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AN L1 APPROXIMATION FOR A FRACTIONAL

REACTION-DIFFUSION EQUATION, A SECOND-ORDER ERROR

ANALYSIS OVER TIME-GRADED MESHES∗

KASSEM MUSTAPHA†

Abstract. A time-stepping L1 scheme for subdiffusion equation with a Riemann–Liouville
time-fractional derivative is developed and analyzed. This is the first paper to show that the L1
scheme for the model problem under consideration is second-order accurate (sharp error estimate)
over nonuniform time-steps. The established convergence analysis is novel, innovative and concise.
For completeness, the L1 scheme is combined with the standard Galerkin finite elements for the
spatial discretization, which will then define a fully-discrete numerical scheme. The error analysis
for this scheme is also investigated. To support our theoretical contributions, some numerical tests
are provided at the end. The considered (typical) numerical example suggests that the imposed
time-graded meshes assumption can be further relaxed.

Key words. Fractional diffusion, L1 approximations, finite element method, optimal error
analysis, graded meshes

1. Introduction. Consider the following time-fractional diffusion equation,

(1) ∂tu(x, t) + ∂1−α
t Au(x, t) = f(x, t), for x ∈ Ω and 0 < t < T ,

with initial condition u(x, 0) = u0(x), where ∂t = ∂/∂t, Ω is a convex polyhedral
domain in R

d (d ≥ 1), and the spatial elliptic operator

Au(x, t) = −∇ · (κα(x)∇u(x, t)) + d(x)u(x, t) .

The diffusivity coefficient c1 ≤ κα ≤ c2 on Ω for some positive constants c1 and c2,
and the reaction coefficient d is such that the bilinear form associated with the elliptic
operator A (see (5)) is positive definite on the Sobolev space H1

0 (Ω). That is, it is
sufficient (but not necessary) to impose that d ≥ 0 on Ω. Both, κ and d are assumed
to be sufficiently regular functions.

The fractional exponent is restricted to the range 0 < α < 1 and the fractional
derivative is taken in the Riemann–Liouville sense, that is, ∂1−α

t u = ∂tI
αu, where

the fractional integration operator Iα is defined by

Iαv(t) =

∫ t

0

ωα(t− s)v(s) ds, ωα(t) =
tα−1

Γ(α)
.

We impose a homogeneous Dirichlet boundary condition,

(2) u(x, t) = 0 for x ∈ ∂Ω and 0 < t < T .

Over the last decade, various time-stepping numerical methods were invesitigated
for solving the fractional diffusion equation (1), see for example [24, 26] and related
refreences therein. The motivation of this paper is propose and analyze a second-order
accurate time-stepping L1 scheme for solving the model problem (1). A nonuniform
time mesh is employed (see (6)) to compensate for the singularity of the continuous
solution near t = 0 [18, 22]. Such graded meshes (6) were originally used in the
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context of Volterra integral equations with weakly singular kernels, see for example
[2, 3, 4], and see also [25] for a recent concrete superconvergence error analysis. Later
on, time-graded meshes were successfully used to improve the performance of different
numerical methods applied to fractional diffusion and fractional wave equations, see
for instance [19, 23, 24, 27]. Nonuniform meshes are flexible and reasonably convenient
for practical implementation, however they can significantly complicate the numerical
error analysis of schemes. The time-graded mesh properties are carefully used in our
error analysis to achieve optimal-order convergence rates. The designed approach is
novel and concise, some innovative ideas are employed to estimate efficiently certain
candidates. For completeness, we discretize in space using the standard Galerkin
finite elements, where the error analysis is also examined.

To the best of our knowledge, we are not aware of any work that showed a
second-order error bounds of the popular time-stepping L1 scheme applied to the
model problem (1). However, for the time-fractional (Caputo derivative) diffusion
problem (often assuming κ to be constant and the reaction coefficient d to be zero):

(3) I1−α∂tu(x, t) +Au(x, t) = f(x, t), for x ∈ Ω and 0 < t < T ,

various types of L1 time-stepping schemes were developed and studied over the last
decade, see for example [1, 5, 8, 9, 10, 15, 16, 17, 30, 32, 33, 34, 35]. In most studies,
a convergence rate of order 2 − α was proved. Furthermore, the singularity of the
continuous solution u near t = 0 was taken into account in a few papers only, how-
ever the rest frequently ignored this fact. In contrast, a time-stepping discontinuous
Petrov-Galerkin method using piecewise polynomials of degree m was introduced and
analyzed in [27] for solving problem (3). For the special case m = 1, this method
reduces to a second-order accurate time-stepping L1 scheme as the numerical results
suggested therein, see [27, Section 5].

Outline of the paper. In section 2, we define our semi-discrete time-stepping L1
approximation scheme (see (9)) and describe briefly the implementation steps. Section
3 is dedicated to show our sharp error results. It is assumed that the continuous
solution u of problem (1) satisfies the following regularity properties:

(4) ‖u(t)‖2 ≤M and ‖u′(t)‖2 + t1−α/2‖u′′(t)‖1 + t2−α/2‖u′′′(t)‖1 ≤Mtσ−1,

for some positive constantsM and σ. In (4), ′ denotes the time partial derivative and
‖ · ‖ℓ is the norm on the usual Sobolev space Hℓ(Ω) which reduces to the L2(Ω)-norm

when ℓ = 0 denoted by ‖·‖. As an example, when f(t) ≡ 0 and u0 ∈ H1
0 (Ω)∩H

2.5−(Ω),

these assumptions hold true for σ = α−

4 , see [18, 22] for more details.

At each time level tn, an optimal O(τ2t
σ+α−2/γ
n )-rate of convergence is proved in

Theorem 3.5, assuming that the time mesh exponent γ > max{2/(σ + α/2), 2/(σ +
3α/2 − 1/2)} (see (6) for the definition of the time-graded mesh). Noting that, for
1/2 ≤ α < 1 (which is practically the interesting case in terms of subdiffusion),
σ + α/2 ≤ σ + 3α/2 − 1/2, and so it is sufficient to assume γ > 2/(σ + α/2). Our
error analysis involves various types of clever splitting of the error terms followed by
a careful estimation of each one of them. We avoid using any versions of the weakly
singular discrete Gronwall’s inequalities [7, Theorem 6.1] to guarantee that the error
coefficients do not blowup exponentially with the time level tn. At the preliminary
stage, our error analysis makes use of the inequality in the next lemma [21, Lemma
2.3] which will eventually enable us to establish pointwise estimates for certain terms.
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Lemma 1.1. Let 0 < α ≤ 1. If the function φ is in the space W 1
1

(
(0, t);L2(Ω)

)

satisfies φ(0) = Iαφ′(0) = 0, then

‖φ(t)‖2 ≤ 2ω2−α(t)

∫ t

0

〈Iαφ′(t), φ′(t)〉 dt,

where 〈u, v〉 is the L2-inner product on the spatial domain Ω.
Although the main scope of this paper is on the optimal error analysis of the

time-stepping L1 scheme, the error analysis from the full discretization is also stud-
ied. In section 4, the semi-discrete time-stepping scheme (9) is discretized in space via
the standard continuous piecewise-linear Galerkin method (see (28)), which will then
define a fully-discrete numerical method. The implementation of the fully-discrete
solution is briefly discussed. Compared to the error analysis in section 3, an addi-
tional term has occurred. Consequently, an additional error of order O(h2) (h is the
maximum spatial mesh element size) is derived assuming that σ > (1 − α)/2, see
Theorem 4.1. Numerically, it is observed that this condition is not necessary. In this
part of our error analysis, the next lemma [28, Lemma 3.1] is used.

Lemma 1.2. If the functions φ and ψ are in the space L2

(
(0, t);L2(Ω)

)
, then for

0 < α < 1 and for ǫ > 0,
∣∣∣∣
∫ t

0

〈φ, Iαψ〉 ds

∣∣∣∣ ≤
1

4ǫ(1− α)2

∫ t

0

〈φ, Iαφ〉 ds + ǫ

∫ t

0

〈ψ, Iαψ〉 ds .

Unfortunately, the coefficient 1
(1−α)2 blows up as α approaches 1−, and consequently,

the error bounds blowup. Such a blowup phenomenon, which was highlighted and
investigated recently in [6], occurs in the error analysis (but not in numerical experi-
ments [20]) of various numerical methods applied to different time-fractional diffusion
models, see for example [11, 12, 13, 14, 15, 20, 26, 27, 30]. This blowup behavior ap-
pears to be an artifact of the method of proof, see Remark 4.2 where the blowup coef-
ficient is controlled assuming that σ > (1−α)/2. To validate this, some compatibility
conditions on the initial data u0 (for example, u0 ∈ H2+1/α(Ω) with u0,Au0 ∈ H1

0 (Ω))
and also on the source term f are needed. Noting that, in the limiting case, α→ 1−,
problem (1) reduces to the classical equation (10) and our fully-discrete scheme in
(28) amounts to the sandard time-stepping Crank-Nicolson (see (11)) combined with
the (linear) spatial standard continuous Galerkin method. A straightforwrd analysis
leads to an optimal time-space second-order convergence rate [31].

Finally, in section 5, a second-order convergence of the L1 scheme is confirmed
numerically on a typical sample of test problem. When the time error is dominant, the
numerical numbers in Tables 1–3 illustrate O(τmin{γ(σ+α),2})-rates for different choices
of the time-graded mesh exponent γ and the fractional exponent α. These results
indicate that the condition γ > max{2/(σ + α/2), 2/(σ + 3α/2 − 1/2)} in Theorem
3.5 is pessimistic. Practically, it is enough to choose γ = 2/(σ + α) to guarantee
an O(τ2) accuracy. Furthermore, the numerical results in Table 4 showed O(h2)-
rates of convergence in space for different values of α even though the assumption
σ > (1− α)/2 is not satisfied.

For later use, A(·, ·) : H1
0 (Ω) ×H1

0 (Ω) → R denotes the bilinear form associated
with the elliptic operator A, which is symmetric and positive definite, defined by

(5) A(v, w) = 〈κα∇v,∇w〉 + 〈d v, w〉.

Throughout the paper, C is a generic constant which may depend on the parameters
M , σ, T , Ω, and γ, but is independent of τ and h.
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2. Numerical method. This section is devoted to introduce our semi-discrete
time-stepping L1 numerical scheme for solving the model problem (1). We use a
time-graded mesh with the following nodes:

(6) ti = (i τ)γ , for 0 ≤ i ≤ N, for γ ≥ 1, with τ = T 1/γ/N,

where N is the number of subintervals. Denote by τn = tn − tn−1 the length of the
nth subinterval In = (tn−1, tn), for 1 ≤ n ≤ N . It is not hard to show that such a
time-graded mesh has the following properties [19]: for n ≥ 2,

(7) tn ≤ 2γtn−1, γτt
1−1/γ
n−1 ≤ τn ≤ γτt1−1/γ

n , τn − τn−1 ≤ Cγτ
2 min(1, t1−2/γ

n ) .

For a given function v defined on the time interval [0, T ], let vn = v(tn) for
0 ≤ n ≤ N. With this grid function, we associate the backward difference,

∂vn =
vn − vn−1

τn
.

To define our time-stepping numerical scheme, integrating problem (1) over the time
interval In,

(8)

∫ tn

tn−1

u′(t) dt+

∫ tn

tn−1

∂1−α
t Au(t) dt =

∫ tn

tn−1

f(t) dt .

Our L1 approximate solution U , which is a continuous linear polynomial in the time
variable on each closed subinterval [tn−1, tn], is defined by replacing u with U in (8),

(9) Un − Un−1 +

∫ tn

tn−1

∂1−α
t AU(t) dt =

∫ tn

tn−1

f(t) dt, for 1 ≤ n ≤ N,

with U0 = u0. As α→ 1−, the fractional model problem (1) amounts to the classical
reaction-diffusion equation:

(10) u′(x, t) +Au(x, t) = f(x, t), for x ∈ Ω and 0 < t < T ,

and the time-stepping L1 numerical scheme (9) reduces to

(11) Un − Un−1 + τnA(Un + Un−1)/2 =

∫ tn

tn−1

f(t) dt,

which is the time-stepping Crank-Nicolson method for problem (10). Motivated by
this, a generalized Crank-Nicolson scheme for the fractional reaction-diffusion equa-
tion (1), defined by

(12) Un − Un−1 +

∫ tn

tn−1

∂1−α
t AU(t) dt =

∫ tn

tn−1

f(t) dt, with U0 = u0,

was developed in [24], where U(t) = (U j+U j−1)/2 for t ∈ Ij . Therein, the theoretical
and numerical convergence results confirmed O(τ1+α)-rates in time over sufficiently
time-graded meshes. Both schemes (9) and (12) are computationally similar, however
the theoretical and numerical results show better convergence rates of the L1 scheme.
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For computational purposes, putting

ωnj =

∫ tj

tj−1

ωα(tn − s) ds and ω̂nj =

∫ tj

tj−1

∫ tj

s

ωα(tn − q) dq ds, for j ≤ n.

Hence ∫ tn

tn−1

∂1−α
t U(t) dt = (IαU)(tn)− (IαU)(tn−1),

with

(IαU)(tn) =

n∑

j=1

∫ tj

tj−1

ωα(tn−s)
(
U j−1+(s−tj−1)∂U

j
)
ds =

n∑

j=1

(ωnjU
j−1+ω̂nj∂U

j).

Then, the numerical scheme in (9) is equivalent to

(13) Un +
ταn

Γ(α+ 2)
AUn = Un−1 −

αταn
Γ(α+ 2)

AUn−1

−

n−1∑

j=1

(
(ωnj − ωn−1,j)AU

j−1 + (ω̂nj − ω̂n−1,j)A∂U
j
)
+

∫ tn

tn−1

f(t) dt.

3. Error analysis. In this section, we study the error bounds from the time-
stepping scheme (9). A preliminary estimate will be derived in the next lemma. For
convenience, putting

(14) η(t) = ηn =
1

τn

∫ tn

tn−1

∂1−α
t (u− ǔ)(s) ds, for t ∈ In ,

where the piecewise linear polynomial ǔ interpolates u at the time nodes, that is,

ǔ(t) = uj−1 + (t− tj−1)∂u
j for tj−1 ≤ t ≤ tj with 1 ≤ j ≤ N .

Lemma 3.1. For 1 ≤ n ≤ N, we have

‖Un − u(tn)‖
2 ≤ Ct1−α

n

n∑

j=1

τj‖η
j‖21 .

Proof. From equations (8) and (9),

(U j − u(tj))− (U j−1 − u(tj−1)) +

∫ tj

tj−1

A∂1−α
t (U − ǔ)(t) dt = τjAη

j .

Taking the inner product with v :=
∫ tj
tj−1

∂1−α
t (U− ǔ)dt =

∫ tj
tj−1

Iα(U− ǔ)′ dt (because

U0 − ǔ(0) = U0 − u0 = 0), and using

A
(∫ tj

tj−1

Iα(U − ǔ)′ dt,

∫ tj

tj−1

Iα(U − ǔ)′ dt
)
≥ β

∥∥∥
∫ tj

tj−1

Iα(U − ǔ)′ dt
∥∥∥
2

1
,

for some positive constant β depends on Ω (due to the Poincaré inequality),

τj

∫ tj

tj−1

〈(U − ǔ)′, Iα(U − ǔ)′〉 dt+ β
∥∥∥
∫ tj

tj−1

Iα(U − ǔ)′ dt
∥∥∥
2

1

≤τj

〈
Aηj ,

∫ tj

tj−1

Iα(U − ǔ)′ dt

〉
.
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An application of the Cauchy-Schwarz inequality leads to

τj

〈
Aηj ,

∫ tj

tj−1

Iα(U − ǔ)′ dt

〉
≤

1

2β
τ2j ‖η

j‖21 +
β

2

∥∥∥
∫ tj

tj−1

Iα(U − ǔ)′ dt
∥∥∥
2

1
,

and consequently,

(15)

∫ tj

tj−1

〈(U − ǔ)′, Iα(U − ǔ)′〉 dt≤Cτj‖η
j‖21.

Summing over the variable j,

∫ tn

0

〈(U − ǔ)′, Iα(U − ǔ)′〉 dt≤C

n∑

j=1

τj‖η
j‖21.

Hence, using Lemma 1.1, the desired bound is obtained.

The current task is to estimate the candidate ‖ηj‖1 which is very delicate. The
approach is novel and some new ideas are used. Starting from the fact that (u−ǔ)(0) =
0 (since ǔ interpolates u at the time nodes tn for 0 ≤ n ≤ N), we observe

∂1−α
t (u− ǔ)(t) = Iα(u− ǔ)′(t) =

j∑

i=1

∫ min{ti,t}

ti−1

ωα(t− s)
(
u′(s)− ∂ui

)
ds, for t ∈ Ij .

However,

u(ti)− u(ti−1) = τiu
′(ti)−

τ2i
2
u′′(ti) +

1

2

∫ ti

ti−1

(q − ti−1)
2u′′′(q) dq,

and hence, after some manipulations, one can show that

u′(s)− ∂ui = e1(s) + e2(s) for s ∈ Ii,

where

e1(s) =

∫ ti

s

(q − s)u′′′(q) dq −
1

2τi

∫ ti

ti−1

(q − ti−1)
2u′′′(q) dq,

e2(s) =
(
s− ti−1/2

)
u′′(ti).

Thus, splitting ηj as: ηj = τ−1
j

(
ηj1 + ηj2

)
, where

(16) ηj1 =

∫ tj

tj−1

Iαe1(t) dt and ηj2 =

∫ tj

tj−1

Iαe2(t) dt.

Estimating ‖ηj1‖1 will be the topic of the next lemma.

Lemma 3.2. For 1 ≤ j ≤ N, we have

‖ηj1‖1 ≤ Cτjτ
2t

3α/2+σ−1−2/γ
j , with γ > 2/(σ + α/2).
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Proof. Expanding ηj1 as

ηj1 =

j∑

i=1

∫ tj

tj−1

∫ min{ti,t}

ti−1

ωα(t− s) e1(s) ds dt.

From the definition of e1 and the regularity assumption (4), for s ∈ I1,

(17)

‖e1(s)‖1 ≤

∫ t1

s

(q − s)‖u′′′(q)‖1 dq +
1

2t1

∫ t1

0

q2‖u′′′(q)‖1 dq

≤M

∫ t1

s

q qσ+α/2−3 dq +
M

2t1

∫ t1

0

q2qσ+α/2−3 dq

≤ C max{sσ+α/2−1, t
σ+α/2−1
1 } .

Hence, for j = 1,

(18)

‖η11‖1 ≤ C

∫ t1

0

∫ t

0

ωα(t− s)max{sσ+α/2−1, t
σ+α/2−1
1 } ds dt

= C

∫ t1

0

max
{ Γ(σ + α/2)

Γ(σ + 3α/2)
tσ+3α/2−1, ωα+1(t)t

σ+α/2−1
1

}
dt

= Cmax
{ Γ(σ + α/2)

Γ(σ + 3α/2 + 1)
t
σ+3α/2
1 , ωα+2(t1)t

σ+α/2−1
1

}
≤ Cτ

3α/2+σ
1 .

For the case j ≥ 2, noting first that

‖ηj1‖1 ≤

∫ tj

tj−1

(∫ t1

0

ωα(t− s) ‖e1(s)‖1 ds+

j∑

i=2

∫ min{ti,t}

ti−1

ωα(t− s) ‖e1(s)‖1 ds
)
dt.

For estimating the first term on the right-hand side in the above inequality, using

t− s ≥ tj−1 − s = (j − 1)γ
(
t1 −

s

(j − 1)γ

)
≥ (j − 1)γ

(
t1 − s

)
≥ (j/2)γ

(
t1 − s

)
,

and the achieved bound in (17),

∫ t1

0

ωα(t− s) ‖e1(s)‖1 ds ≤ Cjγ(α−1)

∫ t1

0

(t1 − s)α−1 max{sσ+α/2−1, t
σ+α/2−1
1 } ds

= Ctα−1
j τγ(1−α)

∫ t1

0

(t1 − s)α−1 max{sσ+α/2−1, t
σ+α/2−1
1 } ds

≤ C tα−1
j τγ(1−α)t

3α/2+σ−1
1 = C τ2tα−1

j t
α/2+σ−2/γ
1

≤ C τ2t
3α/2+σ−2/γ−1
j , for γ ≥ 2/(σ + α/2).

On the other hand, for s ∈ Ii with i ≥ 2, from the definition of e1, the regularity
assumption (4), and the time mesh property (7), we have

‖e1(s)‖1 ≤ Cτi

∫ ti

ti−1

‖u′′′(q)‖1 dq ≤ Cτi

∫ ti

ti−1

qσ+α/2−3 dq

≤ Cτ2i t
σ+α/2−3
i ≤ Cτ2t

σ+α/2−1−2/γ
i ≤ Cτ2sσ+α/2−1−2/γ .
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Thus,

j∑

i=2

∫ min{ti,t}

ti−1

ωα(t− s) ‖e1(s)‖1 ds ≤ Cτ2
∫ t

t1

(t− s)α−1sσ+α/2−1−2/γ ds

≤ Cτ2
∫ t

0

(t− s)α−1sσ+α/2−1−2/γ ds

≤ Cτ2t3α/2+σ−1−2/γ , for γ > 2/(σ + α/2).

Gathering the above contribution and using again the time mesh property (7),

‖ηj1‖1 ≤ Cτ
3α/2+σ
1 +Cτjτ

2t
3α/2+σ−1−2/γ
j , for j ≥ 2 with γ > 2/(σ + α/2).

From this bound, and the achieved estimate in (18), the desired result is obtained.

It remains to estimate ‖ηj2‖1. The technical result in the next lemma is needed.

Lemma 3.3. For γ ≥ 1, and for a given positive sequence {ai}, we have

j∑

i=2

ai

∣∣∣Li−1,j−1 −
τ3i−1

τ3i
Li,j

∣∣∣ ≤ Cτ t
α−1/γ
j−1

j
max
i=2

(
aiτ

2
i−1

)
, for 2 ≤ i ≤ j,

with

Li,j :=
1

2

∫ ti

ti−1

(s− ti−1)(ti − s)ωα(tj − s) ds, for 1 ≤ i ≤ j ≤ N.

Proof. For γ = 1, Li−1,j−1 −
τ3

i−1

τ3

i

Li,j = 0, and so, we have nothing to show. For

γ > 1, from the substitution s = τ−1
i

(
(ti − q)ti−2 + (q − ti−1)ti−1

)
, we observe

(19) Li−1,j−1 =
1

2

τ3i−1

τ3i

∫ ti

ti−1

(q − ti−1)(ti − q)ωα(tj−1 − s) dq.

Since tj−1 − s ≤ tj − q, Li−1,j−1 ≥
τ3

i−1

τ3

i

Li,j . This leads to

j∑

i=2

ai

∣∣∣Li−1,j−1 −
τ3i−1

τ3i
Li,j

∣∣∣

=
1

2

j∑

i=2

ai
τ3i−1

τ3i

∫ ti

ti−1

(q − ti−1)(ti − q)[ωα(tj−1 − s)− ωα(tj − q)] dq

≤
1

8

j
max
i=2

(
ai
τ3i−1

τi

) j∑

i=2

∫ ti

ti−1

[ωα(tj−1 − s)− ωα(tj − q)] dq

≤
1

8

j
max
i=2

(
aiτ

2
i−1

) j∑

i=2

(
τi
τi−1

∫ ti−1

ti−2

ωα(tj−1 − v) dv −

∫ ti

ti−1

ωα(tj − q) dq

)
.

A simple manipulation shows that

j∑

i=2

∫ ti

ti−1

ωα(tj − q) dq =

∫ tj

t1

ωα(tj − q) dq

= ωα+1(tj − t1) ≥ ωα+1(tj−1) =

j∑

i=2

∫ ti−1

ti−2

ωα(tj−1 − v) dv,
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and consequently,

j∑

i=2

ai

∣∣∣Li−1,j−1 −
τ3i−1

τ3i
Li,j

∣∣∣

≤
1

8

j
max
i=2

(
aiτ

2
i−1

) j∑

i=2

( τi
τi−1

− 1
)∫ ti−1

ti−2

ωα(tj−1 − q) dq.

By the mesh properties in (7),

τi
τi−1

− 1 = (τi − τi−1)τ
−1
i−1 ≤ Cτ2t

1−2/γ
i τ−1t

1/γ−1
i−1 ≤ Cτt

−1/γ
i−1 , for i ≥ 2,

and therefore, using γ > 1,

j∑

i=2

( τi
τi−1

− 1
)∫ ti−1

ti−2

ωα(tj−1 − q) dq ≤ Cτ

j∑

i=2

t
−1/γ
i−1

∫ ti−1

ti−2

ωα(tj−1 − q) dq

≤ Cτ

∫ tj−1

0

q−1/γωα(tj−1 − q) dq ≤ Cτt
α−1/γ
j−1 .

This completes the proof.

Now, we are ready to bound ‖ηj2‖1.

Lemma 3.4. For ηj2 defined as in (16) with j ≥ 1, we have

‖ηj2‖1 ≤ Cτ2τjt
3α/2+σ−1−2/γ
j , for γ ≥ 2/(σ + α/2).

Proof. Splitting ηj2 follows by reversing the order of integration then integrating
by parts,

ηj2 =

j∑

i=1

u′′(ti)

∫ tj

tj−1

∫ min{ti,t}

ti−1

(s− ti−1/2)ωα(t− s) ds dt

=

j−1∑

i=1

u′′(ti)

∫ ti

ti−1

(s− ti−1/2)[ωα+1(tj − s)− ωα+1(tj−1 − s)] ds

+ u′′(tj)

∫ tj

tj−1

(s− tj−1/2)ωα+1(tj − s) ds

=

j−1∑

i=1

u′′(ti)[L
i,j−1 − Li,j ]− u′′(tj)L

j,j .

Thus, ηj2 can be decomposed as: ηj2 = −ηj2,1 − ηj2,2 − ηj2,3, with

ηj2,1 =

j∑

i=2

[u′′(ti)− u′′(ti−1)]L
i,j ,(20)

ηj2,2 =

j∑

i=2

u′′(ti−1)

(
1−

τ3i−1

τ3i

)
Li,j ,(21)

ηj2,3 = u′′(t1)L
1,j −

j∑

i=2

u′′(ti−1)

(
Li−1,j−1 −

τ3i−1

τ3i
Li,j

)
.(22)



10 KASSEM MUSTAPHA

By the regularity assumption in (4) and the time mesh properties in (7),

(23)

‖ηj2,1‖1 ≤ C

j∑

i=2

τ2i

∫ ti

ti−1

‖u′′′(q)‖1 dq

∫ ti

ti−1

(tj − s)α−1 ds

≤ C

j∑

i=2

τ3i t
σ+α/2−3
i

∫ ti

ti−1

(tj − s)α−1 ds

≤ Cτ3
j∑

i=2

t
σ+α/2−3/γ
i

∫ ti

ti−1

(tj − s)α−1 ds

≤ Cτ3
∫ tj

t1

sσ+α/2−3/γ(tj − s)α−1 ds ≤ Cτ3t
σ+3α/2−3/γ
j ,

for γ ≥ 2/(σ + α/2). The next task is to estimate ηj2,2. Seeing that

1− τ3i−1/τ
3
i ≤ 3τ−1

i (τi − τi−1) ≤ Cτ2τ−1
i t

1−2/γ
i

(the third time mesh property in (7) is used here), yields

(24)

‖ηj2,2‖1 ≤ Cτ2
j∑

i=2

τ−1
i t

1−2/γ
i ‖u′′(ti−1)‖1τ

2
i

∫ ti

ti−1

(tj − s)α−1 ds

≤ Cτ3
j∑

i=2

∫ ti

ti−1

(tj − s)α−1sσ+α/2−3/γ ds

≤ Cτ3
∫ tj

t1

(tj − s)α−1sσ+α/2−3/γ ds

≤ Cτ3t
σ+3α/2−3/γ
j , for γ ≥ 2/(σ + α/2).

To estimate ηj2,3, we use again the regularity assumption in (4) and then apply Lemma

3.3 with tσ−2
i−1 in place of ai, and get

j∑

i=2

‖u′′(ti−1)‖1

∣∣∣Li−1,j−1 −
τ3i−1

τ3i
Li,j

∣∣∣ ≤ C

j∑

i=2

tσ−2
i−1

∣∣∣Li−1,j−1 −
τ3i−1

τ3i
Li,j

∣∣∣

≤ Cτt
α−1/γ
j−1

j
max
i=2

(
t
σ+α/2−2
i−1 τ2i−1

)

≤ Cτ3t
α−1/γ
j−1

j
max
i=2

(
t
σ+α/2−2/γ
i−1

)

≤ Cτ3t
3α/2+σ−3/γ
j−1 , for γ ≥ 2/(σ + α/2).

By the definition of ηj2,3 and the above contribution, we obtain

(25)

‖ηj2,3‖1 ≤ ‖u′′(t1)‖1L
1,j + Cτ3t

3α/2+σ−3/γ
j−1

≤ Cτ
σ+α/2
1

∫ t1

0

ωα(tj − s) ds+ Cτ3t
3α/2+σ−3/γ
j−1

≤ Cτ
3α/2+σ
1 + Cτ3t

3α/2+σ−3/γ
j−1 , for γ ≥ 2/(σ + α/2).

Therefore, to complete the proof, combining the estimates from (23), (24) and (25),

and use the inequality τ ≤ Cτjt
1/γ−1
j (follows from the second mesh property in (7)).
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We are ready now to estimate the pointwise error. The proof relies on the achieved
results in Lemmas 3.1, 3.2 and 3.4. As mentioned earlier, the numerical results en-
capsulate that the imposed assumption on γ is not sharp.

Theorem 3.5. Let U be the time-stepping solution defined by (9) and let u be

the solution of the fractional reaction-diffusion problem (1). Assume that u satisfies

the regularity assumptions in (4). If the time mesh exponent γ is greater than the

maximum of {2/(σ + α/2), 2/(σ + 3α/2− 1/2)} with σ + 3α/2− 1/2 > 0, then

‖Un − u(tn)‖ ≤ Cτ2tσ+α−2/γ
n ≤ Cτ2, for 1 ≤ n ≤ N .

Proof. From the decomposition ηj = τ−1
j

(
ηj1 + ηj2

)
, and the established bounds

of ηj1 and ηj2 in Lemma 3.2 and Lemma 3.4, respectively,

(26)

n∑

j=1

τj‖η
j‖21 ≤ Cτ4

n∑

j=1

τjt
2(3α/2+σ−1−2/γ)
j

≤ Cτ4
∫ tn

t1

t2(3α/2+σ−1−2/γ) dt

≤ Cτ4 max{t
2σ+3α−4/γ−1
1 , t2σ+3α−4/γ−1

n }, for γ > 2/(σ + α/2) .

Inserting this in the achieved bound in Lemma 3.1 and using γ ≥ 2/(σ+3α/2− 1/2)
will complete the proof.

4. Fully-discrete solution. To compute our numerical solution, we therefore
seek a fully-discrete solution Uh by discretizing (9) in space via the standard Galerkin
finite element method. To this end, let Th be a family of regular (conforming) tri-
angulation of the domain Ω and let h = maxK∈Th

(diamK), where hK denotes the
diameter of the element K. Let Vh ⊂ H1

0 (Ω) denote the usual space of continuous,
piecewise-linear functions on Th that vanish on ∂Ω. Let W(Vh) ⊂ C([0, T ];Vh) denote
the space of linear polynomials on [tn−1, tn] for 1 ≤ n ≤ N , with coefficients in Vh.

Taking the inner of (9) with a test function χ ∈ H1
0 (Ω), and apply the first Green

identity. Then, the semi-discrete L1 solution U satisfies

(27) 〈Un − Un−1, χ〉+

∫ tn

tn−1

A(∂1−α
t U(t), χ) dt =

∫ tn

tn−1

〈f(t), χ〉 dt, with U0 = u0,

Motivated by this, our fully-discrete computational solution Uh ∈ W(Vh) is defined
as: for 1 ≤ n ≤ N,

(28) 〈Un
h − Un−1

h , vh〉+

∫ tn

tn−1

A(∂1−α
t Uh(t), vh) dt =

∫ tn

tn−1

〈f(t), vh〉 dt ∀ vh ∈ Vh,

with U0
h = Rhu0, where Rh : H1

0 (Ω) → Vh is the Ritz projection defined by

A(Rhw, vh) = A(w, vh), ∀ vh ∈ Vh.

Following the derivation used to obtain (13), the scheme in (28) is equivalent to

〈Un
h , vh〉+

ταn
Γ(α+ 2)

A(Un
h , vh) = 〈Un−1

h , vh〉 −
αταn

Γ(α+ 2)
A(Un−1

h , vh)

−A

( n−1∑

j=1

(
(ωnj − ωn−1,j)U

j−1
h + (ω̂nj − ω̂n−1,j)∂U

j
h

)
, vh

)
+

∫ tn

tn−1

〈f(t), vh〉 dt .
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For 1 ≤ p ≤ dh := dimVh, let φp ∈ Vh denote the pth basis function associated with
the pth interior node ~xp, so that φp(~xq) = δpq and

Un
h (~x) =

dh∑

p=1

unh(~xp)φp(~x).

We define dh × dh matrices: M = [〈φq, φp〉], G = [A(φq , φp)], and the dh-dimensional

column vectors Un
h and Fn with components Un

h (~xp) and
∫ tn
tn−1

〈f(t), φp〉 dt, respec-

tively. Therefore, the fully-discrete scheme (28) has the following matrix representa-
tions:

(
M +

ταn
Γ(α+ 2)

G

)
Un

h =
(
M −

αταn
Γ(α+ 2)

G

)
Un−1

h

−

n−1∑

j=1

((
ωnj − ωn−1,j

)
GU

j−1
h + (ω̂nj − ω̂n−1,j)G∂U

j
h

)
+ Fn.

Therefore, at each time level tn, the numerical scheme (28) reduces to a finite
square linear system, and so the existences of Un

h follows from its uniqueness. The
latter follows from the fact that both matrices M and G are positive definite.

Turning now into the error analysis, we introduce the following notations:

θ(t) = Uh(t)−Rhǔ(t) and ρ(t) = u(t)−Rhu(t), and .

Since ǔ interpolates u at the time nodes, θn = Un
h −Rhǔ(tn) = Un

h −Rhu(tn). Thence,
the pointwise time error Un

h − u(tn) can be decomposed as

(29) Un
h − u(tn) = [Un

h −Rhu(tn)]− [u(tn)−Rhu(tn)] = θn − ρn.

The estimate of the second term follows easily from the Ritz projector approxi-
mation property and the first regularity assumption in (4),

(30) ‖ρ(tn)‖ ≤ Ch2‖u(tn)‖2 ≤ Ch2, for 0 ≤ n ≤ N .

The next duty is to estimate θn. From the weak formulation of problem (1);

〈u(tj)− u(tj−1), χ〉+

∫ tj

tj−1

A(∂1−α
t u(t), χ) dt =

∫ tj

tj−1

〈f(t), χ〉 dt ∀ χ ∈ H1
0 (Ω),

the numerical scheme (28), and the decomposition in (29), we have

τj〈∂θ
j , vh〉+

∫ tj

tj−1

A
(
∂1−α
t (Uh − ǔ)(t), vh

)
dt

= τj〈∂ρ
n, vh〉+

∫ tj

tj−1

A
(
∂1−α
t (u − ǔ)(t), vh

)
dt, ∀ vh ∈ Vh .

From the orthogonality property of the Ritz projection, and the definition of η in (14),

(31) τj〈∂θ
j , vh〉+

∫ tj

tj−1

A
(
∂1−α
t θ(t), vh

)
dt = τj [〈∂ρ

j , vh〉+A(ηj , vh)], ∀ vh ∈ Vh .
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Since θ0 = U0
h−Rhǔ(0) = Rhu0−Rhu0 = 0,

∫ tj
tj−1

∂1−α
t θ(t)dt =

∫ tj
tj−1

Iαθ′(t) dt. Now,

setting vh =
∫ tj
tj−1

Iαθ′(t) dt and applying the Poincaré inequality, then the second

term in (31) is ≥ β‖
∫ tj
tj−1

Iαθ′(t) dt‖21, for some positive constant β depends on Ω.

This and the fact that ∂θj = θ′(t) (constant in time) for t ∈ Ij , lead to

τj

∫ tj

tj−1

〈θ′, Iαθ′〉 dt+ β
∥∥∥
∫ tj

tj−1

Iαθ′ dt
∥∥∥
2

1

≤ τj

〈
∂ρj,

∫ tj

tj−1

Iαθ′ dt

〉
+ τjA

(
ηj ,

∫ tj

tj−1

Iαθ′ dt
)
.

By the Cauchy-Schwarz inequality, the last term is

≤
1

2β
τ2j ‖η

j‖21 +
β

2

∥∥∥
∫ tj

tj−1

Iαθ′ dt
∥∥∥
2

1
,

and consequently,

(32) τj

∫ tj

tj−1

〈θ′, Iαθ′〉 dt+
β

2

∥∥∥
∫ tj

tj−1

Iαθ′ dt
∥∥∥
2

1
≤ τj

∫ tj

tj−1

〈ρ̌′, Iαθ′〉 dt+ Cτ2j ‖η
j‖21,

where ρ̌(t) = ρj−1 + (t − tj−1)∂ρ
j for t ∈ Ij . Dividing both sides by τj , and then,

summing over the variable j and using the inequality

(33)

∫ tn

0

〈ρ̌′, Iαθ′〉 dt ≤
1

2(1− α)2

∫ tn

0

〈ρ̌′, Iαρ̌′〉 dt+
1

2

∫ tn

0

〈θ′, Iαθ′〉 dt,

(Lemma 1.2 is used here), we reach
∫ tn

0

〈θ′, Iαθ′〉 dt ≤
1

(1− α)2

∫ tn

0

〈ρ̌′, Iαρ̌′〉 dt+ Cτj‖η
j‖21 .

Thanks to Lemma 1.1,

(34) ‖θn‖2 ≤ Ct1−α
n

(∫ tn

0

|〈ρ̌′, Iαρ̌′〉| dt+
n∑

j=1

τj‖η
j‖21

)
.

To estimate
∫ tn
0

|〈ρ̌′, Iαρ̌′〉| dt, split it as (recall that ρ̌′(t) = ∂ρj on Ij)

(35)

∫ tn

0

|〈ρ̌′(t), Iαρ̌′(t)〉| dt ≤ ‖∂ρ1‖2
∫ t1

0

∫ t

0

ωα(t− s)dsdt

+

n∑

j=2

‖∂ρj‖ ‖∂ρ1‖

∫ tj

tj−1

∫ t1

0

ωα(t− s)dsdt

+
n∑

j=2

‖∂ρj‖

j∑

i=2

‖∂ρi‖

∫ tj

tj−1

∫ min{ti,t}

ti−1

ωα(t− s)dsdt .

By the definition of the function ρ, the Ritz projection error bound in (30) with u′ in
place of u, and the regularity assumption (4), we obtain

(36) ‖∂ρj‖ = τ−1
j

∥∥∥
∫ tj

tj−1

(Rhu
′ − u′)(s) ds

∥∥∥

≤ Ch2τ−1
j

∫ tj

tj−1

‖u′(s)‖2 ds ≤ Ch2τ−1
j

∫ tj

tj−1

sσ−1 ds, for j ≥ 1.
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If σ− 1 ≥ 0 (which might not be practically the case), then ‖∂ρj‖ ≤ Ch2tσ−1
j . Thus,

(37)

∫ tn

0

|〈ρ̌′, Iαρ̌′〉| dt ≤ Ch4t2σ−2
n

∫ tn

0

∫ t

0

ωα(t−s)dsdt ≤ Ch4t2σ+α−1
n , for σ ≥ 1 .

Now, turning into the case σ − 1 < 0, which is probably more interesting. Assuming
that σ > (1 − α)/2, a similar bound will be achieved next, see (38). Using (36), the
first term on the right-hand side of (35) is bounded by

Ch4τ−2
1

(∫ t1

0

sσ−1 ds
)2

ωα+2(t1) ≤ Ch4t2σ+α−1
1 .

Using (36) and the first time mesh property in (7), the second candidate on the
right-hand side of (35) is

≤ Ch4
n∑

j=2

tσ−1
j

1

τ1

∫ t1

0

sσ−1 ds

∫ tj

tj−1

∫ t1

0

ωα(t− s) ds dt

≤ Ch4
n∑

j=2

(t1tj)
σ−1

∫ tj

tj−1

∫ t1

0

ωα(t− s) ds dt

≤ Ch4
n∑

j=2

∫ tj

tj−1

tσ−1

∫ t1

0

sσ−1ωα(t− s) ds dt

≤ Ch4
∫ tn

t1

tσ−1

∫ t

0

sσ−1ωα(t− s) ds dt ≤ Ch4
∫ tn

t1

t2σ+α−2 dt,

while, the last term in (35) is

≤ Ch4
n∑

j=2

tσ−1
j

j∑

i=2

1

τi

∫

Ii

sσ−1 ds

∫ tj

tj−1

∫ min{ti,t}

ti−1

ωα(t− s) ds dt

≤ Ch4
n∑

j=2

tσ−1
j

j∑

i=2

tσ−1
i

∫ tj

tj−1

∫ min{ti,t}

ti−1

ωα(t− s) ds dt

≤ Ch4
n∑

j=2

j∑

i=1

∫ tj

tj−1

tσ−1

∫ min{ti,t}

ti−1

sσ−1ωα(t− s) ds dt

≤ Ch4
∫ tn

t1

tσ−1

∫ t

0

sσ−1ωα(t− s) ds dt ≤ Ch4
∫ tn

t1

t2σ+α−2 dt .

Therefore, gathering the above estimates, we conclude that

(38)

∫ tn

0

|〈ρ̌′, Iαρ̌′〉| dt ≤ Ch4t2σ+α−1
n , for (1− α)/2 < σ < 1 .

From the decomposition (29), the Ritz projection in (30), the inequality in (34),
the achieved bounds in (26) and (37), and the above estimate, the error result in the
next convergence theorem holds true. It is claimed that for a sufficiently time-graded
mesh, the proposed fully-discrete scheme is second-order accurate in both time and
space. The numerical results in the forthcoming section confirm that the imposed
assumption on the time mesh exponent γ is pessimistic. Furthermore, these results
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also illustrate O(h2)-rates of convergence in space, although the imposed condition
σ > (1 − α)/2 in the next theorem is not satisfied. Indeed, for the semi-discrete
Galerkin method in space for problem (1), an O(h2)-rate of convergence was carried
out without this assumption [13].

Theorem 4.1. Let Uh be the numerical solution defined by (28) and let u be

the solution of the fractional reaction-diffusion problem (1). Assume that u satisfies

the regularity assumptions in (4) with σ > (1 − α)/2. If the time mesh exponent

γ > max{2/(σ + α/2), 2/(σ + 3α/2− 1/2)}, then

‖Un
h − u(tn)‖ ≤ C(τ2 + h2), for 1 ≤ n ≤ N.

We end this section with the following remark.

Remark 4.2. Due to the use of the inequality in (33), the coefficient C in (34)
blows up as α → 1−. To control this phenomena, Lemma 1.2 (and consequently, the
inequality in (33)) should be avoided. Since ρ̌′(t) = ∂ρj for t ∈ Ij , an application of
the Cauchy-Schwarz inequality yields

τj

∫ tj

tj−1

〈ρ̌′, Iαθ′〉 dt =

〈
τj∂ρ

j,

∫ tj

tj−1

Iαθ′ dt

〉
≤ Cτ2j ‖∂ρ

j‖2 +
β

2

∥∥∥∥
∫ tj

tj−1

Iαθ′(t) dt

∥∥∥∥
2

1

.

Substitute this in (32) gives

∫ tj

tj−1

〈θ′, Iαθ′〉 dt ≤ Cτj‖∂ρ
j‖2 + Cτj‖η

j‖21 .

Summing over j, follows by using Lemma 1.1 with θ in place of φ, we notice that

‖θn‖2 ≤ Ct1−α
n

( n∑

j=1

τj‖∂ρ
j‖2 +

n∑

j=1

τj‖η
j‖21

)
,

where the constant C in the above bound does not blowup as α→ 1−.
The remaining exercise is to estimate

∑n
j=1 τ

−1
j ‖∂ρj‖2. From (36),

n∑

j=1

τj‖∂ρ
j‖2 ≤ Ch4

n∑

j=1

τ−1
j

( ∫ tj

tj−1

sσ−1 ds
)2

≤ Ch4
n∑

j=1

∫ tj

tj−1

s2σ−2 ds

= Ch4
∫ tn

0

s2σ−2 ds ≤ Ch4t2σ−1
n , for σ > 1/2.

For σ = 1/2, these steps can be slightly adjusted to show an O(h4) bound of the
above term, but with a logarithmic coefficient log(tn/t1) for n ≥ 2.

5. Numerical results. To support the achieved theoretical convergence results
in Theorems 3.5 and 4.1, this section is devoted to perform some numerical experi-
ments (on a typical test problem). In the fractional model problem (1), we choose
u0(x, y) = x(1 − x), κα = d = 1, and f = 0. The time and space domains are chosen
to be the intervals [0, 1] and (0, 1), respectively. Separation of variables yields the
series representation of the solution:

(39) u(x, t) = 8

∞∑

m=0

λ−3
m sin(λmx)Eα(−λ

2
mt

α), λm := (2m+ 1)π − 1,
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M γ = 1 γ = 2 γ = 3 γ = 4
20 3.40e-02 1.09e-02 2.15e-03 8.02e-04
40 2.78e-02 0.292 5.16e-03 1.083 7.05e-04 1.607 2.13e-04 1.911
80 2.19e-02 0.346 2.34e-03 1.142 2.46e-04 1.518 5.57e-05 1.935
160 1.65e-02 0.402 1.10e-03 1.085 8.66e-05 1.509 1.44e-05 1.951
320 1.20e-02 0.458 5.44e-04 1.019 3.05e-05 1.505 3.70e-06 1.962
640 8.48e-03 0.506 2.71e-04 1.001 1.08e-05 1.503 9.44e-07 1.972

Table 1

Errors and convergence rates (rt) for α = 0.4 and for different choices of γ.

M γ = 1 γ = 2 γ = 2.5 γ = 3
20 2.51e-02 2.21e-03 8.26e-04 6.50e-04
40 1.50e-02 0.748 7.60e-04 1.540 2.12e-04 1.964 1.65e-04 1.979
80 8.32e-03 0.846 2.66e-04 1.513 5.44e-05 1.960 4.17e-05 1.982
160 4.53e-03 0.879 9.36e-05 1.509 1.46e-05 1.897 1.05e-05 1.987
320 2.53e-03 0.840 3.30e-05 1.505 3.93e-06 1.893 2.65e-06 1.991
640 1.47e-03 0.779 1.16e-05 1.503 1.06e-06 1.892 6.64e-07 1.995

Table 2

Errors and convergence rates (rt) for α = 0.6 and for different choices of γ.

where Eα(t) :=
∑∞

p=0
tp

Γ(αp+1) is the Mittag-Leffler function.

The initial data u0 ∈ Ḣ2.5−(Ω) ∩H1
0 (Ω). Thus, as expected from the regularity

analysis in [18, 22], the regularity properties in (4) hold true for σ = α−/4.
For the numerical illustration of the convergence rates from the time-stepping

L1 scheme, we refine the spatial (uniform) mesh size h so that the time errors are
dominant. Therefore, by Theorems 3.5 and 4.1, we expect to observe O(τ2)-rates of
convergence for γ > max{2/(σ+α/2), 2/(σ+3α/2−1/2)}= max{8/(3α−), 8/(7α−−
2)}, with σ+3α/2− 1/2> 0. However, the results in Tables 1–3 are more optimistic,
O(τ2)-rates were observed for γ ≥ 2/(σ + α) = 8/(5α−), for different values of α.
Moreover, these results confirm that the condition σ+3α/2−1/2 > 0 is not necessary.

In all tables and figures, we evaluated the series solution u in (39) of problem (1)
by truncating the Fourier series in (39) after 60 terms. To measure the error in the
numerical solution, we computed

EN,M := max
1≤n≤N

‖Un
h − u(tn)‖,

where N is the number of time subintervals, while M is the number of uniform space
mesh elements. Noting that, the spatial L2-norm was evaluated using the two-point
Gauss quadrature rule on the finest spatial mesh. The convergence rates rt (in time)
and rx (in space) were calculated from the relations

rt ≈ log2

(
EN,M/E2N,M

)
, when hrx ≪ τrt ,

rx ≈ log2

(
EN,M/EN,2M

)
, when τrt ≪ hrx .

For the graphical interpretation, we fixed N = 160 and M = 1200, so the time
error is dominant. Figure 1 shows how the error on uniform and nonuniform time
meshes varies with t for various choices of α, using a log scale.
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M γ = 1 γ = 1.5 γ = 2
20 9.7410e-03 1.8813e-03 5.4226e-04
40 4.2516e-03 1.1961 6.7825e-04 1.4719 1.3563e-04 1.9993
80 2.0954e-03 1.0207 2.3983e-04 1.4998 3.4030e-05 1.9948
160 1.0687e-03 9.7134 8.4803e-05 1.4998 8.5585e-06 1.9914
320 5.3632e-04 9.9475 2.9991e-05 1.4996 2.1776e-06 1.9746

Table 3

Errors and convergence rates (rt) for α = 0.8 and for different choices of γ.
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Fig. 1. The error ‖Un

h
− u(tn)‖ as a function of tn. The fractional exponent α = 0.4 in the

left figure, while α = 0.6 in the middle one, and α = 0.8 in the right figure.

To demonstrate the O(h2)-rates from the spatial discretization by Galerkin finite
elements, the time mesh size is refined so that the errors in space are dominant. The
expected convergence orders are displayed in Table 4 for α = 0.3, 0.5, and 0.8. These
results also illustrate that the condition σ > (1−α)/2 in Theorem 4.1 is not necessary.
This condition holds true if α > 2/3 because σ = α−/4, however an O(h2)-rate was
observed despite α not being greater than 2/3.

6. Concluding remarks. An L1 time-stepping scheme for a time-fractional dif-
fusion equation is developed. Over a sufficiently time-graded mesh, it is claimed that
the proposed scheme is second-order accurate. Later on, our L1 scheme is combined
with the standard Galerkin finite elements for the spatial discretization. The error
analysis of the induced fully-discrete scheme is studied. The delivered numerical tests
confirmed that the achieved time-space convergence rates are sharp, but the time-
mesh exponent γ can be further relaxed. Due to several difficulties, improving the
choice of γ is beyond the scope of this work, it will be a subject of future research.
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[28] K. Mustapha and D. Schötzau, Well-posedness of hp-version discontinuous Galerkin methods



AN L1 METHOD FOR A FRACTIONAL DIFFUSION MODEL 19

for fractional diffusion wave equations, IMA J. Numer. Anal., 34 (2014), 1426–1446.
[29] B. G. Pachpatte, On the discrete generalisations of Gronwalls inequality, J. Indian Math. Soc.,

37 (1987), 147–156.
[30] M. Stynes, E. O’Riordan, and J. L. Gracia, Error analysis of a finite difference method on graded

meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079.
[31] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, second ed., Springer,

2006.
[32] F. Wang, Y. Zhao, C. Chen, Y. Wei, and Y. Tang, A novel high-order approximate scheme

for two-dimensional time-fractional diffusion equations with variable coefficient, Computers
& Mathematics with Applications, 78 (2019), 1288–1301.

[33] Y. Yan, M. Khan, and N. J. Ford, An analysis of the modified L1 scheme for time-fractional
partial differential equations with nonsmooth data, SIAM J. Numer. Anal., 56 (2018), 210–
227.

[34] Y. Zhao, P. Chen, W. Bu, X. Liu, and Y. Tang, Two mixed finite element methods for time-
fractional diffusion equations, J. Sci. Computing, 70 (2017), 407–428.

[35] Y. Zhao, Y. Zhang, D. Shi, F. Liu, and I. Turner, Superconvergence analysis of nonconform-
ing finite element method for two-dimensional time fractional diffusion equations, Applied
Mathematics Letters, 59 (2016), 38–47.


	1 Introduction
	2 Numerical method
	3 Error analysis
	4 Fully-discrete solution
	5 Numerical results
	6 Concluding remarks
	References

