certain problem restricted to the (small) space W ; see, e.g., [1,
Theorem 5.2]. Using (4.28), one can estimate ‖uV − uU‖A in advance, without solving the
(large) problem in V , which can be exploited in adaptivity.

Due to Galerkin orthogonality, we have ‖u− uU‖2A = ‖u− uV ‖2A + ‖uV − uU‖2A where u is

the exact solution of (2.1) in Ṽ . Thus (4.28) provides also an a posteriori lower bound of the
energy norm of the error u− uU in Ṽ ; see, e.g., [1, 5, 6].

4.4. Numerical examples. In this section, we illustrate on some simple numerical ex-
amples how to apply the introduced theoretical tool. First, we consider a one-dimensional
problem in D = [0, 1] with homogeneous Dirichlet boundary conditions, uniform mesh with
Nelem = 30 elements and with the nodes x0 = 0, . . . , xNelem

= 1, K = 3, uniform dis-
tributions of ξ1, ξ2, and ξ3 with images in [−1, 1]. The approximation and test spaces are
spanned by a tensor product of continuous piece-wise linear functions defined on D and of
K-variate Legendre polynomials. We define three different settings for ak(x), see Table 2 and
Figure 1, which are considered constant on every interval, ak(x) = ak(x

c
j) on (xj , xj+1) where

xcj = (xj + xj+1)/2, j = 0, . . . , Nelem − 1. We compute the corresponding µ and µclass defined
in (2.14) and (2.13), respectively, i.e.,

µ = max
j=1,...,Nelem

3∑
k=1

|ak(xcj)|, µclass =
3∑

k=1

max
j=1,...,Nelem

|ak(xcj)|.

We apply the mean-based preconditioning, see subsection 4.1, to each of the settings. We
compute the true extreme eigenvalues of the resulting preconditioned matrices, the theoretical
spectral bounds c and c given by Lemma 4.2 and Corollary 4.3, and the classical spectral
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Table 2: Problem setting, one-dimensional problems.

setting a0(x) a1(x) a2(x) a3(x) µ µclass

1 1 0.3
12

sin(1πx) 0.3
22

sin(2πx) 0.3
32

sin(3πx) 0.35 0.41

2 1 0.5χ(0,1/3) 0.3χ(1/3,2/3) 0.1χ(2/3,1) 0.5 0.9

3 1 0.95χ(0,1/3) 0.95χ(1/3,2/3) 0.95χ(2/3,1) 0.95 2.85

bounds

cclass = 1− µclassλmax(ψs), cclass = 1 + µclassλmax(ψs).

derived, e.g., in [24, Theorem 3.8]. The roots of the Legendre orthogonal polynomials are
obtained from [21]. The results for complete polynomials are summarized in Table 3. For all
considered settings, we obtained

cclass ≤ c ≤ λmin(M−1A) ≤ λmax(M−1A) ≤ c ≤ cclass.

Moreover, for the third setting, the classical bounds do not provide any useful information
because µclassλmax(ψs) > 1, and thus cclass < 0.

Next, we consider a two-dimensional problem in D = [0, 1]2 with homogeneous Dirichlet
boundary conditions, uniform mesh with Nelem = 202 = 400 elements, uniform distributions
of ξk, k = 1, . . . ,K, with images in [−1, 1]. The approximation and test spaces are spanned
by a tensor product of continuous piece-wise bilinear functions defined on D and of K-variate
Legendre polynomials. We define two different settings for ak(x), k = 0, . . . ,K, see Table 4,
which are analogously as before considered constant on every element. For both settings,
we investigate the spectral bounds for the splitting-based preconditioning (SB) and the two-
by-two block Gauss-Seidel preconditioning (GS2). The results are shown in Tables 5 and 6.
According to Remark 4.13, the upper bound of κ(M−1

GS2A) is obtained as 1/dt. The values of
t used in Lemma 4.11 for obtaining c and c are presented.

5. Conclusion. We introduced a new tool for obtaining guaranteed and two-sided spectral
bounds for discretized stochastic Galerkin problems preconditioned by a matrix with modified
stochastic part from the spectral information of certain small matrices, from which the large
stochastic Galerkin matrix is constructed. Moreover, this analysis only requires point-wise
or local dominance of the deterministic part of the expansion of the parameter-dependent
function a(x, ξ), represented here by the parameter µ, while the standard bounds are typically
based on the absolute global dominance. The derived estimates are therefore also applicable
to problems where global dominance is not achieved. We showed for three types of block-
diagonal preconditioners, including less standard ones, how this technique is used to obtain
spectral bounds depending solely on µ and the properties of the stochastic approximation
space (here classical orthogonal polynomials). From the locality of µ, it also follows that the
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Table 3: Mean-based preconditioning and complete polynomials: a comparison of the new
and the classical spectral bounds, and the extreme eigenvalues of the preconditioned matrix
for the three different settings from Table 2.

s− 1 κ(A) cclass c λmin(M−1A) λmax(M−1A) c cclass c/c cclass/cclass

se
tt

in
g

1

1 458.42 0.76 0.80 0.83 1.17 1.20 1.24 1.51 1.62

2 498.47 0.68 0.73 0.76 1.24 1.27 1.32 1.75 1.92

. . .

6 546.55 0.61 0.67 0.69 1.31 1.33 1.39 2.00 2.26

7 550.80 0.61 0.66 0.68 1.32 1.34 1.39 2.02 2.29

se
tt

in
g

2

1 542.75 0.48 0.71 0.71 1.29 1.29 1.52 1.81 3.16

2 629.41 0.30 0.61 0.61 1.39 1.39 1.70 2.26 5.60

. . .

6 739.40 0.15 0.53 0.53 1.47 1.47 1.85 2.81 12.72

7 749.57 0.14 0.52 0.52 1.48 1.48 1.86 2.85 13.73

se
tt

in
g

3

1 947.79 -0.65 0.45 0.45 1.56 1.56 2.65 3.43 -

2 1596.34 -1.21 0.26 0.26 1.74 1.74 3.21 6.57 -

. . .

6 4576.93 -1.71 0.10 0.10 1.90 1.90 3.71 19.34 -

7 5294.63 -1.74 0.09 0.09 1.91 1.91 3.74 21.80 -

Table 4: Problem setting, two-dimensional problems.

setting a0(x1, x2) a1(x1, x2) a2(x1, x2) a3(x1, x2) µ

4 1 0.3 sin(1πx1) 0.3 sin(2πx2) 0.3 sin(2πx1) 0.83

setting a0(x1, x2) a2k+1(x1, x2) a2k+2(x1, x2)

5 1 0.9
K

sin ((k + 1)πx1) 0.9
K

sin ((k + 1)πx2)

obtained bounds are tighter than the classical ones. Similar ideas based on local properties of
a preconditioner appear also in [16].
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