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Abstract

We present a method for obtaining approximate solutions to the problem of

optimal execution, based on a signature method. The framework is general, only

requiring that the price process is a geometric rough path and the price impact

function is a continuous function of the trading speed. Following an approximation

of the optimisation problem, we are able to calculate an optimal solution for the

trading speed in the space of linear functions on a truncation of the signature of the

price process. We provide strong numerical evidence illustrating the accuracy and

flexibility of the approach. Our numerical investigation both examines cases where

exact solutions are known, demonstrating that the method accurately approximates

these solutions, and models where exact solutions are not known. In the latter case,

we obtain favourable comparisons with standard execution strategies.

∗Opinions expressed in this paper are those of the authors, and do not necessarily reflect the view of
JP Morgan.

1

ar
X

iv
:1

90
5.

00
72

8v
1 

 [
q-

fi
n.

C
P]

  2
 M

ay
 2

01
9



1 Introduction

1.1 Overview

The problem of optimal execution has attracted much interest following the original work

on the problem by Bertsimas and Lo in [BL98] and Almgren and Chriss in [AC01]. The

aim is to model how one should send orders to the market in order to transition from

holding one portfolio to another. Typically the case where an investor simply wishes to

acquire/liquidate shares in a single asset is considered. There are two competing factors

to the optimisation. Firstly, the investor has pressure to trade quickly. Trading more at

later times would mean accepting more risk, as the future prices are uncertain. On the

other hand, trading evenly across time also has its benefits due to the nature of market

impact. The investor should consider how much liquidity there currently is at desirable

prices – placing a large order now could result in “walking the book” and accepting

unfavourable prices for a large portion of their trade.

The key features in any optimal execution model are the dynamics of the price process

at which the trader can execute her trades, Pt, and some definition of the notion of a

good strategy for the trader. The process Pt is a function of the history of the trading

speed until time t, together with some additional driving processes. Typically, we have

that Pt is given by the sum of an underlying price process added to a price impact

function. The price impact function depends on the history of the investor’s trading

speed, and it determines how much the price at which the trader can execute has changed

as a consequence of that. Classical choices of price impact functions include temporary

versions, which depend only on the speed at which the trader wishes to trade at that

time, permanent versions, which depend in the accumulation of orders placed until time

t, and transient versions, where the effects of past trading speeds decay with time. Good

strategies are usually defined in terms of some cost functional, which takes into account

both the expected revenue for the investor when employing a strategy, and some measure

of the risk associated with that strategy.
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1.2 Paper Outline

The aim of this paper is to show how the signature method can be used to obtain approx-

imate solutions to the problem of optimal execution. Our setting is very general, with

price processes assumed to be geometric rough paths only and the price impact function

allowed to depend on the entire history of the trading strategy, with only a mild continu-

ity condition assumed. The flexibility of the framework is demonstrated in part by the

broad range of existing models in the literature which fall within it. An instance of this

is the classical optimal execution problem presented in [CJP15, Section 6.5], in which

the underlying price process is assumed to be a Brownian motion, with an L2 penalty

imposed based on the risk of holding inventory. More recent examples include the work

of Lehalle and Neumann in [LN19] and Cartea and Jaimungal in [CJ16b]. In [LN19],

the authors prove results on the existence and uniqueness of an optimal trading strategy

in the setting where trading signals are incorporated into the price dynamics. Similarly

in [CJ16b], the authors consider the role of microstructure in the problem by including

order flow as a contributing factor permanently affecting the price. Our approach can

also be adapted to handle models consisting of multiple correlated assets which are ef-

fected by trades in each other. Such a setting is presented in the article by Mastromatteo,

Benzaquen, Eisler and Bouchaud, [MBEB17].

We begin the paper with a brief overview of rough paths in Section 2. Here, we define

geometric rough paths and their signatures, and introduce the underlying algebraic struc-

tures required to perform calculations on the signatures. Following this, we introduce our

framework in Section 3. This consists of specifying our assumptions on the price process

and market impact in our model, defining the space of trading speeds in which we will

look for strategies, and introducing the optimal control problem. Section 4 is dedicated

to calculating approximate solutions to the control problem. We first reformulate the

problem in terms of the signature, and then we approximate the optimal trading speed

by a finite-dimensional, computationally tractable minimisation problem. In Section 5,

we provide examples of interesting extensions of the approach as it was presented in Sec-

3



tions 3 and 4, such as the multiple asset problem which appears in [MBEB17], and more

exotic models where additional multi-dimensional noise is assumed to provide exogenous

information about the price dynamics. Finally in Section 6 and Section 7, we provide

numerical evidence that the model performs well. Good approximations to the optimal

strategies in the settings [CJP15, Section 6.5], [LN19] and [CJ16b] are obtained, and we

also investigate the problem in the case where the underlying price process is a fractional

Brownian motion. Moreover, we demonstrate in Section 7 that our methodology can also

be used on real market data.

2 Rough paths preliminaries

Rough paths and signatures will play a key role in this paper. In this section we will

introduce all the aspects of rough paths theory that will be used in the article. For a

more detailed introduction to the theory of rough paths, the authors refer the reader to

[LCLddpdS07, FV10].

2.1 Tensor algebra

A rough path is a path that takes value on a certain graded space, called the tensor

algebra. This subsection will introduce these algebras, as well as another crucial space –

the dual space of the tensor algebra.

Definition 2.1 (Extended tensor algebra). Let d ≥ 1. We denote by T ((Rd)) the extended

tensor algebra over Rd, which is defined by

T ((Rd)) := {a = (a0, a1, . . . , an, . . .) | an ∈ (Rd)⊗n}

where ⊗ denotes the tensor product. Given a = (ai)
∞
i=0,b = (bi)

∞
i=0 ∈ T ((Rd)), define the
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sum + and product ⊗ by

a + b := (ai + bi)
∞
i=0,

a⊗ b :=

(
i∑

k=0

ak ⊗ bi−k

)∞
i=0

.

We also define the action on R given by λa := (λai)
∞
i=0 for all λ ∈ R, a ∈ T ((Rd)).

Similarly, we can define the tensor algebra and truncated tensor algebra as the space

of all finite sequences and all sequences of a given length, respectively.

Definition 2.2. The tensor algebra over Rd, denoted by T (Rd) ⊂ T ((Rd)), is given by

T (Rd) := {a = (an)∞n=0 | an ∈ (Rd)⊗n and ∃N ∈ N such that an = 0∀n ≥ N}.

Similarly, the truncated tensor algebra of order n ∈ N over Rd is defined by

T (N)(Rd) := {a = (an)∞n=0 | an ∈ (Rd)⊗n and an = 0∀n ≥ N}.

Let {e1, . . . , ed} ⊂ Rd be a basis for Rd. This induces a dual basis {e∗1, . . . , e∗d} ⊂ (Rd)∗

for (Rd)∗, where (Rd)∗ denotes the dual space of Rd – i.e. the space of all continuous

linear functions Rd → R. We may define a basis for (Rd)⊗n by:

{ei1 ⊗ . . .⊗ ein | ij ∈ {1, . . . , d} for j = 1, . . . , n}.

Similarly, a basis of ((Rd)∗)⊗n is defined by

{e∗i1 ⊗ . . .⊗ e
∗
in | ij ∈ {1, . . . , d} for j = 1, . . . , n}.

This induces, in a natural way, a basis for T ((Rd)) and T ((Rd)∗).

It is often convenient to think of T ((Rd)∗) as a space of words. Define the alphabet

Ad := {1, . . . ,d}. Then, the basic element e∗i1 ⊗ . . . ⊗ e∗in can be identified with the
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word i1 . . . in. Let W(Ad) denote the space of all words (and their sums) with letters

in the dictionary Ad, i.e. the free R-vector space generated by Ad. Then, we have

T ((Rd)∗) ∼=W(Ad). The empty word will be denoted by ∅ ∈ W(Ad).

Example 2.3. Consider the following examples for R2.

1. Let a = 3− e2 ⊗ e1 ∈ T ((R2)). Then, 〈∅, a〉 = 3.

2. Let a = 1− 2e1 + e2 ∈ T ((R2)), and set w = ∅ + 1. Then, 〈w, a〉 = 1− 2 = −1.

3. Let a = e1⊗e2−e2⊗e1 ∈ T ((R2)), and set w = 21+111. Then, 〈w, a〉 = −1+0 =

−1.

4. Let a = 1 + e⊗31 and w = 2 · 111. Then, 〈w, a〉 = 2 · 1 = 2.

The space of words possesses two natural algebraic operations – the sum and the

concatenation. Let w = i1 . . . in,v = j1 . . . jm ∈ W(Ad) be two words. Their sum is the

formal sum w + v ∈ W(Ad). Their concatenation, on the other hand, is defined by

wv := i1 . . . inj1 . . . jm ∈ W(Ad).

These two operations induce analogous operations on T ((Rd)∗), and with some abuse of

notation we will even use concatenation on W(Ad) and T ((Rd)∗) interchangeably – i.e.

we will sometimes write `w ∈ T ((Rd)∗) for ` ∈ T ((Rd)∗) and word w ∈ W(Ad), by which

we mean that we take the concatenation of the element in W(Ad) associated to ` and

the word w.

Example 2.4. Take the alphabet A4 = {1,2,3,4}.

1. Set w = 212,v = 31. We have wv = 21231 ∈ W(A4).

2. We have (143 + 23)1 = 1431 + 231 ∈ W(A4).

There is a third operation on words that will be useful in this paper: the shuffle

product tt . Intuitively, the shuffle product accounts for all the possible ways of riffle

shuffling two decks of cards. The precise definition is given below.
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Definition 2.5 (Shuffle product). The shuffle product tt :W(Ad)×W(Ad)→W(Ad)

is defined inductively by

ua ttvb = (u ttvb)a + (ua ttv)b,

w tt∅ = ∅ ttw = w

for all words u,v and letters a,b ∈ Ad, which is then extended by bilinearity to W(Ad).

With some abuse of notation, the shuffle product on T ((Rd)∗) induced by the shuffle

product on words will also be denoted by tt .

It follows from the definition of the shuffle product that tt is commutative, i.e.

f ttg = g ttf for all f, g ∈ T ((Rd)∗).

Example 2.6. We have:

1. 12 tt3 = 123 + 132 + 312.

2. 12 tt23 = 2 · 1224 + 1242 + 2124 + 2142 + 2412.

Definition 2.7. Let Q ∈ R[x] be a polynomial on one variable. Write Q(x) = a0 +a1x+

a2x
2 + . . .+ anx

n. Then, Q induces the map Qtt : T ((Rd)∗)→ T ((Rd)∗) given by

Qtt(`) := a0∅ + a1`+ a2`
tt2 + . . .+ an`

ttn ∀` ∈ T ((Rd)∗),

where `ttk := ` tt` tt . . . tt`︸ ︷︷ ︸
k

for k ∈ N.

2.2 Rough paths

We will now define a crucial object in this paper: the signature of a path.

Definition 2.8 (Signature of a path). Let 0 ≤ s < t ≤ T . For a piecewise smooth path

X : [0, T ]→ Rd, we define the signature of X over [s, t] by

X<∞
s,t := (1,X1

s,t, . . . ,Xn
s,t, . . .) ∈ T ((Rd))
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where

Xn
s,t :=

∫
s<u1<...<un<t

dXu1 ⊗ . . .⊗ dXun ∈ (Rd)⊗n.

Similarly, we define the truncated signature of order N ∈ N by

X≤Ns,t := (1,X1
s,t, . . . ,XN

s,t) ∈ T (N)(Rd).

If we refer to the signature of X, without referencing the interval over which the signature

is taken, we will implicitly refer to X<∞
0,T .

Example 2.9. Throughout this paper, we will constantly work with linear functions on

the signature. Therefore, it will be useful to see a few examples that will be used in later

sections.

Let X = (X1, X2) ∈ C∞([0, T ];R2) be a two-dimensional smooth path. Recall that in

Section 2.1 we introduced the notation of words as linear functions on the tensor algebra.

We have:

1. 〈2,X<∞
0,T 〉 =

∫ T
0
dX2

t = X2
T −X2

0 .

2. 〈∅,X<∞
0,T 〉 = 1.

3. 〈21,X<∞
0,T 〉 =

∫ T
0

∫ t
0
dX2

sdX
1
t =

∫ T
0

(X2
t −X2

0 )dX1
t .

4. Let ` ∈ T ((R2)∗). Then, 〈`1,X<∞
0,T 〉 =

∫ T
0
〈`,X<∞

0,t 〉dX1
t .

Definition 2.10 (Geometric p-rough paths). Let T > 0 and p ≥ 1. Denote by bpc the

integer part of p. Let ∆T := {(s, t) ∈ [0, T ] × [0, T ] | s ≤ t}. A function X : ∆T →

T (bpc)(Rd) is said to be a geometric p-rough path if it is the limit (under the p-variation

distance, [LCLddpdS07, Definition 1.5]) of signatures of order bpc of piecewise smooth

paths. The space of all geometric p-rough paths will be denoted by GΩp([0, T ];Rd).

Each X = (1,X1, . . . ,Xbpc) ∈ GΩp([0, T ];Rd) can be uniquely extended to a N -

geometric rough path for any N ≥ p ([LCLddpdS07, Theorem 3.7]). Analogously to
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the smooth case, the full extension X<∞ = (1,X1, . . . ,XN , . . .) will be defined as the

signature of X.

Many stochastic processes that are used in the literature are almost surely geometric

rough paths. For example, the signature of a semimartingale, defined using Stratonovich

integration, is almost surely a geometric p-rough path for any p ∈ (2, 3) [CL05]. The

signature of a fractional Brownian motion for Hurst parameter H ≥ 1/4, defined almost

surely, is also a geometric p-rough path for p > 1/H ([CQ02]). We will now state some

properties of signatures that will be useful in this article.

Lemma 2.11 (Shuffle product property, [LCLddpdS07]). Let X ∈ GΩp([0, T ];Rd) be a

geometric p-rough path. Let `1, `2 ∈ T ((Rd)∗) be two linear functionals. Then,

〈`1,X<∞
0,T 〉〈`2,X<∞

0,T 〉 = 〈`1 tt`2,X<∞
0,T 〉 ∀`1, `2 ∈ T ((Rd)∗). (1)

The shuffle product will be extensively used throughout this paper. It guarantees

that the product of two linear functions on the signature is another linear function on

the signature, which is given explicitly in terms of the shuffle product.

The following lemma will also be useful in this paper. This result guarantees that the

signature X<∞
0,T completely characterises X – up to the so-called tree-like equivalences (see

[BGLY16, Definition 1.1]).

Lemma 2.12 (Uniqueness of signatures, [BGLY16]). Let X ∈ GΩp([0, T ];Rd). The

signature X<∞
0,T of X is unique up to tree-like equivalences (defined in [BGLY16, Definition

1.1]).

Corollary 2.13. Let X ∈ GΩp([0, T ];Rd). If there exists a projection of X that is strictly

monotone, then the signature X<∞
0,T determines X up to translations.
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3 Framework

3.1 Notation

Given a continuous path Z ∈ C([0, T ];R), denote its augmentation by the continuous

path Ẑ ∈ C([0, T ];R+ × R) defined by Ẑt := (t, Zt) ∈ R+ × R.

Let p ≥ 1. Define:

Ω̂p
T := {Ẑ ∈ GΩp([0, T ];R2) | Z ∈ C∞([0, T ];R) and Z0 = 1}

dp−var

,

where the closure is taken under dp−var, i.e. the p-variation distance (see [LCLddpdS07,

Definition 1.5]). Given Ẑ ∈ Ω̂p
T , we will write by Z ∈ C([0, T ];R) the unaugmented

coordinate process.

Intuitively, elements of Ω̂p
T are signatures of paths of the form (t, Zt), with initial

point Z0 = 1. Because the first dimension of this augmented path (namely, time) is

monotone increasing, and because we are only considering paths that start at 1, it follows

by Corollary 2.13 that Ẑ<∞0,T completely characterises Ẑ (and hence Z).

3.2 The market

The space Ω̂p
T will be our space of market paths. We will equip it with a probability

space (Ω̂p
T ,B(Ω̂p

T ),P). Given a rough path X̂ ∈ Ω̂p
T , the unaugmented coordinate path

X : [0, T ]→ R will denote the unaffected midprice of the asset. In other words, X is the

midprice process of the asset if the trader does not trade on the asset.

Example 3.1. Our market framework is very general in the sense that it includes most of

the examples that have been considered in the literature. In particular, our framework

includes:

1. Semimartingales. In the literature [CJ15, CJ16b, CJ16a, LN19], the midprice

process is often modelled as a semimartingale. Semimartingales can be lifted to p-

geometric rough paths for p ∈ (2, 3) [Lyo98, CL05, FV10], and therefore they fit into
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our framework: the market would be given by the probability space (Ω̂p
T ,B(Ω̂p

T ),P)

for p ∈ (2, 3) and P the law of the semimartingale.

2. Lévy processes. More generally, certain Lévy processes can also be lifted into p-

geometric rough paths [FS17, Che18] and they are thus included in this framework.

3. Fractional brownian motion. Our framework also includes the setting where

the midprice is modelled by a fractional brownian motion with Hurst parameter

H ≥ 1/4. Indeed, it was shown in [CQ02] that fractional Brownian motions with

Hurst parameter greater than 1/4 can be lifted to geometric rough paths.

3.3 Trading speeds

In this section, we will introduce the notation of trading speeds.

Definition 3.2 (Trading speeds). Define the metrizable space ΛT :=
⋃
t∈[0,T ] Ω̂

p
t . We

define the space of trading speeds by T := C(ΛT ;R). Given a trading speed θ ∈ T , the

trader will trade a rate of θ(X̂|[0,t]).

Intuitively, the trader that is sitting at time t ∈ [0, T ] should decide how much to

sell or buy by only considering what happened up to time t: she can only act based on

the past, not the future. In other words, the trader’s trading decision will be a (non-

anticipative) function of the midprice process up to time t, i.e. X̂|[0,t] ∈ ΛT . This intuition

is incorporated into the definition of the trading speeds T . A space similar to ΛT was

considered in [Gal94, CF13, AC17, Dup09, BCH+17, Rig16], and a similar definition of

trading strategies was considered in [Rig16].

In this paper, the following class of trading speeds will have a special relevance:

Definition 3.3 (Signature trading speeds). The space of signature trading speeds Tsig ⊂

T is defined by

Tsig := {θ ∈ T | ∃` ∈ T ((R2)∗) such that θ(X̂|[0,t]) = 〈`, X̂<∞
0,t 〉 ∀ X̂|[0,t] ∈ ΛT}
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where X̂<∞
0,t denotes the signature of X̂ over the interval [0, t].

It turns out that the space of signature trading speeds Tsig ⊂ T is very large – in fact,

we have the following density result, whose proof is in Appendix A.

Lemma 3.4. Let ε > 0. Then, there exists a compact set K ⊂ Ω̂p
T such that:

1. P[K] > 1− ε.

2. Tsig, restricted to K, is dense in T .

Therefore, trading speeds can be locally approximated arbitrarily well by signature

trading speeds. Hence, if one wants to optimise a certain objective function over T , it

makes sense to optimise it over Tsig instead. This is precisely the approach that will be

followed in this paper: we will look for an optimal trading speed in Tsig, instead of T .

3.4 Market impact

When a trader buys or sells a traded asset, the mere act of trading will affect the asset’s

order book. If the volume she trades is small compared to the overall volume, this effect

may be neglected. However, if the trader sends large trading orders the impact on the

order book may negatively affect the price at which the order is executed (see [BILL15]

and the references therein). In this section we will introduce the market impact model

that will be used in this paper.

If the trader decides to follow a signature trading speed θ ∈ Tsig, the execution price

– i.e. the price the trader has access to – will be given by

P θ
t := Xt − 〈gθ, X̂<∞

0,t 〉, (2)

where gθ ∈ T ((R2)∗) is a linear functional that depends on θ that models the market

impact.

Example 3.5. The definition of the market impact, far from being restrictive, is very

general and includes many examples that have been studied in the literature. Indeed,
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let ` ∈ T ((R2)∗) and set the signature trading speed θ(X̂|[0,t]) := 〈`, X̂0,t〉. Then, the

following are examples of market impacts included in our framework:

1. Temporary market impact. Set g` := λ`, with λ > 0. Then, 〈g`, X̂<∞
0,t 〉 =

λθ(X̂|[0,t]) is the linear temporary market impact studied in [CJ15, CJ16b, LN19].

We may also make the temporary market impact nonlinear by considering a poly-

nomial Q ∈ R[x] and setting g` := Qtt(`). Then, 〈g`, X̂<∞
0,t 〉 = Q(θ(X̂|[0,t])).

2. Permanent market impact. In [CJ15, CJ16b, CJ16a], a permanent market

impact given by
∫ t
0
θsds is considered. Setting g` := `1, we have 〈g`, X̂<∞

0,t 〉 =

〈`1, X̂<∞
0,t 〉 =

∫ t
0
〈`, X̂|[0,s]〉ds =

∫ t
0
θ(X̂|[0,s])ds.

3. Transient market impact. In [GSS12, CGL17, Dan17] the authors considered a

transient market impact that is given by
∫ t
0
K(t− s)θsds, where K(x) := exp(−ρx)

for ρ > 0 constant. Then, we can find g` ∈ T ((R2)∗) such that

∫ t

0

K(t− s)θsds ≈ 〈g`, X̂0,t〉

to arbitrary accuracy.

4. More generally, market impacts modelled by functions of the form G(θ,X) can

be well-approximated by linear functions on the signature, and they are therefore

included in our framework.

3.5 Optimal execution problem

Suppose the trader wishes to liquidate q0 > 0 units of the asset by time T . If q0 is large

compared to the traded volume, the trading activity will affect the price of the asset

([BILL15]) negatively for the trader. Therefore, it may be more beneficial to spread the

trading activity over the interval [0, T ] to avoid the undesired market impact. In this case,

however, the trader will be exposed to market fluctuations that may affect her adversely.

Hence, the task is to find a suitable trading speed to liquidate the inventory q0 which
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accounts for this trade-off. We will now introduce the optimal execution problem that

will be studied in this paper.

Definition 3.6. The wealth corresponding to the trading speed θ ∈ T is defined by

W θ
t :=

∫ t

0

P θ
s θ(X̂|[0,s])ds.

On the other hand, the remaining inventory is defined by

Qθ
t := q0 −

∫ t

0

θ(X̂|[0,s])ds

where q0 > 0 is the initial inventory. We define the cost function Cθ : Ω̂T → R by

Cθ(X̂) := W θ
T − φ

∫ T

0

(Qθ
t )

2dt+Qθ
T (P θ

T − αQθ
T ) (3)

with α, φ ≥ 0 constants.

In this paper we will study the following optimal execution problem given by the

optimisation problem

sup
θ∈T

E[Cθ(X̂)]. (4)

The first term of the cost function indicates that, in principle, the trader would like to

maximise the wealth acquired by following the trading strategy θ. If the investor arrives

the terminal time with a non-zero inventory Qθ
T , the third term of the cost function

Qθ
T (P θ

T − αQθ
T ) ensures that these leftovers are executed with a penalisation α > 0.

Finally, the term −φ
∫ T
0

(Qθ
t )

2dt penalises holding inventory for a long time. There are

different interpretations for this term. For instance, this running inventory penalty could

be seen as an urgency term. Another interpretation comes from the setting where the

investor would like to account for model uncertainty: the larger φ is, the less certain the

trader is about the dynamics imposed on the midprice (see [CJ16b, CDJ17]). In any

case, a large φ would increase the trading speed near the beginning, and reduce it near
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the end.

This particular cost function was chosen due to its popularity in the literature [CJ15,

LN19, CJ16b, GSS12, CGL17, CJ16a, Dan17], but the authors would like to emphasise

that the methodology proposed in this paper also applies to other alternative definitions

of the cost function, and we are not restricted to this particular choice of Cθ.

Properties of signatures, and the shuffle product property (1) in particular, will make

finding the optimal trading speed for the optimal control problem (4) in the restricted

space Tsig ⊂ T easier to solve. Due to the density result stated in Lemma 3.4, we will

restrict the space of trading speeds from T to Tsig, so that we will solve the following

problem instead:

sup
θ∈Tsig

E[Cθ(X̂)]. (5)

4 Optimal execution

The cost function (3) is a nonlinear function of the underlying price path. However, for

signature trading strategies θ ∈ Tsig it turns out to be a linear function on the signature

of the midprice process. This is due to the shuffle product property (1) – each term in

the cost function can be rewritten as a linear function on the signature of the midprice

process.

Lemma 4.1. Let θ ∈ Tsig be the signature trading speed given θ(X̂|0,t) = 〈`, X̂<∞
0,t 〉, with

` ∈ T ((R2)∗). Then, given any X̂ ∈ Ω̂p
T and t ∈ [0, T ], we have

1. W `
t =

〈(
(2 + ∅− g`) tt`

)
1, X̂<∞

0,t

〉
.

2. Q`
t = 〈q0∅− `1, X̂<∞

0,t 〉.

3.
∫ t
0
(Q`

s)
2ds = 〈(q0∅− `1)tt21, X̂<∞

0,t 〉.

4. Q`
t(P

`
t − αQ`

t) = 〈(q0∅− `1) tt(2 + ∅− g`)− α(q0∅− `1)tt2, X̂<∞
0,t 〉.

Proof. Let X̂ ∈ Ω̂p
T and t ∈ [0, T ].
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1. Notice that, because X0 = 1, we have Xs = 〈2 + ∅, X̂<∞
0,s 〉 for each s ∈ [0, t]. Then,

by the shuffle product property (1),

W `
t =

∫ t

0

P `
s 〈`, X̂<∞

0,s 〉ds =

∫ t

0

(Xs − 〈g`, X̂<∞
0,s 〉)〈`, X̂<∞

0,s 〉ds

=

∫ t

0

〈
(2 + ∅− g`) tt`, X̂<∞

0,s

〉
ds =

〈(
(2 + ∅− g`) tt`

)
1, X̂<∞

0,t

〉
.

2. Follows from the fact that
∫ t
0
〈`, X̂<∞

0,s 〉ds = 〈`1, X̂<∞
0,t 〉.

3. Using (ii),

∫ t

0

(Q`
s)

2ds =

∫ t

0

〈(q0∅− `1)tt2, X̂<∞
0,s 〉ds = 〈(q0∅− `1)tt21, X̂<∞

0,t 〉.

4. Using (ii) again,

Q`
t(P

`
t − αQ`

t) = 〈q0∅− `1, X̂<∞
0,t 〉〈2 + ∅− g` − α(q0∅− `1), X̂<∞

0,t 〉

= 〈(q0∅− `1) tt(2 + ∅− g`)− α(q0∅− `1)tt2, X̂<∞
0,t 〉.

Therefore, the optimal liquidation problem (4) is then transformed into the following

problem:

Proposition 4.2. Let θ ∈ Tsig be the signature trading speed given θ(X̂|0,t) = 〈`, X̂<∞
0,t 〉,

with ` ∈ T ((R2)∗). Then, given any X̂ ∈ Ω̂p
T and t ∈ [0, T ], the cost function can be

written as

Cθ(X̂) =
〈(

(2 + ∅− g`) tt`
)
1− (q0∅− `1)tt2(φ1 + α∅) + (q0∅− `1) tt(2 + ∅− g`), X̂<∞

0,T

〉
.

Therefore, the optimal liquidation problem (4) is reduced to
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sup
`∈T ((R2)∗)

〈 (
(2 + ∅− g`) tt`

)
1− (q0∅− `1)tt2(φ1 + α∅) (6)

+(q0∅− `1) tt(2 + ∅− g`),E
[
X̂<∞

0,T

] 〉
.

The cost function Cθ(X̂) depends on two aspects: a stochastic component and the

control θ. Moreover, this dependency is nonlinear. Proposition 4.2 separates this de-

pendency into a deterministic component that solely depends on the control, and on a

stochastic component that does not depend on the control. Moreover, because this sepa-

ration makes the cost function linear on the path, the expectation in (3) is moved inside

linear functional – in other words, the resulting optimisation problem (6) depends on the

expected signature of the midprice process.

The expected signature of the midprice process is the only dependency on the stochas-

tic process. This object plays the analogous role of the moments of a random variable,

but on path space. It was shown in fact in [CL16] that under certain growth assumptions,

the expected signature determines the law of the stochastic process. Therefore, the fact

that (6) depends on the expected signature of the midprice process essentially implies

that the optimisation problem depends on the entire law of the process.

4.1 Numerically solving the optimal execution problem

The optimisation problem (6) from Proposition 4.2 involves the full expected signature

E
[
X̂<∞

0,T

]
. In practice, however, one has to consider the truncated expected signature of

order N ∈ N, i.e. E
[
X̂≤N0,T

]
.

However, the fast decay of the signature – it decays factorially – implies that the

first few terms will dominate the rest, and not much information will be lost in the

truncation. As a consequence, the expected signature typically also decays factorially

([CL16] for instance showed this fact for wide classes of Lévy, Markov and Gaussian

processes).
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Figure 1:
∥∥∥E [X̂N

0,T

]∥∥∥ as a function of N in the case where the midprice process is a

Brownian motion. The factorial decay of the signature makes higher order terms small
compared to the first few terms.

Figure 1 shows
∥∥∥E [X̂N

0,T

]∥∥∥ plotted against N in the case where the midprice process

X is a Brownian motion. As we see, the factorial decay makes higher order terms small

compared to the first few terms. Therefore, in practice one doesn’t need to consider

truncations of very high order.

Once the signature is truncated at a certain level N ∈ N, the optimisation problem

(6) consists of finding the global maximum of a certain polynomial in several variables.

For example, one can show that if a linear permanent and temporary market impact is

considered, the polynomial is a quadratic polynomial, and finding the optimal trading

speed will be reduced to finding the (unique) global maximum of a quadratic polynomial

in several variables.

Regarding the computation of the truncated expected signature, Monte Carlo methods

can be used for this task. Therefore, the only knowledge about the midprice process that

is needed to solve the optimal execution problem is how to sample from the path. The

signature of a single realisation can be computed using publicly available software such

18



as esig1 or iisignature2.

5 Extensions

In Section 4, we studied a certain optimal liquidation problem. In the present section we

analyse different extensions of the problem, and we study how they fit in our framework.

5.1 Modelling the execution price with exogeneous information

For θ ∈ Tsig, in Section 3.4 the market impact was defined as a function of the trading

speed and the unaffected midprocess:

P θ
t := Xt − 〈gθ, X̂<∞

0,t 〉, with gθ ∈ T ((R2)∗). (7)

However, there are other factors that affect the impact of a trading order [PV15, TLD+11].

For instance, one may want to incorporate the total traded volume V : [0, T ]→ R in the

market impact [TLD+11]. Moreover, correlation and cross-asset impact between similar

assets will also play a role: the execution price of an order may depend on the midprice

process of other assets [PV15, TWG17, MBEB17].

This feature can be incorporated to our framework, by modelling the execution price

by

P θ
t := 〈f θ, Ẑ<∞0,t 〉, with f θ ∈ T ((Rn+3)∗) (8)

where Ẑ<∞0,t is the signature of Ẑt := (t,Xt, Vt, Y
1
t , . . . , Y

n
t ) ∈ Rn+3, with Vt the total

traded volume up to time t and Y 1
t , . . . , Y

n
t are the midprice processes of n alternative

assets that the trader believes that affect the execution price of the main asset. Notice

that (7) is a particular case of (8). Other exogenous information may also be added to

Ẑ.

The methodology proposed in this paper will then apply to this setting: the opti-

1https://pypi.org/project/esig/
2https://pypi.org/project/iisignature/
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misation problem (4), for the new definition of market impact, will be reduced to an

optimisation problem similar to (6), namely

sup
`∈T ((R2)∗)

〈 (
f ` tt`

)
1− (q0∅− `1)tt2(φ1 + α∅) + (q0∅− `1) ttf `,E

[
Ẑ<∞0,T

] 〉
. (9)

5.2 Optimal trading, as opposed to liquidation

In this paper we have been focusing on the case where a trader has an initial inventory

at t = 0, and she would like to get rid of it by time t = T . However, certain high-

frequency traders may be interested in the following alternative question: if one starts

with no inventory at t = 0 and one would like to finish with no inventory at t = T , what

is the best trading strategy that can be followed on [0, T ]? This paper’s framework can

be modified for this purpose by redefining the inventory Qt in Definition 3.6 by setting

q0 = 0.

5.3 Cross-asset portfolio liquidation

The discussion on Section 5.1 suggests another extension of the original problem studied

in this paper. Suppose there are n assets Y 1, . . . , Y n and a trader has an initial portfolio

q = (q1, . . . , qn) ∈ Rn
+. If the trader wishes to liquidate the inventory q (see [TWG17,

MBEB17]), she can consider an optimal control problem similar to (9) that incorporates

her risk profile.

More generally, the trader could aim to transition from a starting portfolio qstart ∈ Rn

on n traded assets, to a final portfolio qend ∈ Rn, and she would like to do so in an optimal

way. Again, our framework can be adapted for this task.

5.4 Other cost functions

The cost function considered in (4) was chosen in order to be consistent with the literature

[CJ15, LN19, CJ16b, GSS12, CGL17, CJ16a, Dan17]. However, the methodology we

propose is not intrinsic to this cost function, and it can be applied to other cost functions
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Figure 2: The trader’s inventory for 100 midprice path realisations and the setting con-
sidered in Section 6.1. Different running inventory penalties φ were considered.

that the trader may find more appropriate.

6 Numerical experiments

In this section we implement the proposed methodology and test it on different settings.

We begin by showing that, when we apply the methodology to various settings studied

in the literature, we retrieve the existing results, thus reaffirming that our framework is a

generalisation of many frameworks considered in the literature and validating the trading

strategy returned by the signature methodology. Then, we apply our approach to new

settings.

6.1 Brownian motion with temporary and permanent market

impact

In this section we will consider the framework studied in [CJP15, Section 6.5]. We will

assume that the unaffected midprice process follows a Brownian motion with volatility

σ, that is, Xt := σWt with σ > 0 and W a Brownian motion. For a signature trading
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speed θ ∈ Tsig given by θ(X̂|[0,t]) = 〈`, X̂<∞
0,t 〉 with ` ∈ T ((R2)∗), the execution price will

be given by a permanent market impact and a temporary market impact:

P θ
t := Xt − k

∫ t

0

θ(X̂|[0,s])ds− λθ(X̂|[0,t]),

with k, λ > 0.

It was mentioned in Section 3.4 that this market impact is included in our framework.

More specifically, we have:

P `
t = Xt − k

∫ t

0

〈`, X̂<∞
0,s 〉ds− λ〈`, X̂<∞

0,t 〉 = Xt − 〈g`, X̂<∞
0,t 〉

with g` := k`1 + λ`.

We may then solve (6). The chosen parameters were q0 = 1, λ = 10−3, k = 10−4,

α = 10, σ = 0.02 and T = 1, and different values for φ were considered. Truncated

signatures of order 7 were considered to solve (6). As it has been established in the

literature (see [CJP15, Section 6.5]) the optimal trading speed does not depend on the

midprice. Moreover, if we set φ = 0 so that no running inventory penalties are considered,

it is known that the optimal trading speed is constant. On the other hand, when φ is

increased, the trader decides to liquidate the inventory sooner. All this features are

captured in the results we obtained – see Figure 2.

6.2 Incorporating trading signals

Lehalle and Neuman in [LN19] considered an optimal liquidation problem where the

investor has access to some trading signal that predict short-term price movements, such

as order book imbalance.

In this case, the midprice process was taken to be Xt :=
∫ t
0
Isds + σWt, where I

is the signal process, σ > 0 is volatility and W is a Brownian motion. In the original

paper [LN19], the signal I that was considered was an Ornstein-Uhlenbeck process dIt =

−γItdt+σ0dWt, where γ, σ > 0 are constants. Therefore, given that the midprice process
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Figure 3: The trader’s inventory for 100 midprice path realisations and the setting con-
sidered in Section 6.2, both for the theoretical optimal speed (red) and the signature
trading speed (blue).

is a semimartingale, this example also falls within our framework.

The price impact that was considered in [LN19] was a linear temporary price impact.

Therefore, the execution price will be given by (2), where g` := λ` with λ > 0.

Figure 3 shows the running inventory for 100 realisations of the midprice process,

both for the signature trading speed and the optimal trading speed that was derived in

[LN19]. The chosen parameters were q0 = 1, λ = 10−3, α = 10−2, φ = 10−3, I0 = 0.02

and γ = 0.1. Truncated signatures of order 9 were considered. As we see, the signature

trading speed seems to be a close approximation of the theoretical optimal speed. The

numerical expected cost of the signature trading speed is 1.0169981 whereas the optimal

trading speed’s expected cost is 1.0170877.

Notice that the presence of the signal in the midprice process introduces a positive

drift, and therefore, as illustrated by Figure 3, it is optimal to begin by purchasing shares

in order to sell them for a profit later. This could be avoided by increasing the running

inventory penalty φ.
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Figure 4: The trader’s inventory for 100 midprice path realisations and the setting con-
sidered in Section 6.3, both for the theoretical optimal speed (red) and the signature
trading speed (blue).

6.3 Incorporating order-flow

In [CJ16b], the authors incorporate the order-flow of all agents into the midprice dynam-

ics. This is done by considering the midprice process

Xt := k

∫ t

0

(µ+
s − µ−s )ds+ σWs,

where µ+
t and µ−t are the aggregated buying and selling orders of all market participants,

respectively. These orders are assumed to follow the dynamics

dµ±t = −κµ±t dt+ η±
1+L±

t−
dL±t

with L±t independent Poisson processes of intensity λ0, and η±i ∼ Exp(η0κ) has an ex-

ponential distribution. Moreover, a temporary market impact λθ(X̂) was included as

well.

Figure 4 shows the inventory for 100 realisations of the midprice path, both for the
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Figure 5: Trader’s inventory (left) and the trader’s wealth distribution (right) in the case
where the midprice process is a fractional Brownian motion.

signature trading speed and the optimal trading speed that was derived in [CJ16b].

The expected cost function of the signature trading speed is 0.995690, very close to

the expected cost of the optimal speed: 0.995722. The parameters we considered are

λ = 5 · 10−4, k = 10−4, q0 = 1, α = 2, φ = 5 · 10−3, σ = 0.1, κ = λ0 = 5, η0 = 0.8 and

signatures of order 7.

6.4 Fractional Brownian motion

In this section, we assume that the midprice process Xt is a fractional Brownian motion.

We assume a linear market impact. In other words, the execution price will be given by

P θ
t := σWH

t − λθ(X̂|[0,t]),

where WH
t is a fractional Brownian motion with Hurst parameter H, and σ, λ > 0 are

constants.

Figure 5 shows the midprice and inventory in the case where H = 1/3, σ = 0.02,

q0 = 1, φ = 0, λ = 10−3, α = 0.1, T = 1 and truncated signatures of order 7 are

considered.

As we see, the behaviour differs significantly from the case where H = 1/2 (i.e. when

Xt is a Brownian motion). Indeed, given that we don’t include a running inventory
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penalty as φ = 0, in the Brownian case we would expect the inventory Qt to be linear.

However, Figure 5 illustrates that this is not the case for the fractional Brownian motion,

and the trading speed depends strongly on the midprice process. In fact, if we look

at the expected cost of the constant trading speed – it is given by 0.9991335 – we see

that the signature trading speed for the fractional Brownian motion outperforms the

constant trading speed strategy – the expected cost of the signature trading speed is

1.0031300. This is outperformance of the signature trading speed is reflected in the

wealth distribution of both strategies shown in Figure 5 (right).

7 Experiments with market data

To solve (6), the only information that is needed about the midprice process is its expected

signature. In this section, we use real market data to estimate the expected signature,

which is then used to solve (6). Then, we evaluated the performance of the optimal

execution strategy in an out-of-sample set of market paths.

We considered midprice market data of Apple (AAPL) for 1 year, from the 1st of

January 2018 to the 31st of December 2018, which was obtained from LOBSTER3. This

data was divided into a training set of 10 months (January–October) and an out-of-sample

set of 2 months (November–December).

We considered 15 minute windows from different times of each trading day – more

specifically, we considered 10:00–10:15, 11:00–11:15, 12:00–12:15 and 13:00–13:15. We

estimated the expected signature over each of these 15 minute windows by computing

the empirical expectation of the signature (signatures of order 13 were considered) of the

corresponding 15 minute windows from the testing set. Therefore, to some extent, we

assume that the midprice process follows a similar behaviour over each of the windows

throughout the trading year.

Once the expected signature of the midprice process for each of the 15 minute windows

is estimated from the training set, we solved the optimisation problem (6) to estimate

3https://lobsterdata.com/
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(a) 10:00–10:15. (b) 11:00–11:15.

(c) 12:00–12:15. (d) 13:00–13:15.

Figure 6: Out-of-sample performance of the signature approach to optimal liquidation,
compared to the Almgren–Chriss benchmark. The optimal signature trading speed con-
sistently outperforms the benchmark across all 15-minute windows.
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the optimal signature trading speed. We included a temporary and market impact:

P θ
t := Xt − k

∫ t

0

θ(X̂|[0,s])ds− λθ(X̂|[0,t]).

The parameters we used where λ = 10−3, k = 10−4, α = 0.1, φ = 10−4 and q0 = 1.

We then evaluated the performance on the out-of-sample set for each of the 15 minute

windows. Following [CJ16b], we compared the performance against the Almgren–Chriss

execution strategy [AC01]. More specifically, we considered the savings per share metric

(in basis points) that was used in [CJ16b], which is defined by

WT −WAC
T

WAC
T

× 104,

where WT and WAC
T are the terminal wealth of the optimal signature trading speed and

Almgren–Chris execution strategy, respectively.

The results are shown in Figure 6. The optimal signature trading speed outperforms

the Almgren–Chriss benchmark on all 15-minute windows, as on average the savings per

share of the signature trading speed is positive.

Notice that the only assumption we have made is that the midprice process behave

similarly on the same 15-minute window across different trading days. Other than that,

our approach is model-free: we can, in a nonparametric and model-free way, estimate the

optimal trading speed from market data.

8 Conclusion

In this paper we propose a methodology to numerically approximate the solution of

certain optimal execution problems. This is done in the general framework of geometric

rough paths, which in particular contains many existing models in the literature.

Rough path signatures provide a methodology to reduce the original optimisation

problem into a finite-dimensional, computationally feasible optimisation problem. The

only information that is needed from the underlying price process is its expected signature,
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which can be computed using Monte Carlo methods.

This approach was tested in Section 6, where we show that in those cases where the

optimal trading speed is known, the signature-based numerical approach is capable of

retrieving it. Moreover, the generality of the approach allows the estimation of the optimal

trading speed in those settings where the optimal solution is unknown. In Section 7 on

the other hand, we showed how our methodology can be used in real market data and we

demonstrated that the signature approach outperforms the Almgren–Chriss benchmark.

A Proofs

Proof of Lemma 3.4. Let ε > 0. Because Ω̂p
T is reflexive, there exists K ⊂ Ω̂p

T compact

such that P[K] > 1− ε.

Let θ1, θ2 ∈ Tsig. Then, by definition there exist linear functionals `1, `2 ∈ T ((R2)∗)

such that θi(X̂|[0,t]) = 〈`i, X̂<∞
0,t 〉 for all X̂|[0,t] ∈ ΛT , i = 1, 2. Define

θ(X̂|[0,t]) := 〈`1 tt`2, X̂<∞
0,t 〉. Then, by the shuffle product property (1) we have

θ1(X̂|[0,t])θ2(X̂|[0,t]) = 〈`1, X̂<∞
0,t 〉〈`2, X̂<∞

0,t 〉

= 〈`1 tt`2, X̂<∞
0,t 〉

= θ(X̂|[0,t]).

Therefore, and because the sum of two signature trading speeds is trivially a signature

trading speed, Tsig form an algebra. On the other hand, the uniqueness of the signature

(Corollary 2.13) implies that Tsig separates points. Indeed, given X̂|[0,t], Ŷ|[0,t] ∈ Ω̂p
T

distinct, because we have X̂<∞
0,t 6= Ŷ<∞

0,t we immediately have that there exists ` ∈ T ((R2)∗)

such that 〈`, X̂<∞
0,t 〉 6= 〈`, Ŷ<∞

0,t 〉. Moreover, Tsig contains constants, as 〈∅, X̂<∞
0,t 〉 = 1 for all

X̂|[0,t] ∈ Ω̂p
T . Therefore, by Stone–Weierstrass theorem we conclude that Tsig, restricted

to K, is dense in T .
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[CJ16b] Álvaro Cartea and Sebastian Jaimungal. Incorporating order-flow into

optimal execution. Mathematics and Financial Economics, 10(3):339–

364, 2016.

[CJP15] Alvaro Cartea, Sebastian Jaimungal, and José Penalva. Algorithmic and
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