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ON VISCOSITY SOLUTIONS OF SPACE-FRACTIONAL

DIFFUSION EQUATIONS OF CAPUTO TYPE

TOKINAGA NAMBA AND PIOTR RYBKA

Abstract. We study a fractional diffusion problem in the divergence form
in one space dimension. We define a notion of the viscosity solution. We
prove existence of viscosity solutions to the fractional diffusion problem with
the Dirichlet boundary values by Perron’s method. Their uniqueness follows
from a proper maximum principle. We also show a stability result and basic
regularity of solutions.

1. Introduction

In this paper we study the Cauchy-Dirichlet problem whose governing equation
is

(1.1) ut = (Dα
xu)x + f in (0, l)× (0, T ),

where f is a continuous function. The operatorDα
xu is the spacial Caputo derivative

and, for an absolutely continuous function v, it is defined as

(1.2) Dα
xv(x) =

1

Γ(1− α)

∫ x

0

v′(y)

(x− y)α
dy.

Our main goal is to introduce a notion of generalized solutions and to show that
this notion leads to the well-posedness of the Cauchy-Dirichlet problem of (1.1).

Before we engage into a theoretical development we will explain our motivation
to study such an equation. In fact, problem (1.1) is a simplification of a free
boundary problem (FBP), which should be considered on a noncylindrical domain.
It is a simplification of a model of the sub-surface movement of water, under the
assumption that it moves as a saturated ‘plug’ through a soil that has a constant
moisture storage capacity, see [18]. From the point of view of modeling equation
(1.1) should be understood as a balance equation, where we have on the right hand
side the divergence of a flux. This would be particularly important if we were
study the multidimensional case. However, we will restrict our attention only to
the one-dimensional case, because there is plenty of open question.

In particular, it seems that the literature on well-posedness of linear problems of
the form like (1.1) is rather limited. However, the number of papers and books on
time fractional problems is growing, so we mention just a few monographs, [8], [15]
or [19]. A reason for such a situation is that this line of research originated from
the Volterra integral equations, see e.g. [16].

There is number of recent papers addressing the fractional diffusion problems
from the point of view of the semigroup theory, see [3], [4]. These authors construct
a strongly continuous semigroup. A stronger result in this direction is obtained in
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[17], where the author shows that operator (Dα
xu)x generates an analytic semigroup,

but with different boundary conditions in comparison with ours.
It is obvious that before we tackle equation (1.1) in a domain which changes in

time, we must understand it in a fixed domain. Our paper is just a step toward
this bigger goal. We notice that the literature on time fractional equations, which
includes several books, is quite broad and we will use the applicable tools.

Among the many possible methods to address (1.1) we choose the theory of
viscosity solutions. Since the setting which we consider in this paper apparently
has not been considered in the literature, we have to find a suitable notion of
viscosity solutions. We note that there are papers dealing with viscosity solutions
for integro-differential equations, [2], [11] or [14], but the non-locality is with respect
to the time variable, not space variable like in our case.

A special feature of (1.1) is that formally we require existence of two spacial
derivatives. However, we come up with a seemingly less demanding definition of
solution. We devote Section 2 to this issue. We also present our definition of
the viscosity solution, which draws heavily on our experience with time fractional
Hamilton-Jacobi equations, [11].

After settling the issue of a proper definition of solution, we establish its basic
properties. The main result is a comparison principle, see Theorem 4.1. Once we
show it, we may establish existence of solutions by means of the Perron method.
This is done in Theorem 5.6. The main difficulty is showing that the sup of sub-
solutions is also a supersolution. The comparison principle implies uniqueness of
solutions. We also show the stability of solutions with respect to the fractional
order of equation, this is the content of Theorem 6.1.

Finally, we address regularity of solutions in Section 7. Namely, we show that
if the data are Lipschitz continuous, then the unique solution is Hölder continuous
with respect to the space variable, with exponent α, see Proposition 7.1. More-
over, this solution is Lipschitz continuous with respect to the time variable, see
Propositions 7.3 and 7.4 and locally Lipschitz continuous is space, cf. Proposition
7.2.

2. Preliminaries on fractional derivatives

Throughout this paper the integral of the form

I(a,b)[w](x) =

∫ b

a

w(x, z)
dz

zα+2
,

where 0 ≤ a < b < +∞, is mainly handled for semicontinuous functions w :
[0, l) × [0, l) → R. In this section we present properties of such a function de-
rived from (Dα

xu)x, which is introduced as an operator K later. Here, all inte-
grals are interpreted in terms of the Lebesgue integral. When a > 0, we say that
I(a,b)[w](x) is well-defined if either I(a,b)[w

+](x) or I(a,b)[w
−](x) is finite, where

w± := max{±w, 0}. When a = 0, I(0,b)[w](x) is regarded as lima→0+ I(a,b)[w](x),

and we say that I(0,b)[w](x) is well-defined if I(a,b)[w
±](x) are finite for each a ∈

(0, b) and lima→0+ I(a,b)[w](x) exists and it is finite. In other words, these conditions
are equivalent to integrability of z 7→ w(x, z) for a.e. x ∈ (0, l).

The following proposition plays an essential role in defining the solution intro-
duced in this paper.
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Proposition 2.1. Let u : [0, l) → R be such that u ∈ C2(0, l) ∩ C[0, l) and u′ ∈
L1(0, l). Then, (Dα

xu)x exists everywhere in (0, l) and

(Dαu)x(x) =
1

Γ(1 − α)

(

α(u(0)− u(x)) + (α+ 1)u′(x)x

xα+1

+α(α+ 1)

∫ x

0

[u(x− z)− u(x) + u′(x)z]
dz

zα+2

)(2.1)

for x ∈ (0, l).

Proof. First of all, we note that for each x ∈ (0, l) the integral on the right-hand
side of (2.1) exists, that is, [u(x − z) − u(x) + u′(x)z]/zα+2 ∈ L1(0, x). In fact,
Taylor’s theorem implies that for each z ∈ (0, x/2)

|u(x− z)− u(x) + u′(x)z| ≤
supy∈(x−z,x) |u

′′(y)|

2
z2 ≤

max[x/2,x] |u
′′|

2
z2.

The right-hand side multiplied by z−α−2 is integrable on (0, x/2) and so the domi-
nated convergence theorem implies that

∫ x/2

0

[u(x− z)− u(x) + u′(x)z]
dz

zα+2
exists.

The integral on the remaining interval (x/2, x) does not present a problem since
z 7→ (u(x− z)− u(x) + u′(x)z)z−α−2 is bounded on (x/2, x) and hence integrable.
Thus, it is enough to show (2.1) to prove Proposition 2.1. Hereafter we show (2.1).
To this end, we fix any small ε > 0 and we introduce

I1(x) :=

∫ ε

0

u′(y)

(x− y)α
dy and I2(x) :=

∫ x

ε

u′(y)

(x− y)α
dy

for x ∈ (2ε, l). We note that (Dα
xu)x = 1

Γ(1−α)
d
dx(I1 + I2).

It is easily seen that the differentiation under the integral sign is applicable to
I1 for each x ∈ (2ε, l), since 1/(x− y)α+1 ≤ 1/εα+1 for all x ∈ (2ε, l) and y ∈ (0, ε)
and u′ is integrable. Together with straighforward calculations we get

d

dx
I1(x) = −α

∫ ε

0

u′(y)

(x − y)α+1
dy

= α

(

u(0)

xα+1
−

u(ε)

(x− ε)α+1

)

+ α(α+ 1)

∫ ε

0

u(y)

(x − y)α+2
dy

=
α(u(0)− u(x)) + (α+ 1)u′(x)x

xα+1

−
α(u(ε)− u(x)) + (α+ 1)u′(x)(x − ε)

(x− ε)α+1

+ α(α + 1)

∫ ε

0

u(y)− u(x)− u′(x)(y − x)

(x − y)α+2
dy.

Differentiation under the integral sign is applicable also to I2 (see, e.g., [10,
subsection 7.2.1]), and then

d

dx
I2(x) =

u′(ε)

(x− ε)α
+

∫ x

ε

u′′(y)

(x− y)α
dy.
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Since u ∈ C2(0, l), it holds that

lim
y→x

u′(y)− u′(x)

(x − y)α
= 0

and

lim
y→x

u(y)− u(x)− u′(x)(y − x)

(x− y)α+1
= 0.

Thus, straightforward calculations imply that

d

dx
I2(x) =

u′(ε)

(x− ε)α
+

∫ x

ε

d
dy (u

′(y)− u′(x))

(x− y)α
dy

=
u′(x)

(x− ε)α
− α

∫ x

ε

u′(y)− u′(x)

(x − y)α+1
dy

=
u′(x)

(x− ε)α
− α

∫ x

ε

d
dy (u(y)− u(x)− u′(x)(y − x))

(x− y)α+1
dy

=
α(u(ε)− u(x)) + (α + 1)u′(x)(x − ε)

(x− ε)α+1

+ α(α + 1)

∫ x

ε

u(y)− u(x)− u′(x)(y − x)

(x− y)α+2
dy.

Consequently, for all x ∈ (2ε, l) we obtain

(Dα
xu)x(x) =

1

Γ(1− α)

(

α(u(0)− u(x)) + (α+ 1)u′(x)x

xα+1

+α(α+ 1)

∫ x

0

u(y)− u(x)− u′(x)(y − x)

(x− y)α+2
dy

)

.

After changing the variable of integration by setting z = x̂− y, we reach (2.1) since
ε is arbitrary. �

The following lemma states the maximum principle, which is valid due to (2.1).

Lemma 2.2. Assume that u ∈ C2(0, l) ∩ C[0, l) with u′ ∈ L1(0, l) attains its
maximum at x̂ ∈ (0, l). Then (Dα

xu)x(x̂) ≤ 0.

Proof. Since u′(x̂) = 0, then the right-hand side of (2.1) is non-positive and the
claim follows. �

For the sake of convenience, we introduce the following operators, when u :
(0, l) → R is a measurable function and p ∈ R,

J [u, p](x) =
α(u(0)− u(x)) + (α+ 1)px

xα+1Γ(1− α)
,

K(a,b)[u, p](x) =
α(α+ 1)

Γ(1− α)

∫ b

a

[u(x− z)− u(x) + pz]
dz

zα+2
,

where 0 ≤ a < b < x. We write also Jα[u, p](x) and Kα(a, b)[u, p](x) when making
clear the dependence of α. For a function u : [0, l) × A → R, where A ⊂ R

is an interval, we write J [u, p](x, y) := J [u(·, y), p](x) and K(a,b)[u, p](x, y) :=
K(a,b)[u(·, y), p](x) for y ∈ A.
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Proposition 2.3. Let u be a real-valued upper semicontinuous function on [0, l).
If x ∈ (0, l), δ ∈ (0, x), and p ∈ R, then K(δ,x)[u, p](x) and it is bounded from above.

If u ∈ C2(0, l)∩C[0, l) and px = u′(x), then K(0,x)[u, px](x) is well-defined for each
x ∈ (0, l).

Remark 2.4. Is is clear from the definition that for any real-valued lower semi-
continuous functions u on [0, l), the operator K(δ,x)[u, p](x) is well-defined for all
x ∈ (0, l) and δ ∈ (0, x). Moreover, it is bounded from below.

Proof of Proposition 2.3. We only deal with the case that u is upper semicontinu-
ous, because the last assertion is obvious from Proposition 2.1.

Since z 7→ u(x−z)−u(x)+pz is upper semicontinuous on [x−a, x] for x ∈ (0, l),
it attains its maximum and

(u(x− z)− u(x) + pz)+ ≤

[

max
[a,x]

(u(x− z)− u(x) + pz)

]

∨ 0 for all z ∈ [x− δ, x].

Here, a∨b := max{a, b} for a, b ∈ R and we will also use a∧b := min{a, b} through-
out this paper. Since the right-hand side is integrable on (x − a, x), we see that
K(x−a,x)[u, p](x) is well-defined. It is straightforward to see that K(x−a,x)[u, p](x)
is bounded from above. �

Lemma 2.5. Let α ∈ (0, 1), a ∈ (0, l), ϕ ∈ C2(a, l) ∩ C[a, l) and x̂ ∈ (a, l). Let
u be a real-valued upper semicontinuous function on [0, l). Also, for each ε > 0 let
αε ∈ (0, 1) and xε ∈ (a, l) be sequences and let uε be a sequence of real-valued upper
semicontinuous functions on [0, l). Assume that uε ≤ u on [0, l) and

(2.2) lim
ε→0

(αε, xε, uε(xε)) = (α, x̂, u(x̂)).

Set pε = ϕ′(xε) and p = ϕ′(x̂). Then,

(i) lim supε→0 J
αε [uε, pε](xε) ≤ Jα[u, p](x̂),

(ii) limε→0K
αε

(0,xε−a)[ϕ, pε](xε) = Kα
(0,x̂−a)[ϕ, p](x̂),

(iii) lim supε→0K
αε

(xε−a,xε)
[uε, pε](xε) ≤ Kα

(x̂−a,x̂)[u, p](x̂).

Moreover, if ϕ ∈ C2(0, l) ∩ C[0, l), then x 7→ K(0,x)[ϕ, px](x) with px = ϕ′(x) is
continuous in (0, l).

Proof. (i) Using the assumption uε(0) ≤ u(0), we see that

lim sup
ε→0

Jαε [uε, pε](xε) ≤ lim sup
ε→0

αε(u(0)− uε(xε)) + (αε + 1)pεxε

xαε+1
ε Γ(1− αε)

= Jα[u, p](x̂).

(ii) Let a′ ∈ (0, x̂) be such that [x̂ − 2a′, x̂ + 2a′] ⊂ (a, l). We may assume that
xε ∈ (x̂ − a′, x̂ + a′) by letting ε smaller if necessary. Since ϕ ∈ C2(a, l), then for
z ∈ (0, xε − a) we have,

ϕ(xε − z)− ϕ(xε) + ϕ′(xε)z = z2
∫ 1

0

∫ 1

0

ϕ′′(xε − stz)t dsdt.

Hence,

(2.3) Kαε

(0,xε−a)[ϕ, pε](xε) =

∫ xε−a

0

1

zαε

∫ 1

0

∫ 1

0

ϕ′′(xε − stz)t dsdt.
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We fix any δ > 0, then we find η > 0 such that

(2.4)

∫ x̂−a

x̂−a−η

max{ϕ′′(ζ) : ζ ∈ [x̂− a− η, x̂− a]}

zmaxαε
< δ.

Thus,

Kαε

(0,xε−a)[ϕ, pϕ](xε)−Kα
(0,x̂−a)[ϕ, p](x̂)

=Kαε

(x̂−a−η,xε−a)[ϕ, pϕ](xε)−Kα
(x̂−a−η,x̂−a)[ϕ, p](x̂)

+Kαε

(0,x̂−a−η[ϕ, pϕ](xε)−Kα
(0,x̂−a−η)[ϕ, p](x̂).

By (2.4) the first difference above is estimated by 2δ. The second difference is less
than δ for sufficiently small ε due to (2.3) and the Lebesgue dominated convergence
Theorem. Hence, our claim follows.

(iii) By our assumptions, we immediately see that

(2.5) sup
0<ε≪1

(|uε(xε)| ∨ |pε|) ≤ C

for a constant C > 0. Since uε ≤ u in [0, l) and u is upper semicontinuous, then

uε(xε − z) ≤ u(xε − z) ≤ max
[0,a]

u for all z ∈ [xε − a, xε].

Thus, we have the following estimate,

(uε(xε − z)− uε(xε)− pεz)1(xε−a,xε)(z)z
−αε−2

≤(max
[0,a]

u+max
[a,l]

u+ Cz)1(xε−a,xε)(z)z
−αε−2

≤

∣

∣

∣

∣

max
[0,a]

u+max
[a,l]

u+ Cz

∣

∣

∣

∣

1(xε−a,xε)(z)(z
−2 ∨ z−1)

≤

∣

∣

∣

∣

max
[0,a]

u+max
[a,l]

u+ Cz

∣

∣

∣

∣

1(a′′,l)(z)(z
−2 ∨ z−1) for all z ∈ (δ, l),

where δ = 1
2 (x̂− a). Since the right-hand side is integrable on (δ, l), Fatou’s lemma

yields the desired inequality. �

Remark 2.6. (i) A symmetric statement which “upper semicontinuous” is replaced
with “lower semicontinuous” is true since J [u, p](x) = −J [−u,−p](x).

(ii) In the following sections, we use Lemma 2.5 for functions that also depend
on the time variable. We can not use it directly because it is stated for a single
variable function. We may state the corresponding result as follows:
Let us suppose that uε, u : [0, l) × Λ → R are measurable, where Λ ⊂ R is an
interval. If for all t ∈ Λ functions uε(·, t), u(·, t) satisfy the assumptions of Lemma
2.5, then the claim holds for uε(·, t), u(·, t) and all t ∈ Λ.

3. Definition of a solution

In this section we propose a notion of a solution of the initial boundary value
problem

(3.1) ut = (Dα
xu)x + f in QT

and

(3.2) u = g on ∂pQT .
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Here, QT = (0, l)×(0, T ) and ∂pQT stands for the parabolic boundary, i.e., ∂pQT =
([0, l]×{0})∪({0, l}× [0, T )). We also introduce QT,0 := (0, l)× [0, T ). Throughout
this paper, the given functions f : QT → R and g : ∂pQT → R are assumed to be
continuous.

To motivate the definition of solutions that we call viscosity solutions, we suppose
that u ∈ C(QT,0) and u − ϕ attains a maximum over QT,0 at (x̂, t̂) ∈ QT for a
function ϕ ∈ C(QT,0). Here, C(QT,0) is a space of test functions which we set as
(3.3)

C(QT,0) = {ϕ ∈ C2,1(QT ) ∩ C(QT,0) | ϕx(·, t) ∈ L1(0, l) for every t ∈ (0, T )}.

The classical maximum principle and Lemma 2.2 yield ut = ϕt and (Dα
xu)x ≥

(Dα
xϕ)x at (x̂, t̂). Thus, if u satisfies (3.1) pointwise in QT , then

ϕt(x̂, t̂) ≤ (Dα
xϕ)x(x̂, t̂) + f(x̂, t̂).

Since this inequality does not include the derivative of u, we are tempted to use it
to define a generalized subsolution for u which is not differentiable. The opposite
inequality comes out if one replaces the maximum with a minimum.

Let Ω be a set in R
2. For a function w : Ω → R let w∗ and w∗ denote the

upper semicontinuous envelope and the lower semicontinuous envelope, respectively.
Namely,

w∗(z) = lim
δ→0+

sup{w(ζ) | ζ ∈ Ω ∩Bδ(z)}

and w∗ = −(−w)∗. Here and hereafter, Bδ(z) is an open ball in R
2 centered at z

with radius δ, i.e., Bδ(z) = {ζ ∈ R
d | |z − ζ| < δ}, and Bδ(z) is its closure.

Definition 3.1 (Viscosity solution). We say that a real-valued function u onQT,0 is
a viscosity subsolution (resp. viscosity supersolution) of (3.1) if u∗ <∞ (resp. u∗ >
−∞) in QT,0 and, for every ((x̂, t̂), ϕ) ∈ QT × C(QT,0) that satisfies maxQT,0

(u∗ −

ϕ) = (u∗ − ϕ)(x̂, t̂) (resp. minQT,0
(u∗ − ϕ) = (u∗ − ϕ)(x̂, t̂)),

ϕt(x̂, t̂) ≤ (Dα
xϕ)x(x̂, t̂) + f(x̂, t̂) (resp. ϕt(x̂, t̂) ≥ (Dα

xϕ)x(x̂, t̂) + f(x̂, t̂)).

Moreover, we say that a real-valued function u on QT ∪ ∂pQT is a viscosity sub-
solution (resp. viscosity supersolution) of (3.1)-(3.2) if u∗ < ∞ (resp. u∗ > −∞)
in QT ∪ ∂pQT , u is a viscosity subsolution (resp. viscosity supersolution) of (3.1),
and satisfies u∗ ≤ g (resp. u∗ ≥ g) on ∂pQT .

If a real-valued function u on QT,0 (resp. QT ∪ ∂pQT ) is a viscosity sub- and
supersolution of (3.1) (resp. (3.1)-(3.2)), we say that u is a viscosity solution of
(3.1) (resp. (3.1)-(3.2)).

The notion of viscosity solution by Definition 3.1 is consistent with that of “clas-
sical solution” that satisfies (3.1) pointwise in QT .

Proposition 3.2 (Consistency). Let u ∈ C(QT,0), (see (3.3) for the definition of
this set). Then, u is a viscosity solution of (3.1) if and only if u satisfies (3.1)
pointwise in QT .

Proof. We saw the ‘if’ part before Definition 3.1. The ‘only if’ part is straightfor-
ward since u can be taken as a test function. �

After establishing the consistency result, we suppress the word “viscosity” from
now on.

There are several equivalent definitions of solutions. We utilize these definitions
to establish the existence and uniqueness of solutions and some propeties.
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Proposition 3.3 (Alternative definitions). Let u be a real-valued function on QT,0

with u∗ < +∞ in QT,0. Then, the following statements are equivalent:

(i) u is a subsolution of (3.1);
(ii) for every ((x̂, t̂), ϕ) ∈ QT×(C2,1(QT )∩C(QT,0)) that satisfies maxQT,0

(u∗−

ϕ) = (u∗ − ϕ)(x̂, t̂),

ϕt(x̂, t̂) ≤ J [ϕ, p](x̂, t̂) +K(0,x̂)[ϕ, p](x̂, t̂) + f(x̂, t̂)

holds with p = ϕx(x̂, t̂);
(iii) for every ((x̂, t̂), ϕ) ∈ QT ×C2,1(QT ) that satisfies maxQT

(u∗ −ϕ) = (u∗ −
ϕ)(x̂, t̂),

ϕt(x̂, t̂) ≤ J [u∗, p](x̂, t̂) +K(0,x̂−δ)[ϕ, p](x̂, t̂) +K(x̂−δ,x̂)[u
∗, p](x̂, t̂) + f(x̂, t̂)

holds for all δ ∈ (0, x̂) with p = ϕx(x̂, t̂);
(iv) for every ((x̂, t̂), ϕ) ∈ QT ×C2,1(QT ) that satisfies maxQT

(u∗ −ϕ) = (u∗ −
ϕ)(x̂, t̂), K(0,x̂)[u

∗, p](x̂, t̂) with p = ϕx(x̂, t̂) is well-defined and

ϕt(x̂, t̂) ≤ J [u∗, p](x̂, t̂) +K(0,x̂)[u
∗, p](x̂, t̂) + f(x̂, t̂)

holds.

Proof. The proofs of implications (ii) ⇒ (i) and (iv) ⇒ (ii) are easy. In fact,
the former is a direct consequence of Proposition 2.1. To prove the latter, let
((x̂, t̂), ϕ) ∈ QT × (C2,1(QT ) ∩ C(QT,0)) be such that maxQT,0

(u∗ − ϕ) = (u∗ −

ϕ)(x̂, t̂). Since K(0,x̂)[u
∗, p](x̂, t̂) with p = ϕx(x̂, t̂) exists by (iv) and u∗(x̂ − z, t̂)−

u∗(x̂, t̂) + pz ≤ ϕ(x̂ − z, t̂)− ϕ(x̂, t̂) + pz holds for all z ∈ [0, x̂], we have

J [u∗, p](x̂, t̂) +K(0,x̂)[u
∗, p](x̂, t̂) ≤ J [ϕ, p](x̂, t̂) +K(0,x̂)[ϕ, p](x̂, t̂).

The desired inequality is immediately obtained from the inequality by (iv).
We shall prove the implication (i) ⇒ (iii). Let ((x̂, t̂), ϕ) ∈ QT × C2,1(QT ) be

such that maxQT
(u∗ − ϕ) = (u∗ − ϕ)(x̂, t̂) and fix δ ∈ (0, x̂) arbitrarily. We set

ψ := ϕ+ (u∗ − ϕ)(x̂, t̂) so that maxQT
(u∗ − ψ) = (u∗ − ψ)(x̂, t̂) = 0.

Since u∗ is upper semicontinuous in QT,0, there exists a sequence uε ∈ C(QT,0)
such that uε ց u∗ pointwise in QT,0 as ε→ 0+. Also, there exists a sequence ψε ∈

C(QT,0) such that ψε = ψ in B(x̂−δ)/2(x̂, t̂)∩QT,0, u
∗ ≤ ψε ≤ ψ in Bx̂−δ(x̂, t̂)∩QT,0,

and u∗ ≤ ψε ≤ uε + ε in QT,0 \Bx̂−δ(x̂, t̂). Observe that (a) ψε = ψ = u∗ at (x̂, t̂),

(b) limε→0 ψε = u∗ pointwise in QT,0\Bx̂−δ(x̂, t̂), and (c) ψε ≤ ψ = ϕ in Bx̂−δ(x̂, t̂).

It is clear that maxQT,0
(u∗ − ψε) = (u∗ − ψε)(x̂, t̂). Thus, by (i) we have

(3.4) (ψε)t(x̂, t̂) ≤ (Dα
xψε)x(x̂, t̂) + f(x̂, t̂).

Since ψε = ψ near (x̂, t̂), we see that (ψε)t = ψt = ϕt and (ψε)x = ψx = ϕx at
(x̂, t̂). Proposition 2.1 yields (Dα

xψε)x(x̂, t̂) = J [ψε, pε](x̂, t̂) + K(0,x̂)[ψε, pε](x̂, t̂)

with pε = (ψε)x(x̂, t̂). Accordingly, (3.4) can be rewritten as

(3.5) ϕt(x̂, t̂) ≤ J [ψε, p](x̂, t̂) +K(0,x̂)[ψε, p](x̂, t̂) + f(x̂, t̂),

where p = ψx(x̂, t̂).
It is easy to check from (a) and (b) that limε→0 J [ψε, p](x̂, t̂) = J [u∗, p](x̂, t̂).

Since (a) and (c) imply that

ψε(x̂− z, t̂)− ψε(x̂, t̂) + pz ≤ ψ(x̂− z, t̂)− ψ(x̂, t̂) + pz

= ϕ(x̂− z, t̂)− ϕ(x̂, t̂) + pz
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holds for all z ∈ (0, δ), then we have K(0,δ)[ψε, p] ≤ K(0,δ)[ϕ, p](x̂, t̂). The estimate

lim supε→0K(δ,x̂)[ψε, p](x̂, t̂) ≤ K(δ,x̂)[u
∗, p](x̂, t̂) immediately follows from Lemma

2.5. Keeping in mind these estimates, while taking the limit supremum as ε → 0
in (3.5) yields the desired inequality.

We finish the proof of this proposition by showing the implication (iii) ⇒ (iv).
Let ((x̂, t̂), ϕ) ∈ QT × C2,1(QT ) be such that maxQT

(u∗ − ϕ) = (u∗ − ϕ)(x̂, t̂). We
define

vδ(z) := (ϕ(x̂ − z, t̂)− ϕ(x̂, t̂) + pz)1[0,x̂−δ](z) + (u∗(x̂− z, t̂)− u∗(x̂, t̂) + pz)1(x̂−δ,x̂](z)

for δ ∈ (0, x̂) and set

K[vδ] :=
α(α+ 1)

Γ(1− α)

∫ x̂

0

vδ(z)
dz

zα+2
= K(0,x̂−δ)[ϕ, p](x̂, t̂) +K(x̂−δ,x̂)[u, p](x̂, t̂).

Since u∗(x̂ − z, t̂) − u∗(x̂, t̂) + pz ≤ ϕ(x̂ − z, t̂) − ϕ(x̂, t̂) + pz for all z ∈ [0, x̂), we
know that v+δ ց v+0 and v−δ ր v−0 as δ → 0.

By (iii) the inequality

ϕt(x̂, t̂) ≤ J [u∗, p](x̂, t̂) +K(0,x̂−δ)[ϕ, p](x̂, t̂)

+K(x̂−δ,x̂)[u
∗, p](x̂, t̂) + f(x̂, t̂)

holds for all δ ∈ (0, x̂) with p = ϕx(x̂, t̂). From this inequality we see

0 ≤ K[v+δ ]−K[v−δ ] + C ≤ K[v+δ′ ]−K[v−δ ] + C ≤ K[v+δ′ ] + C < +∞

for all δ < δ′, where C = J [u∗, p](x̂, t̂) − ϕt(x̂, t̂) and δ′ is a fixed constant with
0 < δ′ < x̂. Therefore it turns out that limδ→0K[v±δ ] = K[v±0 ] by the monotone

convergence theorem and K[v±0 ] is finite. Thus we get the desired result. �

For (x, t) ∈ QT we denote by Nx,t a family of neighborhoods N of (x, t) in QT

such that every N includes the line segment between (x, t) and (y, t) whenever
(y, t) ∈ N and 0 < y < x. Evidently, QT ∈ Nx,t for all (x, t) ∈ QT .

Proposition 3.4. Let u be a real-valued function on QT,0 with u∗ < +∞ in QT,0.

Then u is a subsolution of (3.1) if and only if, for every ((x̂, t̂), ϕ) ∈ QT ×C2,1(QT )
and N ∈ Nx̂,t̂ such that u∗−ϕ attains a strict maximum on N at (x̂, t̂) in the sense

that (u∗ − ϕ)(x, t) < (u∗ − ϕ)(x̂, t̂) for all (x, t) ∈ N \ {(x̂, t̂)},

ϕt(x̂, t̂) ≤ J [u∗, p](x̂, t̂) +K(0,x̂−δ)[ϕ, p](x̂, t̂)

+K(x̂−δ,x̂)[u
∗, p](x̂, t̂) + f(x̂, t̂)

holds for all δ ∈ (0, x̂) that satisfies (δ, t̂) ∈ N with p = ϕx(x̂, t̂).

Proof. We use Proposition 3.3 (iii) for proofs of both implications. We first prove
the ‘if’ part. Let ((x̂, t̂), ϕ) ∈ QT × C2,1(QT ) be such that maxQT

(u∗ − ϕ) =

(u∗ − ϕ)(x̂, t̂). Set ψε(x, t) = ϕ(x, t) + ε(|x − x̂|2 + |t − t̂|2) for a small parameter
ε > 0. Then u∗ − ψε attains a strict maximum on QT at (x̂, t̂) so

(ψε)t(x̂, t̂) ≤ J [u∗, pε](x̂, t̂) +K(0,x̂−δ)[ψε, pε](x̂, t̂)

+K(x̂−δ,x̂)[u
∗, pε](x̂, t̂) + f(x̂, t̂)

(3.6)
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holds for all δ ∈ (0, x̂) with pε = (ψε)x(x̂, t̂). It is straightforward to see that
(ψε)t(x̂, t̂) = ϕt(x̂, t̂), pε = ϕx(x̂, t̂) =: p, and

K(0,x̂−δ)[ψε, pε] = K(0,x̂−δ)[ϕ, p](x̂, t̂) +
α(1 + α)x̂1−α

(1 − α)Γ(1 − α)
ε.

Therefore sending ε→ 0 in (3.6) yields the desired inequality.
Let ((x̂, t̂), ϕ) ∈ QT × C2,1(QT ) and N ∈ Nx̂,t̂ be such that u∗ − ϕ attains a

strict maximum on N at (x̂, t̂). We denote by ϕ̄ an extension of ϕ to QT such that
ϕ̄ ∈ C2,1(QT ) and maxQT

(u∗ − ϕ̄) = (u∗ − ϕ̄)(x̂, t̂). Noticing that ϕ̄t = ϕt and

ϕ̄x = ϕx at (x̂, t̂), we have

ϕt(x̂, t̂) ≤ J [u∗, p](x̂, t̂) +K(0,x̂−δ)[ϕ̄, p](x̂, t̂)

+K(x̂−δ,x̂)[u
∗, p](x̂, t̂) + f(x̂, t̂)

holds for all δ ∈ (0, x̂) with p = ϕx(x̂, t̂). Since δ may be taken so that (δ, t̂) ∈ N
and then K(0,x̂−δ)[ϕ̄, p](x̂, t̂) = K(0,x̂−δ)[ϕ, p](x̂, t̂), this inequality is nothing but the
desired one. �

Remark 3.5. (i) Symmetric statements in Propositions 3.3 and 3.4 hold for a su-
persolution of (3.1).

(ii) Also in Proposition 3.3 (ii) and (iv) the maximum may be replaced by a
strict maximum and in (iv) it may be replaced by a local strict maximum in the
sense that, for a neighborhood N of (x̂, t̂) in QT ,

(u∗ − ϕ)(x, t) < (u∗ − ϕ)(x̂, t̂) for all (x, t) ∈ N .

However, in (ii) the locality may not be allowed.

Proposition 3.6. Assume that f is continuous. Let u be a subsolution (resp.
supersolution) of (3.1) in QT . Then u is a subsolution (resp. supersolution) of
(3.1) in Q∗

T := (0, l)× (0, T ] provided that u∗(x, T ) < +∞ (resp. u∗(x, T ) > −∞)
for all x ∈ (0, l).

Proof. We only prove for subsolutions. It suffices to show that
(3.7)
ϕt(x̂, T ) ≤ J [u∗, p](x̂, T ) +K(0,x̂−δ)[ϕ, p](x̂, T ) +K(x̂−δ,x̂)[u

∗, p](x̂, T ) + f(x̂, T )

holds for all δ ∈ (0, x̂) with p = ϕx(x̂, t̂) whenever u
∗ −ϕ attains a strict maximum

on Q∗
T at (x̂, T ) with 0 < x̂ < l for ϕ ∈ C2,1(Q∗

T,0), where Q
∗
T,0 = [0, l)× (0, T ]. Fix

δ ∈ (0, x̂) arbitrarily.
For ε > 0 we define ϕε(x, t) := ϕ(x, t) + ε/(T − t). It is a standard fact (see,

e.g., the proof of [9, Theorem 3.2.10]) that there is a maximum point (xε, tε) ∈ QT

of u∗ − ϕε on Q∗
T and

lim
ε→0

(xε, tε, u
∗(xε, tε)) = (x̂, t̂, u∗(x̂, t̂)).

We may assume that δ < infε xε by restricting to smaller ε. Since u is a subsolution
of (3.1) in QT , we have

(ϕε)t(xε, tε) ≤J [u
∗, pε](xε, tε) +K(0,xε−δ)[ϕε, pε](xε, tε)

+K(xε−δ,xε)[u
∗, pε](xε, tε) + f(xε, tε),

where pε = (ϕε)x(xε, tε). Since (ϕε)t(xε, tε) ≥ ϕt(xε, tε) and pε = ϕx(xε, tε),
sending ε→ 0 using Lemma 2.5 yields (3.7). �
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Remark 3.7. Also for each statements in Proposition 3.3, QT and QT,0 may be
replaced by Q∗

T and Q∗
T,0, respectively.

Remark 3.8. We cannot offer examples of explicit solution satisfying the homoge-
neous Dirichlet boundary condition

(3.8) u(0, t) = u(l, t) = 0 for t ∈ [0, T ).

However, in a recent study, [17], the author showed that the operator (Dα
x )x defined

on D((Dα
x )x) ⊂ L2(0, l), whose elements satisfy the mixed boundary data,

ux(0) = u(l) = 0

generates an analytic semigroup.

4. Comparison principle

We shall establish uniqueness of solutions via the comparison principle.

Theorem 4.1. Let u be a subsolution while v be a supersolution of (3.1). If
−∞ < u∗ ≤ v∗ < +∞ on ∂pQT , then u

∗ ≤ v∗ in QT ∪ ∂pQT .

Proof. We fix any T ′ smaller than T . It is enough to prove that u∗ ≤ v∗ in QT ′ ,
when u∗ ≤ v∗ on ∂pQ

∗
T ′ . This can be shown by using the conventional doubling

variable technique.
We denote T ′ by T again. We assume that u is a subsolution (respectively, v is

a supersolution) of (3.1) in Q∗
T , and −∞ < u∗, v∗ < +∞ in QT . Let us suppose

the contrary, i.e., θ := maxQT
(u∗ − v∗) > 0.

We define a real-valued function Φ on QT ×QT by

Φ(x, t, y, s) := u∗(x, t)− v∗(y, s)−
|x− y|2 + |t− s|2

ε
,

where ε > 0 is a parameter. Since the function Φ is upper semicontinuous on the
compact set QT×QT , it attains a maximum at some point (xε, tε, yε, sε) ∈ QT×QT .
We claim that this points are in Q∗

T ×Q∗
T for sufficiently small ε. To see this, we

shall check that, possibly after extracting a subsequence which is not relabled,

(4.1) lim
ε→0

(xε, tε, yε, sε, u
∗(xε, tε), v∗(yε, sε)) = (x̂, t̂, x̂, t̂, u∗(x̂, t̂), v∗(x̂, t̂)),

where (x̂, t̂) is a point such that (u∗ − v∗)(x̂, t̂) = θ. The convergence of the point
sequence is established according to [6, Lemma 3.1]. We can select another subse-
quence (not relabled) such that limε→0 v∗(yε, sε) = lim infε→0 v∗(yε, sε). Then, due
to the lower semicontinuity of v∗, we have

(u∗ − v∗)(x̂, t̂) = lim
ε→0

(u∗(xε, tε)− v∗(yε, sε)) = lim
ε→0

u∗(xε, tε)− lim
ε→0

v∗(yε, sε)

≤ lim
ε→0

u∗(xε, tε)− v∗(x̂, t̂).

This implies that lim infε→0 u
∗(xε, tε) ≥ u∗(x̂, t̂), hence

lim
ǫ→0

u∗(xε, tε) = u∗(x̂, t̂)

follows. By the same method, the convergence of v∗(yε, sε) is also established. Now,
we see that (x̂, t̂) 6∈ ∂pQ

∗
T ; otherwise, (u

∗− v∗)(x̂, t̂) ≤ 0 by the assumption but this
is contradictory since θ > 0. Therefore our claim is proved.
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We also claim that

(4.2) lim
ε→0

|xε − yε|2

ε
= 0.

Since (xε, tε, yε, sε) is a maximum point of Φ, we have Φ(xε, tε, yε, sε) ≥ Φ(x̂, t̂, x̂, t̂),
that is,

|xε − yε|2 + |tε − sε|2

ε
≤ u∗(xε, tε)− v∗(yε, sε)− u∗(x̂, t̂) + v∗(x̂, t̂).

The right-hand side vanishes as ε→ 0 due to (4.1), so as the left-hand side.
Since (x, t) 7→ Φ(x, t, yε, sε) attains a maximum on Q∗

T at (xε, tε), by Proposition
3.3 (iv) and Proposition 3.6 (see also Remark 3.7), we see that K(0,xε)[u

∗, pε](xε, tε)
with pε = 2(xε − yε)/ε is well-defined and

(4.3)
2(tε − sε)

ε
≤ J [u∗, pε](xε, tε) +K(0,xε)[u

∗, pε](xε, tε) + f(xε, tε).

Similarly, since (y, s) 7→ −Φ(xε, tε, y, s) attains a minimum on Q∗
T at (yε, sε), then

K(0,yε)[v∗, pε](yε, sε) is well-defined and

(4.4)
2(tε − sε)

ε
≥ J [v∗, pε](yε, sε) +K(0,yε)[v∗, pε](yε, sε) + f(yε, sε).

Subtracting (4.4) from (4.3) yields

0 ≤ J [u∗, pε](xε, tε)− J [v∗, pε](yε, sε)

+K(0,xε)[u
∗, pε](xε, tε)−K(0,yε)[v∗, pε](yε, sε)

+ f(xε, tε)− f(yε, sε).

(4.5)

We are going to take a limit as ε → 0 in this inequality in order to obtain a
contradiction. For this purpose we estimate

Jε := J [u∗, pε](xε, tε)− J [v∗, pε](yε, sε)

and

Kε := K(0,xε)[u
∗, pε](xε, tε)−K(0,yε)[v∗, pε](yε, sε)

as ε→ 0. We note that it is not possible to apply Lemma 2.5 because pε need not
be bounded. In what follows let δ > 0 be a constant with δ < infε(xε ∧ yε).

Since u∗ and −v∗ are upper semicontinuous and we have (4.1), then

lim sup
ε→0

(

u∗(0, tε)− u∗(xε, tε)

xα+1
ε

−
v∗(0, sε)− v∗(yε, sε)

yα+1
ε

)

≤
(u∗ − v∗)(0, t̂)− (u∗ − v∗)(x̂, t̂)

x̂α+1
≤

−θ

x̂α+1
.

The last inequality is due to the boundary conditions and the definition of θ. By
the inequality

∣

∣

∣

∣

1

xα
−

1

yα

∣

∣

∣

∣

≤
α

δα+1
|x− y| for all x, y ∈ (δ,∞),

and (4.2), we also see that

lim
ε→0

(

pε
xαε

−
pε
yαε

)

≤
α

δα+1
lim
ε→0

|pε||xε − yε| =
α

δα+1
lim
ε→0

|xε − yε|2

ε
= 0.

Thus these estimates give lim supε→0 Jε ≤ −θ/x̂α+1.
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We estimate Kε as ε→ 0 from

Kε,1 := K(0,δ)[u
∗, pε](xε, tε)−K(0,δ)[v∗, pε](yε, sε)

and

Kε,2 := K(δ,xε)[u
∗, pε](xε, tε)−K(δ,yε)[v∗, pε](yε, sε).

We know that Φ(xε, tε, yε, sε) ≥ Φ(xε − z, tε, yε − z, sε) for all z ∈ [0, δ], because
(xε, tε, yε, sε) is a maximum point of Φ. From this observation, the estimate Kε,1 ≤
0 follows immediately. By the upper semicontinuity of u∗ and (4.1) we see that
u∗ ≤ maxQT

u∗ in Q∗
T and u∗(xε, tε) ≥ u∗(x̂, t̂) − C, for sufficiently small ε, where

C is a positive constant. Thus,

[u∗(xε − z, tε)− u∗(xε, tε)]1(δ,xε)(z) ≤

[

max
QT

u∗ − u∗(x̂, t̂) + C

]

1(δ,xε)(z)

≤

∣

∣

∣

∣

max
QT

u∗ − u∗(x̂, t̂) + C

∣

∣

∣

∣

1(δ,l)(z)

for all z ∈ (0, l) such that xε > z. The right-hand side multiplied by z−α−2 is
integrable on (0, l) so the Lebesgue dominated convergence theorem implies

(4.6) lim sup
ε→0

∫ xε

δ

[u∗(xε−z, tε)−u
∗(xε, tε)]

dz

zα+2
≤

∫ x̂

δ

[u∗(x̂−z, t̂)−u∗(x̂, t̂)]
dz

zα+2
.

By a symmetric argument, by Fatou’s lemma we also have

(4.7) lim inf
ε→0

∫ yε

δ

[v∗(yε−z, sε)−v∗(yε, sε)]
dz

zα+2
≥

∫ x̂

δ

[v∗(x̂−z, t̂)−v∗(x̂, t̂)]
dz

zα+2
.

It would not be difficult to see that

lim sup
ε→0

∫ xε

yε

pε
zα+1

dz ≤ lim sup
ε→0

pε
(xε ∧ yε)α+1

∫ xε

yε

dz = lim sup
ε→0

(xε − yε)
2

ε(xε ∧ yε)α+1
= 0.

Combining this with (4.6) and (4.7) we find that

lim sup
ε→0

Kε,2 = lim sup
ε→0

Cα

(
∫ xε

δ

[u∗(xε − z, tε)− u∗(xε, tε)]
dz

zα+2

−

∫ yε

δ

[v∗(yε − z, sε)− v∗(yε, sε)]
dz

zα+2
+

∫ xε

yε

pε
zα+1

dz

)

≤ Cα

∫ x̂

δ

[(u∗ − v∗)(x̂− z, t̂)− (u∗ − v∗)(x̂, t̂)]
dz

zα+2
≤ 0,

where Cα = α(α + 1)/Γ(1− α). Therefore we get the estimate lim supε→0Kε ≤ 0.
Taking the limit supremum in (4.5) as ε→ 0 yields

0 ≤ −
θ

x̂α+1
,

a contradiction since θ > 0. �

The uniqueness of solutions is the direct consequence of Theorem 4.1.

Corollary 4.2 (Uniqueness of solutions). Let u and v be solutions of (3.1)-(3.2).
Then u ≡ v in QT ∪ ∂pQT .

Finally, in this section we show the weak maximum principle as a simple appli-
cation of Theorem 4.1.
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Corollary 4.3 (Weak maximum principle). Let f1, f2 : QT → R be continuous
functions. Let u be a subsolution of

(4.8) ut = (Dα
xu)x + f1(x, t) in QT

and let v be a supersolution of

vt = (Dα
x v)x + f2(x, t) in QT .

Assume that −∞ < u∗, v∗ < +∞ on ∂pQT . Then,

(4.9) sup
QT∪∂pQT

(u∗ − v∗)
+(x, t) ≤ sup

∂pQT

(u∗ − v∗)
+ +

∫ T

0

sup
x∈(0,l)

(f1 − f2)
+(x, s)ds.

In particular,

(4.10) sup
QT ∪∂pQT

(u∗)+ = sup
∂pQT

(u∗)+ if f1 ≤ 0

and

(4.11) inf
QT∪∂pQT

(v∗)
− = inf

∂pQT

(v∗)
− if f2 ≥ 0.

Proof. We may assume that

C := sup
∂pQT

(u∗ − v∗)
+ +

∫ T

0

sup
x∈(0,l)

(f1 − f2)
+(x, s)ds < +∞

for all t ∈ [0, T ); otherwise (4.9) is automatically established. It is not difficult to
check that

ṽ(x, t) := v∗(x, t) + sup
∂pQT

(u∗ − v∗)
+ +

∫ t

0

sup
x∈(0,l)

(f1 − f2)
+(x, s)ds

is a supersolution of (4.8) and u∗ ≤ ṽ on ∂pQT . Thus, by Theorem 4.1 we have
u∗ ≤ ṽ in QT ∪ ∂pQT and obtain (4.9).

If we put f2 ≡ 0 and v = 0 in (4.9), then

sup
QT ∪∂pQT

(u∗)+ ≤ sup
∂pQT

(u∗)+ +

∫ T

0

sup
(0,l)

f+
1 (·, s)ds.

Thus, if f1 ≤ 0, we have supQT ∪∂pQT
(u∗)+ ≤ sup∂pQT

(u∗)+. The converse inequal-

ity is always true, hence we get (4.10). We also get (4.11) by arguing similarly. �

5. Existence of solutions

We shall construct a (continuous) solution of the initial boundary value problem
(3.1)-(3.2) by Perron’s method (see [12]) under a certain condition of the initial
boundary data g. First, in Subsection 5.1, we show the existence of (possibly dis-
continuous) solutions under the hypothesis that there exist suitable subsolutions
and supersolutions of (3.1)-(3.2). Specifically, we give a construction of a subso-
lution in Lemma 5.1, and through Lemma 5.2 we show that it is in fact also a
supersolution in Lemma 5.3 and hence a solution. In Subsection 5.2, we construct
suitable subsolutions and supersolutions and guarantee the existence of the solution;
Theorem 5.6. As its by-product, we obtain the fact that the solution is bounded
and continuous. Its uniqueness follows from the comparison theorem.
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5.1. Existence by Perron’s method.

Lemma 5.1. Assume that f is continuous. Let S− and S+ be nonempty sets of
subsolutions and supersolutions of (3.1), respectively. Let functions u and v be
defined by

u(x, t) = sup{w(x, t) | w ∈ S−} and v(x, t) = inf{w(x, t) | w ∈ S+}

for (x, t) ∈ QT,0. Then, u∗ (resp. v∗) is a subsolution (resp. supersolution) of
(3.1) provided that u∗ < +∞ (resp. v∗ > −∞) in QT,0, respectively.

Proof. We perform the proof only for u, a subsolution, since the argument of a
supersolution v is the same. Let ((x̂, t̂), ϕ) ∈ QT × C2,1(QT ) be such that u∗ − ϕ
attains a strict maximum on QT at (x̂, t̂). We fix δ ∈ (0, x̂) arbitrarily. The goal is
to show that

(5.1) ϕt(x̂, t̂) ≤ J [u∗, p](x̂, t̂) +K(0,x̂−δ)[ϕ, p](x̂, t̂) +K(x̂−δ,x̂)[u
∗, p](x̂, t̂) + f(x̂, t̂),

where p = ϕx(x̂, t̂).
According to [1, Lemma V.1.6], there exist a sequence ((xε, tε), uε) ∈ QT × S−

and a neighborhood with compact closure N ∈ Nx̂,t̂ with (δ, t̂) ∈ N such that

(xε, tε) is a maximum point for u∗ε − ϕ on N and

lim
ε→0

(xε, tε, u
∗
ε(xε, tε)) = (x̂, t̂, u∗(x̂, t̂)).

(For the proof, refer to the argument leading to (4.1).) We may assume that
δ < infε xε by restricting to smaller ε. Since uε is a subsolution of (3.1), by
Proposition 3.4 we have

ϕt(xε, tε) ≤J [u
∗
ε, pε](xε, tε) +K(0,xε−δ)[ϕ, pε](xε, tε)

+K(xε−δ,xε)[u
∗
ε, pε](xε, tε) + f(xε, tε),

(5.2)

where pε = ϕx(xε, tε). The definition of u implies u∗ε ≤ u∗ in QT,0 and hence
Lemma 2.5 is now applicable. It yields,

lim sup
ε→0

(J [u∗ε, pε](xε, tε) +K(0,xε−δ)[ϕ, pε](xε, tε) +K(xε−δ,xε)[u
∗
ε, pε](xε, tε))

≤ J [u∗, p](x̂, t̂) +K(0,x̂−δ)[ϕ, p](x̂, t̂) +K(x̂−δ,x̂)[u
∗, p](x̂, t̂).

Therefore, we get (5.1) by taking the limit supremum in (5.2) as ε→ 0. �

Lemma 5.2. Let η be a supersolution of (3.1) and let S− be a nonempty set of
subsolutions v of (3.1) that satisfies v ≤ η in QT,0. If u∗ ∈ S− is not a supersolution
of (3.1) while u∗ > −∞ in QT,0, then there exist a function w such that w ∈ S−

and a point (y, s) ∈ QT such that u(y, s) < w(y, s).

Proof. Since u∗ ∈ S− is not a supersolution of (3.1), there is ((x̂, t̂), ϕ) ∈ QT ×
(C2,1(QT ) ∩ C(QT,0)) such that u∗ − ϕ attains a strict minimum on QT,0 at (x̂, t̂)
and

(5.3) ϕt(x̂, t̂) < J [ϕ, p](x̂, t̂) +K(0,x̂)[ϕ, p](x̂, t̂) + f(x̂, t̂),

where p = ϕx(x̂, t̂); see Proposition 3.3 (ii). We may assume that (u∗−ϕ)(x̂, t̂) = 0
by replacing ϕ with ϕ + (u∗ − ϕ)(x̂, t̂) if necessary. It follows immediately from
Lemma 2.5 that (x, t) 7→ J [ϕ, px,t](x, t) +K(0,x)[ϕ, px,t](x, t) with px,t = ϕx(x, t) is
continuous in QT . Thus there is r > 0 such that

(5.4) ϕt(x, t) < J [ϕ, px,t](x, t) +K(0,x)[ϕ, px,t](x, t) + f(x, t)
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holds for all (x, t) ∈ B2r := QT ∩B2r(x̂, t̂).
We see that u∗ satisfies ϕ ≤ u∗ ≤ η in QT,0 by the definition. Suppose ϕ = η∗

at (x̂, t̂). Then minQT,0
(η∗ − ϕ) = (η∗ − ϕ)(t̂, x̂) so (5.3) is contradictory since

η is a supersolution of (3.1). Thus we know that ϕ < η at (x̂, t̂). We set λ :=
1
2 (η−ϕ)(x̂, t̂) > 0. The lower semicontinuity of η∗−ϕ implies that ϕ+λ ≤ η in B2r

by letting r smaller if necessary. Since u∗ > ϕ in QT,0 \ {(x̂, t̂)}, there is λ′ ∈ (0, λ)
such that ϕ+ 2λ′ ≤ u∗ in QT,0 \Br.

Define w : QT,0 → R by

w(x, t) =

{

u(x, t) ∨ (ϕ(x, t) + λ′) for (x, t) ∈ Br,

u(x, t) for (x, t) ∈ QT,0 \Br.

We show that w is the desirable function in the statement of this lemma. In order
to show that w ∈ S−, it suffices to prove that w∗ is a subsolution of (3.1) since it
is clear that w ≤ η in QT,0 by the construction. To this end, we take((ŷ, ŝ), ψ) ∈
QT × (C1,2(QT ) ∩ C(QT,0)) such that maxQT,0

(w∗ − ψ) = (w∗ − ψ)(ŷ, ŝ) and aim
to show

(5.5) ψt(ŷ, ŝ) ≤ J [ψ, q](ŷ, ŝ) +K(0,ŷ)[ψ, q](ŷ, ŝ) + f(ŷ, ŝ).

We may assume that (w∗ − ψ)(ŷ, ŝ) = 0.
In the case that w∗ = u∗ at (ŷ, ŝ), we see maxQT,0

(u∗ − ψ) = (u∗ − ψ)(ŷ, ŝ).
Since u∗ is a subsolution of (3.1), then (5.5) is obtained by Lemma 5.1.

In the case that w∗ = ϕ + λ′ at (ŷ, ŝ), we see that maxQT,0
(ϕ + λ′ − ψ) =

(ϕ + λ′ − ψ)(ŷ, ŝ) = 0. Evidently, ψy = ϕx and ψs = ϕt at (ŷ, ŝ). By definition of
w, it is clear that w∗(ŷ − z, ŝ) ≥ ϕ(ŷ − z, ŝ) + λ′ for all z ∈ [0, ŷ] and hence

ψ(ŷ − z, ŝ)− ψ(ŷ, ŝ)− ϕ(ŷ − z, ŝ) + ϕ(ŷ, ŝ) = ψ(ŷ − z, ŝ)− ϕ(ŷ − z, ŝ)− λ′

≥ ψ(ŷ − z, ŝ)− w∗(ŷ − z, ŝ)

≥ 0.

This implies that

J [ψ, q](ŷ, ŝ) ≥ J [ϕ, pŷ,ŝ](ŷ, ŝ) and K(0,ŷ)[ψ, q](ŷ, ŝ) ≥ K(0,ŷ)[ϕ, pŷ,ŝ](ŷ, ŝ),

where q = ψy(ŷ, ŝ). Since w = u in QT,0 \Br, (ŷ, ŝ) ∈ Br and thus, by using (5.4),
we obtain (5.5) as

ψt(ŷ, ŝ)− J [ψ, q](ŷ, ŝ)−K(0,ŷ)[ψ, q](ŷ, ŝ)− f(ŷ, ŝ)

≤ ϕt(ŷ, ŝ)− J [ϕ, pŷ,ŝ](ŷ, ŝ)−K(0,ŷ)[ϕ, pŷ,ŝ](ŷ, ŝ)− f(ŷ, ŝ)

≤ 0.

There is a sequence (xε, tε) ∈ QT,0 such that limε→0(xε, tε, u(xε, tε)) = (x̂, t̂, u∗(x̂, t̂)).
Then we have

lim inf
ε→0

(w(xε, tε)− u(xε, tε)) ≥ lim
ε→0

(ϕ(xε, tε) + λ′ − u(xε, tε)) = λ′ > 0.

This means that there is a point (x, t) ∈ QT such that w(x, t) > u(x, t). The proof
is now complete. �

Lemma 5.3. Assume that f and g are continuous. Let ξ be a subsolution (re-
spectively, η be a supersolution) of (3.1)-(3.2), satisfying η∗ < +∞ and ξ∗ > −∞
in QT ∪ ∂pQT . Suppose that ξ ≤ η in QT ∪ ∂pQT and ξ∗ = η∗ = g in ∂pQT .
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Then, there exists a (possibly discontinuous) solution u of (3.1)-(3.2) that satisfies
ξ ≤ u ≤ η in QT ∪ ∂pQT and u = g on ∂pQT .

Proof. Let S be a set of subsolutions w of (3.1)-(3.2) that satisfies w ≤ η in QT ∪
∂pQT . We notice that S 6= ∅ since ξ ∈ S. We define

u(x, t) := sup{w(x, t) | w ∈ S} for (x, t) ∈ QT ∪ ∂pQT .

Lemma 5.1 ensures that u∗ is a subsolution of (3.1). If u∗ were not a supersolution
of (3.1), then by Lemma 5.2 there would exist a subsolution w of (3.1) and a point
(y, s) ∈ QT such that u(y, s) < w(y, s). But this contradicts the maximality of
u. Thus, u∗ must be a supersolution of (3.1). Thus we see that u is a solution of
(3.1). It is clear from the definition of u that ξ ≤ u ≤ η in QT ∪ ∂pQT , so that
ξ∗ ≤ u∗ ≤ u ≤ u∗ ≤ η∗ in QT ∪ ∂pQT . Since ξ∗ = η∗ = g on ∂pQT , we have
u∗ = u∗ = u = g on ∂pQT . �

5.2. Construction of suitable sub- and supersolutions. In order to obtain a
subsolution and a supersolution satisfying the condition of Lemma 5.3, we construct
subsolutions and supersolutions agreeing with the boundary data and the initial
data in Proposition 5.4 and Proposition 5.5, respectively. Here, we only present the
proof for subsolutions since the same is applied to supersolutions. The method of
construction follows the conventional one, e.g., [7] (see also [5]).

Proposition 5.4. Assume that f is bounded continuous and g is uniformly con-
tinuous. Then, there are a bounded subsolution ξ1 and a bounded supersolution η1
of (3.1)-(3.2) that satisfy ξ1 = η1 = g on {0, l} × [0, T ).

Proof. For (y, s) ∈ {0, l} × [0, T ) and ε > 0 we define ξy,s,ε1 : QT ∪ ∂pQT → R by

ξy,s,ε1 (x, t) = g(y, s)− 2ε− (M1 +M2 + ‖f‖∞)ρy(x)−M2|t− s|.

Here M1 and M2 are positive constants to be chosen later and

(5.6) ρy(x) =











−
1

Γ(2 + α)
x1+α +

C

Γ(1 + α)
xα when y = 0,

−
1

Γ(2 + α)
(x1+α − L1+α) when y = l,

where C > l/(1 + α). Subsequently, we will supress the superindex y. Note that
ρ ∈ C2(0, l)∪C[0, l) and it satisfies ρ′ ∈ L1(0, l), ρ(y) = 0, ρ > 0 in [0, l] \ {y}, and
(Dα

xρ)x = −1 in (0, l). The last one can be verified using the well-known formula

(5.7) Dα
xx

β =
Γ(β + 1)

Γ(β − α+ 1)
xβ−α for β > −1.

We claim that ξy,s,ε1 is a subsolution of (3.1)-(3.2) if M1 and M2 are taken
large enough. To see this, we first take ((x̂, t̂), ϕ) ∈ QT × C2,1(QT ) such that
maxQT

(ξy,s,ε1 − ϕ) = (ξy,s,ε1 − ϕ)(x̂, t̂). Then, ϕt(x̂, t̂) ≤M2 because

ϕ(x̂, t̂)− ϕ(x̂, t̂− h) ≤ ξy,s,ε1 (x̂, t̂)− ξy,s,ε1 (x̂, t̂− h)

= −M2(|t̂− s| − |t̂− h− s|)

≤M2h
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for small h > 0. Moreover, by setting p := ϕx(x̂, t̂) = (ξy,s,ε1 )x(x̂, t̂), Proposition 2.1
and the definition of ρ imply

J [ξy,s,ε1 , p](x̂, t̂) +K(0,x̂)[ξ
y,s,ε
1 , p](x̂, t̂)

= −(M1 +M2 + ‖f‖∞)(J [ρ, ρ′(x̂)](x̂, t̂) +K(0,x̂)[ρ, ρ
′(x̂)](x̂, t̂))

= −(M1 +M2 + ‖f‖∞)(Dα
xρ)x(x̂)

=M1 +M2 + ‖f‖∞.

Thus, we have

ϕt(x̂, t̂)− J [ξy,s,ε1 , p](x̂, t̂)−K(0,x̂)[ξ
y,s,ε
1 , p](x̂, t̂)− f(x̂, t̂)

≤M2 − (M1 +M2 + ‖f‖∞)− f(x̂, t̂) ≤ 0,

which means that ξy,s,ε1 is a subsolution of (3.1).
We next choose M1 and M2 so that

M1 ≥ sup
x∈[0,l]\{y}

(ω(|x − y|)− ε)+

ρ(x)
, M2 ≥ sup

t∈[0,T )\{s}

(ω(|t− s|)− ε)+

|t− s|
,

where ω : [0,∞) → [0,∞) is a continuity modulus of g on ∂pQT :

|g(x, t)− g(y, s)| ≤ ω(|x− y|+ |t− s|) for all (x, t), (y, s) ∈ ∂pQT .

Then, for all (x, t) ∈ ∂pQT ,

ξy,s,ε1 (x, t) ≤ g(y, s)− 2ε−M1ρ(x)−M2|t− s|

≤ g(x, t) + ω(|x− y|) + ω(|t− s|)− 2ε−M1ρ(x) −M2|t− s|

≤ g(x, t).

(5.8)

Thus, ξy,s,ε1 satisfies the boundary condition and therefore we see that it is a sub-
solution of (3.1)-(3.2).

Now, we define the function ξ1 on QT ∪ ∂pQT by

ξ1(x, t) = (sup{ξy,s,ε1 (x, t) | (y, s) ∈ {0, l} × [0, T ), ε > 0})∗.

The uniformly continuity of g implies that it is bounded in {0, l} × [0, T ). Hence
ξy,s,ε1 ≤ ‖g‖∞ < +∞ in QT ∪∂pQT , that is, ξ1 is bounded from above in QT ∪∂pQT .
Thus, Lemma 5.1 together with (5.8) guarantee that ξ1 is a subsolution of (3.1)-

(3.2). Furthermore, (5.8) and the fact that ξ1(x, t) ≥ supε>0 ξ
x,t,ε
1 (x, t) = g(x, t)

for (x, t) ∈ {0, l} × [0, T ) implies that ξ1 = g on {0, l} × [0, T ). Finally, since

ξy,s,11 ≤ ξ1 ≤ g in QT ∪ ∂pQT for each (y, s) ∈ {0, l} × [0, T ) and ξy,s,11 is bounded
in QT ∪ ∂pQT , then ξ1 is bounded from below and, as a result , it is bounded in
QT ∪ ∂pQT . �

Proposition 5.5. Assume that f is bounded and continuous, and g is uniformly
continuous. Then, there are a bounded subsolution ξ2 and a bounded supersolution
η2 of (3.1)-(3.2) that satisfy ξ2 = η2 = g in (0, l)× {0}.

Proof. For y ∈ (0, l) and ε > 0 we define ξy,ε2 : QT ∪ ∂pQT → R by the following
formula,

ξy,ε2 (x, t) = g(y, 0)− 2ε−N1σ
y(x)− (N2 + ‖f‖∞)t.

Here N1 and N2 are positive constants to be chosen later and

(5.9) σy(x) =
1

α
y1+α −

1 + α

α
yxα + x1+α.
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Subsequently, we will suppress the superindex y. We note that ξy,ε2 ∈ C(QT,0).
We claim that ξy,ε2 is a subsolution of (3.1)-(3.2) if N1 and N2 are taken large

enough. The direct computations using (5.7) imply

(ξy,ε2 )t(x, t)− (Dα
x ξ

y,ε
2 )x(x, t)− f(x, t) = −(N2 + ‖f‖∞)−N1Γ(2 + α) − f(x, t) ≤ 0

for all (x, t) ∈ QT . Hence, the consistency result, see Proposition 3.2, implies that
ξy,ε2 is a viscosity subsolution of (3.1).

We choose N1 and N2 so that

N1 ≥ sup
x∈[0,l]\{y}

(ω(|x − y|)− ε)+

σ(x)
and N2 ≥ sup

t∈[0,T )

(ω(t)− ε)+

t
.

where ω is the continuity modulus of g. Then, for all (x, t) ∈ ∂pQT we have

ξy,ε2 (x, t) ≤ g(y, 0)− 2ε−N1σ(x) −N2t

≤ g(x, t) + ω(|x− y|) + ω(t)− 2ε−N1σ(x) −N2t

≤ g(x, t).

Therefore ξy,ε2 is a subsolution of (3.1)-(3.2).
We define the function ξ2 on QT ∪ ∂pQT by

ξ2(x, t) = (sup{ξy,ε2 (x, t) | y ∈ (0, l), ε > 0})∗

It can be proved with the same idea as for ξ1 in Proposition 5.4 that ξ2 = g in
(0, l)× {0} and ξ2 is bounded in QT ∪ ∂pQT , so we omit the details here. �

Theorem 5.6. Assume that f is bounded and continuous, and g is uniformly
continuous. Then, there exists a bounded solution u ∈ C(QT ∪ ∂pQT ) of (3.1)-
(3.2).

Proof. Let ξ1 and ξ2 be subsolutions of (3.1)-(3.2) from Propositions 5.4 and 5.5,
respectively. Then, we easily see that ξ = ξ1 ∨ ξ2 is a bounded subsolution of (3.1)-
(3.2) that satisfies ξ = g on ∂pQT . Similarly, we have a bounded supersolution
of the form η := η1 ∧ η2, which satisfies η = g on ∂pQT , where η1 and η2 are
supersolutions given in Propositions 5.4 and 5.5. Theorem 4.1 implies that ξ ≤ η in
QT ∪ ∂pQT . Thus, by Lemma 5.3 we have a solution u of (3.1)-(3.2) that satisfies
ξ ≤ u ≤ η in QT ∪∂pQT and u = g on ∂pQT . Using Theorem 4.1 again, we see that
u∗ ≤ u∗ in QT ∪ ∂pQT , while the converse always holds. Therefore u is continuous
in QT ∪ ∂pQT and it satisfies

lim
δ→0+

{|u(y, s)− g(x, t)| | (y, s) ∈ (QT ∪ ∂pQT ) ∩Bδ(x, t)} = 0

for each (x, t) ∈ ∂pQT . �

6. Stability

The solution constructed in the previous section has a good stability property.
In this section we establish two typical results, one of which shows consistency with
viscosity solution in the integer-order case.

Theorem 6.1. Assume that f is continuous. For α ∈ (0, 1) let uα be a subsolution
(resp. a supersolution) of (3.1) in which the fractional order is α. Let β ∈ [0, 1]
and set

uβ = lim sup
α→β,α6=β

∗uα (resp. uβ = lim inf
α→β,α6=β

∗uα).
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If uβ < +∞ (resp. uβ > −∞), then uβ (resp. uβ) is a subsolution (resp. super-
solution) in QT,0 of (3.1) in which the fractional order is β. Here subsolutions u0
and u1 (resp. supersolutions u0 and u1) are in the usual viscosity sense.

In this theorem uβ and uβ stand for the upper half-relaxed limit and the lower
half-relaxed limit, respectively. Namely,

uβ(x, t) = ( lim sup
α→β,α6=β

∗uα)(x, t)

= lim
δ→0+

sup{uα(y, s) | (y, s) ∈ QT,0 ∩Bδ(x, t), 0 < |α− β| < δ}

and uβ := −(−u)β . Note that uβ : QT,0 → R∪{+∞} is upper semicontinuous and

uβ : QT,0 → R ∪ {−∞} is lower semicontinuous; cf. [1, Lemma V.1.5].
The proof of Theorem 6.1 is based on two lemmas. Here is the first one:

Lemma 6.2. Let β ∈ (0, 1). For α ∈ (0, 1) let uα : QT,0 → R be an upper
semicontinuous function. Assume that uβ < +∞ in QT,0 and uβ − ϕ attains a

strict maximum on QT at (x̂, t̂) ∈ QT for ϕ ∈ C2,1(QT ). Let δ ∈ (0, x̂) be a
constant. Then, there exists a neighborhood N ∈ Nx̂,t̂ with the compact closure,

sequences (xε, tε) ∈ N and αε ∈ (0, 1) \ {β} such that (xε, tε) is a maximum point
for u∗αε

− ϕ on N and

lim
ε→0

(αε, xε, tε, u
∗
αε
(xε, tε)) = (β, x̂, t̂, uβ(x̂, t̂)).

Proof. The proof is a trivial modification of [1, Lemma V.1.6]. �

Lemma 6.3. Let {f(·;λ)}λ∈Λ ⊂ C2[0, l], where Λ is an index set. Assume that

sup
λ∈Λ

‖f ′(·;λ)‖∞ < +∞

and supλ∈Λ |f ′(x;λ)| ≤ Cx1+ν for a constant C > 0 and ν > 0 as x→ 0+. Then,

lim
α→0+

sup
(x,λ)∈[0,l]×Λ

|(Dα
x f)x(x;λ) − f ′(x;λ)| = 0

and

lim
α→1−

sup
(x,λ)∈[0,l]×Λ

|(Dα
x f)x(x;λ) − f ′′(x;λ)| = 0.

Proof. If f does not depend on λ, this proposition follows easily from known facts.
Indeed, if we denote the Riemann-Liouville derivative by RLDα

x , i.e.,

RLDα
xg(x) =

1

Γ(1− α)

d

dx

∫ x

0

g(y)

(x− y)α
dy

for a function g ∈ C1(0, l), then (Dα
xf)x(x) = RLDα

xf
′(x), where f(·) := f(·;λ).

Using the known formula (see [8, Lemma 3.4] for example) we have

RLDα
x f

′(x) =
f ′(0)

Γ(1− α)xα
+Dα

x f
′(x) = Dα

x f
′(x),

where we used the fact f ′(0) = 0 by the assumption. Let J1−α denote the Riemann-
Liouville integral:

J1−αg(x) =
1

Γ(1 − α)

∫ x

0

g(y)

(x− y)α
dy
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for a given function g, where J0 is the identity operator. ThenDα
xf

′(x) = J1−αf ′′(x).
According to [8, Theorem 2.10] we see that under the assumptions of this proposi-
tion,

(6.1) lim
α→0+

sup
x∈[0,l]

|J1−αf ′′(x) − J1f ′′(x)| = 0

and

(6.2) lim
α→1−

sup
x∈[0,l]

|J1−αf ′′(x)− J0f ′′(x)| = 0.

Since J1f ′′(x) = f ′(x)− f ′(0) = f ′(x) and J0f ′′(x) = f ′′(x), the conclusion in the
case that f does not depend on λ turns out.

If f depends on λ, then it is necessary to show that the convergence is also
uniform in λ. Taking into account the above argument, it suffices to prove that the
limits (6.1) and (6.2) are uniform in λ. However, the proof is quite similar to that
of [8, Theorem 2.10]. It exploits the fact that we have the bounds on f ′, which are
uniform with respect to λ. We leave the details of the proof to the reader. �

Proof of Theorem 6.1. Since the proof for supersolutions is similar, we give the
proof for subsolutions.

Let ((x̂, t̂), ϕ) ∈ QT × C2,1(QT ) be such that ūβ − ϕ attains a strict maximum

on QT at (x̂, t̂). Fix δ ∈ (0, x̂) arbitrarily. By Lemma 6.2 we have a neighborhood
N ∈ Nx̂,t̂ with compact closure and (δ, t̂) ∈ N , sequences (xε, tε) ∈ N and αε ∈
(0, 1) \ {β} such that (xε, tε) is a maximum point for u∗αε

− ϕ on N and

(6.3) lim
ε→0+

(αε, xε, tε, u
∗
αε
(xε, tε)) = (β, x̂, t̂, uβ(x̂, t̂)).

We may assume that δ < infε xε. Note that u∗αε
≤ ūβ in QT,0 by definition of uβ.

The case of β 6= 0, 1 is easy since we can use Lemma 2.5. In fact, since uαε
is a

subsolution of (3.1) with the fractional order αε,

ϕt(xε, tε) ≤J
αε [u∗αε

, pε](xε, tε) +Kαε

(0,xε−δ)[ϕ, pε](xε, tε)

+Kαε

(xε−δ,xε)
[u∗αε

, pε](xε, tε) + f(xε, tε),

where pε = ϕx(xε, tε). Thus, we send ε→ 0 to get

ϕt(x̂, t̂) ≤J
β [ūβ, p](x̂, t̂) +Kβ

(0,x̂−δ)[ϕ, p](x̂, t̂)

+Kβ
(x̂−δ,x̂)[ūβ, p](x̂, t̂) + f(x̂, t̂) with p = ϕx(x̂, t̂),

which is the desired inequality.

Let β = 0 or β = 1. Let r > 0 be a constant such that Br(x̂, t̂) ⊂ QT . We
may assume that (xε, tε) ∈ Br(x̂, t̂) for all ε because of (6.3). We may also take
ψ ∈ C2,1(QT ∪ ∂pQT ) that satisfies ψ = ϕ in Br(x̂, t̂), maxQT,0

(uαε
− ψ) = (uαε

−
ψ)(xε, tε), supt∈[t̂−r,t̂+r] ‖ψx(·, t)‖∞ < ∞, and supt∈[t̂−r,t̂+r] |ψx(·, t)| ≤ Cx1+ν for

some C > 0 and ν > 0 as x→ 0+. Then we have

ψt(xε, tε) ≤ (Dα
xψ)x(xε, tε) + f(xε, tε).

In order to pass to the limit with ε → 0 we invoke Proposition 6.3 with f(x;λ) =
ψ(x, t) and Λ = [t̂− r, t̂+ r]. This leads us to

(6.4) ψt(x̂, t̂) ≤ ψx(x̂, t̂) + f(x̂, t̂) if β = 0
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and
ψt(x̂, t̂) ≤ ψxx(x̂, t̂) + f(x̂, t̂) if β = 1.

These are desired inequalities since ψt = ϕt and ψxx = ϕxx at (x̂, t̂). �

Remark 6.4. In the case of β = 0, we usually take test functions from C1(QT ),
as a result one may think that the above proof is not complete. However, in the
definition of viscosity solutions, we may use test functions having higher order
derivatives; cf., e.g., [9, Proposition 2.2.3]. Therefore, we conclude that u0 is a
subsolution after obtaining (6.1).

Proposition 6.5. Let u : QT ∪ ∂pQT → R be a solution of

(6.5)

{

ut = (Dα
xu)x + f in QT ,

u = g on ∂pQT ,

where f ∈ C(QT ) and g ∈ C(∂pQT ). For ε > 0 let uε : QT ∪ ∂pQT → R be a
solution of

(6.6)

{

(uε)t = (Dα
xuε)x + fε in QT ,

uε = gε on ∂pQT .

Here fε ∈ C(QT ) and gε ∈ C(∂pQT ). Assume that ‖gε − g‖∞ → 0 as ε→ 0. Then
limε→0 ‖uε − u‖∞ = 0.

Proof. Corollary 4.3 implies that

sup
QT∪∂pQT

|uε − u| ≤ sup
∂pQT

|gε − g|+

∫ T

0

sup
x∈(0,l)

|(fε − f)(x, s)|ds.

The right-hand side vanishes as ε → 0 so the conclusion is immediately obtained.
�

7. Regularity of solution

In this section we study regularity by restricting the initial boundary condition
g to be Lipschitz continuous. Let us denote the Lipschitz constant of g by Lg in
what follows.

Proposition 7.1. Assume that f is bounded and continuous, and g is bounded
Lipschitz continuous. Let u be the solution to (3.1)-(3.2). Then, there exist L1 > 0
and L2 > 0 such that for all (x, t) ∈ QT ∪ ∂pQT

|u(x, t)− u(0, t)| ≤ L1x
α

and
|u(x, t)− u(l, t)| ≤ L2|l − x|.

Proof. For (y, s) ∈ {0, l} × [0, T ) we define ξy,s : QT ∪ ∂pQT → R by the following
formula

ξy,s(x, t) = g(y, s)− ((1 + (cy)−1)Lg + ‖f‖∞)ρ(x) − Lg|t− s|.

Here, ρ is the same function as (5.6) and

cy =

{

ρ(l)/l when y = 0,

ρ(0)/l when y = l.

However, later on we will suppress the superscript y.
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Using the method of the proof of Proposition 5.4 we can show that ξy,s is a
subsolution of (3.1) and satisfies ξy,s ≤ ‖g‖∞ < +∞, except for the difference of
constants. Moreover, since ρ(x) ≥ c|y − x| for x ∈ [0, l], then we have

ξy,s(x, t) ≤ g(y, s)− c−1Lg · c|y − x| − Lg|t− s| ≤ g(x, t) for all (x, t) ∈ ∂pQT .

Thus, we know that (sup(y,s)∈{0,l}×[0,T ) ξ
y,s)∗ is a bounded subsolution of (3.1)-

(3.2) by virtue of Lemma 5.1. Theorem 4.1 yields u ≥ (sup(y,s)∈{0,l}×[0,T ) ξ
y,s)∗ in

QT ∪ ∂pQT , so we get the estimate

u(x, t) ≥ g(y, t)− ((1 + c−1)Lg + ‖f‖∞)ρ(x)

for all (x, t) ∈ QT ∪ ∂pQT and y ∈ {0, l}. Observing that

ρ(x) ≤











C

Γ(1 + α)
xα when y = 0,

(1 + α)lα

Γ(2 + α)
|l − x| when y = l

for x ∈ [0, l], we immediately obtain the one-side of the desired estimate.
Similarly, it can be proved that ηy,s : QT ∪ ∂pQT → R defined by

ηy,s(x, t) = g(y, s) + ((1 + c−1)Lg + ‖f‖∞)ρ(x) + Lg|t− s|

is a supersolution of (3.1)-(3.2) and satisfies vs ≥ −‖g‖∞ > −∞ in QT ∪ ∂pQT .
Thus (inf(y,s)∈{0,l}×[0,T ) η

y,s)∗ is a bounded supersolution of (3.1)-(3.2) and a sim-
ilar estimate yields the other side of the desired estimate. �

Proposition 7.2. Assume that f is bounded and continuous, and g is bounded and
Lipschitz continuous. Let u be the solution to (3.1)-(3.2). Then, for each t ∈ [0, T ),
u(·, t) is locally Lipschitz continuous in (0, l].

Proof. To prove this proposition we follow the argument presented in [2], where the
Ishii-Lions method [13] is extended to non-local equations. Fix x̂ ∈ (0, l] arbitrarily.

Step 1 Given constants L > 0, C > 0 and η > 0 we define

ΦL,C,η(x, t, y) := u(x, t)− u(y, t)− Lφ(|x− y|)− C1|x− x̂|2 −
2

η(T − t)

for all (x, t, y) ∈ U := [0, l]× [0, T )× [0, l], where φ is the concave function defined
by

φ(r) =

{

r − r1+α (0 ≤ r ≤ r̂),

r̂ − r̂1+α (r > r̂)

and r̂ := arg max r≥0(r − r1+α) = (α+ 1)−1/α < 1. We claim that there is C such
that supU ΦL,C,η ≤ 0 for all large L and all large η. Before showing this claim in
Step 2, we will present its consequences. Namely, we see that for (y, t) ∈ QT ∪∂pQT

such that |y − x̂| ≤ r̂ we have

0 ≥ sup
U

ΦL,C,η

≥ ΦL,C,η(x̂, t, y)

≥ u(x̂, t)− u(y, t)− L|x̂− y| −
2

η(T − t)

since φ(r) ≥ r for r ∈ [0, r̂]. Then, after letting η to infinity we obtain u(y, t) ≥
u(x̂, t)− L|x̂− y|. If we interchange the role of x and y, then we come to u(x̂, t) ≥
u(y, t)− L|x̂− y|. This yields the Lipschitz continuity of u(·, t).
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Step 2 In order to show the claim made in Step 1, let us suppose the contrary:
for all C, there is L as large as we wish such that supU ΦL,C,η > 0. In this case
we first study maximum points of ΦL,C,η, which exist in U , because u is bounded
and ΦL,C,η → −∞ as t → T . Let us denote a maximum point by (x̄, t̄, ȳ). Since
ΦL,C,η(x̄, t̄, ȳ) ≥ ΦL,C,η(x̂, 0, x̂) = −2/(ηT ), by rearranging the formula for Φ and
considering large η, we have

(7.1) Lφ(|x̄− ȳ|) + C|x̄ − x̂|2 ≤ u(x̄, t̄)− u(ȳ, t̄) +
2

ηT
≤ 3‖u‖∞.

Thus, we may assume that x̄, ŷ ∈ (0, l] and |x̄ − ȳ| ≤ r̂ by taking large L and C.
At this point it is good to recall also the choice of x̂. Moreover, x̄ 6= ȳ, because
ΦL,C,η(x̄, t̄, x̄) > 0, but this is a contradiction.

Let us suppose that x̄ = l. Since φ(|x̄− ȳ|) ≥ (1− r̂α)|x̄− ȳ| by the definition of
φ, together with Proposition 7.1, we have

sup
U

ΦL,C,η = u(l, t̄)− u(ȳ, t̄)− Lφ(|l − ȳ|)− C|l − x̂|2 −
2

η(T − t̄)

≤ u(l, t̄)− u(ȳ, t̄)− Lφ(|l − ȳ|)

≤ (L2 − L(1− r̂α))|l − ȳ|,

where L2 is the same constant as in the statement of Proposition 7.1. Thus x̄ 6= l
for suitably large L. It can be seen that ȳ 6= l for the same reason. Furthermore,
we also see t̄ 6= 0 by arguing similarly using the Lipschitz continuity of g instead of
Proposition 7.1.

Step 3 Given ε > 0 we define

ΦL,C,η,ε(x, t, y, s) :=

u(x, t)− u(y, t)− Lφ(|x− y|)− C|x− x̂|2 −
1

η(T − t)
−

1

η(T − s)
−

(t− s)2

ε

for (x, t), (y, s) ∈ QT ∪ ∂pQT . There is a maximum point (xε, tε, yε, sε) and it
converges to a maximum point of Φ on U by taking a subsequence if necessary.
We denote the limit by (x̄, t̄, ȳ, t̄) although it is not necessarily the same as the
previous one. Due to Step 2 we may assume that (xε, tε), (yε, sε) ∈ QT and 0 <
|xε − yε| ≤ r̂ by considering suitably small ε. Since (x, t) 7→ ΦL,C,η,ε(x, t, yε, sε)
attains a maximum at (xε, tε). Since it is sufficiently smooth we use it as test
function, hence we have

1

η(T − tε)2
+

2(tε − sε)

ε
≤ J [u, pε+ qε](xε, tε)+K(0,xε)[u, pε+ qε](xε, tε)+f(xε, tε),

where pε = Lφ′(|eε|)êε and qε = 2C(xε − x̂). Here and hereafter we write eε =
xε − yε, êε = eε/|eε|, e = x̄ − ȳ, and ê = e/|e|. Similarly, since (y, s) 7→
−ΦL,C,η,ε(xε, tε, y, s) attains a minimum at (yε, sε), we have

−
1

η(T − sε)2
+

2(tε − sε)

ε
≥ J [u, pε](yε, sε) +K(0,yε)[u, pε](yε, sε) + f(yε, sε).
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Subtracting the second inequality from the first inequality yields

1

η(T − tε)2
+

1

η(T − sε)2
≤ J [u, pε + qε](xε, tε)− J [u, pε](yε, sε)

+K(0,xε)[u, pε + qε](xε, tε)−K(0,yε)[u, pε](yε, sε)

+ f(xε, tε)− f(yε, sε).

We claim that the right-hand side can be negative when choosing sufficiently large
L after sending ε to 0. This clearly gives a contradiction.

Step 4 We shall prove the claim made at the end of previous Step. It is easy to
see by a straightforward calculation that

lim
L→∞

lim
ε→0

(J [u, pε + qε](xε, tε)− J [u, pε](yε, sε)) = 0.

Thus, we only estimate the termKε := K(0,xε)[u, pε+qε](xε, tε)−K(0,yε)[u, pε](yε, sε)
after splitting it into two expressions,

Kε,1 = K(δ,xε)[u, pε + qε](xε, tε)−K(δ,yε)[u, pε](yε, sε)

and

Kε,2 = K(0,δ)[u, pε + qε](xε, tε)−K(0,δ)[u, pε](yε, sε).

Here, δ is a constant such that supε |eε|/2 < δ < infε |eε|. Notice that we may
assume that supε |eε| < infε(xε ∧ yε) for sufficiently large L.

Thanks to the boundedness of u, the dominated convergence theorem is appli-
cable to Kε,1, giving

(7.2) lim
ε→0

Kε,1 = K(δ,x̄)[u, p+ q](x̄, t̄)−K(δ,ȳ)[u, p](ȳ, t̄),

where p = Lφ′(|e|)ê and q = 2C(x̄ − x̂). We shall further estimate the right-hand
side by dividing it into

K1,1 = K(δ,x̄∧ȳ)[u, p+ q](x̄, t̄)−K(δ,x̄∧ȳ)[u, p](ȳ, t̄)

and

K1,2 = K(x̄∧ȳ,x̄)[u, p+ q](x̄, t̄)−K(x̄∧ȳ,ȳ)[u, p](ȳ, t̄).

Since ΦL,C,η(x̄, t̄, ȳ) ≥ ΦL,C,η(x̄− z, t̄, ȳ − z), i.e.,

u(x̄− z, t̄)− u(x̄, t̄)− u(ȳ − z, t̄) + u(ȳ, t̄) ≤ C(|x̄ − x̂− z|2 − |x̄− x̂|2)

for all z ∈ [0, x̄ ∧ ȳ], then we have

(7.3) K1,1 ≤ Cα

∫ x̄∧ȳ

δ

Cz2
dz

zα+2
=

CαC

1− α
((x̄ ∧ ȳ)1−α − δ1−α),

where Cα = α(α + 1)/Γ(1 − α). Let us assume x̄ < ȳ temporarily. Then, since
ΦL,C,η(x̄, t̄, ȳ) ≥ ΦL,C,η(x̄, t̄, ȳ − z), i.e,

−u(ȳ − z, t̄) + u(ȳ, t̄) ≤ L(φ(|z + (x̄− ȳ)|)− φ(|x̄ − ȳ|))

for all z ∈ [x̄, ȳ], we have

K1,2 = −K(x̄,ȳ)[u, p](ȳ, t̄) ≤ Cα

∫ ȳ

x̄

(L(φ(|z + e|)− φ(|e|)) − pz)
dz

zα+2
.

The monotonicity of φ implies that φ(|z + e|) ≤ φ(z + |e|). Keeping this in mind,
the concavity of φ implies that

L(φ(|z + e|)− φ(|e|)) − pz ≤ Lφ′(|e|)z − pz ≤ 2Lφ′(|e|)z
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and hence

(7.4) K1,2 ≤ 2CαLφ
′(|e|)

∫ ȳ

x̄

dz

zα+1
=

2CαLφ
′(|e|)

α

(

1

x̄α
−

1

ȳα

)

.

Since we have ȳα − x̄α ≤ |ȳ − x̄|α, then we obtain

K1,2 ≤ 2CαLφ
′(|e|)

|ȳ − x̄|α

δ2α
.

We note that (7.1) implies that L|x̄− ȳ| ≤ 3‖u0‖∞. Hence, we obtain the following
bound on K1,2,

K1,2 ≤ 6CαL
1−α‖u0‖

α
∞δ

−2α.

We also have

ΦL,C,η,ε(xε, tε, yε, sε) ≥ ΦL,C,η,ε(xε − z, tε, yε, sε),

that is,

u(xε−z, tε)−u(xε, tε) ≤ L(|φ(|xε−yε−z|)−φ(|xε−yε|))+C(|xε−x̂−z|
2−|xε−x̂|

2)

and

ΦL,C,η,ε(xε, tε, yε, sε) ≥ ΦL,C,η,ε(xε, tε, yε − z, sε),

that is,

−u(yε − z, sε) + u(yε, sε) ≤ L(|φ(|xε − yε + z|)− φ(|xε − yε|))

for all z ∈ [0, δ]. Thus, it is readily seen that

Kε,2 ≤ Cα

∫ δ

0

L(φ(|z − eε|) + φ(|z + eε|)− 2φ(|eε|)) + Cz2
dz

zα+2
.

The fundamental theorem of the calculus and the definition of φ yield

φ(|z − eε|) + φ(|z + eε|)− 2φ(|eε|) = −α(1 + α)|eε|
α−1z2

∫ 1

0

dt

∫ 1

−1

(

1 +
ztτ

|eε|

)α−1

t dτ

≤ −α(1 + α)2α−1|eε|
α−1.

Therefore, since δ > supε |eε|/2 we have

Kε,2 ≤ −2α−1α(α+ 1)CαL|eε|
α−1

∫ δ

0

dz

zα
+ CαC

∫ δ

0

dz

zα

≤
−2α−1α(α+ 1)CαL|eε|α−1δ1−α

1− α
+
CαCδ

1−α

1− α

≤
−22(α−1)α(α+ 1)CαL

1− α
+
CαCδ

1−α

1− α
.

If we combine it with the bounds on K1,1 and K1,2, which are valid independently
of ǫ, then we deduce that K is bounded above by a quantity, which tends to −∞
as L→ +∞ after ε→ 0, and so the claim is now proved. �

Proposition 7.3. Assume that f is bounded and continuous, and g is bounded and
Lipschitz continuous. Let u be the solution to (3.1)-(3.2). Then, there exists L > 0
which depends only on Lg and f such that

|u(x, t)− u(x, 0)| ≤ Lt for all (x, t) ∈ QT ∪ ∂pQT .
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Proof. For y ∈ (0, l) and ε > 0 let ξy,ε : QT ∪ ∂pQT → R be defined by

ξy,ε(x, t) = g(y, 0)− 2ε−N1σ(x) − (Lg +N2 + ‖f‖∞)t.

Here N1 and N2 are positive constants to be chosen later and σ is the same function
introduced in the proof of Proposition 5.5. Apart from the different constants, the
proof that ξy,ε is a subsolution of (3.1)-(3.2) and satisfies ξy,ε ≤ ‖g‖∞ in QT ∪∂pQT

is the same as that of Proposition 5.5. Thus, ξ defined by

ξ(x, t) = (sup{ξy,ε(x, t) | y ∈ (0, l), ε > 0})∗ for (x, t) ∈ QT ∪ ∂pQT

is a subsolution of (3.1)-(3.2).
We notice that N2 can be taken to be independent of y and ε. Recall that we

take N2 so that

N2 ≥ sup
t∈[0,T )

(Lgt− ε)+

t
.

It is easily seen that the function t 7→ (Lgt − ε)+/t is monotone increasing, hence
its maximum is (LgT − ε)+/T , which is less than Lg. Thus, it is sufficient to take
N2 such that N2 ≥ Lg.

Theorem 4.1 implies that u ≥ ξ in QT ∪ ∂pQT . Moreover, we have

ξ(x, t) ≥ sup
ε>0

(g(x, 0)− 2ε− (Lg +N2 + ‖f‖∞)t)

= g(x, 0)− (Lg + ‖f‖∞)t− inf
ε>0

2ε−N2t

= g(x, 0)− (Lg + ‖f‖∞ +N2)t.

Therefore, the one-side of the desired inequality is established with L = Lg+‖f‖∞+
N2.

Since it can proved similarly that

ηy,ε(x, t) = g(y, 0) + 2ε+N1σ(x) + (Lg +N2 + ‖f‖∞)t,

a function η := (infy∈(0,l),ε>0 η
y,ε)∗ is a supersolution of (3.1)-(3.2). Therefore,

from a similar estimate as above, the other side of the desired inequality is also
obtained immediately. �

Proposition 7.4. Assume that f is bounded and continuous, and g is bounded and
Lipschitz continuous. Let u be a unique solution to (3.1)-(3.2). Then, there exists
L > 0 which depends only on Lg and f such that

|u(x, t)− u(x, t+ h)| ≤ L|h|

for all x ∈ [0, l], (t, h) ∈ [0, T )× R such that t+ h ∈ [0, T ).

Proof. We will only show in the case h > 0, the case h < 0 is analogous. Given a
constant L > 0 we define v(x, t) := u(x, t + h) + Lh. It is easy to see that v is a
supersolution of (3.1) in (0, l) × (0, T − h). Moreover, if L is taken large enough,
we have by Proposition 7.3

v(x, 0) = u(x, h) + Lh ≥ u(x, 0)

and by Lipchitz continuity of g, for (x, t) ∈ {0, l} × (0, T − h)

v(x, t) = g(x, t+ h) + Lh ≥ g(x, t) = u(x, t).

Therefore we see that u ≤ v on ∂pQT−h. The comparison principle implies that
u ≤ v on QT−h ∪ ∂pQT−h, which is the one-side of the desired inequality. The
other-side is established by the similar argument for w(x, t) := u(x, t+h)−Lh. �
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