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ABSTRACT. Logistic regression is a well-known statistical model which is commonly
used in the situation where the output is a binary random variable. It has a wide range
of applications including machine learning, public health, social sciences, ecology and
econometry. In order to estimate the unknown parameters of logistic regression with
data streams arriving sequentially and at high speed, we focus our attention on a recur-
sive stochastic algorithm. More precisely, we investigate the asymptotic behavior of a
new stochastic Newton algorithm. It enables to easily update the estimates when the
data arrive sequentially and to have research steps in all directions. We establish the
almost sure convergence of our stochastic Newton algorithm as well as its asymptotic
normality. All our theoretical results are illustrated by numerical experiments.

1. INTRODUCTION

Logistic regression is a well-known statistical model which is commonly used in the
situation where the output is a binary random variable. It has a wide range of appli-
cations including machine learning [1], public health [11], social sciences, ecology [9]
and econometry [17]. In what follows, we will consider a sequence (Xn, Yn) of random
variables taking values in Rd × {0, 1}, and we will assume that (Xn) is a sequence of
independent and identically distributed random vectors such that, that for all n > 1,
the conditional distribution of Yn knowing Xn is a Bernoulli distribution [8]. More pre-
cisely, let θ = (θ0, . . . , θd)

T be the unknown parameter belonging to Rd+1 of the logistic
regression. For all n > 1, we denote Φn = (1, XT

n )
T and we assume that

L
(
Yn|Φn

)
= B

(
π(θTΦn)

)
where π(x) =

exp(x)
1 + exp(x)

.

Our goal is the estimation of the vector of parameters θ. For that purpose, let G be the
convex positive function defined, for all h ∈ Rd+1, by

G(h) = E
[
− log

(
π(hTΦ)Y(1− π(hTΦ)

)1−Y)],
= E

[
log
(
1 + exp(hTΦ)

)
− hTΦY

]
1
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where L(Y|Φ) = B
(
π(θTΦ)

)
and Φ shares the same distribution as Φ1. We clearly

have E [Y|Φ] = π(θTΦ). Hence, one can easily check that the unknown parameter θ

satisfies

(1.1) ∇G(θ) = E
[
Φ(π(θTΦ)−Y)

]
= 0.

Consequently, under some standard convexity assumptions on G,

(1.2) θ = arg min
h∈Rd+1

G(h).

Since there is no explicit solution of the equation ∇G(h) = 0, it is necessary to make
use of an approximation algorithm in order to estimate θ. Usually, when the sample
size is fixed, we approximate the solution with the help of a Newton root-finding nu-
merical algorithm. However, when the data streams arrive sequentially and at high
speed, it is much more appropriate and efficient to treat them with the help of sto-
chastic gradient algorithms. We refer the reader to the seminal paper [15] and to its
averaged version [14, 16], as well as to the more recent contributions on the logistic
regression [1, 6, 5]. One can observe that in these last references, the conditional dis-
tribution L(Y|Φ) = R

(
π(θTΦ)

)
is the Rademacher distribution, instead of the usual

Bernoulli B
(
π(θTΦ)

)
one.

In this paper, we propose an alternative strategy to stochastic gradient algorithms, in
the spirit of the Newton algorithm, in the sense that the step sequence of stochastic
gradient algorithms is replaced by recursive estimates of the inverse of the Hessian
matrix of the function we are minimizing. This strategy enables us to properly deal
with the situation where the Hessian matrix has eigenvalues with significantly differ-
ent absolute values. Indeed, in that case, it can be necessary to adapt automatically the
step of the algorithm in all directions. To be more precise, we propose to estimate the
unknown parameter θ with the help of a stochastic Newton algorithm given, for all
n > 1, by

an = π(θT
n−1Φn)

(
1− π(θT

n−1Φn)
)

,

S−1
n = S−1

n−1 − an(1 + anΦT
n S−1

n−1Φn)
−1S−1

n−1ΦnΦT
n S−1

n−1,

θn = θn−1 + S−1
n Φn

(
Yn − π(θT

n−1Φn)
)

where the initial value θ0 is a bounded vector of Rd+1 which can be arbitrarily chosen
and S0 is a positive definite and deterministic matrix. For the sake of simplicity and
in all the sequel, we take S0 = Id+1 where Id+1 stands for the identity matrix of order
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(d + 1). One can observe that

Sn =
n

∑
k=1

akΦkΦT
k + Id+1

Moreover, S−1
n is updated recursively, thanks to Riccati’s equation ([4], page 96) which

enables us to avoid the useless inversion of a matrix at each iteration of the algorithm.
Furthermore, the matrix n−1Sn is an estimate of the Hessian matrix ∇2G (θ) at the
unknown value θ. In order to ensure the convergence of the stochastic Newton algo-
rithm, a modified version of this algorithm is provided. We shall prove its asymptotic
efficiency by establishing its almost sure convergence and its asymptotic normality.

This algorithm is closely related to the iterative one used to estimate the unknown vec-
tor θ of a linear regression model satisfying, for all n > 1, Yn = θTΦn + εn. As a matter
of fact, the updating of the least squares estimator of the parameter θ is given by

S−1
n = S−1

n−1 − (1 + ΦT
n S−1

n−1Φn)
−1S−1

n−1ΦnΦT
n S−1

n−1

θn = θn−1 + S−1
n Φn

(
Yn − θT

n−1Φn

)
where the initial value θ0 can be arbitrarily chosen and S0 is a positive definite deter-
ministic matrix. This algorithm can be considered as a Newton stochastic algorithm
since the matrix n−1Sn is an estimate of the Hessian matrix of the least squares crite-
rion E

[
(Y− θTΦ)2] /2.

To the best of our knowledge and apart from the least squares estimate mentioned
above, stochastic Newton algorithms are hardly ever used and studied since they of-
ten require the inversion of a matrix at each step, which can be very expensive in term
of time calculation. An alternative to the stochastic Newton algorithm is the BFGS
algorithm [12, 10, 2] based on the recursive estimation of a matrix whose behavior is
closed to the one of the inverse of the Hessian matrix. Nevertheless, this last estimate
does not converge to the exact inverse of the Hessian matrix. Consequently, the esti-
mation of the unknown vector θ is not satisfactory.

The paper is organized as follows. Section 2 describes the framework and our main
assumptions. In Section 3, we introduce our new stochastic Newton algorithm. Sec-
tion 4 is devoted to its almost sure convergence as well as its asymptotic normality.
Our theoretical results are illustrated by numerical experiments in Section 5. Finally,
all technical proofs are postponed to Sections 6 and 7.
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2. FRAMEWORK

In what follows, we shall consider a couple of random variables (X, Y) taking values
in Rd × {0, 1} where d is a positive integer, and such that

L
(
Y|Φ

)
= B

(
π(θTΦ)

)
where π(x) =

exp(x)
1 + exp(x)

with Φ = (1, XT)T and where θ = (θ0, θ1, ..., θd) is the unknown parameter to estimate.
We recall that θ is a minimizer of the convex function G defined, for all h ∈ Rd+1, by

(2.1) G(h) = E
[
− log

(
π(hTΦ)Y(1− π(hTΦ)

)1−Y)]
= E

[
g (Φ, Y, h)

]
.

In all the sequel, we assume that the following assumptions are satisfied.

(A1) The vector Φ has a finite moment of order 2 and the matrix E[ΦΦT] is positive
definite.

(A2) The Hessian matrix ∇2G (θ) is positive definite.

These assumptions ensure that θ is the unique minimizer of the functional G. Assump-
tion (A1) enables us to find a first lower bound for the smallest eigenvalue of the esti-
mates of the Hessian matrix, while assumptions (A1) and (A2) give the unicity of the
minimizer of G and ensure that the functional G is twice continuously differentiable.
More precisely, for all h ∈ Rd+1, we have

∇G(h) = E [∇h g (Φ, Y, h)] = E

[
exp

(
hTΦ

)
1 + exp (hTΦ)

Φ

]
−E [YΦ] ,(2.2)

∇2G (h) = E
[
∇2

h g (Φ, Y, h)
]
=

1
4

E

[
1

(cosh (hTΦ/2))2 ΦΦT

]
.(2.3)

Remark 2.1. In the previous literature, it is more usual to consider a variable Y taking values
in {−1, 1}, which means that L(Y|Φ) = R

(
π(θTΦ)

)
is the Rademacher distribution [1, 6,

5]. In this context, θ is a minimizer of the functional G defined, for all h ∈ Rd+1, by

G(h) = E
[
ln
(

1 + exp
(
−YhTΦ

))]
.

Under assumptions, the functional G is twice continuously differentiable and, for all h ∈ Rd+1,

∇G(h) = −E

[
exp

(
−YhTΦ

)
1 + exp (−YhTΦ)

YΦ

]
,

∇2G (h) =
1
4

E

[
1

(cosh (hTΦ/2))2 ΦΦT

]
.
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One can observe that the Hessian matrix remains the same. It ensures that the algorithm
introduced in Section 3 can be adapted to this functional and that all the results given in Section
4 still hold in this case.

3. STOCHASTIC NEWTON ALGORITHM

In order to deal with massive data acquired online, let us recall that the stochastic
Newton algorithm presented in the introduction is given, for all n > 1, by

an = π(θT
n−1Φn)

(
1− π(θT

n−1Φn)
)

,(3.1)

S−1
n = S−1

n−1 − an(1 + anΦT
n S−1

n−1Φn)
−1S−1

n−1ΦnΦT
n S−1

n−1,(3.2)

θn = θn−1 + S−1
n Φn

(
Yn − π(θT

n−1Φn)
)

(3.3)

where the initial value θ0 is a bounded vector of Rd+1 which can be arbitrarily chosen
and S0 = Id+1. Unfortunately, we were not able to prove that n−1Sn converges almost
surely to the Hessian matrix ∇2G (θ), as well as to establish the almost sure conver-
gence of θn to θ. This is the reason why we slightly modify our strategy by proposing
a truncated version of previous estimates given, for all n > 1, by

ân = π(θ̂T
n−1Φn)

(
1− π(θ̂T

n−1Φn)
)

(3.4)

θ̂n = θ̂n−1 + S−1
n−1Φn

(
Yn − π(θ̂T

n−1Φn)
)

(3.5)

S−1
n = S−1

n−1 − αn(1 + αnΦT
n S−1

n−1Φn)
−1S−1

n−1ΦnΦT
n S−1

n−1(3.6)

where the initial value θ̂0 is a bounded vector of Rd+1 which can be arbitrarily cho-
sen, S0 = Id+1 and (αn) is a sequence of random variable defined, for some positive
constant cα, by

(3.7) αn = max
{

ân,
cα

nβ

}
= max

{
1

4
(
cosh

(
ΦT

n θ̂n−1/2
))2 ,

cα

nβ

}
with β ∈]0, 1/2[. From now on and for the sake of simplicity, we assume that cα 6 1/4.
It immediately implies that, for all n > 1, αn 6 1/4. However, the proofs remains true
for any cα > 0. We already saw in Section 1 that S−1

n coincides with the exact inverse
of the weighted matrix Sn given, for all n > 1, by

(3.8) Sn =
n

∑
k=1

αkΦkΦT
k + Id+1.

Moreover, we will see in Section 4 that, even with this truncation of the estimate of the
Hessian matrix, n−1Sn converges almost surely to the Hessian matrix∇2G (θ). Conse-
quently, we will still have an optimal asymptotic behavior of the estimator θ̂n of θ.
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4. MAIN RESULTS

Our first result deals with the almost sure convergence of our estimates of θ and the
Hessian matrix ∇2G (θ). For all n > 1, denote

Sn =
1
n

Sn.

Theorem 4.1. Assume that (A1) and (A2) are satisfied. Then, we have the almost sure con-
vergences

(4.1) lim
n→∞

θ̂n = θ a.s

(4.2) lim
n→∞

Sn = ∇2G (θ) a.s

We now focus on the almost sure rates of convergence of our estimate of θ.

Theorem 4.2. Assume that (A1) and (A2) are satisfied. Then, we have for all γ > 0,

(4.3)
∥∥θ̂n − θ

∥∥2
= o

(
(log n)1+γ

n

)
a.s

Moreover, suppose the random vector Φ has a finite moment of order > 2. Then, we have

(4.4)
∥∥θ̂n − θ

∥∥2
= O

(
log n

n

)
a.s

The almost sure rates of convergence of our estimate of the Hessian matrix ∇2G (θ)

and its inverse are as follows.

Theorem 4.3. Assume that (A1) and (A2) are satisfied and that the random vector Φ has a
finite moment of order 4. Then, we have for all 0 < β < 1/2,

(4.5)
∥∥Sn −∇2G (θ)

∥∥2
= O

(
1

n2β

)
a.s

In addition, we also have

(4.6)
∥∥∥S−1

n −
(
∇2G (θ)

)−1∥∥∥2
= O

(
1

n2β

)
a.s

Proof. The proofs of Theorems 4.1, 4.2 and 4.3 are given in Section 6. �

Remark 4.1. One can observe that we do not obtain the parametric rate 1/n for these estimates.
This is due to the truncation αn which slightly modifies our estimation procedure. However,
without this truncation, we were not able to establish the almost sure convergence of any esti-
mate. Finally, the last result (4.6) ensures that our estimation procedure performs pretty well
and that the estimator θ̂n has an optimal asymptotic behavior.
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Theorem 4.4. Assume that (A1) and (A2) are satisfied and that the random vector Φ has a
finite moment of order 4. Then, we have the asymptotic normality

(4.7)
√

n
(

θ̂n − θ
) L−−−→

n→∞
N
(

0,
(
∇2G (θ)

)−1)
.

Proof. The proof of Theorem 4.4 is given in Section 7. �

Remark 4.2. We deduce from (4.2) and (4.7) that

(4.8)
(

θ̂n − θ
)T

Sn

(
θ̂n − θ

) L−−−→
n→∞

χ2(d + 1).

Convergence (4.8) allows us to build confidence regions for the parameter θ. Moreover, for any
vector w ∈ Rd+1 different from zero, we also have

(4.9)
wT
(

θ̂n − θ
)

√
wTS−1

n w

L−−−→
n→∞

N (0, 1).

Confidence intervals and significance tests for the components of θ can be designed from (4.9).
One can observe that our stochastic Newton algorithm has the same asymptotic behavior as the
averaged version of a stochastic gradient algorithm [5, 7, 13].

5. NUMERICAL EXPERIMENTS

The goal of this section is to illustrate the asymptotic behavior of the truncated sto-
chastic Newton algorithm (TSN) defined by equation (3.5). For that purpose, we will
focus on the model introduced in [3] and used for comparing several gradient algo-
rithms. We shall compare the numerical performances of the TSN algorithm with those
obtained with three different algorithms : the Stochastic Newton (SN) algorithm given
by equation (3.3), the stochastic gradient algorithm (SG), and the averaged stochastic
gradient algorithm (ASG). Let us mention that simulations were carried out using the
statistical software R.

5.1. Experiment model. We focus on the model introduced in [3], defined by

L(Y|Φ) = B
(
π(θTΦ)

)
where Φ = (1, XT)T and X is a random vector of Rd with d = 10 with independent
coordinates uniformly distributed on the interval [0, 1]. Moreover the unknown pa-
rameter θ = (−9, 0, 3,−9, 4,−9, 15, 0,−7, 1, 0)T. This model is particularly interresting
since it leads to a Hessian matrix ∇2G(θ) with eigenvalues of different order sizes. In-
deed, one can see in Table 1 that the smallest eigenvalue of ∇2G(θ) is close to 4.422
10−4 while its largest eigenvalue is close to 0.1239.
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0.1239 2.832 10−3 2.822 10−3 2.816 10−3 2.778 10−3 2.806 10−3

2.651 10−3 2.517 10−3 2.1567 10−3 9.012 10−4 4.422 10−4

TABLE 1. Estimated eigenvalues of ∇2G(θ) arranged in decreasing order.

5.2. Comparison of the different algorithms. Our comparisons are based on the mean
squared error (MSE) defined, for all estimate θ̂n of θ, by

E
[∥∥θ̂n − θ

∥∥2
]
.

We simulate N = 400 samples wth a maximum number of iterations n = 5 000. For
each sample, we estimate the unknown parameter θ using the four algorithms (TSN,
SN, SG, ASG) which are initialized identically by choosing the initial value θ̂0 uni-
formly in a compact subset containing the true value θ. For the TSN and SN algorithms,
we take S0 = Id+1. In addition, for the TSN algorithm, we choose the truncation term
defined by cα = 10−10 and β = 0.49. Finally, to be fairplay, we choose the best step
sequence for the SG algorithm with the help of a cross validation method. Figure 1
shows the decreasing behavior of the MSE, calculated for the four algorithms, as the
number of iterations n grows from 1 to 5 000.

0 1000 2000 3000 4000 5000
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SG
ASG

FIGURE 1. Mean squared error of the four algorithms.
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It is clear that the stochastic Newton algorithms perform much more better than the
stochastic gradient algorithms The bad behavior of the stochastic gradient algorithms
is certainly due to the fact that the eigenvalues of the Hessian matrix∇2G(θ) are at dif-
ferent scales. One can also observe that it is quite useless to average the SG algorithm.

On can find in Figure 2 the boxplots of the N = 400 values of the squared error
‖θ̂n − θ‖2 computed for the TSN and SN algorithms, as well as for the deterministic
Newton-Raphson algorithm (NR).
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FIGURE 2. Boxplots of the squared error for the TSN, SN and the NR algorithms.

5.3. Some comments concerning the truncation. To close this section, let us make
some comments concerning the truncation term introduced in the TSN algorithm. This
short numerical experiment tends to show that the use of the truncation is artificial and
useless. Indeed, one can take the constant cα in (3.7) as small as possible and see that
the TSN and SN algorithms match. Finally, an inappropriate choice of cα can lead to a
poor numerical behavior of the TSN algorithm.
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6. PROOFS OF THE ALMOST SURE CONVERGENCE RESULTS

6.1. Two technical lemmas. We start the proofs of the almost sure convergence results
with two technical lemmas.

Lemma 6.1. Assume that the random vector Φ has a finite moment of order 2. Then, we have
the almost sure convergence for all 0 < β < 1,

(6.1) lim
n→∞

1
∑n

k=1 k−β

n

∑
k=1

k−βΦkΦT
k = E

[
ΦΦT] a.s

Remark 6.1. We obtain from (3.7) together with (3.8) that for all n > 1,

(6.2) Sn > cα

n

∑
k=1

k−βΦkΦT
k .

Denote by λmin(Sn) the minimum eigenvalue of the positive definite matrix Sn. We immedi-
ately obtain from (6.1) and (6.2) that for n large enough

λmin(Sn) >
λcα

2

n

∑
k=1

k−β >
λcα

2
n1−β a.s

where λ stands for the minimum eigenvalue of the positive definite deterministic matrix E
[
ΦΦT].

Consequently, we have under assumption (A1) that for n large enough,

(λmin(Sn))
−2 6

4
λ2c2

α

1
n2(1−β)

a.s

Therefore, as soon as β ∈]0, 1/2[,

(6.3)
∞

∑
n=1

(λmin (Sn))
−2 < ∞ a.s

Proof. It follows from a straightforward Abel transform calculation that
n

∑
k=1

k−βΦkΦT
k =

n

∑
k=1

k−β
(
Σk − Σk−1

)
,

= n−βΣn +
n−1

∑
k=1

(
k−β − (k + 1)−β

)
Σk,

= n−βΣn +
n−1

∑
k=1

bkk−1Σk(6.4)

where Σ0 = 0 and for all n > 1,

Σn =
n

∑
k=1

ΦkΦT
k and bn = n

(
n−β − (n + 1)−β

)
.
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On the one hand, we obtain from the standard strong law of large numbers that

(6.5) lim
n→∞

1
n

Σn = E
[
ΦΦT] a.s

On the other hand,
n

∑
k=1

bk =
n

∑
k=1

k−β − n1−β

which implies that

lim
n→∞

1
n1−β

n

∑
k=1

bk =
β

1− β
.

Then, we deduce from Toeplitz’s lemma given e.g. in ([4], page 54) that

(6.6) lim
n→∞

1
n1−β

n−1

∑
k=1

bkk−1Σk =
β

1− β
E
[
ΦΦT] a.s

Consequently, we obtain from (6.4) together with (6.5) and (6.6) that

lim
n→∞

1
n1−β

n

∑
k=1

k−βΦkΦT
k =

1
1− β

E
[
ΦΦT] a.s

which immediately leads to (6.1). �

Our second lemma concerns a useful Lipschitz property of the function α defined, for
all h, ` ∈ Rd+1, by

(6.7) α (h, `) = π
(
hT`
)(

1− π
(
hT`
))

=
1

4 (cosh (hT`/2))2 .

Lemma 6.2. For all h, `, `′ ∈ Rd+1, we have

(6.8)
∣∣α (h, `)− α

(
h, `′

)∣∣ 6 1
12
√

3
‖h‖

∥∥`− `′
∥∥ .

Proof. Let ϕ be the function defined, for all x ∈ R, by

ϕ(x) = π(x)(1− π(x)) =
exp(x)

(1 + exp(x))2 =
1

4(cosh(x/2))2 .

We clearly have

ϕ′(x) =
exp(x)(1− exp(x))

(1 + exp(x))3 ,

ϕ′′(x) =
exp(x)((exp(x))2 − 4 exp(x) + 1)

(1 + exp(x))4 .

It is not hard to see that for all x ∈ R,

(6.9) |ϕ′(x)| 6 1
6
√

3
.
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Hence, it follows from (6.9) together with the mean value theorem that for all x, y ∈ R,

(6.10) |ϕ(x)− ϕ(y)| 6 1
6
√

3
|x− y|.

Consequently, we obtain from (6.10) that for all h, `, `′ ∈ Rd+1,∣∣α (h, `)− α
(
h, `′

)∣∣ 6 1
12
√

3

∣∣hT(`− `′)
∣∣ 6 1

12
√

3
‖h‖

∥∥`− `′
∥∥

which completes the proof of Lemma 6.2. �

6.2. Proof of Theorem 4.1. We are now in the position to proceed to the proof of the
almost sure convergence (4.1). By a Taylor expansion of the twice continuously differ-
entiable functional G, there exists ξn ∈ Rd+1 such that

(6.11) G
(
θ̂n+1

)
= G

(
θ̂n
)
+∇G

(
θ̂n
)T(

θ̂n+1− θ̂n
)
+

1
2
(
θ̂n+1− θ̂n

)T∇2G(ξn)
(
θ̂n+1− θ̂n

)
.

We clearly have from (2.3) that∥∥∥∇2G(ξn)
∥∥∥ 6 1

4
E
[
‖Φ‖2].

Hence, we obtain from (3.5) together with (6.11) that

G
(
θ̂n+1

)
6 G

(
θ̂n
)
+∇G

(
θ̂n
)T(

θ̂n+1 − θ̂n
)
+

1
8

E
[
‖Φ‖2]∥∥θ̂n+1 − θ̂n

∥∥2,

= G
(
θ̂n
)
−∇G

(
θ̂n
)TS−1

n Zn+1 +
1
8

E
[
‖Φ‖2]∥∥S−1

n Zn+1
∥∥2,

6 G
(
θ̂n
)
−∇G

(
θ̂n
)TS−1

n Zn+1 +
1
8

E
[
‖Φ‖2] (λmin (Sn))

−2 ∥∥Zn+1
∥∥2

where Zn+1 = ∇hg
(
Φn+1, Yn+1, θ̂n

)
. Since ‖Zn+1‖ 6 ‖Φn+1‖, it implies that

(6.12) G
(
θ̂n+1

)
6 G

(
θ̂n
)
−∇G

(
θ̂n
)TS−1

n Zn+1 +
1
8

E
[
‖Φ‖2] (λmin (Sn))

−2 ∥∥Φn+1
∥∥2.

Let F = (Fn) be the filtration given, for all n > 1, by Fn = σ ((Φ1, Y1) , . . . , (Φn, Yn)).
We clearly have E [Zn+1|Fn] = ∇G

(
θ̂n
)
. Consequently, we obtain from (6.12) that

(6.13)

E
[
G
(
θ̂n+1

)
|Fn
]
6 G

(
θ̂n
)
−∇G

(
θ̂n
)TS−1

n ∇G
(
θ̂n
)
+

1
8
(
E
[
‖Φ‖2])2(

λmin (Sn)
)−2 a.s.

Our goal is now to apply the Robbins-Siegmund theorem ([4], page 18) to the three
positive sequences (Vn), (An) and (Bn) given by Vn = G

(
θ̂n
)
,

An =
1
8
(
E
[
‖Φ‖2])2(

λmin (Sn)
)−2 and Bn =

∥∥S−1/2
n ∇G

(
θ̂n
)∥∥2.
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It clearly follows from (6.13) that

E
[
Vn+1|Fn

]
6 Vn + An − Bn a.s.

Moreover, we already saw from (6.3) that

(6.14)
∞

∑
n=1

An < ∞ a.s

Consequently, we can deduce from the Robbins-Siegmund theorem that (Vn) conver-
gences almost surely to a finite random variable and

(6.15)
∞

∑
n=1

Bn < ∞ a.s

Furthermore, since Bn > (λmax (Sn))
−1 ∥∥∇G

(
θ̂n

)∥∥2, we get from (6.15) that

(6.16)
∞

∑
n=1

(λmax (Sn))
−1 ∥∥∇G

(
θ̂n

)∥∥2
< ∞ a.s

In addition, we obtain from (3.7) together with (3.8) that

λmax (Sn) 6 1 +
1
4

λmax

( n

∑
k=1

ΦkΦT
k

)
since, for all n > 1, αn 6 1/4. Therefore, (6.5) ensures that for n large enough

λmax(Sn) 6 Λn a.s

where Λ is for the maximum eigenvalue of the positive definite deterministic matrix
E
[
ΦΦT]. It implies that

(6.17)
∞

∑
n=1

(λmax (Sn))
−1 = +∞ a.s

Hence, it follows from the conjunction of (6.16) and (6.17) that ∇G
(
θ̂n
)

converges to
0 almost surely. It means that θ̂n converges almost surely to the unique zero θ of the
gradient, which is exactly what we wanted to prove. It remains to prove the almost
sure convergence (4.2). We infer from (3.8) that

(6.18) Sn =
1
n

n

∑
k=1

(
αk − α

(
Φk, θ̂k−1

))
ΦkΦT

k +
1
n

n

∑
k=1

α
(
Φk, θ̂k−1

)
ΦkΦT

k +
1
n

Id+1.

We now give the convergence of the two terms on the right-hand side of (6.18). For
the first one, one can observe that αn = α

(
Φn, θ̂n−1

)
as soon as α

(
Φn, θ̂n−1

)
> cαn−β.
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Consequently,

1
n

n

∑
k=1

(
αk − α

(
Φk, θ̂k−1

))
ΦkΦT

k =
1
n

n

∑
k=1

(
αk − α

(
Φk, θ̂k−1

))
ΦkΦT

k I{
α(Φk,θ̂k−1)6cαk−β

}.

It implies that ∥∥∥ 1
n

n

∑
k=1

(
αk − α

(
Φk, θ̂k−1

))
ΦkΦT

k

∥∥∥ 6 cα

n

n

∑
k=1

1
kβ

∥∥Φk
∥∥2.

However, one can easily check from Lemma 6.1 that

lim
n→∞

1
n

n

∑
k=1

1
kβ

∥∥Φk
∥∥2

= 0 a.s

It means that the first term on the right-hand side of (6.18) goes to 0 almost surely. We
now study the convergence of the second term on the right-hand side of (6.18) which
can be rewritten as

1
n

n

∑
k=1

α
(
Φk, θ̂k−1

)
ΦkΦT

k =
1
n

n

∑
k=1

α
(
Φk, θ

)
ΦkΦT

k . +
1
n

n

∑
k=1

(
α
(
Φk, θ̂k−1

)
− α
(
Φk, θ

))
ΦkΦT

k

On the one hand, thanks to the standard strong law of large numbers, we clearly have

(6.19) lim
n→∞

1
n

n

∑
k=1

α
(
Φk, θ

)
ΦkΦT

k = E
[
α
(
Φ, θ

)
ΦΦT] = ∇2G(θ) a.s

On the other hand, denote by Rn the remainder

Rn =
n

∑
k=1

(
α
(
Φk, θ̂k−1

)
− α
(
Φk, θ

))
ΦkΦT

k .

We can split Rn into two terms Rn = Pn + Qn where, for some positive constant M,

Pn =
n

∑
k=1

(
α
(
Φk, θ̂k−1

)
− α
(
Φk, θ

))
ΦkΦT

k I{
‖Φk‖6M

}
Qn =

n

∑
k=1

(
α
(
Φk, θ̂k−1

)
− α
(
Φk, θ

))
ΦkΦT

k I{
‖Φk‖>M

}.

It follows from the Lipschitz property of the function α given is Lemma 6.2 that∥∥∥ 1
n

Pn

∥∥∥ 6 M
12
√

3
1
n

n

∑
k=1

∥∥θ̂k−1 − θ
∥∥ ‖Φk‖2 .

Hence, we deduce from (4.1) together with (6.5) that

(6.20) lim
n→∞

1
n

Pn = 0 a.s
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Furthermore, we also have∥∥∥ 1
n

Qn

∥∥∥ 6 1
2n

n

∑
k=1
‖Φk‖2 I{

‖Φk‖>M
}.

We deduce once again from the strong law of large numbers that

lim
n→∞

1
n

n

∑
k=1
‖Φk‖2 I{

‖Φk‖>M
} = E

[
‖Φ‖2 I{

‖Φ‖>M
}] a.s

which implies via (6.20) that for any positive constant M,

(6.21) lim sup
n→∞

∥∥∥ 1
n

Rn

∥∥∥ 6 1
2

E
[
‖Φ‖2 I{

‖Φ‖>M
}] a.s

Nonetheless, we obtain from the Lebesgue dominated convergence theorem that

lim
M→∞

E
[
‖Φ‖2 I{

‖Φ‖>M
}] = 0.

Consequently, we find from (6.21)

lim
n→∞

1
n

Rn = 0 a.s

Finally, (4.2) follows from (6.18) and (6.19), which achieves the proof of Theorem 4.1.

6.3. Proof of Theorem 4.2. It follows from equation (3.5) that for all n > 1,

θ̂n+1 − θ = θ̂n − θ − 1
n

(
S−1

n − S−1
)

Zn+1 −
1
n

S−1Zn+1

where Zn+1 = ∇hg
(
Φn+1, Yn+1, θ̂n

)
and S = ∇2G(θ). Consequently,

(6.22) θ̂n+1 − θ = θ̂n − θ − 1
n

(
S−1

n − S−1
)

Zn+1 −
1
n

S−1
(
∇G

(
θ̂n
)
+ εn+1

)
where εn+1 = Zn+1 − ∇G

(
θ̂n
)
. We already saw that E [Zn+1|Fn] = ∇G

(
θ̂n
)

which
clearly implies that (εn) is a martingale difference sequence, E [εn+1|Fn] = 0. Denote
by δn the remainder of the Taylor’s expansion of the gradient

δn = ∇G
(
θ̂n
)
−∇2G(θ)

(
θ̂n − θ

)
= ∇G

(
θ̂n
)
− S

(
θ̂n − θ

)
.

We deduce from (6.22) that for all n > 1,

(6.23) θ̂n+1 − θ =
(

1− 1
n

)(
θ̂n − θ

)
− 1

n

(
S−1

n − S−1
)

Zn+1 −
1
n

S−1
(

δn + εn+1

)
,
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which leads to

θ̂n+1 − θ = − 1
n

n

∑
k=1

(
S−1

k − S−1
)

Zk+1 −
1
n

S−1
n

∑
k=1

(
δk + εk+1

)
,

= − 1
n

n

∑
k=1

(
S−1

k − S−1
)(

εk+1 +∇G
(
θ̂k
))
− 1

n
S−1

n

∑
k=1

(
δk + εk+1

)
,

= − 1
n

Mn+1 − ∆n(6.24)

where

Mn+1 =
n

∑
k=1

S−1
k εk+1

and

∆n =
1
n

n

∑
k=1

(
S−1

k − S−1
)
∇G

(
θ̂k
)
+

1
n

S−1
n

∑
k=1

δk,

=
1
n

n

∑
k=1

(
S−1

k − S−1
)

S
(

θ̂k − θ
)
+

1
n

n

∑
k=1

S−1
k δk.(6.25)

We claim that the remainder δn is negligeable. As a matter of fact,

‖δn‖ =
∥∥∥∫ 1

0
∇2G

(
θ + t

(
θ̂n − θ

))(
θ̂n − θ

)
dt−∇2G(θ)

(
θ̂n − θ

)∥∥∥,

6
∫ 1

0

∥∥∥∇2G
(
θ + t

(
θ̂n − θ

))
−∇2G(θ)

∥∥∥dt
∥∥θ̂n − θ

∥∥.

However, the functional G is twice continuously differentiable and θ̂n converges almost
surely to θ, which ensures that

(6.26) ‖δn‖ = o
(∥∥θ̂n − θ

∥∥) a.s

Then, we obtain from (4.2), (6.25) and (6.26) that it exists a constant 0 < c < 1/2 and a
finite positive random variable D such that for all n > 1,

(6.27) ‖∆n‖ 6 cLn +
1
n

D a.s

where

Ln =
1
n

n

∑
k=1
‖θ̂k − θ‖.
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Therefore, we deduce from (6.24) and (6.27) that for all n > 1,

Ln+1 =
(

1− 1
n + 1

)
Ln +

1
n + 1

‖θ̂n+1 − θ‖,

6
(

1− 1
n + 1

)
Ln +

1
n + 1

( 1
n
‖Mn+1‖+ ‖∆n‖

)
a.s

6
(

1− d
n + 1

)
Ln +

1
n(n + 1)

(
‖Mn+1‖+ D

)
a.s

where d = 1− c. It clearly implies by induction that for all n > 1,

(6.28) Ln 6
n

∏
k=2

(
1− d

k

)
L1 +

n

∑
k=2

n

∏
i=k+1

(
1− d

i

) 1
k(k + 1)

(
‖Mk+1‖+ D

)
a.s

Hereafter, we shall proceed to the evaluation of the right-hand side term in (6.28).
The sequence (Mn) is a locally square-integrable multi-dimensional martingale with
predictable quadratic variation given by

(6.29) 〈M〉n =
n

∑
k=2

S−1
k−1E

[
εkεT

k |Fk−1
]
S−1

k−1.

However, for all n > 1,

E
[
εn+1εT

n+1|Fn
]

= E
[

Zn+1ZT
n+1|Fn

]
−∇G

(
θ̂n
)
∇G

(
θ̂n
)T

= E
[(

π
(
θ̂T

n Φn+1
)
−Yn+1

)2
Φn+1ΦT

n+1|Fn

]
−∇G

(
θ̂n
)
∇G

(
θ̂n
)T

= E
[(

π
(
θ̂T

n Φn+1
)
− π

(
θTΦn+1

)
+ π

(
θTΦn+1

)
−Yn+1

)2
Φn+1ΦT

n+1|Fn

]
− ∇G

(
θ̂n
)
∇G

(
θ̂n
)T.

Since E
[
Yn+1|Φn+1

]
= π

(
θTΦn+1

)
, we obtain that for all n > 1,

E
[
εn+1εT

n+1|Fn
]

= E
[(

π
(
θ̂T

n Φn+1
)
− π

(
θTΦn+1

))2
Φn+1ΦT

n+1|Fn

]
+ E

[(
π
(
θTΦn+1

)
−Yn+1)

)2
Φn+1ΦT

n+1|Fn

]
−∇G

(
θ̂n
)
∇G

(
θ̂n
)T

= E
[(

π
(
θ̂T

n Φn+1
)
− π

(
θTΦn+1

))2
Φn+1ΦT

n+1|Fn

]
+∇2G(θ)

− ∇G
(
θ̂n
)
∇G

(
θ̂n
)T.

By continuity together with (4.1), we have the almost sure convergences

lim
n→∞
∇G

(
θ̂n
)
∇G

(
θ̂n
)T

= 0 a.s
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and
lim

n→∞
E
[(

π
(
θ̂T

n Φn+1
)
− π

(
θTΦn+1

))2
Φn+1ΦT

n+1|Fn

]
= 0 a.s

Therefore, we obtain from (4.2) and (6.29) that

(6.30) lim
n→∞

1
n
〈M〉n =

(
∇2G (θ)

)−1 a.s

Hence, it follows from the strong law of large numbers for multi-dimensional martin-
gales given e.g. by Theorem 4.13.16 in [4] that for any γ > 0,

(6.31)
∥∥Mn

∥∥2
= o

(
n
(
log n

)1+γ) a.s

Moreover, if the random vector Φ has a finite moment of order > 2, we also have the
more precise almost sure rate of convergence

(6.32)
∥∥Mn

∥∥2
= O

(
n log n

)
a.s

We will prove (4.4) inasmuch as the proof for (4.3) follows essentially the same lines.
We deduce from (6.32) that it exists a finite positive random variable C such that for all
n > 1

(6.33)
∥∥Mn+1

∥∥ 6 C
√

n log n a.s

We are now in position to find an upper-bound for inequality (6.28). Via the elementary
1− x 6 exp(−x), we clearly have

n

∏
k=2

(
1− d

k

)
6
( 2

n + 1

)d
and

n

∏
i=k+1

(
1− d

i

)
6
( k + 1

n + 1

)d
.

Consequently, we obtain from (6.28) and (6.33) that for all n > 1,

Ln 6
( 2

n + 1

)d
L1 +

n

∑
k=2

( k + 1
n + 1

)d 1
k(k + 1)

(
C
√

k log k + D
)

a.s

leading to

(6.34) Ln 6
( 2

n

)d
L1 +

A
(
log n

)1/2

nd

n

∑
k=2

1
ka a.s

where A = max(C, D) and a = 3/2− d = 1/2+ c. Hereafter, we recall that the positive
constant c has been chosen such that c < 1/2 which means that 0 < a < 1. Hence, we
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find from (6.34) that for all n > 1,

Ln 6
( 2

n

)d
L1 +

A
(
log n

)1/2

nd+a−1 a.s

6
( 2

n

)d
L1 + A

( log n
n

)1/2
a.s

Since d > 1/2, it immediately implies that

(6.35) L2
n = O

( log n
n

)
a.s

Then, it follows from the conjunction of (6.27) and (6.35) that

‖∆n‖2 = O
( log n

n

)
a.s

It ensures, via (6.24) and (6.32), that

‖θ̂n − θ‖2 = O
( log n

n

)
a.s

which is exactly what we wanted to prove.

6.4. Proof of Theorem 4.3. First of all, it follows from (3.8) that Sn can be splitted into
two terms

Sn =
1
n

n

∑
k=1

αkΦkΦT
k +

1
n

Id+1

=
1
n

Tn +
1
n

n

∑
k=1

E
[
αkΦkΦT

k |Fk−1
]
+

1
n

Id+1(6.36)

where

Tn =
n

∑
k=1

αkΦkΦT
k −E

[
αkΦkΦT

k |Fk−1
]
.

The sequence (Tn) is a locally square-integrable multi-dimensional martingale. Since
the random vector Φ has a finite moment of order 4 and for all n > 1, αn 6 1/4, we
obtain from the strong law of large numbers for multi-dimensional martingales given
e.g. by Theorem 4.13.16 in [4] that for any γ > 0,

(6.37)
∥∥Tn

∥∥2
= o

(
n
(
log n

)1+γ) a.s

Let us now give the rate of convergence of the second term on the right-hand side of
(6.36). On the one hand, we have the decomposition

n

∑
k=1

αkΦkΦT
k =

n

∑
k=1

(
αk − α

(
Φk, θ̂k−1

))
ΦkΦT

k +
n

∑
k=1

α
(
Φk, θ̂k−1

)
ΦkΦT

k .
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We already saw in the proof of Theorem 4.1 that

(6.38)
n

∑
k=1

(
αk − α

(
Φk, θ̂k−1

))
ΦkΦT

k 6 cα

n

∑
k=1

1
kβ

ΦkΦT
k

Hence, by taking the conditionnal expectation on both sides of (6.38), we obtain that∥∥∥ n

∑
k=1

E
[(

αk − α
(
Φk, θ̂k−1

))
ΦkΦT

k |Fk−1

]∥∥∥ 6 cα

n

∑
k=1

1
kβ

E
[
‖Φk‖2|Fk−1

]
6

cαE
[
‖Φ‖2]

1− β
n1−β.(6.39)

On the other hand,
n

∑
k=1

E
[
α
(
Φk, θ̂k−1

)
ΦkΦT

k |Fk−1

]
=

n

∑
k=1

(
∇2G

(
θ̂k−1

)
−∇2G

(
θ
))

+ n∇2G
(
θ
)
.

Consequently, we immediately deduce from inequality (6.8) that∥∥∥ n

∑
k=1

E
[
α
(
Φk, θ̂k−1

)
ΦkΦT

k |Fk−1

]
− n∇2G

(
θ
)∥∥∥ 6 n

∑
k=1

∥∥∥∇2G
(
θ̂k−1

)
−∇2G

(
θ
)∥∥∥

6
1

12
√

3

n

∑
k=1

∥∥θ̂k−1 − θ
∥∥E
[
‖Φk‖3|Fk−1

]
which implies that

(6.40)
∥∥∥ n

∑
k=1

E
[
α
(
Φk, θ̂k−1

)
ΦkΦT

k |Fk−1

]
− n∇2G

(
θ
)∥∥∥ 6 E

[
‖Φ‖3]

12
√

3

n

∑
k=1

∥∥θ̂k−1 − θ
∥∥

Finally, it follows from the conjunction of (6.37), (6.39) and (6.40) together with (6.35)
that for all 0 < β < 1/2,∥∥Sn −∇2G (θ)

∥∥2
= O

(
1

n2β

)
a.s

which achieves the proof of (4.5). Moreover, we obtain (4.6) from (4.5) via the identity

S−1
n −

(
∇2G (θ)

)−1
= S−1

n

(
∇2G (θ)− Sn

) (
∇2G (θ)

)−1
.

7. PROOFS OF THE ASYMPTOTIC NORMALITY RESULT

We are now in the position to proceed to the proof of the asymptotic normality (4.7).
We clearly have from (6.24) that

(7.1)
√

n
(
θ̂n+1 − θ

)
= − 1√

n
Mn+1 − Rn
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where the remainder Rn =
√

n∆n. First of all, we claim that

(7.2) lim
n→∞

Rn = 0 a.s

As a matter of fact, it follows from (6.25) that Rn = Pn + Qn where

Pn =
1√
n

n

∑
k=1

(
S−1

k − S−1
)

S
(

θ̂k − θ
)

,

Qn =
1√
n

n

∑
k=1

S−1
k δk.

We have from (4.4) together with (4.6) that

‖Pn‖ = O

(
1√
n

n

∑
k=1

1
kβ

√
log k√

k

)
= O

(√
log n
nβ

)
a.s

which implies that

(7.3) lim
n→∞

Pn = 0 a.s

Moreover, we obtain from inequality (6.8) and (4.4) that

‖Qn‖ = O

(
1√
n

n

∑
k=1

∥∥θ̂k − θ
∥∥2
)

= O

(
1√
n

n

∑
k=1

log k
k

)
= O

(
(log n)2
√

n

)
a.s

which also implies that

(7.4) lim
n→∞

Qn = 0 a.s

Consequently, (7.3) and (7.4) clearly lead to convergence (7.2). Hereafter, it only re-
mains to study the asymptotic behavior of the martingale term Mn. We already saw
from (6.30) that its predictable quadratic variation 〈M〉n satisfies

lim
n→∞

1
n
〈M〉n =

(
∇2G (θ)

)−1 a.s

In addtion, as εn+1 = ∇hg
(
Φn+1, Yn+1, θ̂n

)
−∇G

(
θ̂n
)
, we clearly have the very simple

upper-bound ∥∥εn+1
∥∥ 6 ∥∥Φn+1

∥∥+ E
[∥∥Φ

∥∥].
Hence, since Φ has a finite moment of order 4,

(7.5) sup
n>1

E
[∥∥εn

∥∥4]
< ∞

Therefore, we immediately obtain from (7.5) that (Mn) satisfies Lindeberg’s condition.
Finally, we deduce from the central limit theorem for martingales given by Corollary
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2.1.10 in [4] that
1√
n

Mn
L−−−→

n→∞
N
(

0,
(
∇2G (θ)

)−1)
which, via (7.1) and (7.2), completes the proof of Theorem 4.4.
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