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ON VISCOSITY SOLUTIONS OF SPACE-FRACTIONAL
DIFFUSION EQUATIONS OF CAPUTO TYPE

TOKINAGA NAMBA AND PIOTR RYBKA

ABSTRACT. We study a fractional diffusion problem in the divergence form
in one space dimension. We define a notion of the viscosity solution. We
prove existence of viscosity solutions to the fractional diffusion problem with
the Dirichlet boundary values by Perron’s method. Their uniqueness follows
from a proper maximum principle. We also show a stability result and basic
regularity of solutions.

1. INTRODUCTION

In this paper we study the Cauchy-Dirichlet problem whose governing equation
is
(1.1) up = (Dgu)y + f in (0,1) x (0,7),

where f is a continuous function. The operator D is the spacial Caputo derivative
and, for an absolutely continuous function v, it is defined as

PN c(y)
(1.2) Div(z) = T —a) /o e

Our main goal is to introduce a notion of generalized solutions and to show that
this notion leads to the well-posedness of the Cauchy-Dirichlet problem of ([TT).

Before we engage into a theoretical development we will explain our motivation
to study such an equation. In fact, problem (L)) is a simplification of a free
boundary problem (FBP), which should be considered on a noncylindrical domain.
It is a simplification of a model of the sub-surface movement of water, under the
assumption that it moves as a saturated ‘plug’ through a soil that has a constant
moisture storage capacity, see [18]. From the point of view of modeling equation
(1) should be understood as a balance equation, where we have on the right hand
side the divergence of a flux. This would be particularly important if we were
study the multidimensional case. However, we will restrict our attention only to
the one-dimensional case, because there is plenty of open question.

In particular, it seems that the literature on well-posedness of linear problems of
the form like (IIJ) is rather limited. However, the number of papers and books on
time fractional problems is growing, so we mention just a few monographs, [§], [15]
or [IT9]. A reason for such a situation is that this line of research originated from
the Volterra integral equations, see e.g. [10].

There is number of recent papers addressing the fractional diffusion problems
from the point of view of the semigroup theory, see [3], [4]. These authors construct
a strongly continuous semigroup. A stronger result in this direction is obtained in
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[1I7], where the author shows that operator (D%u), generates an analytic semigroup,
but with different boundary conditions in comparison with ours.

It is obvious that before we tackle equation (II)) in a domain which changes in
time, we must understand it in a fixed domain. Our paper is just a step toward
this bigger goal. We notice that the literature on time fractional equations, which
includes several books, is quite broad and we will use the applicable tools.

Among the many possible methods to address () we choose the theory of
viscosity solutions. Since the setting which we consider in this paper apparently
has not been considered in the literature, we have to find a suitable notion of
viscosity solutions. We note that there are papers dealing with viscosity solutions
for integro-differential equations, [2], [IT] or [I4], but the non-locality is with respect
to the time variable, not space variable like in our case.

A special feature of (L)) is that formally we require existence of two spacial
derivatives. However, we come up with a seemingly less demanding definition of
solution. We devote Section 2 to this issue. We also present our definition of
the viscosity solution, which draws heavily on our experience with time fractional
Hamilton-Jacobi equations, [T1].

After settling the issue of a proper definition of solution, we establish its basic
properties. The main result is a comparison principle, see Theorem [l Once we
show it, we may establish existence of solutions by means of the Perron method.
This is done in Theorem The main difficulty is showing that the sup of sub-
solutions is also a supersolution. The comparison principle implies uniqueness of
solutions. We also show the stability of solutions with respect to the fractional
order of equation, this is the content of Theorem [G.11

Finally, we address regularity of solutions in Section 7. Namely, we show that
if the data are Lipschitz continuous, then the unique solution is Holder continuous
with respect to the space variable, with exponent «, see Proposition [[.Jl More-
over, this solution is Lipschitz continuous with respect to the time variable, see
Propositions and [7.4] and locally Lipschitz continuous is space, cf. Proposition
(.2

2. PRELIMINARIES ON FRACTIONAL DERIVATIVES

Throughout this paper the integral of the form

b
dz
Iiap) [w](z) :/ w(x,z)m,

where 0 < a < b < 400, is mainly handled for semicontinuous functions w :
[0,1) x [0,1) — R. In this section we present properties of such a function de-
rived from (D%u),, which is introduced as an operator K later. Here, all inte-
grals are interpreted in terms of the Lebesgue integral. When a > 0, we say that
I(aﬂ;b) [w](x) is well-defined if either I(q ) [wT](z) or I(4y)[w™|(x) is finite, where
w* 1= max{£w,0}. When a = 0, I(o [w](r) is regarded as lim,_,o+ (45 [w](z),
and we say that I(o ) [w](z) is well-defined if I, ) [w*](x) are finite for each a €
(0,0) and lim,_, o+ I(q5)[w](z) exists and it is finite. In other words, these conditions
are equivalent to integrability of z — w(x, z) for a.e. x € (0,1).

The following proposition plays an essential role in defining the solution intro-
duced in this paper.
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Proposition 2.1. Let u : [0,1) — R be such that u € C?(0,1) N C[0,1) and u’' €
LY(0,1). Then, (D), exists everywhere in (0,1) and

o 1 a(u(0) —u(x)) + (o + D)u/(x)z
(Do) = s (AL M) o+

+ala+1) /Om[u(x —z) —u(x) + u'(z)z] Zz;)

(2.1)

for x € (0,1).

Proof. First of all, we note that for each z € (0,1) the integral on the right-hand
side of @) exists, that is, [u(z — z) — u(x) + «/(z)z]/22T2 € L*(0,z). In fact,
Taylor’s theorem implies that for each z € (0,2/2)

su e u// " - "
u(r — z) —u(z) +u'(2)z]| < Pyete ")| (y)|22§max[/27]|u|22'
[u(z = 2) = u(x) - 5

The right-hand side multiplied by 2~*~2 is integrable on (0, z/2) and so the domi-
nated convergence theorem implies that

z/2 .
/0 [u(z — z) — u(z) + u'(z)z] zg” exists.

The integral on the remaining interval (z/2,2) does not present a problem since
2z (u(r — 2) —u(z) +u'(x)2)2 =2 is bounded on (z/2,r) and hence integrable.
Thus, it is enough to show ([21I) to prove Proposition[ZIl Hereafter we show (2.
To this end, we fix any small € > 0 and we introduce

Ii(z) := /05 (uli)ady and Ix(z) := /w (uidy

T —y) T —y)*

for x € (2¢,1). We note that (DSu), = ﬁ%(h + ).

It is easily seen that the differentiation under the integral sign is applicable to
I for each z € (2¢,1), since 1/(x —y)*T < 1/e**! for all x € (2¢,1) and y € (0,¢)
and v’ is integrable. Together with straighforward calculations we get

d _ AC)
) =, Gt

. u(0) B u(e) ala ° u(y)
= (s - e )+t [ e
~o(u(0) — u(x)) + (o + v/ (z)x

:Coz-l-l
_afu(e) —u(®) + (a+ Du'(z)(x —€)
(x —g)atl
ot [ M ),

Differentiation under the integral sign is applicable also to Iy (see, e.g., [10,
subsection 7.2.1]), and then

2wy = Oy /m g “”(y)) dy.

dz (x —¢) r—y)“
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Since u € C?(0,1), it holds that

s @—y !
and
cu(y) —ul(z) —u(z)(y —x)
i (z —y)ott =0

Thus, straightforward calculations imply that

d O m d%(ul(y) —u'(z))
IQ(,T) = 7% +/8 (I — y)a dy

) ) i)
-G o) e
_ W@ [ 3 (u(y) = u(@) —u'(2)(y - 2))
ety R dy
_ o(u(e) —u@)) + (e + Du'(z)(x —€)
(LL' _ E)a-{-l
ata) [ )
Consequently, for all = € (2¢,1) we obtain
o 1 a(u(0) —u(z)) + (a+ 1)u/(z)x
(Dmu)m(l'): F(l—a) ( ( ( ) ( )I)aJrl( ) ( )
“uy) —ulr) —u'(z)(y — x)
+a(a+1) /0 @ — g+ dy) .
After changing the variable of integration by setting z = & — y, we reach (2.1 since
€ is arbitrary. 0

The following lemma states the maximum principle, which is valid due to 21).
Lemma 2.2. Assume that u € C?(0,1) N C[0,1) with v’ € L(0,1) attains its
mazimum at & € (0,1). Then (D%u),(&) < 0.

Proof. Since /(%) = 0, then the right-hand side of (ZI]) is non-positive and the

claim follows. O

For the sake of convenience, we introduce the following operators, when wu :
(0,1) = R is a measurable function and p € R,

a(u(0) — u(z)) + (o + Dpx
2 HID(1 — ) ’

ala b 2
Kaplu,pl(z) = Fglijolag/ [u(x — 2) — u(x) +pz]zgﬁ7

Ju, p)(z) =

where 0 < a < b < x. We write also J*[u, p](z) and K*(a, b)[u, p](x) when making
clear the dependence of «. For a function w : [0,]) x A — R, where A C R
is an interval, we write Jlu,p|(z,y) = Ju(-,y),pl(x) and K p)u,pl(z,y) =
K(a,b)[u('vy)ap](x) for Yy € A.
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Proposition 2.3. Let u be a real-valued upper semicontinuous function on [0,1).

Ifr € (0,1),6 € (0,7), and p € R, then K5 4)[u,p|(z) and it is bounded from above.

Ifu € C%(0,1)NC0,1) and pp = u/(x), then K (g z)[u, p2](x) is well-defined for each
€ (0,1).

Remark 2.4. Is is clear from the definition that for any real-valued lower semi-
continuous functions u on [0,1), the operator K; . [u,p|(x) is well-defined for all
€ (0,1) and 0 € (0,z). Moreover, it is bounded from below.

Proof of Proposition[2.3. We only deal with the case that u is upper semicontinu-
ous, because the last assertion is obvious from Proposition 211

Since z — u(x — z) —u(z) +pz is upper semicontinuous on [x — a, z] for = € (0,1),
it attains its maximum and

(u(z — 2) —u(z) + p2)" < |max(u(x — 2) —u(x) + pz)| VO forall z € [z — §,x].

[a,z]

Here, a Vb := max{a, b} for a,b € R and we will also use a Ab := min{a, b} through-
out this paper. Since the right-hand side is integrable on (x — a,z), we see that
K (z—a,2)[u,p](7) is well-defined. It is straightforward to see that K, _, »)[u,p]()
is bounded from above. O

Lemma 2.5. Let a € (0,1), a € (0,1), ¢ € C?*(a,l) N Cla,l) and & € (a,l). Let
u be a real-valued upper semicontinuous function on [0,1). Also, for each € > 0 let
ae € (0,1) and x. € (a,l) be sequences and let u. be a sequence of real-valued upper
semicontinuous functions on [0,1). Assume that u. < wu on [0,1) and

(2.2) iig(l)(as,xs,us(xs)) = (o, &, u(z)).

Set p. = ¢'(x.) and p = ¢'(&). Then,
(i) limsup, o J [ue, pe)(zc) < J*[u, p](2),
(ii) lim._,o K(%Em —a) [@apa]($a) = K(Qw a) [‘Pup]( );
(i) Timsup, o Ko, o [tesDe)(5) < Koy 1)t 21().
Moreover, if ¢ € C?(0,1) N C[0,1), then & — Koz, pa)(x) with p, = ¢'(x) is

continuous in (0,1).
Proof. (i) Using the assumption u(0) < u(0), we see that

0) - 1
lim sup J [u, pe](z.) < limsup ae (u(0) ;%Jga)) + (e + 1)peae
e—0 e—0 rde F(l _ as)

= J[u, p](&).
(ii) Let o’ € (0, &) be such that [& — 2a’, 2 + 2a/] C (a,l). We may assume that

xe € (2 —a', 4 + a’) by letting e smaller if necessary. Since ¢ € C?(a,l), then for
z € (0, — a) we have,

o(xe —2) —p(z) + @' (xe)2 = 2 / / — stz)tdsdt.

Hence,

(2.3) Ko

(0,2 —a) [, pe](xe) =/ o / / — stz)tdsdt.
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We fix any ¢ > 0, then we find > 0 such that
(2.4) /‘ max{"(¢): (€[t —a—ni—a]}
T—a—mn

smax ae

< 0.

Thus,

K(Oéfzaia) [p, ppl(2e) — K&),ifa) e, pl(2)
—KE w0 P ) = Koy ool bl (@)
+ Ko5—a—nlP: Pol(x2) = K(o 40l PI(2)-
By (24) the first difference above is estimated by 2§. The second difference is less
than § for sufficiently small & due to (Z3)) and the Lebesgue dominated convergence

Theorem. Hence, our claim follows.
(iii) By our assumptions, we immediately see that

(2.5) sup (|ue(ze)| V [pe|) < C
0<exl

for a constant C' > 0. Since u. < u in [0,1) and u is upper semicontinuous, then

Ue(ze — 2) <wu(z. — 2) <maxu forall z € [z. — a,z.].

0,a]

Thus, we have the following estimate,

(ue(we — 2) — ue(we) — paz)]l(mfa,za)(z)zio%iQ
<(maxu+ maxu+ C2) L, —aay (:)27°

< I[rolw](u + r{laﬁcu +C2| Ly —auy(2)(z72 V2T

< I[rolw](u + r{laﬁcu + Cz| L y(2)(z72V2h) forall z € (6,1),
where § = (& — a). Since the right-hand side is integrable on (6, ), Fatou’s lemma
yields the desired inequality. O

Remark 2.6. (i) A symmetric statement which “upper semicontinuous” is replaced
with “lower semicontinuous” is true since J[u, p|(z) = —J[—u, —p|(z).

(i) In the following sections, we use Lemma for functions that also depend
on the time variable. We can not use it directly because it is stated for a single
variable function. We may state the corresponding result as follows:

Let us suppose that uc,u : [0,1) x A — R are measurable, where A C R is an
interval. If for all ¢ € A functions wu. (-, t), u(-,t) satisfy the assumptions of Lemma
23 then the claim holds for uc(-, ), u(-,t) and all ¢ € A.

3. DEFINITION OF A SOLUTION

In this section we propose a notion of a solution of the initial boundary value
problem

(3.1) up = (Dgu)y + f in Qr
and

(3.2) u=g on 0pQr.
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Here, Q7 = (0,1) x (0, T") and 0,Qr stands for the parabolic boundary, i.e., 9,Qr =
([0,1] x{0})uU({0,1} x[0,T)). We also introduce Q7,9 := (0,1) x [0,T). Throughout
this paper, the given functions f : Q7 — R and g : 0,Q7 — R are assumed to be
continuous.

To motivate the definition of solutions that we call viscosity solutions, we suppose
that u € C(Qr,) and u — ¢ attains a maximum over Qr, at (&,1) € Qr for a
function ¢ € C(Qr,0). Here, C(Qr,0) is a space of test functions which we set as
(3.3)

C(Qr0) = {# € C*H(Qr) N C(Qr0) | wa(-1) € LX(0,1) for every ¢ € (0,T)}

The classical maximum principle and Lemma yield uy = ¢ and (DSu), >
(D), at (&,t). Thus, if u satisfies BI) pointwise in Qr, then

wt(jvﬂ S (Dgw)x(:ia f) + f(:ia f)
Since this inequality does not include the derivative of u, we are tempted to use it
to define a generalized subsolution for w which is not differentiable. The opposite
inequality comes out if one replaces the maximum with a minimum.
Let Q be a set in R2. For a function w :  — R let w* and w, denote the
upper semicontinuous envelope and the lower semicontinuous envelope, respectively.
Namely,

w(2) = Tim sup{w(¢) | ¢ € QN By(2)}
5—0+
and w, = —(—w)*. Here and hereafter, Bs(z) is an open ball in R? centered at z
with radius §, i.e., Bs(2) = {¢ € R? | |z — (| < 6}, and Bs(2) is its closure.

Definition 3.1 (Viscosity solution). We say that a real-valued function u on Q1,9 is
a viscosity subsolution (resp. wviscosity supersolution) of (3] if u* < oo (resp. us >
—o0) in Qr,0 and, for every ((&,%), ) € Qr x C(Qr,) that satisfies maxq,. ,(u* —
¢) = (u” = ¢)(2,t) (resp. ming, ,(u. — @) = (u. — 9)(2,1)),

(pt(‘%7f) < (D?sp)w(i'vf) + f(:i'7£) (l"eSp, (pt(:i'vf) > (D?(p)w(i'u f) + f(‘%v f))
Moreover, we say that a real-valued function u on Q1 U 0,Qr is a viscosity sub-
solution (resp. viscosity supersolution) of BI)-B2) if u* < oo (resp. u, > —o0)
in Qr Ud,Qr, u is a viscosity subsolution (resp. viscosity supersolution) of ([B),
and satisfies u* < g (resp. u. > g) on 0,Q7.

If a real-valued function u on Qr, (resp. Qr U J,Qr) is a viscosity sub- and
supersolution of BI) (resp. BI)-[B2)), we say that u is a viscosity solution of
BI) (resp. BI)-B2).

The notion of viscosity solution by Definition [B.1lis consistent with that of “clas-
sical solution” that satisfies (B.I]) pointwise in Q7.

Proposition 3.2 (Consistency). Let u € C(Qr,0), (see (33) for the definition of
this set). Then, u is a viscosity solution of BI) if and only if u satisfies (B1)
pointwise in Q.

Proof. We saw the ‘if” part before Definition Bl The ‘only if’ part is straightfor-
ward since © can be taken as a test function. O

After establishing the consistency result, we suppress the word “viscosity” from
now on.

There are several equivalent definitions of solutions. We utilize these definitions
to establish the existence and uniqueness of solutions and some propeties.



8 TOKINAGA NAMBA AND PIOTR RYBKA

Proposition 3.3 (Alternative definitions). Let u be a real-valued function on Q1
with u* < +00 in Qr,0. Then, the following statements are equivalent:

(i) w is a subsolution of BI);

(ii) for every ((2,1),¢) € Qrx(C*1(Qr)NC(Qr,0)) that satisfies maxg,. , (u*—
p) = (u* = )(&,1),

pe(@,8) < Jlo, pl(&,1) + Ko,.0)l, P12, 1) + £(2,)

holds with p = . (&,1);

(iii) for every ((#,1),¢) € Qr x C*1(Q7) that satisfies maxg, (u* — @) = (u* —
¢)(@,1),

i(2,) < J[u”,pl(@,8) +
holds for all 6 € (0,

(iv) for every ((#,1), ) € Qr x C*Y(Qr) that satisfies maxg, (u* —¢) = (u* —
©)(&,1), Kq, m)[ “ p)(2,1) with p = . (&,1) is well-defined and

@t(xat)g‘][ ](Iaf)+K(O,i)[U*7p](jaf)+f(ja£)

K i-s)le,pl(@,1) + K5 .a)lu*, p) (2, 1) + f(&,1)
) with p = @, (2,1);

holds.

Proof. The proofs of implications (ii) = (i) and (iv) = (ii) are easy. In fact,
the former is a direct consequence of Proposition 211 To prove the latter, let
((2,1),9) € Qr x (C*1(Q1) N C(Qr,0)) be such that maxg, ,(u* — ¢) = (u* —
©)(&,1). Since Koz [u*,p](Z,1) with p = ¢, (2,1) exists by (iv) and u*(2 — z,1) —
u*(2,1) +pz < (& — 2,1) — p(2,1) + pz holds for all z € [0,2], we have

J[u*,p)(#,8) + K02 [u", p)(&,1) < J[o, p)(&, 1) + K (0,89, P)(&, 1)
The desired inequality is immediately obtained from the inequality by (iv).

We shall prove the implication (i) = (iii). Let ((#,1),¢) € Q7 x C*Y(Qr) be
such that maxg, (u* — ¢) = (u* — ¢)(#,1) and fix § € (0,2) arbitrarily. We set
Y=+ (u* — ) (&, 1) so that maxg, (u* — ) = (u* —¥)(&,1) = 0.

Since u* is upper semicontinuous in 7,0, there exists a sequence u. € C(Q1,0)
such that us N\, u* pointwise in Qr, as ¢ — 0". Also, there exists a sequence 1), €

C(Qr,0) such that ¢. = v in B_s)/2(%,)NQ7,0, u* < ¥ < in Bi—s(2,1)NQr,0,
and u* <. <wue +ein Qro \ Bi_s(#,1). Observe that (a) ¢ =1 = u* at (2,1),
(b) lim 0 %, = u* pointwise in Qr,0\Bs_5(#,1), and (c) . <1 = ¢ in Bz _4(&,1).

It is clear that maxq,.,(u* —¥.) = (u* —1.)(#,7). Thus, by (i) we have
(3.4) (¥e)e(@,1) < (Dgvpe)o (@, 1) + f(,1).
Since 1. = v near (#,1), we see that (z/Ja)t = = @ and (Yo), = VY = @, at
(&,1). Proposition Bl yields (D). ),(&,1) = J[be, p)(2, 1) + K (0,3 [Ve, p)(2, 1)
with p. = (). (#,1). Accordingly, (3] can be rewritten as
(3.5) pe(@,8) < T[ve, pl(2,1) + K0 [Ve, pl(2,0) + (2, 1),
where p = 1, (&, ).

It is easy to check from (a) and (b) that lim. .o J[¢e, p|(&,1) = J[u*,p](Z,1).
Since (a) and (c) imply that

t

:<P(§3—Za

¢
t
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holds for all z € (0,6), then we have Ko s)[1e, p| < K (0,5 [, p] (%, t). The estimate
limsup,_,o K(5.5) Ve, p](&,8) < K(5,2)[u*, pl(%,{) immediately follows from Lemma
Keeping in mind these estimates, while taking the limit supremum as ¢ — 0
in (33) yields the desired inequality.

We finish the proof of this proposition by showing the implication (iii) = (iv).
Let ((2,1), ) € Qr x C*Y(Qr) be such that maxg, (u* — ¢) = (u* — ¢)(2,1). We
define

vs(2) = (p(& = 2,8) = @(&,8) + p2)Ljo,5-6](2) + (u* (& — 2,8) — u™(2,1) + p2) (55,41 (2)

for § € (0,2) and set

Kos] = l‘ig—f;i [ 05(e) s = Ko iupl(@ 0 + Koo ]2

Since u*(Z — z,1) — u*(#,1) + pz < p(& — 2,t) — p(2,1) + pz for all z € [0,2), we
know that vj \, vg and v; vy asé — 0.
By (iii) the inequality
Pt (jv f) < J[U*vp](jv f) + K(O,i—&) [‘Pap] (:iv f)
+ K(i—&,i) [U*,p](j, tA) + f(jv tA)

holds for all § € (0, %) with p = ¢, (#,). From this inequality we see
0< K[vf] - Kvy]+C < K] — K[vy ]+ C < K[vi] + C < 400

for all 6 < &', where C' = J[u*,p|(2,t) — ¢(#,1) and &' is a fixed constant with
0 < ¢’ < 2. Therefore it turns out that lims_,o K [vf] = K[vZ] by the monotone
convergence theorem and K [vgt] is finite. Thus we get the desired result. ]

For (z,t) € Qr we denote by N, ; a family of neighborhoods N of (z,t) in Qr
such that every N includes the line segment between (z,t¢) and (y,t) whenever
(y,t) € N and 0 < y < z. Evidently, Q1 € N, for all (z,t) € Q.

Proposition 3.4. Let u be a real-valued function on Qo with u* < 400 in Qr,0.
Then u is a subsolution of @) if and only if, for every ((,1),¢) € Qr x C**(Qr)
and N € N; ; such that u* — ¢ attains a strict mazimum on N at (%, t) in the sense

that (u* — ) (z,t) < (u* — ©)(&,1) for all (z,t) € N\ {(&,1)},
pi(, 1) < Jlu”, p)(2, 1) + Ko,5-5) [0, 0)(2,1)
+ K(i_s,5)[u",pl(2,1) + f(&,1)
holds for all § € (0,%) that satisfies (6,) € N with p = p.(%,1).

Proof. We use Proposition B3 (iii) for proofs of both implications. We first prove
the “if’ part. Let ((#,7),¢) € Qr x C*Y(Qr) be such that maxg, (u* — ¢) =
(u* — ) (&,1). Set e(z,t) = (x,t) +e(|x — 2|> + |t — £]?) for a small parameter
£ > 0. Then u* — 1. attains a strict maximum on Q7 at (%,7) so

(w€)t(£7 E) < J[U*vpa](‘%v E) + K(O@,(;) [wsupa](‘%a E)

(3.6) 0.2 e
+ KGosalu®, pe (&, 1) + f(&,1)
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holds for all § € (0,%) with p. = (.).(&,%). It is straightforward to see that
(We)e(#,1) = u(,1), pe = 2 (2,1) =: p, and
s a(l+a)zt—@
Koz =Kz t)+ ————=.
(0,2—06) [¢aap€] (0,2—0) [%P](% ) + (1 — a)F(l — a)E
Therefore sending ¢ — 0 in (B8] yields the desired inequality.

Let ((,1),¢) € Qr x C*}(Qr) and N € N ; be such that u* — ¢ attains a
strict maximum on N at (Z,). We denote by @ an extension of ¢ to Q7 such that
¢ € C*Y(Qr) and maxg, (u* — @) = (u* — ¢)(#,1). Noticing that ¢, = ¢; and
@ = @ at (2,1), we have

Pt (jv tA) < J[U’*ap](‘%v Lz) + K(O,:Efzs) [¢7p] (i'a Lz)
+ K(i—ts,i) [U*,p](j, f) + f(jv f)
holds for all § € (0,#) with p = ¢, (#,7). Since § may be taken so that (6,1) € N

and then Ko ;5 [, pl(Z, t) = K,5-8 [0, p)(2, t), this inequality is nothing but the
desired one. O

Remark 3.5. (i) Symmetric statements in Propositions B3] and B4l hold for a su-
persolution of (&I).

(ii) Also in Proposition (ii) and (iv) the maximum may be replaced by a
strict maximum and in (iv) it may be replaced by a local strict maximum in the
sense that, for a neighborhood N of (z,1) in Qr,

(u* — p)(x,t) < (u* — p)(@,t) for all (x,t) € N.
However, in (ii) the locality may not be allowed.

Proposition 3.6. Assume that [ is continuous. Let u be a subsolution (resp.
supersolution) of BI) in Qr. Then u is a subsolution (resp. supersolution) of
BI) in Q% = (0,1) x (0,T] provided that u*(z,T) < 400 (resp. u.(x,T) > —c0)
for all z € (0,1).

Proof. We only prove for subsolutions. It suffices to show that
(3.7)

th(.’i', T) < J[U’*7p](j7 T) + K(O,ifzs) [Spvp](‘%v T) + K(ifzi,i) [U*ap](:ﬁu T) + f(ju T)
holds for all § € (0,2) with p = o, (&, 1) whenever u* — ¢ attains a strict maximum
on Q7 at (&,T) with 0 < & < [ for p € C*'(Q7, ), where Q7 , = [0,1) x (0, T]. Fix
0 € (0, %) arbitrarily.

For ¢ > 0 we define p.(z,t) := @(x,t) + /(T —t). It is a standard fact (see,
e.g., the proof of [9, Theorem 3.2.10]) that there is a maximum point (x¢,t.) € Qr
of u* — ¢, on Q% and

lim (., te, u*(zc, b)) = (2,1, u*(&,1)).
e—0
We may assume that § < inf. x. by restricting to smaller . Since u is a subsolution
of &I in Qr, we have
(pe)t(we,te) <J[u”, pe](we,te) + K(O,ws—é) [, Pel(ze, te)
+ K(zg—zi,zg)[U*apa](xav tS) + f(l'a, ta)v

where p. = (¢e)a(@e,te). Since (pe)i(ze,te) = @i(ae,te) and p. = @a(ze,te),
sending € — 0 using Lemma [235] yields (3.1). O
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Remark 3.7. Also for each statements in Proposition B3l Q7 and Q7,0 may be
replaced by Q7 and Q7 (), respectively.

Remark 3.8. We cannot offer examples of explicit solution satisfying the homoge-
neous Dirichlet boundary condition

(3.8) w(0,t) =wu(l,t) =0 forte0,T).
However, in a recent study, [I7], the author showed that the operator (DY), defined
on D((D%),) C L*(0,1), whose elements satisfy the mixed boundary data,

uz(0) =wu(l) =0

generates an analytic semigroup.

4. COMPARISON PRINCIPLE
We shall establish uniqueness of solutions via the comparison principle.

Theorem 4.1. Let u be a subsolution while v be a supersolution of BI). If
—oo < u* < v, < 400 on 0,Qr, then u* < vy in Qr U dpQr.

Proof. We fix any T’ smaller than T'. It is enough to prove that u* < v, in Q7v,
when v* < v, on 9,Q7%,. This can be shown by using the conventional doubling
variable technique.

We denote T’ by T again. We assume that u is a subsolution (respectively, v is
a supersolution) of (BI) in Q%, and —oo < u*,v, < 400 in Q7. Let us suppose
the contrary, i.e., 6 := maxg—(u* —v,) > 0.

We define a real-valued function ® on Q7 x Qr by

2 —yP? + ]t — s

(I)(Iatvyas) = u*(xvt) —’U*(y,S) ;
g

where € > 0 is a parameter. Since the function ® is upper semicontinuous on the
compact set Q7 x Qr, it attains a maximum at some point (z., ¢, ye, 5:) € QT X Q7.
We claim that this points are in Q7 x Q7 for sufficiently small €. To see this, we
shall check that, possibly after extracting a subsequence which is not relabled,

(41) giir(l)(xau les Yes Ses ’U,*(,TE, t€)7 UV (y@ Sa)) = (Li', tAa z, tA, ’U,*(ii', f)a UV (Li', f)),
where (Z,%) is a point such that (u* — v,)(#,%) = 6. The convergence of the point
sequence is established according to [0 Lemma 3.1]. We can select another subse-

quence (not relabled) such that lim._,o vs (ye, sc) = liminf. o v« (ye, sc). Then, due
to the lower semicontinuity of v, we have

(u" — U*)(jvf) = iii%(m(%vts) — Ve (Ye, 5e)) = Ehg(l) u*(we,te) — Elij)r(l)v* (Yes 8e)
< ili% uw(zo,t) — va(2, 1).
This implies that liminf. o u*(2c,t.) > u*(#, 1), hence
gii% u*(xe,t.) = u* (2, 1)
follows. By the same method, the convergence of v, (ye, s¢) is also established. Now,

we see that (#,7) € 9,Q%; otherwise, (u* —v,)(2,%) < 0 by the assumption but this
is contradictory since # > 0. Therefore our claim is proved.



12 TOKINAGA NAMBA AND PIOTR RYBKA

We also claim that

_ 2
(4.2) lim 1222V

e—0 IS
Since (e, te, ye, 5¢ ) is a maximum point of ®, we have ®(z, t.,y., s.) > ®(&,1,2,1),
that is,
|[Te = yel® + [t — sc]?
€

The right-hand side vanishes as ¢ — 0 due to (A1), so as the left-hand side.

Since (x,t) — ®(x,t,ye, Se) attains a maximum on Q% at (z., t.), by Proposition
B3 (iv) and Proposition[3.8l (see also Remark B.7), we see that Ko ,_)[u*, pc](z., tc)
with p. = 2(xz. — y.)/e is well-defined and

2(te — sc)
€

<uf(we,te) — va(ye, 8c) — u*(i;,f) + v*(ﬁj,f).

(4'3) < J[U*upa](xaa te) + K(O,IE)[U*upa](:EEa ta) + f(x€7 te).

Similarly, since (y, s) — —®(z.,t.,y, s) attains a minimum on Q% at (ye, s¢), then
K 0,y.)[V«, pe] (e, 5¢) is well-defined and

2(te — sc)
€

(4-4) > J[U*,pa](ya, 35) + K(O,yg)[v*apa](yaa 55) + f(yaa Sa)-

Subtracting (@4) from [@3)) yields
0 < J[u®, pe](we, te) = Jlve, pe] (e, 5¢)
(4.5) + K (0,2.)[", pel (e, te) — K0,y [Vs: D] (e, 5¢)
+ f(ze,te) = f(ye se)-

We are going to take a limit as € — 0 in this inequality in order to obtain a
contradiction. For this purpose we estimate

Je == J[U*aps](zsv ts) - J['U*aps](ysa 55)
and
K. = K(O,zg)[U*apa](xavts) - K(O,yg)[v*apa](yau Se)
as ¢ — 0. We note that it is not possible to apply Lemma 2.5 because p. need not

be bounded. In what follows let § > 0 be a constant with § < inf.(z. A y.).
Since u* and —v, are upper semicontinuous and we have ([@Il), then

HInSllp (’u*(O, ta) ;+’Ui*($5,t€) _ U*(Ou SE) ;-:i*(ya, Sa))
e—0 Te e

- (u* —v)(0,1) — (u* —v)(,1) _ 9 |

B gotl = gotl

The last inequality is due to the boundary conditions and the definition of . By
the inequality
1 1

@ a
T Y

and ([@2), we also see that

a
< 5ot |z —y| forall z,y € (J,00),

lim Pe _Pe) o @ lim |pe||ze — ye| = @ lim Jze — vel”
e—0 ;[:g yg‘ — datl 50 oatl o 5

Thus these estimates give limsup,_,, J. < —0/2°T1.

=0.
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We estimate K. as ¢ — 0 from

Kcy = K(O,é) [U*apa](x87t€) - K(O,J)[“*vPE](yaa s¢)
and
K. := K(5,m5)[U*7p€](x€u ta) - K(a,yg)[v*,pa](ya, 35)-

We know that ®(xe,te, Ve, Se) > P(x: — 2,te,ye — 2, 8:) for all z € [0, ], because
(e, tey Ye, Se) is a maximum point of ®. From this observation, the estimate K. ; <
0 follows immediately. By the upper semicontinuity of u* and (41 we see that
u* < maxg-u® in Q7 and u* (zc,t.) > u*(&,1) — C, for sufficiently small e, where
C'is a positive constant. Thus,

[ (1e — 2,te) — u™ (e, t)] L (5,2 (2) < [max u* — u*(fc,f) + C} Ls5,2.(2)
QT

< Hﬁxu* — u*(i:,f) + C‘ ]1(6,l)(z)
Qr

for all z € (0,1) such that #. > z. The right-hand side multiplied by 27*~2 is
integrable on (0,1) so the Lebesgue dominated convergence theorem implies

. e, . dz a0 e~y dz
(4.6) hranj(lle/ls [u(xe—2z,t)—u (xa,tg)]m §/5 [u(&—2z,t)—u (x,t)]m

>

By a symmetric argument, by Fatou’s lemma we also have

o ve dz S - o, dz
(4.7) liminf (s (Ye =2, 82) =0 (e, 5e)) 5 = | [0a(@—2,1) —vu(2,8)] -
z E) z

e—0 5
It would not be difficult to see that
x T 2
. ° Pe . De c . (xa - ya)
lim sup/ dz < limsup ——— / dz =limsup ———— =
e—0 Yo zotl e—0 («Ta A ya)"‘“ Yo e—0 5($a A ya)a+1

Combining this with (@6 and [@7) we find that

T d
limsup K, o = limsup C, (/ [u (e — 2,tc) — u*(xe, t.)] -
é

e—0 e—0 zo+2

Ye dZ Te D
o A A A B e =1

Ye

<C, /;[(u* — )@ — 2,8) — (uF — v,)(&, D)] fojz <0,

where C,, = a(a+1)/T'(1 — «). Therefore we get the estimate lim sup,_,, K. < 0.
Taking the limit supremum in (L)) as € — 0 yields

0<

S T et
a contradiction since 6 > 0. (]
The uniqueness of solutions is the direct consequence of Theorem E.1]

Corollary 4.2 (Uniqueness of solutions). Let u and v be solutions of (B.I)-([B.2).
Then u=v in Qr U 0pQr.

Finally, in this section we show the weak maximum principle as a simple appli-
cation of Theorem [.]
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Corollary 4.3 (Weak maximum principle). Let fi, fo : Qr — R be continuous
functions. Let u be a subsolution of

(4.8) up = (DSu), + fi(x,t)  in Qr
and let v be a supersolution of

vy = (Do) + fa(z,t)  in Qr.
Assume that —oo < u*, v, < 400 on 0,Q7. Then,

T
(4.9) sup (v —v.)T(2,t) < sup (u* —v,)" —l—/o sup (f1 — f2) " (w, s)ds.

QrUd,Qr 9,Qr 2€(0,0)
In particular,
(4.10) sup  (u*)t = sup (u*)" if f1 <0
QrUI,QT QT
and
(4.11) Qrb%f,QT(”*) = érgT(v*) if f2>0.

Proof. We may assume that

T

C = sup (u* —v,)" +/ sup (f1 — f2)" (2, 8)ds < +o00
apQT 0 :EG(O,I)

for all t € [0,T); otherwise [@9) is automatically established. It is not difficult to

check that

t
0(z,t) i= vi(m,t) + sup (u* —v,)T +/ sup (f1 — fo) (x,5)ds
apQT 0 IG(OJ)
is a supersolution of (L8) and u* < ¢ on 9,Qr. Thus, by Theorem [LI] we have
u* < ¥ in Qr U 0pQr and obtain ([@J).
If we put fo =0 and v = 0 in (£9), then

T

sup () < sup ()4 [ sup i s)ds.
QTuapQT 8PQT 0 (0>l)

Thus, if f1 <0, we have supg,.us, . (u*) < supy o, (u*)". The converse inequal-

ity is always true, hence we get ([LI0). We also get ({I1)) by arguing similarly. O

5. EXISTENCE OF SOLUTIONS

We shall construct a (continuous) solution of the initial boundary value problem
BI)-B2) by Perron’s method (see [12]) under a certain condition of the initial
boundary data g. First, in Subsection [B.1] we show the existence of (possibly dis-
continuous) solutions under the hypothesis that there exist suitable subsolutions
and supersolutions of [BI)-([B.2). Specifically, we give a construction of a subso-
lution in Lemma Bl and through Lemma we show that it is in fact also a
supersolution in Lemma and hence a solution. In Subsection B2l we construct
suitable subsolutions and supersolutions and guarantee the existence of the solution;
Theorem As its by-product, we obtain the fact that the solution is bounded
and continuous. Its uniqueness follows from the comparison theorem.
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5.1. Existence by Perron’s method.

Lemma 5.1. Assume that f is continuous. Let S_ and Sy be nonempty sets of
subsolutions and supersolutions of (Bl), respectively. Let functions u and v be

defined by

u(z,t) = sup{w(z,t) |w e S_} and wv(x,t) =inf{w(zr,t) | we S;+}
for (z,t) € Qro. Then, u* (resp. v.) is a subsolution (resp. supersolution) of
BI) provided that u* < 400 (resp. v. > —00) in Qr,, respectively.
Proof. We perform the proof only for u, a subsolution, since the argument of a
supersolution v is the same. Let ((#,1),¢) € Q7 x C*(Qr) be such that u* — ¢

attains a strict maximum on Qr at (Z,f). We fix 6 € (0,2) arbitrarily. The goal is
to show that

(5.1) @e(,8) < J[u*, pl(&,1) + K(o,5-5)l0 PI(&, ) + K350 [u”, p)(2, ) + £(2, ),

where p = @, (&, 1).

According to [Il Lemma V.1.6], there exist a sequence ((z¢,te), ue) € Qr X S—
and a neighborhood with compact closure N € N ; with (4, t) € N such that
(xe,te) is a maximum point for uf — ¢ on N and

lim (., te, ul(ze, b)) = (&, 6, u*(&,1)).
e—0
(For the proof, refer to the argument leading to (I).) We may assume that

0 < inf.z. by restricting to smaller €. Since u. is a subsolution of (I, by
Proposition [3.4] we have

Sﬁt(xsa ts) SJ[u;ps](xsv ts) =+ K(O,wg—é) [<Paps](zsv ts)
+ K(ms—é,mg)[u;ps](xsv ts) + f(Isa ts);

where p. = @y (xe,t.). The definition of w implies u} < u* in Qr, and hence
Lemma 2.5] is now applicable. It yields,

(5.2)

lim Sélp(J[u:apa](xaa ta) + K(O,zgfé) [%Pa](%a ta) + K(zgfé,zg) [u:7p€]($aa ta))
e—

< J[u*,p](;ﬁ, f) + K(O,ifé) [Qﬂ,p](fﬁ, f) + K(i*&i) [U*up] (:i'u f)
Therefore, we get ([GI)) by taking the limit supremum in (B.2]) as € — 0. O

Lemma 5.2. Let n be a supersolution of BI) and let S_ be a nonempty set of
subsolutions v of BI)) that satisfies v <nin Qro. If us € S_ is not a supersolution
of BI) while u, > —o0 in Qr,0, then there exist a function w such that w € S_
and a point (y,s) € Qr such that u(y,s) < w(y, s).

Proof. Since u, € S_ is not a supersolution of ([BI]), there is ((#,7),¢) € Qr X
(C*Y(Qr) N C(Q1,0)) such that u, — ¢ attains a strict minimum on Q7 at (#,%)
and

where p = (2, 1); see Proposition B3] (ii). We may assume that (u, —¢)(,%) =0
by replacing ¢ with ¢ + (u« — ¢)(Z,1) if necessary. It follows immediately from
Lemma 2.5l that (x,t) — J[p, pei](2,1) + K0,0)[@, Po,e] (2, 1) With p, s = pg(2,1) is
continuous in Q. Thus there is > 0 such that

(54) <Pt($, t) < J[‘Papz,t](xv t) + K(O,w)[@vpm,t](xa t) + f(:E, t)
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holds for all (z,t) € B, := Qr N Ba,(,1).

We see that u* satisfies ¢ < u, <17 in Q7,0 by the definition. Suppose ¢ = 7.
at (,7). Then ming, ,(n — ) = (0 — ¢)(£,2) so ([B3) is contradictory since
n is a supersolution of @I)). Thus we know that ¢ < 1 at (&,7). We set \ :=
%(n —¢)(2,1) > 0. The lower semicontinuity of 7. — ¢ implies that ¢+ X < 1 in Ba,
by letting 7 smaller if necessary. Since u. > ¢ in Qro \ {(2,%)}, there is X € (0, )
such that ¢ + 2N < wu, in Q1o \ By.

Define w : Q7,0 — R by

(2. 1) u(z, t) V (p(z,t) + N) for (z,t) € By,
w(x,t) =

u(z,t) for (x,t) € Qr.0 \ Br.
We show that w is the desirable function in the statement of this lemma. In order
to show that w € S_, it suffices to prove that w* is a subsolution of (3] since it
is clear that w < 7 in Q7,0 by the construction. To this end, we take((7, §),) €

Qr x (C*(Qr) N C(Qr,)) such that maxq, ,(w* — ) = (w* —¥)(7,8) and aim
to show

(5.5) Vu(9,8) < [, q)(5, 3) + Ko, [, ) (8, 5) + (3, 5).

We may assume that (w* —)(g,8) = 0.

In the case that w* = u* at (7, 3), we see maxq, ,(u* — 1) = (u* —¥)(7, §).
Since u* is a subsolution of (BI), then (&.A]) is obtained by Lemma BTl

In the case that w* = ¢ + X at (7,5), we see that maxg, (¢ + N — ) =
(e + XN —9)(y,8) = 0. Evidently, ¢, = ¢, and 95 = ¢; at (g, 5). By definition of
w, it is clear that w*(§ — 2,8) > o(§ — 2,8) + X for all z € [0, g)] and hence

> w( z,é) ( -z s)
> 0.
This implies that

JW}) q] (gv §) > J[‘Pap,@ﬁ](yv §) and K(O,ﬁ) [1/}5 q] (ga ‘§) > K(O,g}) [@7pﬂ,§](ga ‘§)a
where ¢ = ¢, (7, §). Since w = u in Q7,0 \ Br, (¥, 8) € B, and thus, by using (5.4)),
we obtain (0.0 as
g ) ["/}7 ]( Y, ) K(O,Q) [wa Q](ya ‘§) - f(gu §)

(pt(g ) - J[(pupﬁ,é](ya ‘§) - K(O,,@) [Spap’g,é](gu §) - f(ya '§)
0

There is a sequence (x¢,t:) € Qr o such that lim._,o(z, te, u(ze, t)) = (&, tu (2, 1)).
Then we have
liminf(w(ze,t.) — u(ze, ts)) > lir%(¢(xs, te) + N —u(ze,t)) =N > 0.
e—

e—0

This means that there is a point (x,t) € Qr such that w(x,t) > u(x,t). The proof
is now complete. O

Lemma 5.3. Assume that f and g are continuous. Let & be a subsolution (re-
spectively, n be a supersolution) of BI)-B2), satisfying n* < +oo and & > —o0
in Qr U 0pQr. Suppose that & < n in Qr U 0p,Qr and & = 0" = g in 0pQr.
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Then, there exists a (possibly discontinuous) solution v of BI)-@B2) that satisfies
E<u<nin QrUd,Qr and u =g on OpQr.

Proof. Let S be a set of subsolutions w of (BI)-([B2) that satisfies w <7 in Qr U
0pQ1. We notice that S # ) since £ € S. We define

u(z,t) := sup{w(x,t) |w e S} for (z,t) € Qr Ud,Qr.

Lemma [50] ensures that u* is a subsolution of (3. If u. were not a supersolution
of (Bl), then by Lemma [52] there would exist a subsolution w of 31l and a point
(y,s) € Qr such that u(y,s) < w(y,s). But this contradicts the maximality of
u. Thus, u, must be a supersolution of ([BII). Thus we see that u is a solution of
BJ). It is clear from the definition of w that £ < u < n in Qr U 9,Qr, so that
& S up <u < ut <t in Qr UpQr. Since & = n* = g on 9,Q7, we have
U =uy =u=gon dpQr. O

5.2. Construction of suitable sub- and supersolutions. In order to obtain a
subsolution and a supersolution satisfying the condition of Lemma[53] we construct
subsolutions and supersolutions agreeing with the boundary data and the initial
data in Proposition[5.4] and Proposition 5.5l respectively. Here, we only present the
proof for subsolutions since the same is applied to supersolutions. The method of
construction follows the conventional one, e.g., [7] (see also [A]).

Proposition 5.4. Assume that f is bounded continuous and g is uniformly con-
tinuous. Then, there are a bounded subsolution & and a bounded supersolution m

Of (B:[D'm that Sa’tisfy §&1=m =g on {Ovl} X [O7T)
Proof. For (y,s) € {0,1} x [0,T) and € > 0 we define £/"* : Q1+ U 9,Qr — R by
5@, t) = g(y, ) — 26 = (My + M + || flloo)p? (x) — Malt — 5.

Here M7 and M, are positive constants to be chosen later and

1 1t C
_ [e% @ h =0
Yy I‘(2+0¢)I +1"(1—|—a)$ wheny =5
(56) p (:E) o 1 1+a Ll-‘ra h l
—m(iﬂ - ) when y = ¢,

where C' > /(1 4+ «). Subsequently, we will supress the superindex y. Note that
p € C?(0,1)UC[0,1) and it satisfies p’ € L'(0,1), p(y) =0, p > 01in [0,1]\ {y}, and

(D%p)z = —11in (0,1). The last one can be verified using the well-known formula
L(B+1) -

5.7 Dogh=_— T ba 1

(5.7) S F(B—oﬁ—l)x or >

We claim that /¢ is a subsolution of BI)-B2) if M; and M are taken
large enough. To see this, we first take ((i,f),cp) € Qr x C%1(Qr) such that
maxg, (£0°%° — ) = (£0'°° — p)(&,1). Then, ¢.(#,1) < M, because

w(ja f) - w(jaf_ h) S 551)875(‘@7{) - 5%75)8(‘i5£_ h)
= —M2(|f—s| — |f—h—s|)
< Msh
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for small A > 0. Moreover, by setting p := ¢, (&,1) = (&)"*%).(&, ), Proposition 1]
and the definition of p imply

JEP™Epl (3, 6) + Ko,0)60%, p)(4,

—(M1 + Ma + [ flloc)(I[p; (50)]( )+ Ko.a)[p: p'(2)](2,1))
—(My + M + || flloc) (D3 p)e (2)

:M1+M2+||f||oo-

Thus, we have

\_/

Spt(i'vf)_‘][g%syavp](i'vf) Oac [5175)8719]( t) f(‘%vf)
§M2_(M1+M2+||f||oo)_ (CL‘, )Sou

which means that £ is a subsolution of (BI]).
We next choose M7 and M so that
_ _ )t t — _ A\t
2€[0,0\ {y} p(z) te[0,7)\{s} |t — s|

where w : [0,00) — [0,00) is a continuity modulus of g on 9,Qr:
l9(z,t) = gy, s)| Sw(le —yl+ [t —s|) forall (z,1),(y,s) € IpQr.
Then, for all (z,t) € 9,Qr,
& (x,t) < gy, s) — 26 — Myp(x) — Malt — s
(5.8) < g(x,t) + w(lz —y|) + w(|t — s|) — 2 — Myp(x) — M|t — s
< g(zt).

Thus, &% satisfies the boundary condition and therefore we see that it is a sub-

solution of B.1I)-([B2).

Now, we define the function & on Q7 U 9,Q1 by

&z, t) = (sup{&"™"(2,1) | (y,5) € {0,1} x [0,T),e > 0})".

The uniformly continuity of g implies that it is bounded in {0,1} x [0,T). Hence
&5 < ||glloo < 400 in QrUI,Qr, that is, & is bounded from above in Q7Ud,Q.
Thus, Lemma 1] together with (B8] guarantee that & is a subsolution of (BI)-
B2). Furthermore, (58) and the fact that & (z,t) > sup..o &0 (2,t) = g(=,t)
for (z,t) € {0,1} x [0,T) implies that & = ¢ on {0,l} x [0,T). Finally, since
vl <€) < gin QrUd,Qr for each (y,s) € {0,1} x [0,T) and £/*" is bounded
in Q7 U 9pQr, then & is bounded from below and, as a result , it is bounded in

Q1 U d,Qr. O

Proposition 5.5. Assume that f is bounded and continuous, and g is uniformly
continuous. Then, there are a bounded subsolution & and a bounded supersolution

ne of BI)-B2) that satisfy £ = 12 = g in (0,1) x {0}.

Proof. For y € (0,1) and € > 0 we define £§° : Q7 U 9,Qr — R by the following
formula,

5 (x,t) = g(y,0) — 26 = N1o¥(z) — (N2 + || fllo0)2.
Here N1 and Ny are positive constants to be chosen later and

1 1
(5.9) o¥(z) = =yt — _;aya:a + 2t
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Subsequently, we will suppress the superindex y. We note that £5*° € C(Qr.0).
We claim that £5° is a subsolution of BI)-(32) if N; and Ny are taken large
enough. The direct computations using (.7 imply

(657)e(x,t) = (DF& % )a(@, 1) — f(w,t) = =(N2 + [|flloc) = NiT(2 + @) — f(x,) <0

for all (z,t) € Q. Hence, the consistency result, see Proposition B:2] implies that
&Y° is a viscosity subsolution of ([B]).
We choose N; and N3 so that

_ _ A\t t) — +
Ny >  sup (w(lz—y) —¢) and Ny > sup M
2[00\ {y} o(z) t[0,T) t

where w is the continuity modulus of g. Then, for all (z,t) € 0,Qr we have
&Y (z,t) < g(y,0) — 2 — Nyo(x) — Nat
< g(z,t) + w(|z —y|) + w(t) — 26 — Nyo(x) — Nat
< g(x,1).

Therefore £5° is a subsolution of (BI)-([B2).
We define the function & on Q7 U 9,Q1 by

§o(x,t) = (sup{&3°(2,1) | y € (0,1),e > 0})"
It can be proved with the same idea as for & in Proposition B4 that £ = ¢ in
(0,1) x {0} and &, is bounded in Q7 U 0,Q7, so we omit the details here. O

Theorem 5.6. Assume that f is bounded and continuous, and g is uniformly
continuous. Then, there exists a bounded solution u € C(Qr U 0,Qr) of BI)-

@D

Proof. Let & and & be subsolutions of (B1))-B2) from Propositions [5.4] and 5]
respectively. Then, we easily see that £ = &; V & is a bounded subsolution of (B.1])-
(B2) that satisfies { = g on 9,Qr. Similarly, we have a bounded supersolution
of the form 7 := m A n2, which satisfies n = g on 9,Qr, where 7 and 7 are
supersolutions given in Propositions[5.4land 5.5 Theorem [4.1]implies that £ < 7 in
Qr U 9,Qr. Thus, by Lemma 5.3 we have a solution u of (B.1)-(B.2) that satisfies
§<u<nin QrUd,Qr and u = g on 9,Qr. Using Theorem [T again, we see that
u* < uy in Qr U 0pQr, while the converse always holds. Therefore u is continuous
in Qr U 0pQr and it satisfies

61~1>Ig)1+{|UJ(y, S) - g(xvt” | (ya S) € (QT U 8pQT) N B5(Ia t)} =0
for each (z,t) € 0,Q7. O

6. STABILITY

The solution constructed in the previous section has a good stability property.
In this section we establish two typical results, one of which shows consistency with
viscosity solution in the integer-order case.

Theorem 6.1. Assume that f is continuous. For « € (0,1) let u, be a subsolution
(resp. a supersolution) of [BI) in which the fractional order is a. Let 8 € [0,1]
and set

Tg = limsup "u resp. us = liminf ,ug ).
N P (resp. up = liminf .ua)
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Ifup < +oo (resp. wg > —00), then Tg (resp. ug) is a subsolution (resp. super-
solution) in Qro of BI) in which the fractional order is 8. Here subsolutions Uy
and @y (resp. supersolutions u, and uy ) are in the usual viscosity sense.

In this theorem g and ug stand for the upper half-relaxed limit and the lower
half-relaxed limit, respectively. Namely,

ug(x,t) = (limsup “uq)(z,t)
a—fB,a#s

= 51_1)%1+ Sup{ua(yvs) | (yu 8) € QT,O N B(s(.’li,t), 0< |Oé - ﬁ' < 6}

and ug := —(—u)s. Note that Tg : Q1,0 — RU{+00} is upper semicontinuous and
ug : Q1o — RU{—oc} is lower semicontinuous; cf. [I Lemma V.1.5].
The proof of Theorem [6.1]is based on two lemmas. Here is the first one:

Lemma 6.2. Let § € (0,1). For a € (0,1) let uo : Qro — R be an upper
semicontinuous function. Assume that Ug < +00 in Qro and Ug — ¢ atlains a
strict mazimum on Qr at (2,1) € Qr for ¢ € C*Y(Qr). Let § € (0,2) be a
constant. Then, there exists a neighborhood N € N ; with the compact closure,
sequences (xe,t) € N and ae € (0,1)\ {8} such that (xe,t.) is a mazimum point
Jor v, —¢ on N and

lim (qe, e, te, uly (2e,te)) = (B, 8,1, (2, 1)).
e—0
Proof. The proof is a trivial modification of [I, Lemma V.1.6]. O
Lemma 6.3. Let {f(:;\)}xea C C?[0,1], where A is an index set. Assume that
sup || £'(5 )l oo < 400
AEA

and supycp |f/(z;N)| < Cx'* for a constant C >0 and v > 0 as x — 0", Then,

lim  sup  |[(DYf)a(z;N) — f/(2;0)] =0
a=0" (z,2)€[0,]] xA

and

lim  sup  [(Dgf)a(a;A) = f" (25 0)| = 0.
a—=17 (2,0)€[0,l]x A

Proof. If f does not depend on A, this proposition follows easily from known facts.
Indeed, if we denote the Riemann-Liouville derivative by #L' D¢ i.e.,

RL o _ 1 i “ gy)
D) = Fr sy

for a function g € C1(0,1), then (D2 f),(z) = BLDf'(z), where f(-) := f(:;\).

Using the known formula (see [8, Lemma 3.4] for example) we have

KD ) = i s + DS (@) = D2 (o)

where we used the fact f/(0) = 0 by the assumption. Let J1~% denote the Riemann-

Liouville integral:
_ 1 v 9ly)
J%(x) = / dy
D0 G-wr
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for a given function g, where J is the identity operator. Then D¢ f/(x) = J1=2 f"(z).
According to [8, Theorem 2.10] we see that under the assumptions of this proposi-
tion,

(6.1) lim sup |[J'7Of"(x) — T f"(2)] =0

a=0" z¢[0,1]
and

(6.2) lim sup |J'*f"(z) — JUf"(z)| = 0.

a—=17 z¢[0,]]
Since JLf"(z) = f'(x) — f'(0) = f'(x) and JOf"(x) = f"(z), the conclusion in the
case that f does not depend on A turns out.

If f depends on A, then it is necessary to show that the convergence is also
uniform in A. Taking into account the above argument, it suffices to prove that the
limits (G.)) and ([E2)) are uniform in A. However, the proof is quite similar to that
of [8, Theorem 2.10]. It exploits the fact that we have the bounds on f’, which are
uniform with respect to \. We leave the details of the proof to the reader. O

Proof of Theorem [61]. Since the proof for supersolutions is similar, we give the
proof for subsolutions.

Let ((#,1),¢) € Qr x C*1(Qr) be such that @ig — ¢ attains a strict maximum
on Qr at (#,1). Fix 6 € (0,#) arbitrarily. By Lemma [6.2 we have a neighborhood
N € N, ; with compact closure and (d, t) € N, sequences (z.,t.) € N and a. €
(0,1) \ {B} such that (z.,t.) is a maximum point for u’_— ¢ on N and
(6.3) lim (e, e, te,up, (e, te)) = (B, 2,1, ﬂg(iﬂ,f)).

e—0*+

We may assume that 6 < inf. z.. Note that uj,_ < g in Q70 by definition of wg.
The case of 8 # 0,1 is easy since we can use Lemma 28 In fact, since u,,_ is a
subsolution of (B with the fractional order c.,

Pt (xaa ta) <J%s [U:;E s pa] (xaa ta) + K(%E’IE_(;) [(Pu pa] (x87 ta)
+ KF:E_(;@E)[“ZE  Pe)(@e, te) + f (e, L),
where p. = @ (2, te). Thus, we send € — 0 to get
u(#,1) <JP(ug, pl(#,) + Ky ,_s 003, )
+ Ky o lap,pl(&,0) + f(2,1)  with p = @,(#,),

which is the desired inequality.

Let 3 =0or B =1. Let »r > 0 be a constant such that B,(&,1) C Q7. We
may assume that (z.,t.) € B,.(2,1) for all ¢ because of ([G3)). We may also take
Y € C*HQr U 9,Qr) that satisfies ¥ = ¢ in B,.(2,1), maxg,., (Ua. —¥) = (U, —
V) (@e, te), SUDyc[i—r,i+r] [th2 (- ?)[loc < o0, and SUDyc[i—r,i+r] ()] < Ozt for
some C' >0 and v > 0 as z — 0%. Then we have

wt(zsvts) < (Dgw)m(xsvts) =+ f(xsa ts)-

In order to pass to the limit with ¢ — 0 we invoke Proposition [6.3] with f(z;A) =
Y(z,t) and A = [t — r,t + 7]. This leads us to
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and

1/}15(@7{) < wmm(jaf) + f(jsaﬂ if ﬂ =1
These are desired inequalities since 1; = ¢y and V., = Pz at (&,1). O
Remark 6.4. In the case of B = 0, we usually take test functions from C'(Qr),
as a result one may think that the above proof is not complete. However, in the
definition of viscosity solutions, we may use test functions having higher order

derivatives; cf., e.g., [0, Proposition 2.2.3]. Therefore, we conclude that @, is a
subsolution after obtaining (GII).

Proposition 6.5. Let u: Qr U 0,Qr — R be a solution of
ug = (DQu)y + f n Qr,
u=yg on 0pQr,
where f € C(Qr) and g € C(0,Qr). Fore > 0 let ue : Qr UdQr — R be a

solution of

(6.5)

(6:) {wt = (Dfus)otfo inQr,

Ue = ge on OpQr.
Here f. € C(Qr) and g- € C(0,Qr). Assume that ||g: — glloo = 0 as € — 0. Then
lim. 0 |Jue — ul|oo = 0.
Proof. Corollary 3] implies that
T
o ue —ul < Sup |9 — gl +/0 i |(fe = )(x,8)|ds.
The right-hand side vanishes as € — 0 so the conclusion is immediately obtained.

O

7. REGULARITY OF SOLUTION

In this section we study regularity by restricting the initial boundary condition
g to be Lipschitz continuous. Let us denote the Lipschitz constant of g by Ly in
what follows.

Proposition 7.1. Assume that f is bounded and continuous, and g is bounded
Lipschitz continuous. Let u be the solution to BI)-B2). Then, there exist Ly > 0
and Ly > 0 such that for all (z,t) € Qr U Q1

|u(z,t) — u(0,t)] < Lia®

and
juz,t) — u(l, 1) < Lall — .

Proof. For (y,s) € {0,1} x [0,T) we define £¥* : Qr U 9,Qr — R by the following
formula

€% (,t) = gy, 8) — (1 + (") ") Ly + [|flloc)p(x) — Lt — sl.
Here, p is the same function as (E.0) and
o p(l)/1 when y = 0,
p(0)/1 when y = [.

However, later on we will suppress the superscript y.
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Using the method of the proof of Proposition .4l we can show that £¥° is a
subsolution of (BI) and satisfies £¥° < ||g]looc < +00, except for the difference of
constants. Moreover, since p(z) > cly — x| for z € [0,1], then we have
€5 (2,t) < g(y,8) —c 'Ly -cly — x| — Lylt — 5| < g(w, 1) for all (z,t) € 0,Q7.
Thus, we know that (sup(, sef0131x[0,m)§¥%)" is a bounded subsolution of (B.II)-
[B2) by virtue of Lemma (5.l Theorem Bl yields u > (supy, e 0,3 x[o,7) §%°)" in
Qr U 0p,Qr, so we get the estimate

u(z,t) = g(y,t) = (L + ¢ )Ly + | fllc)p(@)
for all (z,t) € Qr U 0,Qr and y € {0,1}. Observing that

C
- h =0
o) < l—‘(l—l—a)x when y ,
P(@) < (14 @)
m|l-$| Wheny:l

for x € [0,1], we immediately obtain the one-side of the desired estimate.
Similarly, it can be proved that 7¥* : Qv U 0,Q1 — R defined by

"% (2,8) = g(y, ) + (1 + ¢ )Ly + || flloc)p(x) + Lyt — 5|
is a supersolution of [BI))-([B2) and satisfies v° > —||g|jcc > —00 in Q7 U 9,Q7.
Thus (infy s)e 0,13 x 0,7y 1%"°)+ is a bounded supersolution of [B.I)-([B.2) and a sim-
ilar estimate yields the other side of the desired estimate. O

Proposition 7.2. Assume that f is bounded and continuous, and g is bounded and
Lipschitz continuous. Let u be the solution to BI)-B2). Then, for eacht € [0,T),
u(+,t) is locally Lipschitz continuous in (0,1].
Proof. To prove this proposition we follow the argument presented in [2], where the
Ishii-Lions method [I3] is extended to non-local equations. Fix & € (0, ] arbitrarily.
Step 1 Given constants L > 0, C' > 0 and 1 > 0 we define
2
Opcp(ety) = ule,t) —u(y,t) — Lo(|lz — y|) = Cilz — &> — ———=
! (T =)

for all (x,t,y) € U :=[0,1] x [0,T) x [0,1], where ¢ is the concave function defined
by

r — it (0 <r <),
o(r) = { . :

F—T (r>7)
and 7 := arg max,>o(r — r'7%) = (e + 1)71/* < 1. We claim that there is C' such
that supy @10, < 0 for all large L and all large 7. Before showing this claim in
Step 2, we will present its consequences. Namely, we see that for (y,t) € QrUd,Qr
such that |y — | < # we have

0>sup®r o,y
U
Z (I)L,Cﬂ](jv ta y)

2
> uldt) — Ll —y — —=
> u(@,t) —u(y,t) — LIz — y| T =10
since ¢(r) > r for r € [0,7]. Then, after letting 7 to infinity we obtain u(y,t)
u(z,t) — L|& — y|. If we interchange the role of  and y, then we come to u(z,t)
u(y,t) — L|& — y|. This yields the Lipschitz continuity of u(-,t).

>
>
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Step 2 In order to show the claim made in Step 1, let us suppose the contrary:
for all C, there is L as large as we wish such that supy; ®r.c,, > 0. In this case
we first study maximum points of ® ¢ ,, which exist in U, because v is bounded
and @1 ¢, — —oo as t — T. Let us denote a maximum point by (Z,¢,7). Since
O cn(Z,t,7) > Pron(2,0,2) = —2/(nT), by rearranging the formula for ® and
considering large 7, we have

2
(7.1) Lo(|z = gl) + Clz — &* < w(z, 1) — u(y, ?) + T < 3o

Thus, we may assume that z,¢ € (0,{] and |Z — g| < 7 by taking large L and C.
At this point it is good to recall also the choice of . Moreover, T # ¥, because
O, cy(Z,t,Z) > 0, but this is a contradiction.

Let us suppose that = [. Since ¢(|Z —g|) > (1 — 7*)|Z — g| by the definition of
¢, together with Proposition [T.I] we have

. 2
syQMMZuQB—U@D—LMU—M%%W—wF—————

n(T —1t)
< u(l,t) —u(y.t) — Lo(|l — gl)
< (L — LA = 7))l — g,
where Lo is the same constant as in the statement of Proposition [[.Il Thus z # [
for suitably large L. It can be seen that y # [ for the same reason. Furthermore,
we also see t # 0 by arguing similarly using the Lipschitz continuity of g instead of
Proposition [7.1]

Step 3 Given € > 0 we define

Q1 omel(x,ty,s) =
.12 1 1 (t— 8)2
u@, ) —u(y,t) = Lol —y) = Clo =" — - = o5~

for (x,t),(y,s) € Qr U 9pQr. There is a maximum point (z.,t.,y.,s.) and it
converges to a maximum point of ® on U by taking a subsequence if necessary.
We denote the limit by (z,,y,t) although it is not necessarily the same as the
previous one. Due to Step 2 we may assume that (z.,t:), (ye,8:) € Qr and 0 <
|ze — ye| < 7 by considering suitably small . Since (z,t) — @r cp.(x, 1, Ve, Se)
attains a maximum at (x.,t.). Since it is sufficiently smooth we use it as test
function, hence we have

1 2(te —
+ (te — se)
77(T - ts)Q €

< J[U,pa +%:](x87 tS) +K(O,m5)[u7pa +q€]($57 tS) +f(.’L'5, t€)7

where p. = L/ (lec|)é. and ¢. = 2C(x. — &). Here and hereafter we write e. =
Te — Ye, e = ecflec], e = T — @, and é = e/|e]. Similarly, since (y,s) —
—®r, cpe(Te, te,y, s) attains a minimum at (ye, s.), we have

1 2(te — sc)

_U(T—SE)Q + €

> J[u,pg](yg, 35) + K(O,ya)[uapa](yaa se) + f(ye, 36)'
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Subtracting the second inequality from the first inequality yields

1 1
< t.) —
(T —6)? + 2T —5.)2 = Ju,pe + ge|(ze, te) — J[u, pe)(ye, se)

=+ K(O,wg) [’U,, De + QE] (.IE, ts) - K(O,yg) [’U,, pE] (y67 SE)

+ flxe,te) — f(ye, 82)-
We claim that the right-hand side can be negative when choosing sufficiently large
L after sending € to 0. This clearly gives a contradiction.

Step 4 We shall prove the claim made at the end of previous Step. It is easy to
see by a straightforward calculation that

lim hl}%(‘][uaps + qs](zsa ts) - J[u,ps](yg, 55)) = 0.

L—ooe

Thus, we only estimate the term K. := K (o 5_)[u, Pe+¢e] (2, te) =K (0,y.) [, D] (Ye, 52)
after splitting it into two expressions,

Ks,l = K(&,ms)[%ps + QE](fEsv ts) - K(&,yg)[uvps](ysv 55)
and

K.o= K(O,é) [Uupa + QS](xaa ta) - K(O,zi) [uaps](yaa 35)-
Here, § is a constant such that sup, |e.|/2 < 0 < inf. |e.|. Notice that we may
assume that sup, |es| < inf.(z: A y.) for sufficiently large L.

Thanks to the boundedness of u, the dominated convergence theorem is appli-
cable to K. 1, giving

(72) ;g% K&,l - K(é,i) [’U,,p + q] (‘i.u E) - K(J,yj) [’U,,p] (gu E)a
where p = L¢/(Je|)é and ¢ = 2C(z — ). We shall further estimate the right-hand
side by dividing it into

Kl,l = K(é,i/\yj) [’U,,p + q](‘fu E) - K(J,i/\yj) [u,p](gj, E)
and

K12 = Kgagalu,p+ q)(2,1) — Kzag,glu pl(7,1).
Since ®p, 0, (Z,t,9) > Pr.cn(T — 2,67 — 2), Le.,

u(@ = 2,1 —u(@ ) —u(f — 2,8 + u@f) < C(|7 — & — 2> — |z - il*)
for all z € [0,Z A g|, then we have
dz  C,C
zot2 ] —q
where Cp = a(a+ 1)/I'(1 — a). Let us assume ¥ < § temporarily. Then, since
(I)L,C,n(ja tu g) 2 (I)Lycﬂl(jv tv g - Z)u i-eu
—u(y — z,1) +u(y, 1) < L(g(|z + (£ — 9)]) — (|7 — 7))

for all z € [z, §], we have

(@Ag)'=—a'7),

TAY
(73) K111 S Ca/ CZ2
é

Ki = ~Kia (5.0 < Co [ (E(6(z +€l) = o((eD) —2) -

x

The monotonicity of ¢ implies that ¢(|z + ¢|) < ¢(z + |e
the concavity of ¢ implies that

L(¢(|z +e]) = ¢(le])) — pz < L (le])z — pz < 2L¢/ (Je])z

). Keeping this in mind,



26 TOKINAGA NAMBA AND PIOTR RYBKA

and hence

IO&

Yy /
(7.4) Ku§2aﬁawp/151_2Q{5WD(i”“L)

<
Q

Since we have §* — % < |§ — Z|*, then we obtain

-
K1 < 2C.Le/(le]) |y52a|

We note that () implies that L|Z — §| < 3||ug||co. Hence, we obtain the following
bound on K »,

KLQ S GCaLl_O‘||u0Hg05_2a.

We also have

(I)L,C,n,s (5175, tEv Ye, SE) Z ¢L7C7/’775 (IE —Z, tEa Ye, SE))
that is,
w(re—z,te) —u(ze, te) < L(|o(|e —ye —2[) = d(|ze = ye])) + C(Jwe — 2 — 2 |2 —2]?)
and

(I)L,C,n,a (x€7 e, Ye, 35) > (I)L,C,n,a (x€7 te,Ye — 2, 85)7
that is,

—u(Ye — 2, 8¢) + u(Ye, 5e) < L(|p(|ze — ye + 2|) — d(|2e — vel))

for all z € [0, d]. Thus, it is readily seen that

d
€2<C/ 812 = ecl) + (1= + ecl) — 26(Jec])) + O

The fundamental theorem of the calculus and the definition of ¢ yield

6(12 — e]) + 6(1z + ec]) — 26(Je.]) = —a(l + e |12 / dt/ (1+2tT) T

lec]

< —a(l4a)2% e ot
Therefore, since § > sup, |e.|/2 we have

O dz
&2<2a1m+UCL“P1/-—+CC g
0
=297 la(a +1)Cq Llec|*7 1ot~ C’ colt—«
-« 11—«
—22(=Do(a +1)CyL n C,Cot—@

11—« 11—«

If we combine it with the bounds on K ; and Kj 2, which are valid independently
of €, then we deduce that K is bounded above by a quantity, which tends to —oo
as L — +oo after ¢ — 0, and so the claim is now proved. O

Proposition 7.3. Assume that [ is bounded and continuous, and g is bounded and
Lipschitz continuous. Let u be the solution to BI)-B2). Then, there exists L > 0
which depends only on Ly and f such that

|u(z,t) —u(x,0)] < Lt for all (z,t) € Qr U Q7.
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Proof. For y € (0,1) and € > 0 let £¥° : Qv U 0,Q7r — R be defined by
£ (x,t) = g(y,0) — 26 = Nio(x) — (Lg + No + || flloo)t.

Here N7 and N are positive constants to be chosen later and o is the same function
introduced in the proof of Proposition 5.5l Apart from the different constants, the
proof that £¥¢ is a subsolution of (BI)-([32)) and satisfies £¥° < ||g||co in Qr U, Q1
is the same as that of Proposition 55l Thus, £ defined by

§(x,t) = (sup{€""(x, 1) | y € (0,1),e > 0})" for (2,1) € Qr UJpQr
is a subsolution of BI])-(B.2]).

We notice that No can be taken to be independent of y and €. Recall that we

take Na so that .
Ny > sup Lot ="
te[0,T) t

It is easily seen that the function ¢ — (Lyt — )/t is monotone increasing, hence
its maximum is (L,7 — €)* /T, which is less than L,. Thus, it is sufficient to take
N such that Ny > L.

Theorem [l implies that u > ¢ in Q7 U 9,Q7. Moreover, we have

(1) > Sl;g(g(% 0) =2 = (Lg + Na + || fll0)?)
g

= 9(2.0) — (L + | ll0)t — inf 22 — Nt

=9(2,0) = (Lg + [ flloo + N2)t.
Therefore, the one-side of the desired inequality is established with L = Ly+|| f|cc+
No.

Since it can proved similarly that
n""(x,t) = g(y,0) + 2 + Nio(x) + (Lg + Na + [ flloo)t,

a function 7 := (inf,c(0,1),e>01"°)« is a supersolution of (BI)-(B2). Therefore,
from a similar estimate as above, the other side of the desired inequality is also
obtained immediately. O

Proposition 7.4. Assume that [ is bounded and continuous, and g is bounded and
Lipschitz continuous. Let u be a unique solution to BI)-B2). Then, there exists
L > 0 which depends only on Ly and f such that

lu(z,t) — u(z,t+ h)| < L[h|
for all z € [0,1],(t,h) € [0,T) x R such thatt+ h € [0,T).
Proof. We will only show in the case h > 0, the case h < 0 is analogous. Given a
constant L > 0 we define v(z,t) := u(z,t + h) + Lh. It is easy to see that v is a

supersolution of BII) in (0,1) x (0,7 — h). Moreover, if L is taken large enough,
we have by Proposition [[3]

v(x,0) = u(x, h) + Lh > u(z,0)
and by Lipchitz continuity of g, for (z,t) € {0,1} x (0,7 — h)
v(x,t) = g(x,t +h)+ Lh > g(z,t) = u(z,t).

Therefore we see that u < v on 9,Q7—p. The comparison principle implies that
u < von Qr—p U IpQr—p, which is the one-side of the desired inequality. The
other-side is established by the similar argument for w(x,t) := u(z,t+h)—Lh. O
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