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HIGH-ORDER TIME STEPPING SCHEMES FOR SEMILINEAR SUBDIFFUSION

EQUATIONS ∗

KAI WANG† AND ZHI ZHOU‡

Abstract. The aim of this paper is to develop and analyze high-order time stepping schemes for solving semilinear
subdiffusion equations. We apply the k-step BDF convolution quadrature to discretize the time-fractional derivative
with order α ∈ (0,1), and modify the starting steps in order to achieve optimal convergence rate. This method has
already been well-studied for the linear fractional evolution equations in Jin, Li and Zhou [19], while the numerical
analysis for the nonlinear problem is still missing in the literature. By splitting the nonlinear potential term into an
irregular linear part and a smoother nonlinear part, and using the generating function technique, we prove that the
convergence order of the corrected BDFk scheme is O(τmin(k,1+2α−ǫ)), without imposing further assumption on the
regularity of the solution. Numerical examples are provided to support our theoretical results.
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1. Introduction. Fractional partial differential equations (PDEs) have been drawing increasing
attention over the past several decades, due to their capability to describe anomalous diffusion pro-
cesses, in which the mean square variance of particle displacements grow sublinearly/superlinear with
the time, instead of the linear growth for a Gaussian process. Nowadays those models have been suc-
cessfully employed in many practical applications, including dynamics of single-molecular protein [22],
flow in highly heterogeneous aquifer [5] and thermal diffusion in fractal domains [34], to name but a
few; see [31] for an extensive list.

The aim of this paper is to study high-order time stepping schemes for solving the initial-boundary
value problem for the semilinear subdiffusion equation:

(1.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂αt u −∆u = f(u) in Ω × (0, T ),
u = 0 on ∂Ω × (0, T ),

u(0) = u0 in Ω,

where Ω denotes a bounded, convex domain in R
d with smooth boundary, and ∆ denotes the Laplacian

on Ω with a homogenous Dirichlet boundary condition. Here ∂αt u denotes the left-sided Caputo
fractional derivative of order α ∈ (0,1) with respect to t and it is defined by [21, pp. 91]

∂αt u(t) ∶= 1

Γ(1 − α) ∫
t

0
(t − s)−αu′(s)ds, with Γ(z) ∶= ∫

∞

0
sz−1e−sds.

Throughout the paper, we assume that the initial data u0 is smooth and compatible with the
homogeneous Dirichlet boundary condition, and f ∶ R → R is a globally smooth function, e.g., f ∈
C3(R). Moreover, we assume that the nonlinear subdiffusion problem (1.1) has a unique global solution
u ∈ C([0, T ]× Ω̄). One typical example is the time-fractional Allen-Cahn equation, i.e., f(u) = u−u3,
whose well-posedness and smoothing properties have already been investigated in [10].

High-order time stepping schemes for solving the linear time-fractional evolution problems have
been intensively studied in recent years; see [17] (and the references therein) for a concise overview.
Roughly speaking, there are two prominent types of schemes: piecewise polynomial interpolation
(e.g., [2, 12, 26, 40]) and convolution quadrature (CQ) (e.g., [8, 16, 44, 46]). To the first group belongs
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the popular method using a piecewise linear interpolation (also known as L1 scheme). Lin and Xu [26]
developed the scheme for fractional diffusion, and analyzed the stability and convergence rate; see
also [40]. The discretization has a local truncation error O(τ2−α) where τ denotes the step size in time,
provided that the solution is smooth enough in time. The argument could be extended to high-order
methods using piecewise polynomial interpolation [2,12]. In the second group, CQ developed by Lubich
[27,28] provided a systematic framework to construct high-order numerical schemes, and has been the
foundation of many early works. Due to its particular construction, it naturally inherits the stability
and accuracy of standard linear multistep methods, which greatly facilitates the analysis of resulting
numerical schemes. However, for both techniques with uniform meshes, the desired convergence rates
can be obtained only if data is sufficiently smooth and compatible, which is generally not valid.
Otherwise, most of popular schemes can only achieve a first-order accuracy [15, 19]. For the linear
problem, the desired high-order convergence rates can be restored by correcting the first several time
steps [16,19,43], even for nonsmooth problem data. See also [25,39] for the application of L1 scheme
with graded meshes, [30, 32, 33] for an analysis of discontinuous Galerkin method and [6, 24, 45] for
studies of spectral methods.

However, there is fewer work on nonlinear subdiffusion problems. The first rigorous analysis was
given in [20], where Jin et al. proposed a general framework for mathematical and numerical analysis
of the nonlinear equation (1.1) with a globally Lipschitz continuous potential term f(u). A time
stepping scheme based on backward Euler CQ scheme or L1 method was studied and a uniform-in-
time convergence rate O(τα) was proved. Then it was proved in [1] that the convergence rate of the
backward Euler CQ scheme is O(τ) at a fixed time even for the nonsmooth data. As far as we know,
there is no theoretical study on high-order schemes for the nonlinear problem (1.1) based on confirmed
solution regularity. Therefore, in this paper, we aim to study high-order time stepping schemes based
on CQ generated by k-step BDF method. This work is motivated by our preceding studies on the
corrected BDFk schemes for linear subdiffusion equations [16, 19].

To discretize the fractional derivative, we let 0 = t0 < t1 < . . . < tN = T be a uniform partition of
the time interval [0, T ], with grid points tn = nτ and step size τ = T /N . Upon rewriting the Caputo
derivative ∂αt u as a Riemann-Liouville one [21, pp. 91], we consider the following fully implicit time
stepping scheme: for the given initial value u0, find un, n = 1,2, . . . ,N , such that

∂̄ατ (un − u0) −∆un = f(un),(1.2)

where un, n = 1,2,⋯,N are the approximations to the exact solutions u(tn), and ∂̄ατ ϕn denotes the
convolution quadrature generated by k-step BDF, k = 1,2,⋯,6 with the definition

(1.3) ∂̄ατ ϕn ∶= 1

τα

n

∑
i=0

ω
(α)
i ϕn−i.

The coefficients {ω(α)i }∞i=0 can be computed either by the fast Fourier transform [36,37] or recursion [42]
in the following series expansion

(1.4) δτ (ξ)α = 1

τα

∞

∑
i=0

ω
(α)
i ξi with δτ(ξ) = 1

τ

k

∑
i=1

1

i
(1 − ξ)i.

For linear subdiffusion problem, it has been shown in [19] that the scheme (1.2) is only first-order
accurate in general. However, the optimal order O(τk) of the BDFk scheme could be restored by
correcting the first k−1 steps. For example, we split the source term f into f(t) = f(0)+(f(t)−f(0))
and approximate f(0) by ∂̄τ∂

−1
t f(0), with a similar treatment of the initial data. This leads to a

simple modification at the first step and restores the O(τ2) accuracy for any fixed tn > 0 [8, 16, 29].
This motivates us to decompose the nonlinear potential term f(u) by
(1.5) f(u(t)) = f(u0) + f ′(u0)(u(t) − u0) +R(u(t);u0).
Then the residue part, R(u(t);u0) = O((u(t) − u0)2), is more regular in the time direction. As a
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result, the semilinear equation can be reformulated by

(1.6) ∂αt u(t) − (∆ + f ′(u0)I)u(t) = f(u0) − f ′(u0)u0 +R(u(t);u0),
where I denotes the identity operator. Therefore, by letting

(1.7) g0 = f(u0) − f ′(u0)u0 and A =∆ + f ′(u0)I,
we can modify the BDFk scheme (1.2) by

(1.8) { ∂̄ατ (u − u0)n −Aun = g0 + a(k)n (Au0 + g0) +R(un;u0), 1 ≤ n ≤ k − 1,
∂̄ατ (u − u0)n −Aun = g0 +R(un;u0), k ≤ n ≤ N,

where the unknown coefficients a
(k)
n were given in [19, Table 1].

Table 1
The coefficients a

(k)
n

BDFk a
(k)
1 a

(k)
2 a

(k)
3 a

(k)
4 a

(k)
5

k = 2 1
2

k = 3 11
12

− 5
12

k = 4 31
24

− 7
6

3
8

k = 5 1181
720

− 177
80

341
240

− 251
720

k = 6 2837
1440

− 2543
720

17
5

− 1201
720

95
288

By rearranging terms, the modified BDFk scheme (1.8) is equivalent to

(1.9) { ∂̄ατ (u − u0)n −∆un = a(k)n (∆u0 + f(u0)) + f(un), 1 ≤ n ≤ k − 1,
∂̄ατ (u − u0)n −∆un = f(un), k ≤ n ≤ N,

which is consistent to the BDFk scheme for the linear subdiffusion problem [16, 19].
The main result of this paper is to derive an error estimate in L∞(Ω) for the novel time stepping

scheme (1.8). In particular, if u0 ∈ {u ∈ C(Ω̄), u = 0 on ∂Ω, and ∆u ∈ C(Ω̄)}, we prove that (see
Theorem 3.4)

(1.10) ∥un − u(tn)∥L∞(Ω) ≤ cT tα−min(k,1+2α−ǫ)
n τmin(k,1+2α−ǫ).

This estimate is interesting, because the source term f(u) ∈W 1+α−ǫ,1(0, T ;L∞(Ω)) in general, which is
nonsmooth in the time direction, and intuitively one only expects the convergence orderO(τmin(k,1+α−ǫ))
[19, Table 8]. However, the estimate (1.10) indicates that the best convergence rate of the BDFk
scheme is almost O(τ1+2α). The restriction of the convergence order comes from the low regularity
of the remainder R(u;u0), even though the initial data u0 is smooth and compatible with boundary
condition. This phenomena contrasts sharply with its normal parabolic counterpart, i.e., α = 1. For
example, in [7], it has been proved that the time stepping schemes of the semilinear parabolic equation
fail to achieve the best convergence rate only if the initial data is not regular enough.

The rest of the paper is organized as follows. In section 2, we provide some preliminary results
about the solution regularity which will be intensively used in error estimation. The error analysis of
the time stepping scheme (1.8) is established in section 3. Then the fully discrete scheme are analyzed
in section 4. Finally, in section 5, we present some numerical results which support and illustrate our
theoretical findings. Throughout this paper, the notation c denotes a generic constant, which may
vary at different occurrences, but it is always independent of the time step size τ and spatial mesh
size h.

2. Preliminary results. In this section, we shall present some regularity results which will be
actively used in the next section. As we introduced, we always assume that the semilinear subdiffion
problem (1.1) has a unique global solution u ∈ C([0, T ] × Ω̄) (e.g., the time-fractional Allen-Cahn
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equation [10]).

2.1. Solution representation. First, we introduce a representation of the solution to problem
(1.1) by Laplace transform. For simplicity, we let g(t) ∶= f(u(t)) and w(t) ∶= u(t) − u0. Then it is
easy to see that the function w(t) satisfies the equation

∂αt w(t) −∆w(t) =∆u0 + g(t)
with initial condition w(0) = 0. Taking Laplace transform, denoted byˆ, we have

zαŵ(z) −∆ŵ(z) = z−1∆u0 + ĝ(z),
which implies that ŵ(z) = (zα−∆)−1(z−1∆u0+ ĝ(z)). With inverse Laplace transform and convolution
rule, the solution u(t) can be explicitly expressed by

(2.1) u(t) = (I + F (t)∆)u0 + ∫ t

0
E(t − s)f(u(s))ds,

where the operators F (t) and E(t) are defined by

(2.2) F (t) = 1

2πi
∫
Γθ,δ

eztz−1(zα −∆)−1dz and E(t) = 1

2πi
∫
Γθ,δ

ezt(zα −∆)−1dz,
respectively, where Γθ,δ denotes the integral contour

Γθ,δ = {z ∈ C ∶ ∣z∣ = δ, ∣arg z∣ ≤ θ} ∪ {z ∈ C ∶ z = ρe±iθ, ρ ≥ δ},
oriented with an increasing imaginary part with a fixed angle θ ∈ (π/2, π).

In this paper, we shall derive some estimates in L∞(Ω) norm, which requires the resolvent estimate.
Let us consider the second-order partial differential operator

Lu = −∆u + qu,
with the homogeneous Dirichlet boundary condition. Here we assume that q ∈ L∞(Ω) and q(x) ≥ 0
for all x ∈ Ω. This implies that L is positively definite, i.e.,

(Lu,u) ≥ c∥∇u∥2L2(Ω), for all u ∈H1
0(Ω).

Then the following resolvent estimate holds: for any angle φ ∈ (π/2, π) (see [3, Theorem 1.1], [4,
Theorem 2.1] or [38, Theorem 1])

(2.3) ∥(z +L)−1∥C(Ω̄)→C(Ω̄) ≤ c∣z∣−1 for z ∈ Σφ = {z ∈ C/{0} ∶ arg(z) ∈ (−φ,φ)}.
From now on, we assume that the initial condition u0 is smooth enough and compatible to the

homogenous Dirichlet boundary condition, i.e.,

(2.4) u0 ∈ D = {u ∈ C(Ω̄), u = 0 on ∂Ω, and ∆u ∈ C(Ω̄)}.
Then by the resolvent estimate (2.3), it is easy to observe that the operators F and E, defined in
(2.2), satisfy the following regularity estimate that for ℓ = 0,1,2, . . . ,
(2.5) t∥∂(ℓ)t E(t)v∥L∞(Ω) + ∥∂(ℓ)t F (t)v∥L∞(Ω) ≤ ctα−ℓ∥v∥L∞(Ω) ∀ v ∈ C(Ω̄).
The estimates with L2(Ω)-norm have already been confirmed in [20, Lemma 3.4] by using resolvent
estimate. The proof of (2.5) is similar to that, and hence is omitted here.

2.2. Solution regularity. With the help of (2.5), we are ready to state the following lemma on
the regularity of the solution to the nonlinear subdiffusion equation (1.1).

Theorem 2.1. We assume that u0 ∈ D with the space D defined by (2.4). Besides, suppose
that the problem (1.1) has a unique global solution u ∈ C([0, T ] × Ω). Then u ∈ Cα([0, T ];C(Ω̄)) ∩
Cℓ((0, T ];C(Ω̄)), ℓ = 1,2,3, and it satisfies the a priori estimate

(2.6) ∥∂ℓtu(t)∥L∞(Ω) ≤ ctα−ℓ, for ℓ = 1,2,3,
where the constant c depends on α,T and u0.
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Proof. The Hölder continuity u ∈ Cα([0, T ];C(Ω̄)) and the estimate (2.6) with ℓ = 1 are direct
results of the solution representation (2.1), the estimate (2.5), and the Banach fixed point theorem.
The argument is identical to the proof of [20, Theorem 3.1], and hence omitted here.

Now we turn to the estimate (2.6) with ℓ = 2, which requires more discussion. First, we take
derivative on the solution representation (2.1) and obtain

(2.7)
u′(t) = d

dt
F (t)∆u0 + d

dt
∫

t

0
E(s)f(u(t − s))ds

= E(t)[∆u0 + f(u0)] +∫ t

0
E(s)f ′(u(t − s))u′(t − s)ds,

where we use the fact that F ′(t) = E(t). Here we note that both E(t) and u′(t) are weakly singular
near t = 0. Therefore, we multiply t2−α on (2.7) to compensate for the singularity before differentiation.
Then

(2.8)

t2−αu′(t) = t2−αE(t)[∆u0 + f(u0)] + t2−α ∫ t

0
E(s)f ′(u(t − s))u′(t − s)ds

= t2−αE(t)(∆u0 + f(u0)) + t1−α ∫ t

0
(t − s)E(t − s)f ′(u(s))u′(s)ds

+ t1−α ∫
t

0
E(s)f ′(u(t − s))(t − s)u′(t − s)ds

=∶
3

∑
i=1

Ii(t).
After taking derivative of the first term I1, we apply the estimate (2.5) to obtain that

∥∂tI1(t)∥L∞(Ω) = ∥((2 − α)t1−αE(t) + t2−αE′(t))[∆u0 + f(u0)]∥
L∞(Ω)

≤ ct1−α∥E(t)[∆u0 + f(u0)]∥L∞(Ω) + t2−α∥E′(t)[∆u0 + f(u0)]∥L∞(Ω)
≤ c∥∆u0 + f(u0)∥L∞(Ω),

where we use the fact that ∆u0 + f(u0) ∈ C(Ω̄). The derivative of the second term I2 in (2.8) can be
estimate analogously. Using the estimate (2.5), we have

lim
t→0
∥tE(t)∥C(Ω̄)→C(Ω̄) = 0,

which together with the triangle’s inequality and (2.6) for ℓ = 1 implies that

∥∂tI2(t)∥L∞(Ω) ≤ ct−α ∫ t

0
(t − s)∥E(t − s)f ′(u(s))u′(s)∥L∞(Ω)ds

+ ct1−α∫
t

0
∥E(t − s)f ′(u(s))u′(s)∥L∞(Ω)ds

+ ct1−α∫
t

0
(t − s)∥E′(t − s)f ′(u(s))u′(s)∥L∞(Ω)ds

≤ ct−α ∫
t

0
(t − s)αsα−1ds + ct1−α ∫ t

0
(t − s)α−1sα−1ds ≤ cT .

Similarly, the derivative of the third term can be bounded by

∥∂tI3(t)∥L∞(Ω) ≤ ct−α∫ t

0
s∥E(t − s)f ′(u(s))u′(s)∥L∞(Ω)ds

+ ct1−α ∫
t

0
∥E(t − s)[f ′(u(s))u′(s) + sf ′′(u(s))(u′(s))2]∥L∞(Ω)ds

+ ct1−α ∫
t

0
s∥E(t − s)f ′(u(s))u′′(s)∥L∞(Ω)ds

≤ cT + ct1−α∫
t

0
(t − s)α−1s∥u′′(s)∥L∞(Ω)ds.
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As a result, we achieve at

∥∂t[t2−αu′(t)]∥L∞(Ω) ≤ c + ct1−α ∫ t

0
(t − s)α−1s∥u′′(s)∥L∞(Ω)ds.

Then we apply (2.6) for ℓ = 1 again and use the triangle inequality to obtain that

(2.9) t2−α∥u′′(t)∥L∞(Ω) ≤ c + ct1−α ∫ t

0
(t − s)α−1s∥u′′(s)∥L∞(Ω)ds.

In order to derive a uniform bound of t2−α∥u′′(t)∥L∞(Ω), we multiply e−σt on the inequality (2.9) for
some parameter σ > 0 to be determined, and obtain that

(2.10)

e−σtt2−α∥u′′(t)∥L∞(Ω)
≤ ce−σt + ce−σt ∫

t

0
t1−α(t − s)α−1s∥u′′(s)∥L∞(Ω)ds

≤ ce−σt + c[ max
t∈[0,T ]

e−σtt2−α∥u′′(t)∥L∞(Ω)]∫ t

0
t1−α(t − s)α−1e−σ(t−s)sα−1ds

≤ ce−σt + c(T /σ)α
2 max

t∈[0,T ]
e−σtt2−α∥u′′(t)∥L∞(Ω),

where we use the estimate that

(2.11)

∫
t

0
t1−α(t − s)α−1e−σ(t−s)sα−1ds = tα ∫ 1

0
e−σtssα−1(1 − s)α−1ds

= (t/σ)α
2 ∫

1

0
[e−σts(σts)α

2 ]sα
2
−1(1 − s)α−1ds

≤ c(t/σ)α
2 ∫

1

0
s

α
2
−1(1 − s)α−1ds ≤ c(T /σ)α

2 .

Finally, by choosing a sufficient large λ such that 2c(T /σ)α
2 < 1, we obtain that

(2.12) max
s∈[0,T ]

e−λss2−α∥u′′(s)∥L∞(Ω) ≤ c,
which confirms the assertion (2.6) with ℓ = 2.

Now we turn to the case ℓ = 3 and give a brief proof. The basic idea of this argument is identical
to that of ℓ = 2. With the definition of Ii in (2.8) and the estimate (2.5) of the solution operator E(t),
we have the bound that

∥∂ttI1(t)∥L∞(Ω) ≤ c 2

∑
k=0

tk−α∥ dk
dtk

E(t)[∆u0 + f(u0)]∥
L∞(Ω)

≤ ct−1.
For the second term, we use the splitting

I2 = t−α∫
t

0
(t − s)2E(t − s)f ′(u(s))u′(s)ds + t−α∫ t

0
(t − s)E(t − s)sf ′(u(s))u′(s)ds,

and the fact that

lim
t→0
∥tE(t)∥C(Ω̄)→C(Ω̄) + ∥tu′(t)∥L∞(Ω) = 0,

and hence derive that

∥∂ttI2(t)∥L∞(Ω) ≤ c 2

∑
k=0

t−(2−k)−α ∫
t

0

k

∑
m=0

(t − s)2+m−k∣∣ dm
dtm

E(t − s)[f ′(u(s))u′(s)]∣∣
L∞(Ω)

ds

+ c
1

∑
k=0

t−(2−k)−α ∫
t

0
∣∣ dk
dtk
[(t − s)E(t − s)][s(f ′(u(s))u′(s)]∣∣

L∞(Ω)
ds

+ ct−2−α∫
t

0
∣∣ d
dt
[(t − s)E(t − s)][∂s(s(f ′(u(s))u′(s))]∣∣L∞(Ω) ds.
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Then the estimates (2.5) and (2.6) with ℓ = 1,2 imply that

∥∂ttI2(t)∥L∞(Ω) ≤ c 2

∑
k=0

t−(2−k)−α ∫
t

0
(t − s)α−k+1sα−1 ds + c 1

∑
k=0

t−(2−k)−α∫
t

0
(t − s)α−ksα ds

+ ct−2−α ∫
t

0
(t − s)α−1(sα−1 + s2α−1)ds ≤ ctα−1.

The same argument also works for the third term I3 in (2.8):

∥∂ttI3(t)∥L∞(Ω) ≤ c 2

∑
k=0

t−(2−k)−α∫
t

0

k

∑
m=0

s2+m−k∣∣E(t − s)[∂ms (f ′(u(s))u′(s))]∣∣L∞(Ω) ds
+ c

1

∑
k=0

t−(2−k)−α ∫
t

0
∣∣(t − s)E(t − s)∂ms [s(f ′(u(s))u′(s)]∣∣L∞(Ω) ds

+ ct−2−α ∫
t

0
∣∣ d
dt
[(t − s)E(t − s)][∂s(s(f ′(u(s))u′(s))]∣∣L∞(Ω) ds

≤ ctα−1 + t−α ∫
t

0
(t − s)α−1s2∥u(3)(s)∥L∞(Ω) ds.

As a result, we conclude that

∥∂tt[t2−αu′(t)]∥L∞(Ω) ≤ ct−1 + ct−α ∫ t

0
(t − s)α−1s2∥u′′(s)∥L∞(Ω)ds.

Then we apply the estimate (2.6) for ℓ = 1,2 and obtain that

t3−α∥∂3t u(t)]∥L∞(Ω) ≤ c + ct1−α ∫ t

0
(t − s)α−1s2∥u′′(s)∥L∞(Ω)ds.

Finally, the arguments in (2.10)-(2.12) yield the desired assertion (2.6) for ℓ = 3.
Remark 2.1. Under the condition that u0 ∈ D, it is not always valid that (I + F (t)∆)u0 ∈

C([0, T ];D). This is because ∆(I +F (t)∆)u0 is compatible with the homogeneous Dirichlet boundary
condition for all t > 0, while the initial condition ∆u0 ∈ C(Ω̄). As a result, ∆(I + F (t)∆)u0 is not
continuous to the initial condition with L∞(Ω) norm. However, if

u0 ∈D = {u,∆u ∈ C(Ω̄) and u =∆u = 0 on ∂Ω},
then we can conclude that (I +F (t)∆)u0 ∈ C([0, T ];D).

2.3. Regularity of remainder R(u(t);u0). Recall the expansion of the nonlinear term in (1.5).
The regularity of the remainder part R(u;u0) plays an important role in the error analysis. This
motivates us to derive regularity results of R(u;u0) in the Bochner-Sobolev spaces. For any s ≥ 0 and
1 ≤ p <∞, we denote by W s,p(0, T ;B) the space of functions v ∶ (0, T )→ B, with the norm defined by
interpolation, where B denotes a Banach space. Equivalently, the space is equipped with the quotient
norm

∥v∥W s,p(0,T ;B) ∶= inf
ṽ
∥ṽ∥W s,p(R;B),

where the infimum is taken over all possible extensions ṽ that extend v from (0, T ) to R. For any
0 < s < 1, the Sobolev–Slobodeckij seminorm ∣ ⋅ ∣W s,p(0,T ;B) is defined by

(2.13) ∣v∣p
W s,p(0,T ;B)

∶= ∫
T

0
∫

T

0

∥v(t) − v(ξ)∥pB∣t − ξ∣1+ps dtdξ,

and the full norm ∥ ⋅ ∥Wk+s,p(0,T ;B), with k ≥ 0 and k ∈ N, is defined by

∥v∥p
Wk+s,p(0,T ;B)

=
k

∑
m=0

∥∂mt v∥pLp(0,T ;B)
+ ∣∂kt v∣pW s,p(0,T ;B)

.
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Then the regularity of R(u;u0) is shown in the following theorem.

Theorem 2.2. Suppose that the assumptions in Theorem 2.1 hold. Then the remainder part
R(u;u0), which is defined by (1.5), has the regularity

R(u(t);u0) ∈W 1+2α−ǫ,1(0, T ;C(Ω̄)) ∩C3((0, T ];C(Ω̄))
for any arbitrary small ǫ > 0.

Proof. By the definition of R(u(t);u0) and the integral form of the remainder in Taylor’s expan-
sion, we may rewrite R(u(t);u0) as

R(u(x, t);u0) = ∫ u(x,t)

u0(x)
(u(x, t) − ξ)f ′′(ξ)dξ.

It is easy to observe that

∂3tR(u(x, t);u0) = ∂2t (u′(x, t)∫ u(x,t)

u0(x)
f ′′(ξ)dξ)

= u′′′(x, t)∫ u(x,t)

u0(x)
f ′′(ξ)dξ + 3u′(x, t)u′′(x, t)f ′′(u(x, t))

+ (u′(x, t))3f ′′′(u(x, t)).
Then using the facts that f is smooth and u ∈ C3((0, T ];C(Ω̄)) by Theorem 2.1, we conclude that
R(u;u0) ∈ C3((0, T ];C(Ω̄)). Therefore, it suffices to show that R(u(t);u0) ∈ W 1+2α−ǫ,1(0, T ;C(Ω̄)).
To this end, we shall confirm this claim by investigating the following two cases.

Case 1. α ∈ (0,1/2). Obviously, we have R(u;u0) ∈ C([0, T ] × Ω̄). Define

w(x, t) = ∂tR(u(x, t);u0) = ∫ u(x,t)

u0(x)
u′(x, t)f ′′(ξ)dξ.

Then we observe that∥w(t)∥L∞(Ω) ≤ c∥u(t) − u0∥L∞(Ω)∥u′(t)∥L∞(Ω) max
t∈[0,T ]

∥f ′′(u(t))∥L∞(Ω) ≤ ct2α−1,
where the last inequality follows from the fact that u ∈ Cα([0, T ];C(Ω̄)) and ∥u′(t)∥L∞(Ω) ≤ ctα−1, by
Theorem 2.1. Then the similar argument also yields that

(2.14)
∥w′(t)∥L∞(Ω) ≤c(∥u′′(t)∥L∞(Ω)∥u(t)− u0∥L∞(Ω) + ∥u′(t)∥2L∞(Ω)) max

t∈[0,T ]
∥f ′′(u(t))∥L∞(Ω)

≤ct2α−2.
Then according to the Sobolev–Slobodeckij seminorm (2.13), we have for any ǫ ∈ (0,2α)

∣w∣W 2α−ǫ,1(0,T ;L∞(Ω)) = ∫
T

0
∫

T

0

∥w(t) −w(s)∥L∞(Ω)
∣t − s∣2α+1−ǫ dtds = ∫

T

0
∫

T

0

∥ ∫ t

s
w′(y)dy∥L∞(Ω)
∣t − s∣2α+1−ǫ dtds

≤ ∫
T

0
∫

T

0

∣ ∫ t

s
∥w′(y)∥L∞(Ω)dy∣
∣t − s∣2α+1−ǫ dtds.

Now by applying the estimate (2.14), we arrive at

∣w∣W 2α−ǫ,1(0,T ;L∞(Ω)) ≤ c∫
T

0
∫

T

0

∣ ∫ t

s
y2α−2dy∣

∣t − s∣2α+1−ǫ dtds = c∫
1

0
∫

1

0

∣ξ2α−1 − ζ2α−1∣
∣ξ − ζ ∣2α+1−ǫ dξdζ

= c(∫ 1

0
∫

ξ

0

ζ2α−1 − ξ2α−1

(ξ − ζ)2α+1−ǫ dζdξ + ∫
1

0
∫

1

ξ

ξ2α−1 − ζ2α−1

(ζ − ξ)2α+1−ǫ dζdξ)
= 2c∫

1

0
∫

ξ

0

ζ2α−1 − ξ2α−1

(ξ − ζ)2α+1−ǫ dζdξ = 2c∫
1

0
ξ−1+ǫdξ∫

1

0

t2α−1 − 1

(1 − t)2α+1−ǫ dt
≤ cǫ ∫

1

0

t2α−1 − 1

(1 − t)2α+1−ǫ dt.
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Then the assertion that w ∈W 1+2α−ǫ,1(0, T ;L∞(Ω)) follows from the observation that

∫
1

0

t2α−1 − 1

(1 − t)2α+1−ǫ dt ≤ (∫
1

2

0
+∫

1

1

2

) t2α−1 − 1

(1 − t)2α+1−ǫ dt
≤ c + c lim

t→1

t2α−1 − 1

(1 − t)2α−ǫ + c∫
1

1

2

t2α−2

(1 − t)2α−ǫ dt ≤ c.
Case 2. α ∈ (1/2,1). In this case, using the estimate (2.14), it is easy to see that ∥∂tw(t)∥L∞(Ω) ∈
L1(0, T ). Then our aim is to show that

∂ttw ∈W 2α−ǫ−1,1(0, T ;L∞(Ω)).
Using the expression for ∂ttw that

∂ttw(x, t) = (u′(x, t))3f ′′′(u(x, t)) + 2u′(x, t)u′′(x, t)f ′′(u(x, t)) + u′′′(x, t)∫ u(x,t)

u0(x)
f ′′(ξ)dξ,

and Theorem 2.1, we derive that

(2.15)

∥wtt∥L∞(Ω) ≤ c∥(u′(t))∥3L∞(Ω) + c∥u′(t)∥L∞(Ω)∥u′′(t)∥L∞(Ω)
+ c∥u′′′(t)∥L∞(Ω)∥u(t) − u0∥L∞(Ω)
≤ c(t3α−3 + t2α−3) ≤ ct2α−3.

Recalling the Sobolev–Slobodeckij seminorm (2.13), we have for any ǫ ∈ (0,2α − 1)
∥wt∥W 2α−1−ǫ,1(0,T ;L∞(Ω)) = ∫

T

0
∫

T

0

∥wt(t) −ws(s)∥L∞(Ω)
∣t − s∣2α−ǫ dtds

= ∫
T

0
∫

T

0

∣ ∫ t

s
∥∂yyw(y)∥L∞(Ω)dy∣
∣t − s∣2α−ǫ dtds.

Then we apply the estimate (2.15) and derive that

∥wt∥W 2α−1−ǫ,1(0,T ;L∞(Ω)) ≤ c∫
T

0
∫

T

0

∣ ∫ t

s
y2α−3dy∣
∣t − s∣2α−ǫ dtds = c∫

1

0
∫

1

0

∣ξ2α−2 − ζ2α−2∣
∣ξ − ζ ∣2α−ǫ dξdζ

= c(∫ 1

0
∫

ξ

0

ζ2α−2 − ξ2α−2

(ξ − ζ)2α−ǫ dζdξ + ∫
1

0
∫

1

ξ

ξ2α−2 − ζ2α−2

(ζ − ξ)2α−ǫ dζdξ)
= 2c∫

1

0
∫

ξ

0

ζ2α−2 − ξ2α−2

(ξ − ζ)2α−ǫ dζdξ = 2c∫
1

0
ξ−1+ǫdξ∫

1

0

t2α−2 − 1

(1 − t)2α−ǫ dt
≤ c,

where the last inequality is a direct consequence of the fact that

∫
1

0

t2α−2 − 1

(1 − t)2α−ǫ dt ≤ (∫
1

2

0
+∫

1

1

2

) t2α−2 − 1(1 − t)2α−ǫ dt
≤ c + c lim

t→1

t2α−2 − 1

(1 − t)2α+1−ǫ + c∫
1

1

2

t2α−3

(1 − t)2α+1−ǫ dt ≤ c.
Therefore, we obtain that ∂ttw ∈ W 2α−ǫ−1,1(0, T ;L∞(Ω)), and thus u ∈ W 2α+1−ǫ,1(0, T ;L∞(Ω)) for
any α ∈ (1/2,1).

In conclusion, Case 1 and 2 together confirm the desired assertion for α ∈ (0,1/2)∪ (1/2,1). The
critical case α = 1/2 follows directly from the result of Case 1 and hence the proof is completed.

3. Error analysis of modified BDF schemes. The aim of this section is to present a complete
error analysis for the high-order time stepping scheme (1.8). To begin with, we assume that the
nonlinear term is globally Lipschitz continuous, i.e., there exists a constant cL such that

(3.1) ∣f(s) − f(t)∣ ≤ cL∣t − s∣ for all t, s ∈ R.
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We shall establish numerical analysis under the assumption (3.1), and then extend the argument to
the case without that assumption.

3.1. Existence and uniqueness of the time stepping solution. In the analysis stated in the
next subsection, we will always assume that the fully implicit scheme (1.8) admits a unique solution.
It is easy to confirm this assumption, provided that (3.1) is valid.

In each time level, the fully implicit scheme (1.8) requires to solve a nonlinear elliptic problem

(3.2) (b0I + τα∆)v = w + ταf(v)
with homogeneous Dirichlet boundary condition and some function w ∈ C(Ω̄). Next we show that
there exists a unique solution to (3.2) in C(Ω̄). By defining the operator M ∶ C(Ω̄) → C(Ω̄) as

Mv = (b0I + τα∆)−1(w + ταf(v)),
and applying the resolvent estimate (2.3), we observe that for any v1, v2 ∈ C(Ω̄)

∥Mv1 −Mv2∥L∞(Ω) = ∥(b0τ−αI +∆)−1(f(v1) − f(v2))∥L∞(Ω) ≤ ccLτα∥v1 − v2∥L∞(Ω).
Then for τ small enough, M is a contraction mapping, and hence there exists a unique v ∈ C(Ω̄) such
thatM(v) = v, i.e., the nonlinear elliptic problem (3.2) has a unique solution. As a result, we conclude
that the fully implicit time stepping scheme (1.8) admits a unique sequence of functions {un}Nn=1 via
mathematical induction.

3.2. Error analysis of the BDF scheme for linear problem. The fundamental idea of error
estimation is to apply the representation of the time stepping solution by contour integral in C, which
has been extensively used in existing studies [15,18,19,29,43]. We shall apply this technique to derive
error estimates in L∞(Ω) norm. Note that the operator A defined in (1.7) is self-adjoint, but not
negative definite. However, the spectrum of A has an upper bound, since f(u0) ∈ L∞(Ω). Now we
define

(3.3) λ =max(1, ∥f(u0)∥L∞(Ω)),
and observe that L =∆+ (f(u0)−λ)I is self-adjoint and negative definite. According to the resolvent
estimate (2.3) for L, we have the new resolvent estimate, for v ∈ C(Ω̄)
(3.4) ∥(z −A)−1v∥L∞(Ω) = ∥(z − λ − (∆ + (f(u0) − λ)I)v)−1∥L∞(Ω) ≤ cφ∣z − λ∣−1∥v∥L∞(Ω),
for all

(3.5) z ∈ Σλ,φ ∶= {z ∈ C/{λ} ∶ ∣arg(z − λ)∣ < φ} and φ ∈ (π/2, π).
To analyze the fully implicit BDF scheme, we shall start with the linear problem with a time-

independent source term

(3.6) ∂αt v(t) −Av(t) = g0 with t ∈ (0, T ], and v(0) = u0.
Then the time stepping scheme reads

(3.7) { ∂̄ατ (v − u0)n −Avn = g0 + a(k)n (Au0 + g0), 1 ≤ n ≤ k − 1,
∂̄ατ (v − u0)n −Avn = g0, k ≤ n ≤ N

with v0 = u0. The next lemma gives an estimate of the difference between v(tn) and vn.
Lemma 3.1. Let v(t) and vn be the solutions of (3.6) and (3.7), respectively. We assume that

the conditions in Theorem 2.1 hold true. Then there exists τ0 > 0, such that for τ ≤ τ0 the following
error estimate holds

∥vn − v(tn)∥L∞(Ω) ≤ cτktα−kn ∥g0 +Au0∥L∞(Ω)
where the constant c depends on α,k and T .

Proof. Let w(t) = v(t) − u0. Then the linear problem (3.6) can be reformulated as

(3.8) ∂αt w −Aw = Au0 + g0 with t ∈ (0, T ], and w(0) = 0.
10



After taking Laplace transform, we derive that

ŵ(z) = z−1(zα −A)−1(Au0 + g0)
for any z in the resolvent set of A. With inverse Laplace transform, the function w(t) can be expressed
explicitly by

w(t) = 1

2πi
∫

σ0+i∞

σ0−i∞
eztK(z)(Au0 + g0)dz

with σ0 such that (σ0)α > λ, where λ is given in (3.3) and the kernel K(z) is defined by

K(z) = z−1(zα −A)−1.
Now we deform the integral contour and obtain that

(3.9) w(t) = 1

2πi
∫
Γθ,σ

eztK(z)(Au0 + g0)dz
where σ ∈ (λ1/α, σ0] and the contour Γθ,σ is defined by

(3.10) Γθ,σ = {z ∈ C ∶ z = σ + ρe±iθ, ρ ≥ 0} with any θ ∈ (π/2, π),
oriented with an increasing imaginary part.

Similarly, we may derive the integral representation of vn in the complex domain. By letting
wn = vn − u0, we can reformulate the time stepping scheme as

(3.11) { ∂̄ατ wn −Awn = (1 + a(k)n )(Au0 + g0), 1 ≤ n ≤ k − 1,
∂̄ατ wn −Awn = Au0 + g0, k ≤ n ≤ N

with w0 = 0. By multiplying ξn on (3.11) and taking summation over n, we have

∞

∑
n=1

ξn∂̄ατ wn −

∞

∑
n=1

ξnAwn = ( ∞∑
n=1

ξn +
k−1

∑
n=1

ξna(k)n )(Au0 + g0).
For any given sequence (fn)∞n=0, let f̃(ξ) ∶= ∑∞n=0 fnξn denote its generating function. Since

w0 = 0, according to properties of discrete convolution, we have the identity
∞

∑
n=1

ξn∂̄ατ wn = δτ (ξ)αW̃ (ξ),
where δτ(ξ) denotes the generating function of the standard BDFk method (1.4). Therefore

(δτ(ξ)α −A)w̃ = ( ξ

1 − ξ
+

k−1

∑
n=1

ξna(k)n )(Au0 + g0).
By the A(θk)-stability of the BDFk method [13, pp. 251], for any ξ such that ∣ξ∣ = ρ ∈ (0, 1

2
], there

exists τ0 small enough such that δτ0( 12)α > λ + c0, and we can find an angle θ0 ∈ (π/2, π) such that
δτ(ξ)α ∈ Σλ+c0,θ0 for all τ ≤ τ0 and hence the operator (δτ(ξ)α −A) is invertible. Then

w̃(ξ) =K(δτ(ξ))τ−1µ(ξ)(Au0 + g0),
where µ(ξ) = δ(ξ)( ξ

1−ξ
+∑k−1

n=1 ξ
na
(k)
n ).

Let ρ ∈ (0, 1
2
] and τ ≤ τ0, it is easy to see that w̃(ξ) is analytic with respect to ξ in the circle ∣ξ∣ = ρ

on the complex plane, then with the change of variables ξ = e−zτ and Cauchy’s integral formula, we
have the following expression

(3.12)

wn = 1

2πi ∫∣ξ∣=ρ ξ
−n−1w̃(ξ)dξ

= 1

2πi
∫
Γτ
eztnK(δτ(e−zτ))µ(e−zτ)(Au0 + g0)dz

= 1

2πi
∫
Γτ
θ,σ0

eztnK(δτ(e−zτ))µ(e−zτ)(Au0 + g0)dz,
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where Γτ
∶= {z = − ln(ρ)/τ + iy ∶ y ∈ R, ∣y∣ ≤ π/τ} and Γτ

θ,σ = {z ∈ Γθ,σ ∶ ∣ Im(z)∣ ≤ π/τ} with σ =
− ln( 1

2
)/τ0. The deformation of contour from Γτ to Γτ

θ,σ0
in the last equation is achieved due to the

analyticity and periodicity of the function eztnK(δτ(e−zτ))µ(e−zτ). Then there exists θ ∈ (π/2, π)
close to π/2 such that δτ (e−zτ)α ∈ Σλ+c0,θ0+ǫ for some small ǫ > 0.

Now we recall the properties of the generating function δτ (ξ) and correction term µ(ξ), which
have already been established in [19, eq. (2.13) and Theorem B.1.]. In particular, in case that z ∈ Γτ

θ,σ

there holds that

(3.13)
c1∣z∣ ≤ ∣δτ (e−zτ)∣ ≤ c2∣z∣, ∣δτ (e−zτ) − z∣ ≤ cτk ∣z∣k+1,
∣δτ (e−zτ)α − zα∣ ≤ cτk ∣z∣k+α, ∣µ(e−zτ) − 1∣ ≤ cτk ∣z∣k.

To derive an estimate for wn − w(tn), we compare those two solution representations (3.9) and
(3.12). To this end, we use the splitting

(3.14)

un − u(tn) = wn −w(tn)
= 1

2πi ∫Γτ
θ,σ

eztn(K(δτ(e−zτ))µ(e−zτ) −K(z))(Au0 + g0)dz
−

1

2πi
∫
Γθ,σ/Γτ

θ,σ

eztnK(z)(Au0 + g0)dz ∶= I − II.
Next, we shall bound these two terms separately. By the resolvent estimate (3.4) and approximation
properties (3.13), we have

(3.15)

∥[K(δτ(e−zτ )) −K(z)]ψ∥L∞(Ω)
≤∣δτ(e−zτ )−1 − z−1∣∥(δτ (e−zτ)α −A)−1ψ∥L∞(Ω)
+ ∣z∣−1∥[(δτ(e−zτ)α −A)−1 − (zα −A)−1]ψ∥L∞(Ω)
=cτk ∣z∣k−1∥(δτ(e−zτ )α −A)−1ψ∥L∞(Ω)
+ ∣z∣−1∣zα − δτ (e−zτ)α∣∥(δτ (e−zτ)α −A)−1(zα −A)−1ψ∥L∞(Ω)
≤ cτk ∣z∣k−1∣δτ (e−zτ)α − λ∣−1(1 + ∣z∣α∣zα − λ∣−1)∥ψ∥L∞(Ω)

for ψ ∈ C(Ω̄). For any z = σ + ρeiθ with ρ ≤ 1, we have the uniform bound that

(3.16) ∣δτ (e−zτ)α − λ∣−1 + ∣zα − λ∣−1 ≤ c
since δτ (e−zτ)α ∈ Σλ+c0,θ0+ǫ. Besides, for z = σ + ρeiθ with ρ > 1, it holds that
(3.17) ∣zα − λ∣−1 ≤ c∣zα∣−1 ≤ cρ−α,
and similarly, using the fact that δτ (e−zτ)α ∈ Σλ+c0,θ0+ǫ and the approximation properties of generating
functions in (3.13), we have for ρ > 1
(3.18) ∣δτ (e−zτ)α − λ∣−1 ≤ c∣δτ (e−zτ)α∣−1 ≤ c∣z∣−α ≤ cρ−α.
The same argument also gives the same bound for z = σ + ρe−iθ. Now for the first term in (3.14), we
have

∥I∥L∞(Ω) = ∥ 1

2πi
∫
Γτ
θ,σ

eztn(K(δτ(e−zτ))µ(e−zτ) −K(z))(Au0 + g0)dz∥L∞(Ω)
≤ ∥ 1

2πi
∫
Γτ
θ,σ

eztnK(δτ(e−zτ))(µ(e−zτ) − 1)(Au0 + g0)dz∥L∞(Ω)
+ ∥ 1

2πi ∫Γτ
θ,σ

eztn(K(δτ(e−zτ )) −K(z))(Au0 + g0)dz∥L∞(Ω) =∶ I1 + I2.
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The term I1 can be bounded using estimates (3.13), (3.16) and (3.17)

I1 ≤ cτk∥Au0 + g0∥L∞(Ω)∫
Γτ
θ,σ

eRe(z)tn ∣z∣k−1∣zα − λ∣−1∣dz∣
≤ ceσtnτk∥Au0 + g0∥L∞(Ω)(∫ 1

0
e−cρtndρ +∫

∞

1
e−cρtnρk−1−αdρ)

≤ cT τktα−kn ∥Au0 + g0∥L∞(Ω).
Similarly, we apply (3.13)-(3.18) to derive a proper bound for I2

I2 ≤ cτk∥Au0 + g0∥L∞(Ω)∫
Γτ
θ,σ

eRe(z)tn ∣z∣k−1∣δτ (e−zτ )α − λ∣−1(1 + ∣z∣α∣zα − λ∣−1)∣dz∣
≤ ceσtnτk∥Au0 + g0∥L∞(Ω)(∫ 1

0
e−cρtndρ + ∫

∞

1
e−cρtnρk−1−αdρ)

≤ cT τktα−kn ∥Au0 + g0∥L∞(Ω).
Finally, we bound the second term in (3.14) by using the resolvent estimate (3.4):

∥II∥L∞(Ω) ≤ ceσtn∥Au0 + g0∥L∞(Ω)∫ ∞

π/(τ sinθ)
e−cρtnρ−1∣(σ + ρeiθ)α − λ∣−1dρ

≤ cT τk∥Au0 + g0∥L∞(Ω)∫ ∞

π/(τ sinθ)
e−cρtnρk−1−αdρ (since 1 ≤ τk ∣z∣k)

≤ cT τktα−kn ∥Au0 + g0∥L∞(Ω).
This completes the proof of the lemma.

Remark 3.1. The generic constant c in Lemma 3.1 depends on the terminal time T with c(T ) ∼
O(eσT ) for some σ > 0. Therefore, the error estimate in Lemma 3.1 is not uniform in T and hence it is
not suitable for long-time estimate. This is because the operator A =∆+f ′(u0)I might not be negative
definite, and hence the solution might blow up exponentially as T → ∞. In case that A is negative
definite, we can obtain an error estimate which is uniform in large terminal time (e.g., [19,23]).

Now we turn to the subdiffusion problem driven by a general source term:

(3.19) ∂αt w(t) −Aw(t) = g(t) with t ∈ (0, T ], and w(0) = 0,
whose time stepping scheme reads

(3.20) ∂̄ατ wn −Awn = gn ∶= g(tn), 1 ≤ n ≤ k − 1, with w0 = 0.

The time stepping solution wn can be represented by a discrete convolution

(3.21) wn = τ
n

∑
j=1

En−j
τ gj , where En

τ =
1

2πi
∫
Γτ
θ,σ

eztn(δτ(e−zτ )α +A)−1 dz.
The angle θ and parameter σ are chosen as those in the proof of Lemma 3.1. Then by (3.13), (3.16)
and (3.18), we derive that

(3.22)

∥En
τ ψ∥L∞(Ω) = ∥ 1

2πi
∫
Γτ
θ,σ

eztn(δτ(e−zτ)α +A)−1ψ dz∥
L∞(Ω)

≤ ceσT (∫
π

τ sinθ

1
e−cρtnρ−αdρ +∫

1

0
e−cρtndρ) ≤ cT (tn + τ)α−1.

Therefore, it holds the stability that

(3.23) ∥wn∥L∞(Ω) ≤ cT (τ n

∑
j=1

tα−1n−j+1∥gj∥L∞(Ω)).
Here we assume that the source term g satisfies certain compatibility condition, e.g.,

g(j)(0) = 0, j = 0,1,2, . . . , k − 1.
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For such a source term g, by using the resolvent estimates (2.3) and the technique in the proof of
Lemma 3.1, the estimate of wn − w(tn) can be done similarly (hence omitted) as that given in [18,
Lemma 3.7], i.e., for all ℓ = 1,2, . . . , k

∥w(tn) −wn∥L∞(Ω) ≤ cT τ ℓ ∫ tn

0
(tn − s)α−1∥g(ℓ)(s)∥L∞(Ω) ds

≤ cT τ
ℓ(tα−1n ∥g∥W ℓ,1((0,tn/2);L∞(Ω)) + t

α
n∥g∥Cℓ([tn/2,tn];L∞(Ω))).

Then by the interpolation, we have the following estimate.

Lemma 3.2. Suppose that g ∈W ℓ+s,1((0, T );C(Ω̄))∩Cℓ+1((0, T );C(Ω̄)) and g(j) = 0 with ℓ ∈ N+,
s ∈ (0,1) and j = 0,1, . . . , ℓ. Let w(t) and wn be the solutions of (3.19) and (3.20), respectively. Then
the following error estimate holds

∥w(tn) −wn∥L∞(Ω) ≤ ctα−1n τmin(k,ℓ+s),

where the constant c depends only on α, g and T .

3.3. Error analysis of the BDF scheme for nonlinear problem. Now we turn to the error
estimate for the fully implicit scheme (1.8). To this end, we begin with the following lemma, which
provides a discrete Hölder bound of the time stepping solution to (1.8).

Lemma 3.3. Assume that the same conditions in Theorem 2.1 holds valid and further f satisfies
(3.1). Let {un}Nn=1 be the solution to the time stepping scheme (1.8). Then we have

max
1≤n≤N

∥un∥L∞(Ω) + max
1≤n≤N

t−αn ∥un − u0∥L∞(Ω) ≤ c, for n = 1,2, . . . ,N,

where the constant c depends on T,u0, f but is independent of τ and N .

Proof. By the preceding argument, we have the following representation of un:

(3.24) un = u0 +F
n
τ (Au0 + g0) + τ

n

∑
j=1

En−j
τ R(uj;u0)

as well as the bound that (by Theorem 3.1 and the estimate (3.22))

∥Fn
τ ∥C(Ω̄)→C(Ω̄) ≤ cT t

α
n and ∥En

τ ∥C(Ω̄)→C(Ω̄) ≤ cT t
α−1
n .

Therefore, by the Lipchitz continuity of the modified potential term f̄(s), we have

(3.25)

∥un − u0∥L∞(Ω) ≤ cT tαn + τ
n

∑
j=1

tα−1n−j+1∥R(uj;u0)∥L∞(Ω)
≤ cT t

α
n + τ

n

∑
j=1

tα−1n−j+1(∥f(uj) − f(u0)∥L∞(Ω) + ∥f ′(u0)(uj − u0)∥L∞(Ω))
≤ cT t

α
n + τ

n

∑
j=1

tα−1n−j+1∥uj − u0∥L∞(Ω).
Then by the discrete Grönwall’s inequality [11, Lemma 7.1], we obtain that

∥un − u0∥L∞(Ω) ≤ ctαn ,
where the constant c depends on T,u0, f , but it is independent of τ and N . Finally, the uniform
bound of ∥un∥L∞(Ω) follows from the triangle inequality.

Now we are ready to state our main theorem in the section.

Theorem 3.4. Assume that the same conditions in Theorem 2.1 holds valid and further f satisfies
(3.1). Let u(t) be the solution of the semilinear subdiffusion problem (1.1) and {un}Nn=1 be the solution
of fully implicit scheme (1.8). Then the following error estimate holds

∥un − u(tn)∥L∞(Ω) ≤ cτmin(k,1+2α−ǫ)tα−min(k,1+2α−ǫ)
n ,

for any tn > 0 and arbitrarily small ǫ > 0. Here the constant c depends on T,u0, f, ǫ, but it is
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independent of τ and N .

Proof. To begin with, we split the solution u(t) into two components

u(t) = v(t) +w(t),
where v is the solution of (3.6), and w satisfies (3.19) with g = R(u;u0). Similarly, the time stepping
solution can also be separated by

un = vn +wn,

where vn is the solution of (3.7), and wn satisfies (3.20) with gn = R(un;u0), i.e., by (3.21)

wn = τ
n

∑
j=1

En−j
τ R(uj;u0).

We note that the difference between v(tn) and vn has been estimated in Lemma 3.1. In order to study
wn −w(tn), we use an intermediate solution w̄n which satisfies (3.20) with gn = R(u(tn);u0) and can
be represented by

w̄n = τ
n

∑
j=1

En−j
τ R(u(tj);u0).

Then the regularity of R(u;u0) proved in Theorem 2.2 and the estimate in Lemma 3.2 yield

∥w̄n −w(tn)∥L∞(Ω) ≤ cτ1+2α−ǫtǫ−α−1n .

To sum up, we derive a bound of en = un − u(tn):
∥en∥L∞(Ω) = ∥vn − v(tn)∥L∞(Ω) + ∥w̄n −w(tn)∥L∞(Ω) + ∥wn − w̄n∥L∞(Ω)

≤ cτktα−kn + cτ1+2α−ǫtα−1n + τ
n

∑
j=1

∥En−j
τ [R(uj;u0) −R(u(tj);u0)]∥L∞(Ω)

≤ cτmin(k,1+2α−ǫ)tα−min(k,1+2α−ǫ)
n + cτ

n

∑
j=1

tα−1n−j+1∥R(uj;u0) −R(u(tj);u0)∥L∞(Ω).
Recalling Lemma 3.3 and the fact that u ∈ Cα([0, T ];C(Ω̄)), we obtain that

∥R(uj;u0) −R(u(tj);u0)∥L∞(Ω)
≤ ∥∫ u(tj)

u0

(u(tj) − uj)f ′′(s)ds∥
L∞(Ω)

+ ∥∫ uj

u(tj)
(uj − s)f ′′(s)ds∥

L∞(Ω)

≤ c(∥uj − u0∥L∞(Ω) + ∥u(tj) − u0∥L∞(Ω))∥en∥L∞(Ω)
≤ ctαn∥en∥L∞(Ω),

and hence we arrive at the estimate

∥en∥L∞(Ω) ≤ cτmin(k,1+2α−ǫ)tα−min(k,1+2α−ǫ)
n + cτ

n

∑
j=1

tα−1n−j+1t
α
j ∥ej∥L∞(Ω).

After multiplying tαn on both sides, we have

tαn∥en∥L∞(Ω) ≤ cτmin(k,1+2α−ǫ)t2α−min(k,1+2α−ǫ)
n + ctαnτ

n

∑
j=1

tα−1n−j+1t
α
j ∥ej∥L∞(Ω).

Noting that 2α − min(k,1 + 2α − ǫ) > −1, we apply the Grönwall’s inequality [11, Lemma 7.1] for
tαn∥en∥L∞(Ω) and derive that

tαn∥en∥L∞(Ω) ≤ cτmin(k,1+2α−ǫ)t2α−min(k,1+2α−ǫ)
n .

This completes the proof.
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Remark 3.2. The result in Theorem 3.4 implies a uniform-in-time error

max
1≤n≤N

∥un − u(tn)∥L∞(Ω) ≤ cτα−ǫ,
for some small ǫ > 0. This result is consistent with the error estimate in [20].

Remark 3.3. The error estimate in Theorem 3.4 indicates that the best convergence rate of
the corrected BDFk scheme (1.8) is almost of order O(τmin(k,1+2α)), due to the low regularity of the
remainder R(u;u0) (see Theorem 2.2 and Lemma 3.2). The reason is that u is nonsmooth in the time
direction, even though the initial condition is smooth and compatible with the boundary condition.
This phenomena contrasts sharply with its normal parabolic counterpart, i.e., α = 1. For instance, it
has been proved in [7] that the time stepping schemes of the semilinear parabolic equation are able to
achieve a better convergence rate in case of regular initial data.

3.4. Numerical analysis without globally Lipschitz condition. The preceding analysis
could be easily extended to the nonlinear subdiffusion problem without the globally Lipschitz condition
(3.1). For completeness, we briefly sketch the argument in this section.

Under the assumptions in Theorem 2.1 and letting

b = ∥u∥L∞((0,T )×Ω) + 1,
we are able to define a smooth function f̄ such that

(3.26) f̄(s) = f(s) for all − b ≤ s ≤ b,

and it is globally Lipschitz continuous

(3.27) ∣f̄(s) − f̄(t)∣ ≤ cL∣t − s∣ for all t, s ∈ R.

Then we consider the BDF scheme with potential term f̄ instead of f

(3.28) { ∂̄ατ (u − u0)n −∆un = a(k)n (∆u0 + f(u0)) + f̄(un), 1 ≤ n ≤ k − 1,

∂̄ατ (u − u0)n −∆un = f̄(un), k ≤ n ≤ N.

Then under the condition (3.27) we know that (3.28) admits a unique solution. Meanwhile,
Theorem 3.4 indicates a uniform-in-time error estimate

max
1≤n≤N

∥un − u(tn)∥L∞(Ω) ≤ cτα−ǫ,
for some small ǫ > 0, where the constant c depends on T,u0, f̄ , ǫ.

As a result, for τ < τ0 such that cτα−ǫ0 = 1, we have

max
1≤n≤N

∥un∥L∞(Ω) ≤ max
1≤n≤N

∥u(tn)∥L∞(Ω) + cτα−ǫ ≤ b + 1.
Therefore f̄(un) = f(un) for all 1 ≤ n ≤ N , and the modified time stepping scheme (3.28) is identical
to the original one (1.9) (or equivalently (1.8)). Then we have the following corollary.

Corollary 3.5. Assume that the same conditions in Theorem 2.1 hold valid. Let u(t) be the
solution of the semilinear subdiffusion problem (1.1) and {un}Nn=1 be the solution of fully implicit
scheme (1.8). Then the following error estimate holds

∥un − u(tn)∥L∞(Ω) ≤ cτmin(k,1+2α−ǫ)tα−min(k,1+2α−ǫ)
n ,

for any tn > 0 and arbitrarily small ǫ > 0. Here the constant c depends on T,u0, f, ǫ, but it is
independent of τ and N .

Remark 3.4. In [8], Cuesta et. al studied a second-order BDF method for solving a related (but
different) subdiffusion model

(3.29) u − ∂−αt ∆u = u0 + ∂
−1
t f(u) with u(0) = u0,
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under the assumption that f is sufficiently smooth and the solution u can be expanded as

(3.30) u(t) = ∑
m,l≥0;m+lα<2

cm,lt
m+lα

+ v(t) with cml ∈D(∆) and v ∈ C2([0, T ];D(∆)).
This assumption requires stronger compatibility conditions of u0 and f(u0). As a simple example, we
consider the homogeneous problem, i.e. f ≡ 0. In this case, the solution of the subdiffusion problem
(1.1) can be expanded by Mittag-Leffler function as

u(t) = Eα,1(∆tα)u0 = ∞∑
k=0

1

Γ(αk + 1)((∆)ku0)tαk.
Then assumption (3.30) requires that u0 ∈ D((−∆)1+2/α) which is stronger than what we assumed in
this work.

4. Fully discrete scheme and error analysis. In this section, we will briefly discuss the fully
discrete scheme for solving the nonlinear subdiffusion equation (1.1). We shall start with a spatially
semidiscrete scheme for problem (1.1) based on the standard Galerkin finite element method (see
e.g., [14, 17] for linear subdiffusion problems).

For h ∈ (0, h0], h0 > 0, we denote by Th = {Kj} a triangulation of Ωh = Int(∪Kj) into mutually
disjoint open face-to-face simplices Kj . Assume that all vertices of a simplex Kj locate on ∂Ω. We
also assume that {Th} is globally quasi-uniform, i.e., ∣Kj ∣ ≥ chd with a given c > 0. Let Xh be the finite
dimensional space of continuous piecewise linear functions associated with Th, that vanish outside Ωh.
Then we define the L2(Ω) projection Ph ∶ L

2(Ω)→Xh and Ritz projection Rh ∶H
1
0 →Xh respectively

by

(Phϕ, vh) = (ϕ, vh), ∀vh ∈ Xh,

(∇Rhv,∇vh) = (∇v,∇vh), ∀vh ∈Xh.

The semidiscrete scheme reads: find uh(t) ∈ Xh such that

(4.1) (∂αt uh(t), vh) + (∇uh(t),∇vh) = (f(uh(t)), vh) for all vh ∈Xh,

with uh(t) = Rhu0. Let ∆h ∶ Xh → Xh denote the Galerkin finite element approximation of the
Dirichlet Laplacian ∆, defined by

(∆hwh, vh) ∶= −(∇wh,∇vh), ∀wh, vh ∈Xh.

Then the spatially semidiscrete scheme (4.1) could be written as

(4.2) ∂αt uh(t) −∆huh(t) = Phf(uh), with uh(0) = Rhu0.

With the Laplace transform and convolution rule, uh(t) can be explicitly expressed by

(4.3) u(t) = (I +Fh(t)∆h)u0 +∫ t

0
Eh(t − s)f(u(s))ds,

where the operators Fh(t) and Eh(t) are defined by

(4.4) Fh(t) = 1

2πi
∫
Γθ,δ

eztz−1(zα −∆h)−1dz and Eh(t) = 1

2πi
∫
Γθ,δ

ezt(zα −∆h)−1dz,
respectively. Recall that the discrete Laplacian satisfies the resolvent estimate in L∞(Ω) sense (cf. [4,
Theorem 1.1]), i.e., for any angle φ ∈ (π/2, π),

∥(z −∆h)−1wh∥L∞(Ω) ≤ c∣z∣−1∥wh∥L∞(Ω) ∀ z ∈ Σφ.(4.5)

This immediately implies the following smoothing properties:

∥Fh∆hvh∥L∞(Ω) + t1−α∥Ehvh∥L∞(Ω) + t∥Eh∆hvh∥L∞(Ω) ≤ c∥vh∥L∞(Ω) ∀ vh ∈Xh,(4.6)

which plays an important role in error analysis. Note that the L∞(Ω)-norm error analysis of the
scheme (4.2) remains scarce, even though the L2(Ω)-norm estimate has been completely understood
(cf. [1, 20]). For completeness, we shall provide an error estimate in L∞(Ω)-norm.
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4.1. Spatially semidiscrete scheme for the linear problem. First we recall some error
estimates for the following linear subdiffusion equation:

(4.7) ∂αt v(t) −∆v(t) = g(t), ∀t ∈ (0, T ],
where g is a given source function, and v(0) ∈D is the given initial condition. The semidiscrete FEM
for (4.7) seeks vh(t) ∈Xh such that

(4.8) ∂αt vh(t) −∆hvh(t) = Phg(t), ∀t ∈ (0, T ],
with vh(0) = Rhv(0). Recall that Rh has the almost stability property [41, eq. (6.60)]

(4.9) ∥Rhw∥L∞(Ω) ≤ cℓh∥w∥L∞(Ω), with ℓh =max(1, log(1/h)).
To derive the error estimate of (4.7), we need the following lemma for the Ritz projection Rh, where
the proof relies on the smoothing property of the solution operator F (t):

∥∆F (t)w∥Lp(Ω) ≤ c∥w∥Lp(Ω), for all p ∈ [1,∞).(4.10)

This follows directly from the representation (2.2) and the resolvent estimate [35, Theorem 3.1]

∥(z −∆)−1w∥Lp(Ω) ≤ cp∣z∣−1∥w∥Lp(Ω) ∀ z ∈ Σφ, φ ∈ (π/2, π), p ∈ [1,∞).
Lemma 4.1. Let v be the solution of the linear problem (4.7). Then there holds

∥(v −Rhv)(t)∥L∞(Ω) ≤ ch2ℓ2h(∥∆v(0)∥L∞(Ω) +∫ t

0
∥g′(s)∥L∞(Ω) ds)

with ℓh =max(1, log(1/h)).
Proof. Let Ih be the Lagrange interpolation operator. Then we have

v −Rhv = (Rh − I)(v − Ihv)
and hence by (4.9) and the approximation property of Ih, we derive for 2 ≤ p <∞

∥v −Rhv∥L∞ ≤ cℓh∥v − Ihv∥L∞(Ω) ≤ ch2−2/pℓh∥v∥W 2,p(Ω).

Now using the full elliptic regulariy, we have for 2 ≤ p <∞ [41, eq. (6.78)]

∥v∥W 2,p(Ω) ≤ cp∥∆v∥Lp(Ω).

Recalling the solution representation (2.1), we have

∆v =∆(I + F (t)∆)v(0)+ ∫ t

0
∆E(t − s)g(s)ds

=∆(I + F (t)∆)v(0)+ ∫ t

0
∆F (t − s)g′(s)ds −∆(F (0)g(t)− F (t)g(0))

Now we apply the smoothing property (4.10) and arrive at

∥∆v∥Lp(Ω) ≤ c∥∆v(0)∥Lp(Ω) + c∫
t

0
∥g′(s)∥Lp(Ω) ds.

Then the desired result follows immediately by choosing p = ℓh.

The semidiscrete solution vh satisfies the following error estimate.

Lemma 4.2 (Semidiscrete solution of linear problems). For the semidiscrete solution vh to problem
(4.8), there holds, with ℓh =max(1, log(1/h)), that

max
t∈[0,T ]

∥vh(t) − v(t)∥L2(Ω) ≤ ch
2ℓ3h(∥∆v(0)∥L∞(Ω) +∫ t

0
∥g′(s)∥L∞(Ω) ds).

Proof. We use the splitting vh−v = (vh−Phv)+(Phv−v) =∶ ψ+θ. By Lemma 4.1 and [9, Corollary],
it is easy to see for all t ∈ [0, T ]

∥θ(t)∥L∞(Ω) + ∥(Phv −Rhv)(t)∥L∞(Ω) ≤ ch2ℓ2h(∥∆v(0)∥L∞(Ω) + ∫ t

0
∥g′(s)∥L∞(Ω) ds).(4.11)
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Besides, we note that ψ satisfies the equation

∂αt ψ(t) −∆hψ(t) =∆h(Rh −Ph)v(t), with ψ(0) = (Rh −Ph)v.
Therefore, by the representation (4.3), we arrive at

ψ(t) = (I +Fh(t)∆h)(Rh −Ph)v(0) +∫ t

0
Eh(t − s)∆h(Rh − Ph)v(s)ds =∶ I1 + I2.

The estimate of I1 follows directly from (4.6) and (4.11)

∥I1∥L∞(Ω) ≤ c∥(Rh −Ph)v(0)∥L∞(Ω) ≤ ch2ℓ2h∥∆v(0)∥L∞(Ω).
For the second term, we apply the inverse inequality for finite element functions, as well as (4.6) and
(4.11), to obtain that

∥I2∥L∞(Ω) ≤ ch−2ǫ ∫ t

0
(t − s)−1+ǫ∥(Rh −Ph)v(s)∥L∞(Ω) ds

≤ cǫ−1h2−2ǫℓ2h(∥∆v(0)∥L∞(Ω) +∫ t

0
∥g′(s)∥L∞(Ω) ds)

by choosing ǫ = 1/ℓh, then we complete the proof of the lemma.

4.2. Error analysis for the nonlinear problem. Now we turn to the nonlinear problem (1.1).
The following lemma provides an error estimate of the semidiscrete scheme (4.2).

Lemma 4.3. Assume that the same conditions in Theorem 2.1 hold valid. Then the semidiscrete
problem (4.2) has a unique solution uh ∈ C([0, T ] × Ω̄), which satisfies

max
0≤t≤T

∥u(t)− uh(t)∥L∞(Ω) ≤ ch2ℓ3h, with ℓh =max(1, log(1/h)).(4.12)

Proof. To begin with, we assume that the nonlinear term f ∶ R → R is Globally Lipschitz
continuous. Then, by the argument in [20, Theorem 3.1], the existence and uniqueness of the solution
uh hold. It remains to establish the estimate (4.12). To this end, we define vh(t) as the solution of

∂αt vh(t) −∆hvh(t) = Phf(u(t)), with vh(0) = Rhu0.

This together with Lemma 4.2 and Theorem 2.1 yields the following estimate for t ≥ 0

∥(u − vh)(t)∥L2(Ω) ≤ ch
2ℓ3h.(4.13)

Meanwhile, we note that ρh ∶= vh − uh satisfies the following equation

∂αt ρh(t) −∆ρh(t) = Phf(u(t))−Phf(uh(t)), with ρh(0) = 0.
Then, by the smoothing property (4.6), the Lipschitz continuity of f and the stability of Ph in
L∞(Ω) [9], we derive that

∥ρh(t)∥L∞ ≤ ∫ t

0
∥Eh(t − s)Ph[f(u(s)) − f(uh(s))]∥L∞(Ω) ds

≤ c∫
t

0
(t − s)α−1∥Ph[f(u(s)) − f(uh(s))]∥L∞(Ω) ds

≤ c∫
t

0
(t − s)α−1∥u(s) − uh(s)∥L∞(Ω) ds

≤ ch2ℓ3h + c∫
t

0
(t − s)α−1∥ρh(s)∥L∞(Ω) ds.

Then by the Grönwall’s inequality, we have

max
t∈[0,T ]

∥ρh(t)∥L2(Ω) ≤ ch
2ℓ3h.

This and (4.13) directly imply the desired result. Then the same argument as the one in Section 3.4
helps to remove the the globally Lipschitz condition.
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Finally, we consider the fully discrete scheme: find Un
h such that

(4.14)

⎧⎪⎪⎨⎪⎪⎩
∂̄ατ (Un

h −U
0
h) −∆hU

n
h = a

(k)
n (∆hU

n
h + f(U0

h) + f(U0
h), 1 ≤ n ≤ k − 1,

∂̄ατ (Un
h −U

0
h) −∆hU

n
h = f(Un

h ), k ≤ n ≤ N.

Then by the resolvent estimate (4.5), all the arguments in Sections 2 and 3 work for the spatially
discrete problems (4.2) and (4.14). Therefore we have the following corollary.

Corollary 4.4. Assume that the same conditions in Theorem 2.1 hold valid. Let uh(t) be the
solution of the semidiscrete scheme (4.2) and {Un

h }Nn=1 be the solution of fully discrete scheme (4.14).
Then the following error estimate holds

∥Un
h − uh(tn)∥L∞(Ω) ≤ cτmin(k,1+2α−ǫ)tα−min(k,1+2α−ǫ)

n ,

for any tn > 0 and arbitrarily small ǫ > 0. Here the constant c depends on T,u0, f, ǫ, but it is
independent of h, τ and N .

This corollary together with Lemma 4.3 immediately leads to the error estimate of the fully
discrete scheme (4.14).

Theorem 4.5. Assume that the same conditions in Theorem 2.1 hold valid. Let u(t) be the
solution of the semilinear subdiffusion problem (1.1) and {Un

h }Nn=1 be the solution of fully discrete
scheme (4.14). Then for ℓh =max(1, log(1/h)), the following error estimate holds

∥Un
h − u(tn)∥L∞(Ω) ≤ ch2ℓ3h + τmin(k,1+2α−ǫ)tα−min(k,1+2α−ǫ)

n ,

for any tn > 0 and arbitrarily small ǫ > 0. The constant c depends on T,u0, f, ǫ, but it is independent
of h, τ and N .

5. Numerical experiments. In this section, we present numerical results to illustrate and
support our theoretical findings. We consider the nonlinear subdiffusion model with Ω = (0,1)2

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂αt u −
1

10
∆u = 4(u − u3) in Ω × (0, T ),
u = 0 on ∂Ω × (0, T ),

u(0) = u0 in Ω,

In the computation, we divided the domain Ω into regular right triangles withM equal subintervals
of length h on each side of the domain. The numerical solutions are computed by using fully discrete
scheme (4.14). In each step, we solved the nonlinear elliptic problem by Newton’s iteration. We
fixed the spatial mesh size h = 1/100, computed the numerical solution {UN

h } with temporal step size
τ = T /N with T = 1, N = 100 × 2ℓ, ℓ = 0,1, . . . ,4 and reported

eτ = ∥UN
h − uh(tN)∥L∞(Ω).

Since the semidiscrete solution uh is unavailable, we compute reference solutions on a finer mesh, i.e.,
the fully discrete solution UN

h with h = 1/100, N = 20000 and k = 6.

We consider the following problem data:

u0(x, y) = 4x(1 − x)y(1 − y),
where the initial condition satisfies

u0,∆u0 ∈ C(Ω̄) and u = 0 on ∂Ω.

Therefore, our assumptions on initial condition (i.e., u0 ∈ D) are fulfilled. In Table 2, we present
numerical results of the corrected k-step BDF scheme (1.8). Numbers in brackets are the theoretical
convergence rates. Numerical results show that the convergence rate is O(τmin(k,1+2α)). For example,
in case that α = 0.7, we observe an O(τ2.4) rate of BDFk scheme with k = 3,4,5,6, but an O(τ2)
rate in case that k = 2. This is in good agreement with our theoretical results. In Table 3, we
present numerical results for uncorrected k-step BDF schemes (1.2). We observe that all schemes are
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first-order accurate. This phenomena has already been reported for the linear fractional evolution
equations [16, 19]. This implies the necessity of the modification in the starting steps.

Table 2
Corrected BDFk scheme (1.8) at T = 1 with h = 1/100 and τ = 1/(100 × 2ℓ)

α k/ℓ 0 1 2 3 4 rate
k = 2 2.94e-06 9.99e-07 3.45e-07 1.20e-07 4.19e-08 ≈ 1.52 (1.60)
k = 3 2.43e-06 8.90e-07 3.21e-07 1.14e-07 3.99e-08 ≈ 1.51 (1.60)

0.3 k = 4 4.36e-06 1.57e-06 5.58e-07 1.96e-07 6.82e-08 ≈ 1.52 (1.60)
k = 5 9.73e-06 3.45e-06 1.21e-06 4.23e-07 1.46e-07 ≈ 1.53 (1.60)
k = 6 5.17e-09 1.70e-09 5.60e-10 1.85e-10 6.09e-11 ≈ 1.60 (1.60)
k = 2 2.79e-06 7.53e-07 2.02e-07 5.44e-08 1.45e-08 ≈ 1.91(2.00)
k = 3 6.42e-07 1.75e-07 4.63e-08 1.20e-08 3.07e-09 ≈ 1.97 (2.00)

0.5 k = 4 8.63e-07 2.24e-07 5.77e-08 1.47e-08 3.74e-09 ≈ 1.98 (2.00)
k = 5 1.52e-06 3.93e-07 1.01e-07 2.57e-08 6.53e-09 ≈ 1.98 (2.00)
k = 6 8.57e-09 2.15e-09 5.38e-10 1.34e-10 3.37e-11 ≈ 2.00 (2.00)
k = 2 3.13e-06 7.88e-07 1.98e-07 4.97e-08 1.25e-08 ≈ 2.00 (2.00)
k = 3 8.57e-08 1.97e-08 4.13e-09 8.31e-10 1.63e-10 ≈ 2.35 (2.40)

0.7 k = 4 1.05e-07 1.99e-08 3.79e-09 7.20e-10 1.37e-10 ≈ 2.39 (2.40)
k = 5 1.55e-07 2.97e-08 5.66e-09 1.08e-09 2.05e-10 ≈ 2.39 (2.40)
k = 6 1.05e-08 2.00e-09 3.78e-10 7.18e-11 1.36e-11 ≈ 2.40 (2.40)

Table 3
Uncorrected BDFk scheme (1.2) at T = 1 with h = 1/100 and τ = 1/(100 × 2ℓ)

α k/ℓ 0 1 2 3 4 rate
k = 2 6.01e-05 2.99e-05 1.49e-05 7.47e-06 3.73e-06 ≈ 1.00 (1.00)
k = 3 5.99e-05 2.99e-05 1.49e-05 7.46e-06 3.73e-06 ≈ 1.00 (1.00)

0.3 k = 4 5.99e-05 2.99e-05 1.49e-05 7.45e-06 3.73e-06 ≈ 1.00 (1.00)
k = 5 5.98e-05 2.99e-05 1.49e-05 7.45e-06 3.72e-06 ≈ 1.00 (1.00)
k = 6 9.72e-06 4.85e-06 2.43e-06 1.21e-06 6.06e-07 ≈ 1.00 (1.00)
k = 2 1.05e-04 5.24e-05 2.61e-05 1.31e-05 6.53e-06 ≈ 1.00 (1.00)
k = 3 1.05e-04 5.23e-05 2.61e-05 1.31e-05 6.53e-06 ≈ 1.00 (1.00)

0.5 k = 4 1.05e-04 5.22e-05 2.61e-05 1.31e-05 6.53e-06 ≈ 1.00 (1.00)
k = 5 1.05e-04 5.22e-05 2.61e-05 1.31e-05 6.53e-06 ≈ 1.00 (1.00)
k = 6 3.85e-05 1.92e-05 9.62e-06 4.81e-06 2.40e-06 ≈ 1.00 (1.00)
k = 2 1.60e-04 8.00e-05 3.99e-05 2.00e-05 9.97e-06 ≈ 1.00 (1.00)
k = 3 1.60e-04 7.98e-05 3.99e-05 1.99e-05 9.97e-06 ≈ 1.00 (1.00)

0.7 k = 4 1.60e-04 7.98e-05 3.99e-05 1.99e-05 9.97e-06 ≈ 1.00 (1.00)
k = 5 1.60e-04 7.98e-05 3.99e-05 1.99e-05 9.97e-06 ≈ 1.00 (1.00)
k = 6 1.10e-04 5.50e-05 2.75e-05 1.38e-05 6.88e-06 ≈ 1.00 (1.00)
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