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ASYMPTOTIC BEHAVIOR OF AGE-STRUCTURED AND DELAYED

LOTKA-VOLTERRA MODELS∗

ANTOINE PERASSO† AND QUENTIN RICHARD ‡

Abstract. In this work we investigate some asymptotic properties of an age-structured Lotka-
Volterra model, where a specific choice of the functional parameters allows us to formulate it as a
delayed problem, for which we prove the existence of a unique coexistence equilibrium and charac-
terize the existence of a periodic solution. We also exhibit a Lyapunov functional that enables us
to reduce the attractive set to either the nontrivial equilibrium or to a periodic solution. We then
prove the asymptotic stability of the nontrivial equilibrium where, depending on the existence of the
periodic trajectory, we make explicit the basin of attraction of the equilibrium. Finally, we prove
that these results can be extended to the initial PDE problem.

Key words. Lotka-Volterra equations, age-structured population, time delay, asymptotic sta-
bility, Lyapunov functional, global attractiveness, periodic solutions.
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1. Introduction. Mathematical models describing the relationships between a
predator and its prey are, since Lotka [25] and Volterra [45], still a wide subject of
study in population dynamics. Half a century later, Gurtin and Levine considered in
[13] a model where the dynamics depend on the age of the interacting species. As
introduced by Sharpe and Lotka in [39] and by McKendrick in [31], structuring indi-
viduals according to a continuous age variable leads to the formulation of a linear PDE
of transport type. Such models have been extensively studied by many researchers
(see e.g. the books of Webb [46], Iannelli [20], Magal and Ruan [27], Inaba [22]).
Concerning the specific case of structured predator-prey models, one can see [35]
for references. In this paper, we consider the following age-structured predator-prey
system

(1.1)















∂tx(t, a) + ∂ax(t, a) = −µ(a)x(t, a)− γ(a)y(t)x(t, a),
y′(t) = αy(t)

∫∞

0 γ(a)x(t, a)da− δy(t),
x(t, 0) =

∫∞

0 β(a)x(t, a)da,
x(0, ·) = x0(·), y(0) = y0,

for every t > 0 and a > 0 with

(x0, y0) ∈ Y+ := L1
+(R+)× R+

where x(t, a) and y(t) respectively denote the density of prey at age a and time t,
and the density of predators at time t. Moreover, α ∈ (0, 1) and δ > 0 are constant
parameters that respectively denote the assimilation coefficient of ingested prey and
the basic mortality rate of the predator. Finally µ, γ and β ∈ L∞

+ (R+) are nonnegative
and age-dependent functions that represent the basic mortality rate, the predation
rate and the birth rate of the prey. This model has already been analyzed in [35] by
rewriting it as a Cauchy problem and using semigroup theory (see [7], [46]). In [35],
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2 A. PERASSO AND Q. RICHARD

we enlightened the existence of two thresholds:

R0 =

∫ ∞

0

β(a)e−
∫

a

0
µ(s)dsda, R− =

∫ a1

0

β(a)e−
∫

a

0
µ(s)dsda,

with
a1 = sup{a ≥ 0 : |supp(γ) ∩ (0, a)| = 0} <∞

that enables the solutions to go extinct when R0 < 1 and to explode when R− > 1
(with initial conditions in some subspace of Y+). One can note that the age a1 also
corresponds to the minimum of the essential support of γ, that is the closed subset
Sess(γ) ⊂ X given by

Sess(γ) :=
⋂

{F closed subset of X, γ = 0 a.e. on X\F}

When
R0 > 1 and R− < 1,

numerical simulations suggest the possibility for the solutions to converge either to
a periodic function, or to a nontrivial equilibrium denoted by E2. The goal of the
present paper is to prove the latter convergence in the particular case

(1.2) µ ≡ µ0, β(a) = β01[τ,∞)(a), γ(a) = γ01[τ,∞)(a)

where µ0, β0, γ0, τ > 0 are some positive constants. In other words, we suppose the
presence of a juvenile class that cannot be hunted. We can easily calculate

a1 = τ, R− = 0, R0 =
β0e

−µ0τ

µ0
,

and we suppose in the following that

(1.3) R0 > 1.

Formal integrations of (1.1) lead to







X ′(t) = x(t, τ) − µ0X(t)− γ0y(t)X(t),
Z ′(t) = x(t, 0)− x(t, τ) − µ0Z(t),
y′(t) = αγ0X(t)y(t)− δy(t),

for every t ≥ 0, where

X(t) =

∫ ∞

τ

x(t, a)da and Z(t) =

∫ τ

0

x(t, a)da

are respectively the total quantity of prey older (resp. younger) than τ at time t.
Using the boundary condition we get

x(t, 0) = β0X(t)

for every t ≥ 0 and

x(t, τ) =

{

β0e
−µ0τX(t− τ) if t ∈ [τ,∞),

β0e
−µ0tx0(τ − t) if t ∈ [0, τ)



AGE-STRUCTURED AND DELAYED LOTKA-VOLTERRA MODELS 3

so that we get the following delayed differential system

(1.4)







X ′(t) = β0e
−µ0τX(t− τ)− µ0X(t)− γ0X(t)y(t),

Z ′(t) = β0X(t)− β0e
−µ0τX(t− τ)− µ0Z(t),

y′(t) = αγ0X(t)y(t)− δy(t)

for any t ≥ τ . We note that the equivalence between (1.1) and (1.4) is true only if
the delayed differential system (1.4) is equipped with the initial condition:

X(θ) = φ(θ), Z(θ) = ψ(θ), y(0) = y0

for every θ ∈ [0, τ ], where φ and ψ are solutions of the following ODE for any t ∈ [0, τ ]:















φ′(t) = β0e
−µ0tx0(τ − t)− µ0φ(t) − γ0φ(t)y(t),

ψ′(t) = β0φ(t) − β0e
−µ0tx0(τ − t)− µ0ψ(t),

y′(t) = αγ0φ(t)y(t) − δy(t),
φ(0) =

∫∞

τ
x0(a)da, ψ(0) =

∫ τ

0
x0(a)da, y(0) = y0.

Since we can solve X and y independently of Z in (1.4), we will focus in the following
on the delayed Lotka-Volterra system:

(1.5)

{

X ′(t) = β0e
−µ0τX(t− τ)− µ0X(t)− γ0X(t)y(t),

y′(t) = αγ0X(t)y(t)− δy(t).

for any t ≥ τ , and we will consider the more general case by taking an arbitrary initial
condition (φ, yτ ) ∈ C([0, τ ],R+)× R+, i.e. such that

X(θ) = φ(θ), ∀θ ∈ [0, τ ], y(τ) = yτ .

Note that the more general case where

µ ∈ L∞(0,∞), µ|[τ,∞) ≡ µ0, µ0 > 0

could be easily extended to obtain a similar delay differential system as (1.5). In
the latter model, the delay can be seen as some latency for the prey to reproduce.
Concerning Lotka-Volterra equations, delay was first introduced by May [28] in a
vegetation-herbivore-carnivore context, to model the time for the vegetation to re-
cover. Thereafter, many authors studied similar delayed models (see some references
in the general books of Cushing [6], Kuang [23], Arino et al [2] and Smith [41]). Some
of the papers concern the global stability of equilibria (see e.g. [3], [4], [15], [38], [37],
[32], [40]).

However, in the papers mentioned above, a carrying capacity is present in the prey
equation, meaning that prey grow logistically instead of exponentially. A consequence
of this assumption is that, in absence of delay, the nontrivial equilibrium is asymptot-
ically stable for some range of parameters. Adding some delay can then destabilize
the equilibrium and make periodic solutions appear from a Hopf bifurcation (see e.g.
[48], [33] and also [8], [47] when adding some diffusion).

In our case, when the delay is equal to zero, (1.5) becomes the classical ODE Lotka
Volterra model, so the coexistence equilibrium is only stable but not asymptotically
stable. We show that, contrarily to the other papers, adding some delay in the
reproduction term of the prey do not destabilize the coexistence equilibrium but
make it become asymptotically stable, under technical assumptions.
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The method used to prove this convergence is based on the existence of a Lya-
punov function (see [12] or more recently [17] for surveys of such functions in various
ecological ODE and reaction-diffusion models). When dealing with global stability of
positive equilibria, many suitable Lyapunov functionals are defined using the following
key function:

(1.6)
g : (0,∞) −→ R

x 7−→ x− ln(x) − 1.

The latter has been first used by Goh [10] in a context of a multi-species ODE Lotka-
Volterra model. Hsu established similar Lyapunov functions in [16] for models with
more general functional responses. One may also see [11] for a model of mutualism.

For the present model, one shall also use the following Volterra-type Lyapunov
functional that incorporates the delay term:

V : C([0, τ ]) −→ R

φ 7−→
∫ τ

0

g

(

φ(s)

X∗

)

ds

where (X∗, y∗) is the nontrivial equilibrium. The latter was first introduced the
same year in [19], [24], [29], [30] for epidemiological models (see also [26], [34] and
the references therein for similar functional in structured populations PDE models).
Concerning Lotka-Volterra models, a few papers used this functional: [42], [43], [44]
and [18].

In contrast to the papers mentioned previously, in our case the attractive sets are
not reduced to the equilibrium, but are given by a set of periodic solutions, where
the period is exactly equal to the delay. Consequently, one can a priori only state
the convergence to either the equilibrium or to an eventual τ -periodic solution. Using
properties on the period of the solutions of the classical Lotka-Volterra ODE model,
we show that a necessary and sufficient condition to get such periodic solution is the
following:

(1.7)
τ
√
δy∗γ0
2π

> 1.

When (1.7) is not satisfied, then the global asymptotic stability of the nontrivial
equilibrium is proved for ‘positive’ initial conditions. In the case where (1.7) holds,
we exhibit an attractive set in which the equilibrium is globally asymptotically stable.

The paper is structured as follows: in Section 2, we state the framework used in
the following and we decompose the space of initial conditions into invariant spaces.
In Section 3, we exhibit a Lyapunov function and we prove an asymptotic stability
result for the nontrivial equilibrium when (1.7) does not hold. In the case where (1.7)
holds, even if the existence of a periodic solution is ensured, we prove that this latter
is unattractive and the asymptotic stability of the nontrivial equilibrium in a suitable
basin of attraction defined from the Lyapunov function. The two cases are enlightened
by numerical simulations. Finally, in Section 4, we deduce asymptotic results for the
initial PDE problem (1.1).

2. Preliminaries.

2.1. Framework and definitions. Let the Banach space

X = C([0, τ ],R)× R
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endowed with the norm
‖(u, v)‖X = ‖u‖∞ + |v|

and let X+ be its nonnegative cone. We study (1.5) with the initial condition

X(θ) = φ(θ), ∀θ ∈ [0, τ ], y(τ) = yτ ,

where (φ, yτ ) ∈ X . The equilibria of (1.5) are given by

E0 := (0, 0) ∈ R
2; E∗ := (X∗, y∗) =

(

δ

αγ0
,
β0e

−µ0τ − µ0

γ0

)

∈ R
2.

We verify that E∗ exists (in the positive orthant) if and only if (1.3) holds, and the
nontrivial equilibrium is unique under this latter condition.

The initial-value problem (1.5) can be written as the following abstract Cauchy
problem:

(2.1)







(

X
y

)′

(t) = f(Xt, y(t)), ∀t ≥ τ

Xτ = φ, y(τ) = yτ

where (φ, yτ ) ∈ X and f : X → R2 is defined by

f(φ, y) =

(

β0e
−µ0τφ(0)− µ0φ(τ) − γ0φ(τ)y

αγ0φ(τ)y − δy

)

,

and where
Xt(θ) := X(t+ θ − τ), ∀θ ∈ [0, τ ]

(so that Xt(0) = X(t − τ), Xt(τ) = X(t) and Xτ (θ) = X(θ) for any θ ∈ [0, τ ]). We
omit the initial condition dependence since there is no misunderstanding, so we write
Xt(θ) instead of Xt(θ, z), where z := (φ, y0). We start by giving an existence and
uniqueness result.

Proposition 2.1. For every initial condition z := (φ, yτ ) ∈ X+, Problem (2.1)
has a unique mild solution (Xt, y(t)) for every t ≥ τ . Moreover, Problem (2.1) induces
a continuous semiflow via:

Φ : [τ,∞)×X+ → X+

(t, z) 7→ Φt(z) := (Xt, y(t)).

Proof. The proposition results from the general case [35, Proposition 3.2].

Remark 2.2. Consequently of the latter proposition, the solution remains in the
nonnegative cone and there is no explosion in finite time.

In what follows, we shall use the notations:

E0 := (0, 0) ∈ X , E∗ := (X∗1[0,τ ], y
∗) ∈ X .

One of the goal of this article is to investigate some stability and attractiveness
properties of E∗. We therefore remind the following definitions:

Definition 2.3. Let S ⊂ X be a subset of X . We say that E∗ is
• (Lyapunov) stable if for every ε > 0, there exists η > 0 such that

‖z − E∗‖X ≤ η ⇒ ‖Φt(z)− E∗‖X ≤ ε, ∀t ≥ 0;



6 A. PERASSO AND Q. RICHARD

• locally attractive in S if there exists η > 0 such that for every z ∈ S
satisfying ‖z − E∗‖X ≤ η, then

(2.2) lim
t→∞

‖Φt(z)− E∗‖X = 0,

i.e.
lim
t→∞

y(t) = y∗, lim
t→∞

X(t) = X∗;

• locally asymptotically stable in S if E∗ is stable and locally attractive in
S;

• globally attractive in S if for every z ∈ S, (2.2) is satisfied;
• globally asymptotically stable in S if E∗ is stable and globally attractive

in S.

2.2. Partition of X+. Consider the sets

S0 = {(φ, y) ∈ X+ :

∫ τ

0

φ(a)da > 0}, ∂S0 = X+ \ S0,

S1 = {(φ, y) ∈ X+ : φ(a) > 0, ∀a ∈ [0, τ ]},

S2 = {(φ, y) ∈ X+ : y > 0,

∫ τ

0

φ(a)da > 0}, ∂S2 = X+ \ S2,

S3 = {(φ, y) ∈ X+ : y > 0, φ(a) > 0, ∀a ∈ [0, τ ]}.
In order to make an analogy with the PDE model (1.1), note that for any a ∈ [0, τ ]:

φ(a) = X(a) =

∫ ∞

τ

x(a, s)ds = e−µ0a

∫ ∞

τ

x0(s− a)e−γ0

∫
s

τ
y(a+τ−u)duds

so that

ce−µ0a

∫ ∞

τ−a

x0(s)ds ≤ φ(a) ≤ e−µ0a

∫ ∞

τ−a

x0(s)ds

for some constant c > 0. Consequently φ(a) > 0 if and only if
∫∞

τ−a
x0(s)ds > 0 so

that

{

φ(a) > 0, ∀a ∈ [0, τ ] ⇐⇒
∫∞

τ
x0(s)ds > 0

∫ τ

0 φ(a)da > 0 ⇐⇒
∫∞

0 x0(s)ds > 0,

Hence, S0 is the set where there is initially a nonzero total number of preys, while
S1 consists of initial conditions with preys older than τ . Similarly S2 and S3 have
respectively the same meaning as S0 and S1, but with initially a positive quantity of
predators.

Remark 2.4. We have the inclusions

S3 ⊂ S2 ⊂ S0, S3 ⊂ S1 ⊂ S0

and we get the partition

X+ = S2 ⊔ (∂S2 ∩ S0) ⊔ (∂S2 ∩ ∂S0)

(disjoint unions) that is actually

X+ = S2 ⊔ (∂S2 ∩ S0) ⊔ ∂S0

since ∂S0 ⊂ ∂S2.
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2.3. Invariant sets. We start by reminding some definitions.

Definition 2.5. Denote by Oz = {Φt(z), t ≥ τ} the orbit starting from z ∈ X+

and
ω(z) = ∩

s≥τ
{Φt(z), t ≥ s}

the ω − limit set of z.

Definition 2.6. Let S, T ⊂ X and s ≥ 0, then in all the following we will say
that S is

1. positively invariant if Φt(S) ⊂ S for every t ≥ τ , i.e. for every z ∈ S and
every t ≥ τ , Φt(z) ∈ S;

2. (s, T )-positively invariant if for every z ∈ S, then Φt(z) ∈ T for every
t ≥ s+ τ .

Remark 2.7. In all the following, we will denote by (Xt, y(t)) ∈ X the solution of
(2.1) at time t ≥ τ with initial condition (φ, yτ ) ∈ X .

We now give some properties about the sets defined in Section 2.2, with first a useful
lemma.

Lemma 2.8. Let (φ, yτ ) ∈ X+ be a nonnegative initial condition. If there exists
t∗ ∈ [0, τ ] such that φ(t∗) > 0 then X(t∗ + τ) > 0.

Proof. By contradiction, suppose that X(t∗ + τ) = 0 then Equation (1.5) implies

X ′(t∗ + τ) = β0e
−µ0τX(t∗) > 0,

which contradicts the nonnegativity of X .

Proposition 2.9.
1. The sets S1 and S3 are positively invariant.
2. The set S0 (resp S2) is (2τ, S1)-positively invariant (resp (2τ, S3)).
3. The set ∂S0 is positively invariant and the equilibrium E0 is globally attractive

in ∂S0 .
4. The set ∂S2 is positively invariant. Moreover, if we take the restriction of Φ

to the set S0 ∩ ∂S2, then the solution (X, y) of Problem (1.5) goes to (∞, 0)
when t→ ∞.

Proof.
1. Consider an initial condition (φ, yτ ) ∈ S1. Then Xτ = φ and

X(t) = φ(t) > 0, ∀t ∈ [0, τ ].

Lemma 2.8 implies that X(t) > 0 for every t ∈ [τ, 2τ ]. Repeating this argu-
ment, we get

X(t) > 0, ∀t ≥ 0.

Consequently S1 is positively invariant. We then easily see that S3 is posi-
tively invariant since y′(t) ≥ −δy(t) for t ≥ τ and

y(t) ≥ yτe
−δ(t−τ) > 0, ∀t ≥ τ

when (φ, yτ ) ∈ S3.
2. Take an initial condition (φ, yτ ) ∈ S0. We then have

∫ τ

0
φ(a)da > 0 so there

exists t∗ ∈ [0, τ ] such that
φ(t∗) > 0.
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Using Lemma 2.8, we get
X(t∗ + τ) > 0.

Since we have

X ′(t) ≥ −(µ0 + γ0y(t))X(t), ∀t ∈ [t∗ + τ, 3τ ],

it follows that

X(t) ≥ X(t∗ + τ)e−(µ0+γ0y)[t−(t∗+τ)] > 0, ∀t ∈ [t∗ + τ, 3τ ],

where
y = max

t∈[t∗+τ,3τ ]
y(t) <∞

using Remark 2.2. We then have

X(t) > 0, ∀t ∈ [2τ, 3τ ],

and (X3τ , y(3τ)) ∈ S1. With the first point, we can see that S0 (resp. S2)
are (2τ, S1) (resp. (2τ, S3))-positively invariant.

3. Consider an initial condition (φ, yτ ) ∈ ∂S0. We have
∫ τ

0 φ(a)da = 0 and

X(t) = 0, ∀t ∈ [0, τ ],

which leads to

X ′(t) = −µ0X(t)− γ0X(t)y(t) ≤ 0, ∀t ∈ [τ, 2τ ],

so X is nonincreasing on [τ, 2τ ]. Since X is nonnegative, then

X(t) = 0, ∀t ∈ [τ, 2τ ].

Repeating this argument, we get X(t) = 0 for every t ≥ τ . We readily see
that

∫ τ

0

Xt(θ)dθ = 0

for every t ≥ τ and ∂S0 is positively invariant. Since

X(t) = 0, ∀t ≥ τ

and y′(t) ≤ −δy(t) for every t ≥ τ , it is then clear that

lim
t→∞

y(t) = 0,

whence the solution of (1.5) converge to E0.
4. We know that ∂S2 ∩ ∂S0 = ∂S0 is positively invariant. Considering an initial

condition (φ, yτ ) ∈ ∂S2 ∩ S0 we get

yτ = 0 and

∫ τ

0

φ(a)da > 0.

Then (1.5) implies that
y(t) = 0, ∀t ≥ τ.
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Since S0 is positively invariant, we get the invariance of ∂S2 ∩ S0 and ∂S2.
Moreover, with the second and third points, we have

Φt(φ, yτ ) ∈ S1 ∩ ∂S2, ∀t ≥ 3τ,

whence
X(t) > 0, ∀t ≥ 2τ.

We see that (1.5) becomes the delayed Malthusian equation

X ′(t) = β0e
−µ0τX(t− τ) − µ0X(t), ∀t ≥ τ.

Such class of equation has been studied in [21, Sections 2.1 and 2.2], where
the authors proved that the solution behaves as

X(t) = c0e
α∗t(1 + Ω(t)), lim

t→∞
Ω(t) = 0,

where c0 > 0 and α∗ > 0 whenever (1.3) holds. Consequently we get

lim
t→∞

X(t) = ∞.

Remark 2.10. Consequently to Proposition 2.9, 2), all the asymptotic results
proved for initial conditions in S3 can be extended to S2.

Note that the behavior of the solutions when considering an initial condition in
∂S2 ∩ S0 or ∂S0 is clear. By means of Remark 2.4 and the latter proposition, it
remains to prove what happens when the initial condition is taken in S3.

3. Asymptotic behavior. In this section, we deal with the asymptotic behavior
of the solutions.

3.1. Local asymptotic stability of E∗. We start by handling the local stabil-
ity of the nontrivial equilibrium. Linearising (1.5) around E∗ gives:

(3.1)

{

X ′(t) = β0X(t− τ)e−µ0τ − µ0X(t)− γ0X
∗y(t)− γ0X(t)y∗,

y′(t) = αγ0y
∗X(t)

that can be rewritten under the form
(

X ′(t)
y′(t)

)

= A1

(

X(t)
y(t)

)

+A2

(

X(t− τ)
y(t− τ)

)

with

A1 =

(

−µ0 − γ0y
∗ −γ0X∗

αγ0y
∗ 0

)

, A2 =

(

β0e
−µ0τ 0
0 0

)

.

The characteristic equation of (3.1) is classically given by (see e.g. [1] or [41]):

det
(

λI −A1 −A2e
−λτ

)

= 0

which reduces (by definition of (X∗, y∗) to

(3.2) κ1(λ) + κ2(λ)e
−λτ = 0.

where κ1 and κ2 are given by

(3.3)

{

κ1(λ) = λ2 + λβ0e
−µ0τ + δγ0y

∗,
κ2(λ) = −λβ0e−µ0τ .
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Theorem 3.1. Every solution of (3.2) has non positive real part. Moreover, (3.2)
has two purely imaginary roots if and only if

(3.4)
τ
√
δy∗γ0
2π

∈ Z

holds. In this case, the roots are given by

(3.5) λ± = ±i
√

δy∗γ0.

Consequently, if (3.4) does not hold, then E∗ is locally asymptotically stable for (1.5).

Before proving the theorem, let us remind let a result (see [41] Proposition 4.9)
about absolute stability.

Proposition 3.2. Let κ1, κ2 be two polynomial functions with real coefficients
satisfying the equation (3.2) and suppose that:

1. κ1(λ) 6= 0,ℜ(λ) ≥ 0.
2. |κ2(iy)| < |κ1(iy)|, 0 ≤ y <∞.
3. lim|λ|→∞,ℜ(λ)≥0 |κ2(λ)/κ1(λ)| = 0.

Then every root λ of (3.2) satisfies ℜ(λ) < 0 for every τ ≥ 0.

Proof. (Theorem 3.1.) Let us check the hypotheses of Proposition 3.2.

1. Let λ = λr + iλi. Then

κ1(λ) = λ2r − λ2i + β0λre
−µ0τ + δy∗γ0 + 2iλiλr + iβ0λie

−µ0τ .

Thus we have

κ1(λ) = 0 ⇐⇒
{

λ2r − λ2i + β0λre
−µ0τ + δy∗γ0 = 0,

2λrλi + β0e
−µ0τλi = 0.

The second equation gives us

λi = 0 or 2λr + β0e
−µ0τ = 0.

If λi = 0, then we have

λ2r + β0λre
−µ0τ + δy∗γ0 = 0

and the latter equation has no nonnegative solution. If

2λr + β0e
−µ0τ = 0,

then necessarily λr < 0. Consequently the first condition is satisfied.
2. We now compute the limit. We have

|κ2(λ)|2
|κ1(λ)|2

=
(β0e

−µ0τ )2(λ2r + λ2i )

(λ2r − λ2i + β0λre−µ0τ + δy∗γ0)2 + (2λiλr + β0λie−µ0τ )2
.

The denominator is thus equal to

(λ2r + λ2i )
2 +M − 2λ2i δy

∗γ0,
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where

M := (β0λre
−µ0τ )2 + (δy∗γ0)

2 + (β0λie
−µ0τ )2 + 2λ2iλrβ0e

−µ0τ

+2λ3rβ0e
−µ0τ + 2λ2ry

∗δγ0 + 2β0λre
−µ0τ δy∗γ0

so M ≥ 0 when ℜ(λ) ≥ 0. Consequently we have:

|κ2(λ)|2
|κ1(λ)|2

≤ (β0e
−µ0τ )2

(λ2r + λ2i )− 2
λ2i δy

∗γ0
λ2r + λ2i

≤ (β0e
−µ0τ )2

λ2r + λ2i − 2δy∗γ0

|λ|→∞−−−−−→
ℜ(λ)≥0

0.

Thus the third condition is satisfied.
3. We know that

|κ2(iy)| = yβ0e
−µ0τ

and
|κ1(iy)| =

√

(δy∗γ0 − y2)2 + (yβ0e−µ0τ )2.

Thus for every y ≥ 0, we have

|κ2(iy)| ≤ |κ1(iy)|

and there is equality only when

δy∗γ0 = y2,

which means
y =

√

δy∗γ0.

Consequently the second condition is not totally satisfied but by slightly
modifying the system, we can avoid the problem. Following the sketch of
proof of Section 3 in [5], we consider the following characteristic equation, for
ε > 0 small enough:

(3.6) κ1(λ) + εκ1(λ) + κ2(λ)e
−λτ = 0.

Thus the hypotheses of Proposition 3.2 are satisfied for (3.6), hence all roots
of (3.6) have negative real part for all ε > 0 small enough. Since the roots of
(3.6) continuously depend of ε, then all roots of (3.2) have non positive real
part. Let λ = iω, ω > 0. Then λ verifies the equation (3.2) if and only if

−ω2 + iωβ0e
−µ0τ + δy∗γ0 = iωβ0e

−µ0τe−iωτ .

Considering the real and imaginary parts, we get the following system:

{

−ω2 + δy∗γ0 = ωβ0e
−µ0τ sin(ωτ),

ωβ0e
−µ0τ = ωβ0e

−µ0τ cos(ωτ).

⇔
{

ω2 = δy∗γ0,
cos(ωτ) = 1.

Consequently, there are purely imaginary roots of (3.2) if and only if (3.4) is
satisfied.
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3.2. Lyapunov function. Now we want to get the global attractiveness of E∗

on some subset S ⊂ X . To this end, we use Lyapunov functionals. Let

L∗(φ, y) = V1(φ, y) + V2(φ, y) + V3(φ, y)

formally defined for (φ, y) ∈ X by

V1(φ, y) = αX∗g

(

φ(τ)

X∗

)

,

V2(φ, y) = y∗g

(

y

y∗

)

,

V3(φ, y) = αβ0e
−µ0τX∗

∫ τ

0

g

(

φ(s)

X∗

)

ds,

where g is defined by (1.6). One may observe that the function V1+V2 is the one used
in the classical Lotka-Volterra ODE model to prove the periodicity of the solutions.
Note that the fact that

(3.7) lim
φ(τ)→0

L∗(φ, y) = ∞, lim
y→0

L∗(φ, y) = ∞

will play an important role in the next section.

Proposition 3.3. The function (t, w) 7→ L∗(Φt(w)) is well-defined on [τ,∞)×S3

whenever (1.3) holds.

Proof. Note that the assumption (1.3) is necessary to define L∗ since the equi-
librium E∗ only exists in this case. Moreover, the positive invariance of the set S3

(Proposition 2.9, 1.) proves that V1, V2 and V3 are well defined when applied to the
semiflow Φ.

We remind the definition of a Lyapunov function for the semiflow Φ in the case of
infinite dimensional systems (see e.g [23] Definition 5.1, p. 30 or [41], p. 80).

Definition 3.4. Let D ⊂ X . We say that L : X → R is a Lyapunov function on
D if the following hold:

1. L is continuous on D (the closure of D);
2. L decreases along orbits starting in D, i.e. t 7→ L(Φt(z)) is a nonincreasing

function of t ≥ τ , for every z ∈ D.

Proposition 3.5. For every z ∈ S3, the positive function

(3.8) Fz : [τ,∞) ∋ t 7−→ L∗(Φt(z)) ∈ R+

defined by

Fz(t) := αX∗g

(

X(t)

X∗

)

+ y∗g

(

y(t)

y∗

)

+ αβ0e
−µ0τX∗

∫ τ

0

g

(

X(t+ s− τ)

X∗

)

ds

is nonincreasing.

Proof. Let z := (φ, yτ ) ∈ S3. We can calculate the derivative of L∗:

∂

∂t
[L∗(Φt(z)]

=
∂

∂t

[

αX∗g

(

X(t)

X∗

)

+ y∗g

(

y(t)

y∗

)

+ V3(Φt(φ, y0))

]

= α

(

1− X∗

X(t)

)

X ′(t) +

(

1− y∗

y(t)

)

y′(t) +
∂

∂t
[V3(Φt(φ, yτ ))].
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We see that

d

dt

[

g

(

X(t+ s)

X∗

)]

=
d

ds

[

g

(

X(t+ s)

X∗

)]

so

∂

∂t
[V3(Φt(φ, yτ ))] = αβ0e

−µ0τX∗

∫ τ

0

d

dt

[

g

(

X(t+ s− τ)

X∗

)]

ds

= αβ0e
−µ0τX∗

∫ τ

0

d

ds

[

g

(

X(t+ s− τ)

X∗

)]

ds

= αβ0e
−µ0τX∗

[

g

(

X(t)

X∗

)

− g

(

X(t− τ)

X∗

)]

.

Consequently we have

∂

∂t
[L∗(Φt(z)]

= α

(

1− X∗

X(t)

)

[β0e
−µ0τX(t− τ)− µ0X(t)− γ0y(t)X(t)]

+αβ0e
−µ0τX∗

[

g

(

X(t)

X∗

)

− g

(

X(t− τ)

X∗

)]

+

(

1− y∗

y(t)

)

[αγ0X(t)y(t)− δy(t)]

= α

(

1− X∗

X(t)

)

[β0e
−µ0τX(t− τ)− µ0X(t)] + αγ0y(t)X

∗

+αβ0e
−µ0τ

[

X(t)−X∗ ln

(

X(t)

X(t− τ)

)

−X(t− τ)

]

−
(

1− y∗

y(t)

)

δy(t)− αγ0X(t)y∗

We know from (1.5) the following properties about the equilibrium:
1. αγ0X

∗ = δ,
2. αµ0X

∗ + δy∗ = αβ0X
∗e−µ0τ ,

3. αµ0 + αγ0y
∗ = αβ0e

−µ0τ .
Thus we get

∂

∂t
[L∗(Φt(z))]

= α

(

1− X∗

X(t)

)

[β0e
−µ0τX(t− τ)− µ0X(t)] + δy∗ − αγ0X(t)y∗

+αβ0e
−µ0τ

[

X(t)−X∗ ln

(

X(t)

X(t− τ)

)

−X(t− τ))

]

= α

(

1− X∗

X(t)

)

[β0e
−µ0τX(t− τ)]− αµ0X(t) + αβ0X

∗e−µ0τ

−αγ0X(t)y∗ + αβ0e
−µ0τ

[

X(t)−X∗ ln

(

X(t)

X(t− τ)

)

−X(t− τ))

]

= α

(

1− X∗

X(t)

)

[β0e
−µ0τX(t− τ)]− αβ0e

−µ0τX(t) + αβ0X
∗e−µ0τ

+αβ0e
−µ0τ

[

X(t)−X∗ ln

(

X(t)

X(t− τ)

)

−X(t− τ))

]

= − (αX∗β0e
−µ0τ )

(

X(t− τ)

X(t)

)

+ αβ0X
∗e−µ0τ − αβ0e

−µ0τX∗ ln

(

X(t)

X(t− τ)

)
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Hence we obtain

∂

∂t
[L∗(Φt(z))] = −αβ0X∗e−µ0τ

(

X(t− τ)

X(t)
− 1 + ln

(

X(t)

X(t− τ)

))

and consequently

(3.9)
∂

∂t
[L∗(Φt(z)] = −αβ0X∗e−µ0τg

(

X(t− τ)

X(t)

)

, ∀t ≥ τ

and the nonnegativity of g implies that Fz is a nonincreasing function.

One may note that S3 = X+. Consequently, L∗ cannot be a Lyapunov function on
S3, since it is not continuous on X+ \ S3 (the function explodes at the boundary, due
to (3.7)). To avoid this problem, we define for every ε > 0, the set

Sε
3 := {(φ, y) ∈ X+ : y ≥ ε, φ(a) ≥ ε ∀a ∈ [0, τ ]} ⊂ S3

that is a closed subset of X+. We now can give the main result of this section.

Corollary 3.6. For every ε > 0, L∗ is a Lyapunov function on Sε
3.

Remark 3.7. Note that, to perform the global asymptotic analysis of the extinc-
tion equilibrium E0, one could use the functional:

L0(φ, y) = αφ(τ) + y + αβ0e
−µ0τ

∫ τ

0

φ(s)ds

formally defined for (φ, y) ∈ X+. Then one can deduce the global stability of E0 in
X+ when R0 < 1. This result was already obtained in [35] Theorem 3.5, without the
use of Lyapunov function.

3.3. Attractive set of the solutions. We start by proving the boundedness
of the solutions.

Lemma 3.8. For every z ∈ S2, there exists a finite constant C(z) > 0, such that
X(t) ≤ C(z) and y(t) ≤ C(z), for every t ≥ τ .

Proof. Let z := (φ, yτ ) ∈ S3. Consequently to Proposition 3.5, for every t ≥ τ ,
we have Fz(t) ≤ Fz(τ), where

Fz(τ) = αX∗g

(

φ(τ)

X∗

)

+ y∗g

(

yτ
y∗

)

+ αβ0e
−µ0τX∗

∫ τ

0

g

(

φ(s)

X∗

)

ds.

Since each term of Fz is positive and

lim
x→∞

g(x) = ∞,

then there exists a positive constant C(z) > 0 such that

X(t) ≤ C(z), y(t) ≤ C(z), ∀t ≥ τ.

Now suppose that z ∈ S2. By means of Remark 2.2, the solution (X(t), y(t))
is bounded for t ∈ [τ, 3τ ]. Moreover, from Proposition 2.9, 2) and the fact that
Φt(z) ∈ S3 for every t ≥ 3τ , we deduce that (X(t), y(t)) is bounded for any t ≥ τ .

We continue with a persistence result.
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Lemma 3.9. For every z ∈ S3, there exists ε > 0 such that

Φt(z) ∈ Sε
3 , ∀t ≥ τ.

Proof. Let z ∈ S3. Suppose by contradiction that for every ε > 0 there exists
t ≥ τ such that

X(t) < ε or y(t) < ε.

Letting ε go to 0 implies that L∗(Φt(z)) goes to infinity leading to a contradiction
with Proposition 3.5.

In all the following, any ‘τ -periodic function’ will be not constant. We are now ready
to compute the attractive set of the solutions.

Theorem 3.10. For every initial condition z ∈ S2, the solution (X, y) converge
either to a τ-periodic function or to E∗.

Proof. First, consider an initial condition z ∈ S3. By Lemma 3.9, there exists
ε > 0 such that

Φt(z) ∈ Sε
3 , ∀t ≥ τ.

Using Corollary 3.6 and Lemma 3.8, we know that L∗ is a Lyapunov function on Sε
3

and Φt(z) is a bounded solution. Consequently to LaSalle invariance principle (see
[23, Theorem 5.3, p. 30] or [41, Theorem 5.17, p. 80]), we conclude that ω(z) 6= ∅
and is contained in the maximal invariant subset of

{

v ∈ Sε
3 :

∂

∂t
[L∗(Φt(v))] = 0, ∀t ≥ τ

}

.

We see that (3.9) implies

(3.10) X(t− τ) = X(t), ∀t ≥ τ,

so ω(z) is included in

{v ∈ Sε
3 : ΦX

t (v) = ΦX
t+τ (v), ∀t ≥ τ},

where ΦX is the first component of Φ. Classical results (see e.g. [14]) imply that
X ∈ C1[τ,∞). Therefore we get

X ′(t) = X ′(t+ τ), ∀t ≥ τ,

which implies
γ0X(t)y(t) = γ0X(t+ τ)y(t + τ), ∀t ≥ τ

hence

(3.11) y(t) = y(t+ τ), ∀t ≥ τ.

Suppose that
X(t) = c ∈ (0,∞) for all t ≥ τ.

Then (1.5) implies that
y(t) = y∗ for all t ≥ τ

which leads to c = X∗, whence ω(z) = {E∗} in this case. Now, suppose that X
is a τ -periodic function. Suppose also, by contradiction, that y is not a τ -periodic
function. Using (3.11), we would obtain that y is constant and then that

X(t) = X∗ for all t ≥ τ

due to (1.5) which leads to a contradiction. Hence the result follows.
Now, consider an initial condition z ∈ S2. Using Proposition 2.9 2), we know that
Φ3τ (z) ∈ S3. We can therefore use the proof above to get the same asymptotic result.
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3.4. Existence of a τ-periodic solution. By means of the latter result, the
convergence to a τ -periodic function is a possible case. We now give a necessary and
sufficient condition to get the existence of such periodic solution.

Theorem 3.11. There exists a τ-periodic solution of (1.5) if and only if

(3.12)
τ
√
δy∗γ0
2π

> 1

holds. In this case, the solution is unique (in the sense that there is only one τ-periodic
orbit) and will be denoted by (p, q) ∈ C1([τ,∞),R2

+) in all the following.

Let us first remind some useful property about the classical Lotka-Volterra model.

Lemma 3.12. [36, Theorem 1] The solution of

(3.13)







x′(t) = ax(t)− bx(t)y(t),
y′(t) = cx(t)y(t) − dy(t),

(x(τ), y(τ)) = (xτ , yτ ) ∈ (0,∞)2,

for every t ≥ τ , is periodic with some period T . Define the conserved energy E(xτ ,yτ )

(through time) of (3.13) by

E(xτ ,yτ ) = cxτ − d+ byτ − a− a ln

(

byτ
a

)

− d ln
(cxτ
d

)

= dg
(cxτ
d

)

+ ag

(

byτ
a

)

≥ 0,(3.14)

which depends on the initial condition. Then the period depends on E(xτ ,yτ ) and
moreover, the function E 7→ T (E) is strictly increasing with

lim
E→0

T (E) = 2π√
ad
, lim

E→∞
T (E) = ∞.

Proof. (Theorem 3.11.) If (X, y) is a τ -periodic solution of (1.5), then it is actually
solution of

(3.15)

{

X ′(t) = (β0e
−µ0τ − µ0)X(t)− γ0X(t)y(t),

y′(t) = αγ0X(t)y(t)− δy(t),

for any t ≥ τ . Suppose that
τ
√
δy∗γ0
2π

< 1.

Using Lemma 3.12, for each initial condition, the solution is periodic with some period
T . Since the period is strictly increasing, it must satisfy

T ≥ 2π
√

(β0e−µ0τ − µ0)δ
=

2π√
δγ0y∗

> τ,

which is absurd. If
τ
√
δy∗γ0
2π

= 1,

then to get T = τ , one needs to have E(xτ ,yτ ) = 0. Using (3.14), we get

xτ =
d

c
, yτ =

a

b
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which is equivalent, for (3.15), to

xτ = X∗, yτ = y∗,

so the solution is actually constant and the first implication is thus proved.
Conversely, suppose that (3.12) is satisfied. Using Lemma 3.12, there is a unique

energy E∗ > 0 such that

T (E∗) = τ.

Moreover, using (3.14), we can see that there is at least one initial condition (x1, y1) ∈
R2 such that

E(x1,y1) = E∗.

Thus, there is at least one τ -periodic solution of (3.15) (denoted by (p, q)). Besides,
every initial condition (x2, y2) that satisfies

E(x2,y2) = E∗

belongs to
⋃

s∈[τ,2τ ]

{(p(s), q(s))}.

Consequently, there is a unique τ -periodic solution (p, q) ∈ C1([τ,∞),R2
+) up to a

phase shift, of (3.15). We finally see that (p, q) is also solution of (1.5), which ends
the proof.

Remark 3.13. We can note that the τ -periodic solution of (1.5) is linked with the
existence of two purely imaginary roots (given by (3.5)) of the characteristic equation
(3.2), whenever

τ
√
δy∗γ0
2π

= 1

holds. Indeed, in this case, the condition (3.4) is satisfied.

We can now be more precise about the attractive set of the solutions.

Proposition 3.14. Consider an initial condition z ∈ S2.
1. If (3.12) does not hold, then

(3.16) ω(z) = {E∗}.

2. If (3.12) holds then

(3.17) ω(z) ⊂ {E∗} ∪ Sτ ,

where Sτ ⊂ S3 is the (periodic) positively invariant subset of S3 defined by

(3.18) Sτ := {(φ, y) ∈ X+ : ∃h ∈ [0, τ ], φ(·) = p(·+ τ + h), y = q(τ + h)} .

Proof. The result follows from Theorem 3.10 and Theorem 3.11.

3.5. Lyapunov stability. Here we handle the behavior of the solutions around
the non trivial equilibrium. We know by Theorem 3.1 that E∗ is locally asymptotically
stable when (3.4) does not hold. We can now be more precise:

Proposition 3.15. The equilibrium E∗ is Lyapunov stable.
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To prove this result, we need to define the following sets

Lη = {(φ, y) ∈ X+ : L∗(φ, y) < η}, η > 0,

B(E∗, ρ) = {(w, y) ∈ R
2 : ‖(w, y)− E∗‖R2 ≤ ρ}, ρ > 0,

where ‖(w, y)‖R2 = |w|+ |y|, for any (w, y) ∈ R2;

B(E∗, ρ) = {(φ, y) ∈ X+ : ‖(φ, y)− E∗‖X ≤ ρ}, ρ > 0,

and we give two lemmas (see [9, Proof of Theorem 1.2] for the idea of such results).

Lemma 3.16. For every ρ > 0, there exists η > 0 such that (φ, y) ∈ Lη ⇒
(φ(τ), y) ∈ B(E∗, ρ).

Proof. Let ρ > 0, η > 0 and (φη , yη) ∈ Lη. We have L∗(φη , yη) < η so

V1(φη, yη) < η, V2(φη, yη) < η,

and

g

(

φη(τ)

X∗

)

<
η

αX∗
, g

(

yη
y∗

)

<
η

y∗
.

Since g is nonnegative then

lim
η→0

g

(

φη(τ)

X∗

)

= 0, lim
η→0

g

(

yη
y∗

)

= 0,

and, since g is zero only at 1, we obtain

lim
η→0

φη(τ) = X∗, lim
η→0

yη = y∗.

By considering η > 0 small enough we get ‖(φη(τ), yη)−E∗‖R2 ≤ ρ and (φη(τ), yη) ∈
B(E∗, ρ).

Lemma 3.17. For every η > 0, there exists ρ > 0 such that B(E∗, ρ) ⊂ Lη.

Proof. Let η > 0, ρ > 0 and (φρ, yρ) ∈ B(E∗, ρ), then ‖(φρ, yρ)−E∗‖X ≤ ρ so we
get

‖φρ −X∗1[0,τ ]‖∞ ≤ ρ, |yρ − y∗| ≤ ρ.

Consequently we have

lim
ρ→0

yρ = y∗, lim
ρ→0

φρ(s) = X∗, ∀s ∈ [0, τ ],

and then

lim
ρ→0

g

(

yρ
y∗

)

= 0, lim
ρ→0

g

(

φρ(s)

X∗

)

= 0, ∀s ∈ [0, τ ].

Consequently

lim
ρ→0

V1(φρ, yρ) = 0, lim
ρ→0

V2(φρ, yρ) = 0, lim
ρ→0

V3(φρ, yρ) = 0.

So, considering ρ > 0 small enough, we get L∗(φρ, yρ) ≤ η.
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Proof. (Proposition 3.15.) Let ρ1 > 0. Using Lemma 3.16, there exists η > 0
such that

(φ, y) ∈ Lη ⇒ (φ(τ), y) ∈ B(E∗, ρ1)

and using Lemma 3.17, there exists ρ2 > 0 such that

B(E∗, ρ2) ⊂ Lη.

Let (φ, y) ∈ B(E∗, ρ2), then (φ, y) ∈ Lη so (φ(τ), y) ∈ B(E∗, ρ1). Since F(φ,y) is
nonincreasing, then Lη is positively invariant, which implies

(ΦX
t (φ, y)(τ),Φy

t (φ, y)) ∈ B(E∗, ρ1), ∀t ≥ τ

where Φy is the second component of Φ, so that

(X(t), y(t)) ∈ B(E∗, ρ1), ∀t ≥ τ.

Consequently

|X(t)−X∗|+ |y(t)− y∗| ≤ ρ1, ∀t ≥ τ.

Since (φ, y) ∈ B(E∗, ρ2), then we have

‖φ−X∗1[0,τ ]‖∞ + |y − y∗| ≤ ρ2.

Considering ρ2 > 0 small enough, that satisfies ρ2 ≤ ρ1, leads to

‖Xt −X∗1[0,τ ]‖∞ + |y(t)− y∗| ≤ ρ1, ∀t ≥ τ

that is

‖(Xt, y(t))− E∗‖X ≤ ρ1, ∀t ≥ τ

so

Φt(φ, y) ∈ B(E∗, ρ1), ∀t ≥ τ.

We have finally shown that E∗ is Lyapunov stable, since for every ρ1 > 0 there exists
ρ2 > 0 such that

(φ, y) ∈ B(E∗, ρ2) ⇒ Φt(φ, y) ∈ B(E∗, ρ1), ∀t ≥ τ.

3.6. Asymptotic behavior in absence of periodic solution. In absence of
τ -periodic solution, i.e. (3.12) does not hold, the behavior of the solutions is given by
the following theorem:

Theorem 3.18. If (3.12) is not satisfied, then E∗ is globally asymptotically stable
in S2.

Proof. We know that (3.16) holds for every z ∈ S2. Consequently, the global sta-
bility of E∗ (and E∗) in the basin S2, when (3.12) does not hold, is just a consequence
of Proposition 3.15.
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3.7. Asymptotic behavior in presence of a periodic solution. Let us sup-
pose now that there exists a τ -periodic solution, i.e. that (3.12) holds. In this case,
we already know that

ω(z) ⊂ {E∗} ∪ Sτ , ∀z ∈ S2

where Sτ is defined by (3.18). We start by proving the global asymptotic stability of
E∗ in a subset of S2 \ Sτ .

Remark 3.19. Using Theorem 3.11, we know that, in this case, there is a unique
nonconstant τ -periodic solution, up to a phase shift, (p, q) ∈ C1([τ,∞),R2

+) for (1.5).
Let (p, q) ∈ X+ be defined by

p(s) = p(s+ τ), ∀s ∈ [0, τ ], q = q(τ).

It is clear that (p, q) ∈ Sτ and that Φt(p, q) ∈ Sτ , ∀t ≥ τ . Moreover the following
equivalence holds true, by (3.18):

(φ, y) ∈ Sτ ⇐⇒ ∃ h ∈ [τ, 2τ ] : Φh(φ, y) = (p, q).

We then define the (constant) energy for the periodic function by Eτ := F(p,q)(τ), i.e.

Eτ = αX∗g

(

p(τ)

X∗

)

+ y∗g

(

q

y∗

)

+ αβ0e
−µ0τX∗

∫ τ

0

g

(

p(s)

X∗

)

ds ∈ (0,∞)

and we deduce that
Sτ ⊂ {z ∈ S2 : L∗(z) = Eτ}.

Proposition 3.20. If (3.12) is satisfied, then E∗ is globally asymptotically stable
in

{z ∈ S2 : L∗(z) ≤ Eτ} \ Sτ .

Proof. Since E∗ is stable by Proposition 3.15, it remains to prove the attractive-
ness. We see that

LEτ
⊂ {z ∈ S2 : L∗(z) ≤ Eτ} \ Sτ .

First, let z ∈ LEτ
and define

E∗ := Fz(τ) < Eτ .
We know that (3.17) holds. If ω(z) ⊂ Sτ , then there would exist a time t∗ ≥ τ such
that

E∗ < Fz(t
∗) < Eτ

which contradict the fact that Fz is nonincreasing. Consequently (3.16) actually holds.
Now, let

z ∈ {w ∈ S2 : L∗(w) = Eτ} \ Sτ ,

and suppose that ω(z) ⊂ Sτ . Then one needs to have

Fz(t) = Eτ , ∀t ≥ τ,

i.e. Fz must be constant. Using Equation (3.9), it implies that

X(t− τ) = X(t), ∀t ≥ τ.

As in the proof of Theorem 3.10, either (X(t), y(t)) ≡ (X∗, y∗) but then we would
have L∗(z) = L∗(E∗) = 0 that is absurd, or (X, y) is a τ -periodic function, which is
also absurd since

z 6∈ Sτ .

Consequently (3.16) holds and the asymptotic stability follows.
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We can deduce the following result, without supposing (3.4) as we did for Theorem
3.1

Corollary 3.21. The nontrivial equilibrium E∗ is locally asymptotically stable.

Proof. Since
EE∗ = FE∗(τ) = 0,

then, by continuity of L∗, we can find a neighborhood of E∗, denoted by VE∗ , such
that

VE∗ ⊂ {z ∈ S2 : L∗(z) ≤ Eτ} \ Sτ .

Consequently, for every initial condition z ∈ VE∗ , the solution of (1.5) will converge
to E∗, whence the local asymptotic stability.

We now focus on the τ -periodic solution by proving its unattractiveness.

Definition 3.22. Let S ⊂ X be a subset of X . We say that (p, q) is weakly
orbitally unattractive in S if, for every η > 0, there exist h ∈ [0, τ ] and (φ, yτ ) ∈ S
that satisfies ‖(φ, yτ )− (p, q)‖X ≤ η such that

(3.19) lim sup
t→∞

‖(ΦX
t+h(φ, yτ )(τ),Φ

y
t+h(φ, yτ ))− (p, q)(t)‖R2 > 0;

Remark 3.23. Note that (ΦX
t+h(φ, yτ )(τ),Φ

y
t+h(φ, yτ )) is simply the solution of

(1.5) with the initial condition (φ, yτ ) at time t+ h, i.e. (X(t+ h), y(t+ h)).

We need:

Lemma 3.24. One can suppose without loss of generality, that

p(τ) = X∗, q(τ) 6= y∗,

so that p(0) = p(τ) = X∗, q 6= y∗ and

(3.20) Eτ = y∗g

(

q

y∗

)

+ αβ0e
−µ0τX∗

∫ τ

0

g

(

p(s)

X∗

)

ds.

Proof. There necessarily exists t∗ ∈ [τ, 2τ ] such that p(t∗) = X∗. Indeed, if

p(t) < X∗, ∀t ∈ [τ, 2τ ],

then
q′(t) < 0, ∀t ∈ [τ, 2τ ],

so q is decreasing on [τ, 2τ ] and cannot be τ -periodic. Similarly, if

p(t) > X∗, ∀t ∈ [τ, 2τ ],

then q would be increasing on [τ, 2τ ]. Let say, without loss of generality, that t∗ = τ .
Now suppose that

q(τ) = y∗.

Since (p, q) is solution of (3.13) with (xτ , yτ ) = (X∗, y∗), we would get

E(xτ ,yτ ) = 0

so
p(t) = X∗, q(t) = y∗, ∀t ≥ τ

which is absurd. Consequently q(τ) 6= y∗.
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We now prove the following:

Proposition 3.25. The τ-periodic function (p, q) is weakly orbitally unattractive
in S2.

Proof. We know from Proposition 3.5 that for every initial condition (φ, yτ ) ∈ S3,
the function F(φ,yτ ) defined by (3.8) is nonincreasing. We see that the energy for the
periodic function, denoted by Eτ , is given by (3.20). Consider

yτ = q + η

(

y∗ − q

|y∗ − q|

)

with η > 0 small enough such that

g

(

yτ
y∗

)

< g

(

q

y∗

)

which is possible with the fact that q 6= y∗ and since g is decreasing on (0, 1] and
increasing on [1,∞)). Consequently we get

E∗ := F(p,yτ)(τ) = y∗g

(

yτ
y∗

)

+ αβ0e
−µ0τX∗

∫ τ

0

g

(

p(s)

X∗

)

ds < Eτ .

Recalling that (3.17) holds, we deduce that if we had ω(z) ⊂ Sτ then there would
exist a time t∗ > τ such that

E∗ < F(p,y0)(t
∗) < Eτ

but it would contradict the fact that the function F(p,yτ ) is nonincreasing. Conse-
quently (3.16) holds and (3.19) is satisfied. We readily see that η > 0 can be taken
as small as we want. The weak unattractiveness in S3 is then obtained with the fact
that, if it is true for small η > 0, then it is clearly true for all η > 0.

Remark 3.26. Note that the latter result and Proposition 3.14 induce that one
can find some initial conditions, near the periodic solution, such that the solution of
(1.5) converges to E∗. The question whether the unattractiveness is strong (i.e. true
for every initial conditions in S2 \ Sτ ) is an open problem.

3.8. Numerical simulations. In this section, we show some numerical simula-
tions to illustrate the results proven above. We consider µ0 = 0.5, τ = 3, γ0 = 0.5, α =
0.7, δ = 2 and we let β0 vary. If β0 = 10, then (3.12) does not hold (the value is around
0.89) and consequently to Theorem 3.18, we get the convergence to E∗ whatever the
initial condition taken in S2 (see Figure 1). Now, if β0 = 20, then (3.12) holds (the
value is around 1.34). In one hand, Proposition 3.20 implies the convergence to E∗

in a subset of S2 (see Figure 2 for two different sets of initial conditions). On the
other hand, Proposition 3.25 implies that Sτ is weakly orbitally unattractive, and
by Remark 3.26 we know that there exists some initial conditions near the periodic
solution, the solution of (1.5) converges to E∗ (see Figure 3). All these simulations let
us think that when (3.12) holds, the equilibrium E∗ is globally asymptotically stable
in S2 \ Sτ and that the τ -periodic solution is strongly unattractive in S2 \ Sτ .

4. Back to the PDE model. In this section, we return to the initial PDE
predator-prey model and we prove an asymptotic stability result for the nontrivial
equilibrium E2 := (x2, y2) ∈ Y+, where (x2, y2) satisfies the following system:

(4.1)











x2(a) = x2(0)e
−

∫
a

0
µ(s)ds−y2

∫
a

0
γ(s)ds,

x2(0)
[

1−
∫∞

0
β(a)e−

∫
a

0
µ(s)ds−y2

∫
a

0
γ(s)dsda

]

= 0,

y2
[

α
∫∞

0
γ(a)x2(a)da− δ

]

= 0.
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Fig. 1. When (3.12) does not hold

Fig. 2. When (3.12) holds and initial conditions away from the τ -periodic solution

Fig. 3. When (3.12) holds and initial condition near the τ -periodic solution
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4.1. Attractiveness of E2. By analogy with the set S2 for the delay problem,
we define for the PDE case:

Y2 := {(x0, y0) ∈ L1
+(R+)× (0,∞) :

∫ ∞

0

x0(a)da > 0}.

We can prove:

Theorem 4.1. Suppose that (3.12) does not hold. Under the assumption (1.2),
the equilibrium E2 is globally attractive in Y2 for (1.1).

Proof. Let (x0, y0) ∈ Y2 and (x, y) be the solution of (1.1). We get

x(τ, a) ≥ x0(a− τ)e−µ0τe−γ0τM ,

for every a ≥ τ where M = maxs∈[0,τ ] y(s) <∞. Therefore

∫ ∞

τ

x(τ, a)da > 0

and we also have
y(τ) ≥ y0e

−δτ > 0.

We can then consider for (1.5) the initial condition z = (φ, y(τ)) ∈ X , where

φ(θ) =

∫ ∞

τ

x(θ, a)da,

for every θ ∈ [0, τ ]. Since φ(τ) > 0, we can check by continuity that
∫ τ

0 φ(s)ds > 0
whence z ∈ S2. We know, by Theorem 3.18, that E∗ is globally asymptotically stable
in S2 (for (1.5)). Consequently, we get

lim
t→∞

y(t) = y∗, lim
t→∞

X(t) = X∗

hence

lim
t→∞

x(t, 0) = lim
t→∞

β0

∫ ∞

τ

x(t, a)da = lim
t→∞

β0X(t) = β0X
∗.

Let ε > 0, then there exists t∗ > τ such that for every t ≥ t∗, we have |X(t)−X∗| ≤ ε
and |y(t) − y∗| ≤ ε. The positivity of (x, y), obtained in [35, Theorem 2.3], implies
that for t ≥ t∗, we have

{

∂ax(t, a) + ∂tx(t, a) = −µ0x(t, a)− γ0χ[τ,∞)(a)x(t, a),
β0(X

∗ − ε) ≤ x(t, 0) ≤ β0(X
∗ + ε).

For every a ≤ t, we thus get

β0(X
∗ − ε)e−µ0a ≤ x(t, a) ≤ β0(X

∗ + ε)e−µ0a

if a ∈ [0, τ ], and

β0(X
∗ − ε)e−µ0a−γ0(a−τ)(y∗+ε) ≤ x(t, a) ≤ β0(X

∗ + ε)e−µ0a−γ0(a−τ)(y∗−ε)

if a ∈ [τ, t]. Letting ε > 0 go to 0, we deduce that

lim
t→∞

x(t, a) =

{

β0X
∗e−µ0a ∀a ∈ [0, τ ],

β0X
∗e−µ0ae−γ0y

∗(a−τ) ∀a ∈ [τ,∞).
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Since (x2, y2) satisfy (4.1), then we see that

y2 =
β0e

−µ0τ − µ0

γ0
= y∗.

Moreover we have

x2(a) =

{

x2(0)e
−µ0a if a ∈ [0, τ ],

x2(0)e
−µ0a−γ0y2(a−τ) if a ≥ τ,

so that

αγ0x2(0)

∫ ∞

τ

e−µ0a−γ0y2(a−τ)da = δ,

due to (4.1), whence

x2(0) =
δ

αγ0
eµ0τ (µ0 + γ0y2) = β0X

∗.

It is then clear that
lim
t→∞

x(t, a) = x2(a)

for every a ≥ 0 and the result follows.

4.2. Stability of E2. In this section, we deal with the stability of E2. Let the
linear operator A : D(A) ⊂ Y → Y, with Y = L1(R+)× R, be defined by

D(A) = {(φ, z) ∈ Y, φ ∈W 1,1(R+) and φ(0) =

∫ ∞

0

β(a)φ(a)da},

A =

(

D 0
0 −δ

)

where

Dφ = −dφ
da

− µφ

and the function h : Y → Y given by

h(φ, z) =

(

−zγ(.)φ(.)
αz

∫∞

0
γ(a)φ(a)da

)

.

We know (see [35], section 2.2) that A generates a positive C0-semigroup. We denote
by DE2

h the differential of h at E2 and we remind the following.

Definition 4.2. Let L(Y) be the space of bounded linear operators on Y and
let K(Y) be the subspace of compact operators on Y. The essential norm ‖L‖ess of
L ∈ L(Y) is given by

‖L‖ess = inf
K∈K(Y)

‖L−K‖Y .

Let {TA(t)}t≥0 be a C0-semigroup on Y with generator A : D(A) ⊂ Y → Y . The
essential growth bound (or essential type) of {TA(t)}t≥0 is given by

ωess(A) = lim
t→∞

ln(‖TA(t)‖ess)
t

.
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We are ready to give the main result of this section.

Theorem 4.3. We have

σ(A+DE2
h) ⊂ {z ∈ C : ℜ(z) ≤ 0},

where σ(A +DE2
h) denotes the spectrum of A+DE2

h. Moreover

{z ∈ σ(A+DE2
h) : ℜ(z) = 0} 6= ∅

if and only if (3.4) holds, and in this case, the roots are given by (3.5). In particular,
if (3.4) does not hold, then E2 is locally asymptotically stable for (1.1).

Proof. We know from [35, Theorem 3.3] that

ωess(A+DE2
h) < 0.

Consequently, we have

{λ ∈ σ(A+DE2
h) : ℜ(λ) ≥ 0} ⊂ σp(A+DE2

h)

(see [7], Corollary IV.2.11, p. 258), where σp denotes the point spectrum. Similarly as
in [35, Section 3.2.3], we look for solutions of the form x(t, a) = x(a)eλt, y(t) = yeλt,
where the eigenvalue λ ∈ C has to satisfy the system BY = C, with:

B =

(

b1 b2
b3 b4

)

, C =

(

0
0

)

and Y =

(

x̄(0)
ȳ

)

, with :



























b1 = 1−
∫∞

0 β(a)e−
∫

a

0
(µ(s)+λ+y∗γ(s))dsda,

b2 =
δ

αΓ

∫∞

0
β(a)e−

∫
a

0
[µ(s)+y∗γ(s)]ds

∫ a

0
γ(u)e−λ(a−u)duda,

b3 = αy∗
∫∞

0 γ(a)e−
∫

a

0
(µ(s)+λ+γ(s)y∗)dsda,

b4 = −λ− δy∗

Γ

∫∞

0 γ(a)e−
∫

a

0
[µ(s)+γ(s)y∗]ds

∫ a

0 γ(u)e
−λ(a−u)duda,

and Γ =
∫∞

0
γ(a)e−

∫
a

0
[µ(s)+y∗γ(s)]dsda. While solving BY = C, one needs to have

det(B) = 0 to get a nonzero solution Y , that is equivalent to

(4.2) b1b4 = b2b3.

We see that

Γ =
γ0e

−µ0τ

µ0 + y∗γ0
=
γ0
β0
,

since

µ0 + y∗γ0 = β0e
−µ0τ .

Consequently, some computations lead to

b1 = 1− β0e
−(µ0+λ)τ

µ0 + λ+ y∗γ0
,
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b2 =
δβ0γ0
αλΓ

∫ ∞

τ

eτy
∗γ0e−(µ0+y∗γ0)a

(

1− eλ(τ−a)
)

da

=
δβ0γ0e

−µ0τ

αλΓ

(

1

µ0 + y∗γ0
− 1

µ0 + λ+ y∗γ0

)

=
δβ0γ0e

−µ0τ

αΓ(µ0 + λ+ y∗γ0)(µ0 + y∗γ0)

=
δβ0

α(µ0 + λ+ y∗γ0)
,

b3 =
αy∗γ0e

−(µ0+λ)τ

µ0 + λ+ y∗γ0
,

and

b4 = −λ− δy∗γ20e
γ0y

∗τ

λΓ

∫ ∞

τ

e−(µ0+γ0y
∗)a

(

1− eλ(τ−a)
)

da

= −λ− δy∗γ20e
−µ0τ

λΓ

(

1

µ0 + y∗γ0
− 1

µ0 + λ+ y∗γ0

)

= −λ+
δy∗γ20e

−µ0τ

Γ(µ0 + y∗γ0)(µ0 + λ+ y∗γ0)

= −λ+
δy∗γ0

µ0 + λ+ y∗γ0
.

Finally, (4.2) holds if and only if

(

1− β0e
−(µ0+λ)τ

µ0 + λ+ y∗γ0

)(

−λ− δy∗γ0
µ0 + λ+ y∗γ0

)

=
δβ0y

∗γ0e
−(µ0+λ)τ

(µ0 + λ+ y∗γ0)2

⇐⇒ −λ
(

1− β0e
−(µ0+λ)τ

µ0 + λ+ y∗γ0

)

=
δy∗γ0

µ0 + λ+ y∗γ0
⇐⇒ −λ

(

β0e
−µ0τ + λ− β0e

−(µ0+λ)τ
)

= δy∗γ0,

i.e. if and only if (3.2) holds, where κ1 and κ2 are given by (3.3). The result follows
from Theorem 3.1.

By means of Theorems 4.1 and 4.3, we get the following result.

Corollary 4.4. Under the assumption (1.2), if

τ
√
δy∗γ0
2π

< 1

then the equilibrium E2 is globally asymptotically stable in Y2 for (1.1).

Remark 4.5. If
τ
√
δy∗γ0
2π

= 1

then the attractiveness of E2 in Y2 is ensured while the stability is not.
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[18] G. Huang, A. Liu, and U. Foryś, Global stability analysis of some nonlinear delay differential

equations in population dynamics, J. Nonlinear Sci., 26 (2016), pp. 27–41, https://doi.org/
10.1007/s00332-015-9267-4.

[19] G. Huang, Y. Takeuchi, W. Ma, and D. Wei, Global stability for delay SIR and SEIR

epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), pp. 1192–
1207.

[20] M. Iannelli, Mathematical Theory of Age-structured Population Dynamics, Giardini Editori
e stampatori, 1994.

[21] M. Iannelli and A. Pugliese, An Introduction to Mathematical Population Dynamics, vol. 79
of Unitext, Springer, Cham, 2014.

[22] H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer,
Singapore, 2017, https://doi.org/10.1007/978-981-10-0188-8.

[23] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191
of Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA, 1993.

[24] M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull.
Math. Biol., 72 (2010), pp. 1492–1505, https://doi.org/10.1007/s11538-010-9503-x.

[25] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins company, Baltimore, 1925.
[26] P. Magal, C. C. McCluskey, and G. F. Webb, Lyapunov functional and global asymptotic

stability for an infection-age model, Appl. Anal., 89 (2010), pp. 1109–1140, https://doi.
org/10.1080/00036810903208122.

[27] P. Magal and S. Ruan, Structured Population Models in Biology and Epidemiology, Lecture
Notes in Mathematics, Springer-Verlag Berlin Heidelberg, 2008.

[28] R. M. May, Time-delay versus stability in population models with two and three trophic levels,
Ecology, 54 (1973), pp. 315–325.

[29] C. C. McCluskey, Complete global stability for an SIR epidemic model with delay—distributed

or discrete, Nonlinear Anal. Real World Appl., 11 (2010), pp. 55–59, https://doi.org/10.

https://doi.org/10.1007/s11538-006-9121-9
https://doi.org/10.1007/BF00276147
https://doi.org/10.1006/jmaa.2000.7182
https://doi.org/10.1086/283384
https://doi.org/10.1086/283384
https://doi.org/10.1007/s00332-015-9267-4
https://doi.org/10.1007/s00332-015-9267-4
https://doi.org/10.1007/978-981-10-0188-8
https://doi.org/10.1007/s11538-010-9503-x
https://doi.org/10.1080/00036810903208122
https://doi.org/10.1080/00036810903208122
https://doi.org/10.1016/j.nonrwa.2008.10.014


AGE-STRUCTURED AND DELAYED LOTKA-VOLTERRA MODELS 29

1016/j.nonrwa.2008.10.014.
[30] C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear in-

cidence, Nonlinear Anal. Real World Appl., 11 (2010), pp. 3106–3109, https://doi.org/10.
1016/j.nonrwa.2009.11.005.

[31] A. G. McKendrick, Applications of mathematics to medical problems, Proceedings of
the Edinburgh Mathematical Society, 44 (1925), pp. 98–130, https://doi.org/10.1017/
S0013091500034428.

[32] Y. Muroya, Permanence and global stability in a Lotka-Volterra predator-prey system with

delays, Appl. Math. Lett., 16 (2003), pp. 1245–1250.
[33] M. Peng, Z. Zhang, and X. Wang, Hybrid control of Hopf bifurcation in a Lotka-Volterra

predator-prey model with two delays, Adv. Difference Equ., 2017 (2017), p. 387, https://
doi.org/10.1186/s13662-017-1434-5.

[34] A. Perasso, Global stability and uniform persistence for an infection load-structured si model

with exponential growth velocity, Communications on Pure and Applied Analysis, 18 (2019),
pp. 15–32, https://doi.org/10.3934/cpaa.2019002.

[35] A. Perasso and Q. Richard, Implication of age-structure on the dynamics of Lotka-Volterra

equations, Differential and Integral Equations, 32 (2019), pp. 91–120.
[36] F. Rothe, The periods of the Volterra-Lotka system, J. Reine Angew. Math., 355 (1985),

pp. 129–138.
[37] Y. Saito, Permanence and global stability for general Lotka-Volterra predator-prey systems

with distributed delays, in Proceedings of the Third World Congress of Nonlinear An-
alysts, Part 9 (Catania, 2000), vol. 47, 2001, pp. 6157–6168, https://doi.org/10.1016/
S0362-546X(01)00680-0.

[38] Y. Saito, T. Hara, and W. Ma, Necessary and sufficient conditions for permanence and

global stability of a Lotka-Volterra system with two delays, J. Math. Anal. Appl., 236
(1999), pp. 534–556, https://doi.org/10.1006/jmaa.1999.6464.

[39] F. R. Sharpe and A. J. Lotka, A problem in age-distribution, Philosophical Magazine series
6, 21 (1911), pp. 435–438.

[40] C. Shi, X. Chen, and Y. Wang, Feedback control effect on the Lotka-Volterra prey-predator

system with discrete delays, Adv. Difference Equ., 2017 (2017), p. 373, https://doi.org/10.
1186/s13662-017-1410-0.

[41] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sci-

ences, vol. 57, Springer Science & Business Media, 2010.
[42] C. Vargas-De-León, Lyapunov functions for two-species cooperative systems, Appl. Math.

Comput., 219 (2012), pp. 2493–2497, https://doi.org/10.1016/j.amc.2012.08.084.
[43] C. Vargas-De-León, Global stability for multi-species Lotka-Volterra cooperative systems: one

hyper-connected mutualistic-species, 8 (2015), pp. 1550039, 9, https://doi.org/10.1142/
S1793524515500394.

[44] C. Vargas-De-León, Lyapunov functionals for global stability of Lotka–Volterra cooperative

systems with discrete delays, Abstraction & Application, 12 (2015), pp. 42–50.
[45] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature,

118 (1926), pp. 558–560.
[46] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New

York, 1985.
[47] S. Yan and S. Guo, Bifurcation phenomena in a Lotka-Volterra model with cross-diffusion

and delay effect, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), pp. 1750105, 24,
https://doi.org/10.1142/S021812741750105X.

[48] X.-P. Yan and W.-T. Li, Hopf bifurcation and global periodic solutions in a delayed predator-

prey system, Appl. Math. Comput., 177 (2006), pp. 427–445, https://doi.org/10.1016/j.
amc.2005.11.020.

https://doi.org/10.1016/j.nonrwa.2008.10.014
https://doi.org/10.1016/j.nonrwa.2009.11.005
https://doi.org/10.1016/j.nonrwa.2009.11.005
https://doi.org/10.1017/S0013091500034428
https://doi.org/10.1017/S0013091500034428
https://doi.org/10.1186/s13662-017-1434-5
https://doi.org/10.1186/s13662-017-1434-5
https://doi.org/10.3934/cpaa.2019002
https://doi.org/10.1016/S0362-546X(01)00680-0
https://doi.org/10.1016/S0362-546X(01)00680-0
https://doi.org/10.1006/jmaa.1999.6464
https://doi.org/10.1186/s13662-017-1410-0
https://doi.org/10.1186/s13662-017-1410-0
https://doi.org/10.1016/j.amc.2012.08.084
https://doi.org/10.1142/S1793524515500394
https://doi.org/10.1142/S1793524515500394
https://doi.org/10.1142/S021812741750105X
https://doi.org/10.1016/j.amc.2005.11.020
https://doi.org/10.1016/j.amc.2005.11.020

	1 Introduction
	2 Preliminaries
	2.1 Framework and definitions
	2.2 Partition of X+
	2.3 Invariant sets

	3 Asymptotic behavior
	3.1 Local asymptotic stability of E*
	3.2 Lyapunov function
	3.3 Attractive set of the solutions
	3.4 Existence of a -periodic solution
	3.5 Lyapunov stability
	3.6 Asymptotic behavior in absence of periodic solution
	3.7 Asymptotic behavior in presence of a periodic solution
	3.8 Numerical simulations

	4 Back to the PDE model
	4.1 Attractiveness of E2
	4.2 Stability of E2

	References

