
Finite automata, probabilistic method, and occurrence 
enumeration of a pattern in words and permutations

Toufik Mansour*, Reza Rastegar†, Alexander Roitershtein‡

*Department of Mathematics, University of Haifa, 199 Abba Khoushy Ave, 3498838 Haifa, Israel

†Occidental Petroleum Corporation, Houston, TX 77046 and Departments of Mathematics and 
Petroleum Engineering, University of Tulsa, OK 74104, USA - Adjunct Professor

‡Department of Statistics, Texas A&M University, College Station, TX 77843, USA

Abstract

The main theme of this paper is the enumeration of the order-isomorphic occurrence of a pattern in 

words and permutations. We mainly focus on asymptotic properties of the sequence fr
v(k, n), the 

number of n-array k-ary words that contain a given pattern v exactly r times. In addition, we study 

the asymptotic behavior of the random variable Xn, the number of pattern occurrences in a random 

n-array word. The two topics are closely related through the identity P(Xn = r) = 1
knfr

v(k, n). In 

particular, we show that for any r ≥ 0, the Stanley-Wilf sequence (fr
v(k, n))1 ∕ n

 converges to a limit 

independent of r, and determine the value of the limit. We then obtain several limit theorems for 

the distribution of Xn, including a central limit theorem, large deviation estimates, and the exact 

growth rate of the entropy of Xn. Furthermore, we introduce a concept of weak avoidance and link 

it to a certain family of non-product measures on words that penalize pattern occurrences but do 

not forbid them entirely. We analyze this family of probability measures in a small parameter 

regime, where the distributions can be understood as a perturbation of a uniform measure. Finally, 

we extend some of our results for words, including the one regarding the equivalence of the limits 

of the Stanley-Wilf sequences, to pattern occurrences in permutations.
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1 Introduction and main results

Pattern occurrence enumeration is a central topic in modern combinatorics, see for instance 

the monographs [8, 16, 20, 25]. In this paper, we are primarily concerned with pattern 

occurrence problem for words, however, we provide the extension of certain results in the 
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context of permutations. We define words as finite arrays of letters from an alphabet [k] := 

{1, … , k}, for some given k ∈ ℕ. A pattern is any distinguished word, and occurrence of a 

pattern v in a word w is a subsequence of letters in w (not necessarily consecutive) that are 

in the same relative order as the letters in v. For instance, the word w = 37451554 has four 

occurrences of the pattern v = 1332, namely 3 * *5 * 5 * 4, 3 * *5 * *54, 3 * * * *554, and * 

* * * 1554. See Subsection 2.1 for a more formal introduction of the concept. Occurrences 

of patterns in permutations are defined similarly, see the beginning of Section 3 for details.

Suppose that the alphabet [k] and a pattern v ∈ [k]ℓ are given, and that exactly d ≤ ℓ distinct 

letters are used to form the pattern v. For instance, if k = 7 and v = 35731, then ℓ = 5 and d = 

4. Our main object of interest is the frequency sequence fr
v(k, n), namely the number of 

words in [k]n that contain the pattern v exactly r times. We also study the asymptotic 

behavior of the partial sums grv(k, n) = ∑j ≤ rfr
v(k, n) and Xn, the number of occurrences of v 

in a random word distributed uniformly over [k]n. Remark that the distribution of the 

random variable Xn is related to the sequences fr
v(k, n) and grv(k, n) through the identities

P(Xn = r) = 1
kn fr

v(k, n) and P(Xn ≤ r) = 1
kn grv(k, n) . (1)

The starting point of our study is the celebrated Stanley-Wilf conjecture which states that the 

number of permutations of size n avoiding a pattern grows exponentially. The conjecture 

was settled by Marcus and Tardos [27] in 2004, see [11, 17, 25, 34] for a review of the 

history and recent developments in the field. The analogue of this result for the words is the 

convergence of the series (f0
v(k, n))1 ∕ n

. This was proved by Brändén and Mansour in [9] via 

a combinatorial analysis of certain finite automata that generate words avoiding a given 

pattern. In fact, it was shown in [9] that limn ∞(f0
v(k, n))1 ∕ n = d − 1, where d is the number 

of distinct letters in the pattern v. In Section 2.2, we generalize this result to all r ≥ 0. 

Specifically, we show the following (as stated in Theorems 2.7 and 2.8):

Theorem A.

a. For any integer r ≥ 0,

lim
n ∞

(frv(k, n))
1
n = lim

n ∞
(grv(k, n))

1
n = d − 1,

where d is the number of distinct letters in the pattern v.

b. Assume that d > 1. Then for any r ≥ 0, there exist a positive integer Mr ∈ ℕ and 

real constants Cr ∈ (0, ∞) and Kr ≥ 0 such that

lim
n ∞

grv(k, n)

nMr(d − 1)n
= Cr and lim

n ∞
frv(k, n)

nMr(d − 1)n
= Kr .
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We remark that in various examples with d > 1, we are able to verify Kr > 0. Nevertheless, 

we believe that it may be zero in some cases, see the discussion in Section 2.3.

We also give the following extension of this result for permutations. Let ξ be a given 

permutation pattern of size k and fr
ξ(n) denote the number of permutations of size n that 

contain ξ exactly r times, r ≥ 0. We have (Theorem 3.1 below):

Theorem B. For any r ∈ ℕ, limn ∞(fr
ξ(n))

1
n  exists and is equal to limn ∞(f0

ξ(n))
1
n .

In contrast to the obtained results in the context of words, we cannot describe the exact 

structure of Stanley-Wilf type limits as a function of the parameters (r, ξ) in a general form.

The next result turns out to be a direct implication of Theorem A. It is stated below as 

Theorem 2.11.

Theorem C. If d > 1, then, limn ∞
Hk, v(n)

n = log k
d − 1 , where Hk,v (n) is the entropy of Xn 

defined in (16).

Loosely speaking, for a given n, the entropy Hk,v (n) measures the amount of uncertainty in 

the value of the random variable Xn. Consequently, the entropy sequence Hk,v (.) is 

subadditive, namely Hk,v(n + m) ≤ Hk,v(n) + Hk,v(m) because of the dependence of pattern 

occurrences each of other. The convergence of 
Hk, v(n)

n  is thus ensured by Fekete’s 

subadditivity lemma. Theorem 2.11 then gives the precise value of this limit for an arbitrary 

pattern v.

In Sections 2.4 and 2.5 we study the asymptotic behavior of the sequence (Xn)n ∈ ℕ. In 

Section 2.5 we obtain a central limit theorem and several related asymptotic results for the 

distribution of Xn. The following result is an analogue of the central limit theorem (CLT) for 

permutations obtained by Bóna in [8]. The bulk of the proof is an estimation of the variance 

of Xn referred to as VAR(Xn). The latter, together with general theorems of [29] and [23], 

yields also a Berry-Esseen type bound for the rate of convergence and large deviation 

estimates stated, respectively, in Corollaries 2.14 and 2.15. The following is the content of 

Theorem 2.12.

Theorem D. Let μn = E(Xn) and σn = VAR(Xn). Then μn = n
ℓ

k
d

1
kℓ , σn grows when n → 

∞ as c
μn

n , where c is a strictly positive constant, and 
Xn − μn

σn
 converges in distribution, as n 

→ ∞, to a standard normal random variable.

For a pattern of length ℓ, there are 
n
ℓ  places in a word w ∈ [k]n where the pattern might 

occur. Enumerate them in an arbitrary way, and let Xn,i(w) be the indicator of the event that 

the pattern occurs at the i-th place in w. Choose a parameter x ∈ [0, 1] and consider the 

following partition function penalizing the occurrences of v :
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ck, n
v (x) = ∑

w ∈ [k]n
∏

i = 1

n
ℓ

(1 − xXn, i(w)) = ∑
w ∈ [k]n

(1 − x)occv(w) = ∑
r ≥ 0

frv(k, n)(1 − x)r .

Using this partition function, one can construct a Boltzmann distribution on [k]n as follows:

ℚk, n
v, x(A) = 1

ck, n
v (x)

∑
w ∈ A

(1 − x)occv(w), A ⊂ [k]n .

The probability measure ℚk, n
v, x( ⋅ ) penalizes words w with a non-zero occv(w) with the factor 

(1 − x)occv(w), but unless x = 1 it doesn’t forbid them completely. We refer to a random word 

w distributed according to ℚk, n
v, x as weakly avoiding the pattern v. The construction and the 

terminology are inspired by their analogue in the theory of self-avoiding walks, where a 

similar construction is used to penalize self-intersection of the path of a random walk and 

introduce weakly self-avoiding walks [5]. Similar construction for permutations is outlined 

in Section 3.2. In the case of permutations and the inversion pattern 21, the above probability 

measure is a Mallow’s distribution. Mallow’s permutations have been studied by many 

authors, see, for instance, recent work [12, 19, 30] and references therein.

We remark that when x = 0, the above results for Xn hold under ℚk, n
v, x as ℚk, n

v, x is the uniform 

distribution over [k]n. One would then expect that for a sequence (xn)n ∈ ℕ decaying to zero 

sufficiently fast, similar limit theorems hold for ℚk, n
v, xn. Indeed, by using perturbation 

techniques we prove this the following (see Theorem 2.17):

Theorem E. The following holds for any t ∈ ℝ and a sequence of positive reals (ρn)n ∈ ℕ

such that γ ≔ limn ∞
nℓ
ρn

∈ [0, + ∞) :

a.
limn ∞E

k, n

v, 1
ρn (e

tXn
nℓ ) = exp t

kℓℓ!
k
d .

b.
limn ∞

1
n log E

k, n

v, 1
ρn (e

tXn n
nℓ ) = Jk, vt, where Jk,v are strictly positive constants.

c.
Let ℚn(r) = ℚ

k, n

v, 1
ρn (Xn = r) and ℍn = − ∑r ≥ 0ℚn(r) log ℚn(r) be the entropy of Xn 

under the law ℚ
k, n

v, 1
ρn . Then limn ∞

ℍn
n = log k

d − 1 + γ
kℓℓ!

k
d .

Note that in the context of permutations, somewhat similar perturbative regimes for 

Mallow’s permutations were recently studied in [6, 19, 33].
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Another interesting result closely related to Theorem D (Theorem 2.12 below) is a limit 

theorem dealing with a Poisson approximation of Xn in the case when d = dn is a rapidly 

increasing function of n. The result is an analogue for random words of [12, Theorem 3.1] 

for random permutations, it is stated below as Theorem 2.20.

Theorem F. Suppose that sequences of natural numbers (kn)n ∈ ℕ, (ℓn)n ∈ ℕ, and (dn)n ∈ ℕ
satisfy the following condition:

There exist constants A > 0 and β > 2
2 + δ  such that min{kn, ℓn} ≥ dn ≥ Anβ for all n ∈ ℕ, 

where δ = lim infn ∞
dn
ℓn

.

Consider an arbitrary sequence of patterns vn ∈ [kn]ℓn, n ∈ ℕ, with dn distinct letters used to 
form vn. Let Xn = occvn (Wn), where Wn is drawn at random from [kn]n. Then

lim
n ∞

fr
vn(kn, n)

knn
−

μnre−μn
r! = 0,

for any integer r ≥ 0.

The paper is structured as follows. Section 2 is devoted to pattern occurrences in words. The 

framework is formally introduced in Section 2.1. In Section 2.2 we study the sequences 

fr
v(k, n) and grv(k, n), r ≥ 0. The generating functions are explicitly computed for several 

examples using the automata approach and the transfer matrix method. The Stanley-Wilf 

limits of fr
v(k, n) and grv(k, n) are studied in Section 2.3. Section 2.4 is devoted to the study of 

words weakly avoiding a pattern. Section 2.5 contains various limit theorems for the 

distribution of the random variable Xn. Finally, within the framework of permutations the 

Stanley-Wilf type limits and words weakly avoiding a pattern are discussed in Section 3.

2 Pattern occurrences in words

In this section we focus on pattern occurrences in words and study the asymptotic behavior 

of fr
v(k, n) and Xn. The section is divided into five subsections. We begin with notation. 

Section’s organization is discussed in more detail at the end of Section 2.1.

2.1 Notation and settings

Let ℕ and ℕ0 denote, respectively, the set of natural numbers and the set of non-negative 

integers, that is ℕ0 = ℕ ∪ {0}. For a given set A, #A is the cardinality of A. For any given 

k ∈ ℕ, we denote the set {1, 2, ⋯ k} by [k] and refer to it as an alphabet and to its elements 

as letters. A word of length n, is an element of [k]n, n ∈ ℕ. A language [k]∗ ≔ ⋃n = 0
∞ [k]n is 

the set of all words compound of letters in an alphabet [k]. We adopt the convention that [k]0 

= {ϵ}, where ϵ is an empty word. For any A ⊂ ℕ0 we denote by [k]A the union ⋃j∈A[k]j. For 

instance, [k]≥n = ⋃j≥n[k]j and [k]≤n = ⋃j≤n[k]j. We write a word w ∈ [k]n in the form w = 
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w(1) ⋯ w(n), where w(i) is the i-the letter of w. The concatenation of two words w ∈ [k]n 

and v ∈ [k]m is the word wv := w(1) ⋯ w(n)v(1) ⋯ v(m). For instance, the concatenation of 

w = 20 and v = 19 is wv = 2019. A pattern is any distinguished word in the underlying 

language [k]*.

Let us now fix integers k > 0, ℓ ≥ 2, and a pattern v in [k]ℓ. These parameters are considered 

to be given and fixed throughout the rest of Section 2. An important characteristic of the 

pattern turns out to be the number of distinct letters used to compound it. We will denote this 

number by d. For instance, if v = 33415, then ℓ = 5 and d = 4.

For a word w ∈ [k]n with n ≥ ℓ, an occurrence of the pattern v in w is a sequence of ℓ indices 

1 ≤ j1 < j2 < ⋯ < jℓ ≤ n such that the subword w(j1) ⋯ w(jℓ) ∈ [k]ℓ is order-isomorphic to the 

word v, that is

w(jp) < w(jq) vp < vq ∀1 ≤ p, q ≤ ℓ

and

w(jp) = w(jq) vp = vq ∀1 ≤ p, q ≤ ℓ .

For a word w ∈ [k]*, we denote by occv(w) the number of occurrences of v in w. For 

instance, if v is the inversion 21 and w = 35239, then occv(w) = 3 (for the following three 

occurrences of pairs of letters which appear in the reverse order: w(1)w(3) = 32, w(2)w(3) = 

52, and w(2)w(4) = 53). We say that a word w ∈ [k]* contains the pattern v exactly r times, 

r ∈ ℕ0, if occv(w) = r. For r ∈ ℕ0, we denote by fr
v(k, n) and grv(k, n), the number of words in 

[k]n that contain v, respectively, exactly r times and at most r times. That is,

fr
v(k, n) = #{w ∈ [k]n : occv(w) = r} and grv(k, n) = ∑

j = 0

r
fj

v(k, n) . (2)

We define their corresponding generating functions as

Fr, k
v (x) = ∑

n ≥ 0
fr

v(k, n)xn and Gr, k
v (x) = ∑

n ≥ 0
grv(k, n)xn . (3)

We remark that given fr
v(k, n) = 0 for r > n

ℓ , Fk, n
v (x) is a polynomial in x. Throughout this 

paper, an ~ bn, an = O(bn), and an = o(bn) for sequences an and bn with elements that might 

depend on k, r, ℓ, d, v and other parameters, means that, respectively, limn ∞
an
bn

= 1, 

lim supn ∞
an
bn

< ∞, and limn ∞
an
bn

= 0 for all feasible values of the parameters when 

the latter are fixed. As usual, an = Θ(bn) indicates that both an = O(bn) and bn = O(an) hold 

true.
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The remainder of this section is divided into four subsections. In Section 2.2 we study a 

finite state automaton that generates words w ∈ [k]n with a given value of occv(w). The 

words are then counted trough an application of the transfer-matrix method, allowing us to 

evaluate grv(k, n) and subsequently fr
v(k, n) in several interesting cases. The results of Section 

2.2 are then used in Section 2.3 to show that (see Theorem 2.7) for any r ≥ 0,

lim
n ∞

(frv(k, n))
1
n = lim

n ∞
(grv(k, n))

1
n = d − 1,

where d is the number of distinct letters in the pattern v. Theorem 2.7 is the main result of 

this paper. Remark that a similar result for permutations is given by Theorem 3.1 in Section 

3.1. We refer to limn ∞(fr
v(k, n))

1
n  and their counterparts for permutations in Theorem 3.1 

as Stanley-Wilf type limits.

Finally, Sections 2.4 and 2.5 deal with random words. Let Wn be a permutation chosen at 

random from [k]n and Xn = occv(Wn). In Section 2.5 we obtain a central limit theorem and 

several related asymptotic results for the distribution of Xn. The study of Xn is, in principle, 

equivalent to the study of the sequences fr
v(k, n) and grv(k, n) in view of the identities (1). In 

Section 2.4 we introduce a notion of weak avoidance for an arbitrary word pattern. In 

Theorem 2.17 we obtain limit theorems for random words avoiding a pattern weakly. The 

distribution of Wn is not uniform in this case, and we use the CLT for the uniform case and 

perturbation techniques to derive the results.

2.2 Finite automata and pattern occurrences

Following [9], we define a finite automata for counting occurrences of a fixed pattern in 

words over finite alphabet, which leads to Theorem 2.8 as extension of Theorem 3.1 in [9]. 

Given an integer r ≥ 0, we define an equivalence relation ~v;r on [k]* as follows. We say that 

two words w′ and w in [k]* are equivalent and write w′ ~v;r w if the following condition 

holds for all u ∈ [k]* :

occv(w′u) = m if and only if occv(wu) = m, ∀ m ≤ r . (4)

For instance, if k = 2, r = 1 and v = 12, then 1 ≁v;r 11 because occ12(12) = 1 and occ12(112) 

= 2. On the other hand, 11 ~v;r 111 because occ12(11u) = occ12(111u) = m for any m = 0, 1, 

and u ∈ [2]*. We denote the equivalence class of a word w by 〈w〉v;r. For simplicity in 

notation, we drop the indexes when context is clear. We remark that:

• w and w′ do not need to have the same length in order to be equivalent;

• if occv(w) > r and occv(w′) > r, then w ~v;r w′.

The latter observation implies that there is a unique equivalence class ℛ(v, r, k) such that

{w ∈ [k]∗ : occv(w) > r} ⊂ ℛ(v, r, k) .
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Since the empty word ϵ is an element of the language [k]*, it follows from (4) that if 

occv(w) ≤ r then

w v; r ⊂ {w′ ∈ [k]∗ : occv(w′) = occv(w)} .

In particular,

ℛ(v, r, k) = {w ∈ [k]∗ : occv(w) > r} . (5)

The following lemma shows that the equivalence of any two words can be checked with a 

finite number of steps. We omit the proof of the lemma, due to its similarity to that of 

Lemma 2.1 in [9].

Lemma 2.1. Let w′ and w be two words in [k]*. Then w′ ~v;r w if and only if (4) holds for 
all u ∈ [k]≤rℓ.

Let ℰ(v, r, k) be the set of all equivalence classes of ~v;r. Note that by Lemma 2.1 the number 

of equivalence classes is finite. Recall ℛ(v, r, k) from (5), and let

E(v, r, k) = ℰ(v, r, k)\{ℛ(v, r, k)}

denote the set of equivalence classes excluding ℛ(v, r, k). By the definition,

E(v, r, k) = ⋃
{w ∈ [k]∗:occv(w) ≤ r}

w v; r .

We next introduce the key tool in our proofs in this section.

Definition 2.2. Given an integer r ≥ 0, we denote by Au(v, r, k) a finite automaton [21] such 
that

• The set of states of the automaton is E(v, r, k);

• The input alphabet is [k];

• Transition function δ : E(v, r, k) × [k] → E(v, r, k) is given by the rule δ(〈w〉, a) 

= 〈wa〉;

• The initial state is 〈ϵ〉, where ϵ denotes the empty word;

• All states are final states.

We identify the automaton A(v, r, k) with a (labeled) directed graph with vertices in E(v, r, 
k) such that there is a labeled edge a  from 〈w〉 to 〈w′〉 if and only if wa ~v,r w′.

Example 2.3. Consider the case v = 123, k = 3, and r = 1. The set of equivalence classes 
E(123, 1, 3) is given by

Mansour et al. Page 8

SIAM J Discret Math. Author manuscript; available in PMC 2020 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E(123, 1, 3) = { ϵ , 1 , 11 , 12 , 112 , 123 } .

The labeled graph associated with the automaton Au(123, 1, 3) is

The automata serves for us as a bridge between the formal language theory and theory of 

computing on one side and the asymptotic theory of algebraic functions on the other. See, 

for instance, [4, 16] and references therein for background.

We exploit the link between asymptotic properties of rational functions and the structure of 

associated regular languages to study the generating functions Fr, k
v (x) and Gr, k

v (x) of the 

sequences fr
v(k, n) and grv(k, n) defined in (3), and subsequently the asymptotic behavior of 

these sequences, as n tends to infinity. The class of automata Au(v, 0, k) has been introduced 

in [9]. Our results in this subsection (Lemmas 2.5 and 2.6 below) are extensions of the 

corresponding results in Section 2 of [9]. Thus, we omit the proofs.

It is straightforward to verify (cf. [20, p. 256]) that one can order the states of the automaton 

Au(v, r, k) as s1, s2, … , sp, p = #E(v, r, k), so that if i < j then there is no path from the state 

sj to the state si. Transition matrix T(v, r, k) of Au(v, r, k) is the p × p matrix with non-

negative integer entries defined by

[T (v, r, k)]ij = #{a ∈ [k] : δ(si, a) = sj} .

Thus [T(v, r, k)]ij counts the number of edges between si and sj, and T(v, r, k) is triangular. 

The following observation reduces the study of the sequence grv(k, n), n ∈ ℕ, to the analysis 

of the matrix T(v, r, k) :

grv(k, n) = #{paths of length n starting at ϵ in the graph associated with Au(v, r,

k)}

= ∑
j = 1

p
[T n]1j,

(6)

where T = T(v, r, k) and p = #E(v, r, k).

Example 2.4. Consider again the setup of Example 2.3, namely v = 123, k = 3, and r = 1. 

The transition matrix T(123, 1, 3) is given by
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2 1 0 0 0 0
0 1 1 1 0 0
0 0 2 0 1 0
0 0 0 1 1 1
0 0 0 0 2 0
0 0 0 0 0 2

.

Thus the generating function for the number of 3-ary words of length n that contains 123 at 
most once is given by

G1, 3
123(x) = ∑

n ≥ 0
g1

123(3, n)xn = e1
T ∑

n ≥ 0
T(123, 1, 3)nxn(e1 + ⋯ + e6)

= (x4 − 8x3 + 10x2 − 5x + 1)
(1 − 2x)3(1 − x)2 ,

(7)

where ei is the i-th standard unit vector (all coordinates are zero, except that the i-th 

coordinate is one), and eiT  denotes its tarnspose. Note that the generating function for the 

number of 3-ary words of length n that avoids 123 is given by 

F0, 3
123(x) = ∑n ≥ 0f0

123(3, n)xn = 3x2 − 3x + 1
(1 − 2x)3

 see [10].) Therefore, by virtue of (7),

F1, 3
123(x) = ∑

n ≥ 0
f1

123(3, n)xn = x3

(1 − 2x)2(1 − x)2
.

Applying arguments similar to the one we used in order to get (7), we find that

G1, 4
123(x) = ∑

n ≥ 0
g1
123(4, n)xn = (1 − 7x + 22x2 − 32x3 + 16x4 − 2x5)

(1 − x)(1 − 2x)5
,

and

G1, 5
123(x) = ∑

n ≥ 0
g1
123(5, n)xn = (1 − 10x + 48x2 − 124x3 + 170x4 − 103x5 − 3x6 + 23x7)

(1 − x)(1 − 2x)7
.

We refer to an edge of the associated graph starting and ending at the same state 〈w〉 as a 

loop at 〈w〉. It is easy to see that the graph does not have any cycles, besides perhaps loops 

(cf. [20, p. 256]). Using similar arguments as in [9] (see Lemma 2.4 there), one can prove 

the following lemma.

Lemma 2.5. Let d be the number of distinct letters in v. Then for any 〈u〉 ∈ E(v, r, k), the 
number of loops at 〈u〉 does not exceed d − 1. Moreover, there are exactly d − 1 loops at 〈ϵ〉.

Recalling (3), the following lemma links the number of loops to the poles of the generating 

function Gr, k
v (x), x ∈ ℂ, and hence to the asymptotic behavior of the sequence grv(k, n) as n 

tends to infinity. The result follows directly from the identity in (6) and the transfer-matrix 
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method [32, Theorem 4.7.2]. Given a matrix A, denote by A(i,j) the matrix with row i and 

column j deleted. We have:

Lemma 2.6. Let p = #E(v, r, k) be the number of states in Au(v, r, k). Then the generating 

function Gr, k
v (x) is given by

Gr, k
v (x) = ∑

n ≥ 0
grv(k, n)xn =

∑j = 1
p ( − 1)j + 1det(I − xT(j, 1))

∏i = 1
p (1 − λix)

= det B(x)
∏i = 1

p (1 − λix)
,

where λi is the number of loops at state si, T = T(v, r, k), and B(x) is the matrix obtained by 
replacing the first column in I − xT with a column of all ones.

2.3 Stanley-Wilf type limits

Note that when the pattern is the repetition of only one letter, we have that fr
v(k, n) = 0 for all 

n ≥ (ℓ − 1)kr + 1. Therefore, throughout this section we assume that the number of distinct 

letters in the pattern v ∈ [k]ℓ, namely d, is greater than one. An interesting consequence of 

the results in Lemma 2.5 and Lemma 2.6 is the following theorem, which is the main result 

of this section.

Recall fr
v(k, n) and grv(k, n) from (2).

Theorem 2.7. Assume that d > 1. Then for all r ∈ ℕ0,

lim
n ∞

(fr
v(k, n))

1
n = lim

n ∞
(grv(k, n))

1
n = d − 1 . (8)

Proof. By Lemma 2.6, the generating function Gr, k
v (x) = ∑n ≥ 0grv(k, n)xn is a rational 

function in the complex plane ℂ. By Lemma 2.5, the smallest pole of Gr, k
v (x) is 1

d − 1 . Since 

the reciprocal of the smallest pole is the radius of convergence of the generating function 

[16], we have

lim sup
n ∞

(grv(k, n))
1
n = d − 1 .

Since fr
v(k, n) ≤ grv(k, n), we conclude that

lim sup
n ∞

(frv(k, n))
1
n ≤ d − 1 .

On the other hand, if v ∈ [k]ℓ and a word w ∈ [k]* contains v exactly r times, then the 

concatenation wu contains v exactly r times for any word u ∈ [k]* such that each letter of u 
belongs to the set
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{1, 2, … , vℓ − 1, k − d + vℓ + 1, k − d + vℓ + 2, … , k},

where vℓ is the rightmost letter of v. Therefore, there exists a constant cr > 0 such that for all 

n ∈ ℕ,

frv(k, n) ≥ cr(vℓ − 1 + k − k + d − vℓ − 1 + 1)n = cr(d − 1)n .

Hence,

lim inf
n ∞

(frv(k, n))
1
n ≥ d − 1,

which completes the proof of the theorem. □

Note that the limit in (8) is independent of r. It turns out that a similar result holds for the 

occurrence enumeration problem in permutations; see Theorem 3.1 below. We remark that in 

the case of permutations, the structure of the dependence of the limit on the underlying 

pattern is considerably more complex than in (8) and is not yet completely understood [11, 

17, 18]. The theorem has an interesting implication for the asymptotic behavior of the 

entropy of the random variable Xn = occv(Wn) with a random Wn, see Theorem 2.11 below 

for details.

A simple path in the graph representation of Au(v, r, k) is a finite sequence of states sj0, … , 

sjq in E(v, r, k) such that si0 = 〈ϵ〉 and for all i = 1, … , q, we have ji−1 < ji and sji−1 is 

connected to sji by a direct edge. The proof of the following partial refinement of Theorem 

2.7 follows that of Theorem 3.2 in [9] nearly verbatim, and therefore is omitted.

Theorem 2.8. Assume that d > 1. Let Mr be the maximal number of states with d − 1 loops 
in a simple path in Au(v, r, k). Then for any r ≥ 0, there exists a constant Cr ∈ (0, ∞) and Kr 

≥ 0 such that

lim
n ∞

grv(k, n)
nMr(d − 1)n = Cr and lim

n ∞

fr
v(k, n)

nMr(d − 1)n = Kr . (9)

We conclude this section with a remark that Theorems 2.7 and 2.8 can be interpreted as large 

deviation estimates for occv(w) when w ∈ [k]n is chosen at random, see Section 2.5 below 

for details.

2.4 Weak pattern avoidance

In this section, we further investigate the asymptotic behavior of the sequence 

(fr
v(k, n))r ∈ ℕ0. It turns out that the generating function of this sequence, as defined by (3), 

can be linked to a natural concept of “weak avoidance” that may be of independent interest. 

The weak avoidance is defined in a fashion similar to the notion of the weakly self-avoiding 
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random walks [5], namely by introducing a penalty for the non-avoidance rather than 

completely striking off the possibility of a pattern occurrence.

Formally speaking, for a pattern v ∈ [k]*, we associate a sequence of penalty functions 

ck, n
v : [0, 1] [0, kn], n ∈ ℕ, as follows:

ck, n
v (x) = ∑

w ∈ [k]n
∏

1 ≤ j1 < ⋯ < jℓ ≤ n
(1 + xUj1, ⋯, jℓ(v, w)),

(10)

where for any 1 ≤ q, r ≤ ℓ,

Uj1, ⋯, jℓ(v, w) =
−1 if (wjq ≤ wjr vq ≤ vr)

0 otherwise.

It follows from (10) that

ck, n
v (x) = ∑

w ∈ [k]n
(1 − x)occv(w) = ∑

r ≥ 0
fr

v(k, n)(1 − x)r .
(11)

Thus ck, n
v (x) = Fk, n

v (1 − x). According to the definition in (10), the function ck, n
v (x) can be 

considered as a partition function counting the words in [k]n with weights penalizing 

occurrences of the pattern v. Note that ck, n
v (x) is a decreasing function of x, ck, n

v (0) = kn

counts all words without discrimination, and on the opposite extreme ck, n
v (1) = f0

v(k, n)

counts only words avoiding the pattern entirely. The parameter x ∈ [0, 1] can be therefore 

interpreted as an intensity or strength of the pattern avoidance.

The subsequent Section 2.5 is devoted to the study of the asymptotic behavior of the 

sequence Xn = occv(Wn), n ∈ ℕ, where Wn = w1, ⋯ , wn ∈ [k]n and wi are i. i. d. random 

variables, each one distributed uniformly over [k]. The asymptotic behavior of random 

variables Xn = occv(Wn) in the case when the sequence (wi)i ∈ ℕ is drown at random from 

non-product probability measures on [k]ℕ is beyond the topic of this paper and will be 

studied by the authors elsewhere. The only exception in this paper is Theorem 2.17 where, 

following a canonical construction in the theory of self-avoiding random walks [5], we study 

Xn in the case when Wn is chosen at random according to the probability law

ℚk, n
v, x(A) = 1

ck, n
v (x) ∑

w ∈ A
(1 − x)occv(w), A ⊂ [k]n . (12)

Here x is a parameter which ranges within the interval [0, 1]. Clearly, ℚk, n
v, x( ⋅ ) is not uniform 

on [k]n, it penalizes words w with a non-zero occv(w) by the factor (1 − x)occv(w) which 

depends on the parameter x ∈ (0, 1). This probability measure belongs to a general class of 

Boltzmann distributions intensively studied in statistical mechanics and combinatorics, cf. 

[14]. In Theorem 2.17 we study ℚk, n
v, x in a certain small parameter regime where x = xn = 
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o(1) decays fast, and consequently, ℚk, n
v, xn can be considered as a perturbation of the uniform 

probability measure over [k]n.

We conclude this section with an analogue of Theorem 2.7 for ck, n
v (x). It follows from 

Theorem 2.7 that for all x ∈ [0, 1],

d − 1 ≤ lim inf
n ∞

(ck, n
v (x))

1
n ≤ lim sup

n ∞
(ck, n

v (x))
1
n ≤ k, (13)

where d is the number of distinct letters in the pattern v. We have:

Proposition 2.9. Given a pattern v ∈ [k]ℓ, limn ∞(ck, n
v (x))

1
n  exists and lies within the closed 

interval [d − 1, k] for all x ∈ [0, 1].

Proof. By the definition, for any x ∈ [0, 1], w ∈ [k]≥ℓ, and an increasing sequence of indices 

ji, 1 ≤ i ≤ ℓ, we have

0 ≤ 1 + xUj1, ⋯, jℓ(v, w) ≤ 1 .

Therefore, for any n, m ∈ ℕ and x ∈ [0, 1],

ck, n + m
v (x) = ∑

w ∈ [k]n + m
∏

1 ≤ j1 < ⋯ < jℓ ≤ n + m
(1 + xUj1, ⋯, jℓ(v, w))

≤ ∑
w ∈ [k]n + m

∏
1 ≤ j1 < ⋯ < jℓ ≤ m

(1 + xUj1, ⋯, jℓ(v, w)) ∏
n + 1 ≤ j1 < ⋯ < jℓ ≤ n + m

(1 + xUj1, ⋯, jℓ(v, w

))

= ∑
w1 ∈ [k]m

∏
1 ≤ j1 < ⋯ < jℓ ≤ m

(1 + xUj1, ⋯, jℓ(v, w1))

× ∑
w2 ∈ [k]n

∏
1 ≤ j1 < ⋯ < jℓ ≤ n

(1 + xUj1, ⋯, jℓ(v, w2))

= ck, m
v (x)ck, n

v (x) .

Hence log ck, n
v (x), n ∈ ℕ, is a subadditive sequence, and the claim of the proposition follows 

from Fekete’s subadditive lemma and the estimates in (13). □

Example 2.10. Let us consider v = 21. In order to avoid the pattern v, the letters of a word w 

∈ [k]n must be arranged in the non-decreasing order. Therefore, f0
21(k, n) = n + k − 1

k − 1 , the 

number of ways to write n as a weak composition n = a1 + ⋯ + ak, where ai ≥ 0 represents 
the number of occurrences of the letter i ∈ [k] in a k-ary word of length n. Furthermore, by 

Theorem 2.7, limn ∞(fr
21(k, n))1 ∕ n = 1 for all integer r ≥ 0. Though a simple explicit 

expression for fr
21(k, n) is not known, a result on generating functions due to MacMahon 

(see, for instance, Theorem 3.6 in [1]) combined with (11) shows that for x ∈ (0, 1],
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ck, n
21 (x) = ∑

r ≥ 0
fr

21(k, n)(1 − x)r = ∑
{aj ≥ 0:a1 + … + ak = n}

∏j = 1
n (1 − (1 − x)j)

∏i = 1
k ∏j = 1

ai (1 − (1 − x)j)

≤ ∑
{aj ≥ 0:a1 + … + ak = n}

∏j = 1
n (1 − (1 − x)j)

(1 − (1 − x))k − 1∏j = 1
n − k + 1 (1 − (1 − x)j)

< 1
xk − 1

n + k − 1
k − 1

.

(14)

The first inequality in (14) follows readily from the fact that

(1 − si)(1 − sj) ≥ (1 − si − 1)(1 − sj + 1) ∀s ∈ (0, 1)

as long as i ≤ j + 1. Combining (14) with the trivial inequality ck, n
21 > f0

21(k, n), we obtain that 

n + k − 1
k − 1 < ck, n

21 (x) < 1
xk − 1

n + k − 1
k − 1  for all x ∈ (0, 1). Remark that a straightforward 

improvement of the lower bound for ck, n
21 (x) is

ck, n
21 (x) = ∑

{aj ≥ 0:a1 + … + ak = n}

∏j = 1
n (1 − (1 − x)j)

∏i = 1
k ∏j = 1

ai (1 − (1 − x)j)

≥ ∑
{aj ≥ 0:a1 + … + ak = n}

∏j = 1
n (1(1 − x)j)

∏j = 1
n ∕ k + 1(1 − (1 − x)j)

k

≥ n + k − 1
k − 1

∏j = 1
n (1 − (1 − x)j)

∏j = 1
n ∕ k + 1(1 − (1 − x)j)

k ,

where ⌊a⌋ denotes the integer part of a ∈ ℝ. Combining this lower bound with (14), we 
obtain that for all x ∈ (0, 1),

(φ(1 − x))k − 1

(k − 1)! ≤ lim inf
n ∞

ck, n
21 (x)
nk − 1 ≤ lim sup

n ∞

ck, n
21 (x)
nk − 1 ≤ 1

xk − 1(k − 1)!
, (15)

where φ(x) is the Euler generating function ∏j = 1
∞ 1

1 − xj . Notice that the lower and upper 

bounds in (15) match asymptotically when x → 1.

2.5 Random words

Let (wi)i ∈ ℕ be a sequence of independent random variables, each distributed uniformly on 

[k] and let v ∈ [k]ℓ be a word pattern, ℓ ≥ 2. Denote Wn = w1w2 ⋯ wn ∈ [k]n for n ∈ ℕ, and 

let W = w1w2 ⋯ be the infinite string compound from the successive letters in the sequence. 

In this section we study the asymptotic behavior of the random variable Xn = occv(Wn). 

Note that for all r ∈ ℕ0,
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Pn(r) ≔ P(Xn = r) = 1
knfrv(k, n) .

We start with a corollary to Theorem 2.7 that is concerned with the asymptotic behavior of 

the information entropy of Xn, when n tends to infinity. Let

Hk, v(n) = − ∑
r ≥ 0

Pn(r) log Pn(r) (16)

be the entropy of the random variable Xn. The following theorem shows that Hk,v(n) grows 

linearly with n and gives the exact rate of growth for an arbitrary pattern v with d > 1.

Theorem 2.11. Assume that d > 1. Then,

lim
n ∞

Hk, v(n)
n = log k

d − 1 .

Proof. We have

Hk, v(n) = − ∑
r ≥ 0

Pn(r) log Pn(r) = − 1
kn ∑

r ≥ 0
frv(k, n)(log frv(k, n) − n log k)

= n log k − ∑
r ≥ 0

Pn(r) log frv(k, n) .

Thus

Hk, v(n)
n = log k − ∑

r ≥ 0
Pn(r)

log frv(k, n)
n ,

and the result follows from Theorem 2.7 and a discrete version of the bounded convergence 

theorem. □

Our next result is a central limit theorem for Xn which asserts that, as n tends to infinity, Xn 

is highly concentrated at E(Xn) = n
ℓ

k
d

1
kℓ  with standard deviation of order 1

nE(Xn). The 

fact that, exactly as in the classical case of partial sums of i. i. d. variables, typical 

fluctuations of Xn are of order 1
nE(Xn) will be often exploited in the rest of this section. The 

proof follows closely that of Theorem 2 in [8], a similar CLT for pattern occurrences in 

permutations. It is based on an application of a general CLT for dependent variables due to 

[22], and hence, it relies on an accurate estimation of VAR(Xn). Given the variance estimate 

and a general result in [29], the CLT can be strengthen to a Berry-Esseen type result 

providing the classical O(n−1/2) rate of convergence, see Corollary 2.14 below.

Mansour et al. Page 16

SIAM J Discret Math. Author manuscript; available in PMC 2020 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Theorem 2.12. Let μn = E(Xn) and σn = VAR(Xn). Then μn = n
ℓ

k
d

1
kℓ , σn = Θ

μn
n , and 

Xn − μn
σn

 converges in distribution, as n → ∞, to a standard normal random variable.

Proof. There are 
n
ℓ  ways to choose ℓ indexes j1 < ⋯ jℓ out of n possibilities. We refer to these 

ordered ℓ-tuples as ℓ-subintervals of [n]. Enumerate these subintervals in an arbitrary manner, 

and let Ij, j = 1, … , n
ℓ , denote the j-th subinterval. Let Xn,j be the indicator of the event that 

the pattern occurs at j-th subinterval.

First, we will compute E(Xn). Given that

E(Xn, j) = 1
kℓ

k
d , 1 ≤ j ≤ n

ℓ ,

and Xn = ∑
j = 1

n
ℓ Xn, j, we have

E(Xn) = n
ℓ

k
d

1
kℓ . (17)

Next, we will estimate VAR(Xn). To that end, we rewrite Xn
2 as follows

Xn2 = ∑
1 ≤ j, m ≤ n

ℓ

Xn, jXn, m = ∑
s = 0

ℓ
As,

where

As ≔ ∑
{j, m: ∣ Ij ∩ Im ∣ = s}

Xn, jXn, m .

In what follows, we will adopt the proof strategy of [8] and estimate E(As) separately for 

different values of the parameter s. For s = 0 the exact value is

E(A0) = n
ℓ

n − ℓ
ℓ

1
k2ℓ

k
d

2

where we used the fact that for two intervals Ij and Im with no overlap

E(Xn, jXn, m) = 1
k2ℓ

k
d

2
.
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If A0 would be the only terms contributing to the variance of Xn, its entire contribution 

combined with the term −[E(Xn)]2 would amount to (cf. formulas (9) and (10) in [8])

E(A0) − [E(Xn)]2 = n
ℓ

n − ℓ
ℓ

1
k2ℓ

k
d

2
− n

ℓ
1

kℓ
k
d

2

= − n2ℓ − 1 ℓ2

(ℓ!)2k2ℓ
k
d

2
+ O(n2ℓ − 2)

= − Θ(n2ℓ − 1)

(18)

To finish the estimate on the variance we need to provide estimates on As when s ≠ 0. More 

specifically, when s = 1 we give an accurate estimate, and for s ≥ 2 a crude estimate will 

suffice for our purpose. More specifically, we will show that E(As) = Θ(n2ℓ−s), and while 

E(A0) − [E(Xn)]2 is negative, E(A0) + E(A1) − [E(Xn)]2 = Θ(n2ℓ−1) which gives the 

necessary estimate for the variance.

Case I: s = 1. Consider the sum of the terms E(Xn,iXn,j) over the pairs of intervals that 

overlap exactly at one place. The summation of these terms is

E(A1) = ∑
{j, m: ∣ Ij ∩ Im ∣ = 1}

E(Xn, jXn, m) = n
2ℓ − 1 Dk, v = Θ(n2ℓ − 1)Dk, v, (19)

where

Dk, v ≥ 1
k2ℓ − 1 ∑

i = 0

ℓ − 1 2i
i

2ℓ − 2 − 2i
ℓ − 1 − i ⋅ min

1 ≤ p ≤ d
∑

t = p

k − d + p t − 1
p − 1

k − t
d − p

2
,

with two words occupying the intervals Ij and Im overlap over the (i + 1)-th letter of each, 

and vi+1 being the p-th highest letter (among the distinct possibilities 1, … , d) in the pattern 

v. To obtain the lower bound for Dk,v we will only consider the case when the common letter 

is the (i + 1)-th letter for some i ∈ {0, … , ℓ − 1} in both intervals. Once the joint location of 

Ij and Im is chosen, we have in total k2ℓ−1 possibilities to choose the corresponding letters. 

We have to fill 2i locations before and 2ℓ−2−2i locations after the common letter. The term 
2i
i

2ℓ − 2 − 2i
ℓ − 1 − i  is the number of possibilities to designate ℓ − 1 of the remaining 2ℓ − 2 

locations to be occupied by letters of the interval Im. Assuming that for given p and t the 

common letter for Im and Ij is t ∈ [p, p + 1, … , k − (d − p)], we observe that we have 
t − 1
p − 1

k − t
d − p  possibilities to choose d distinct letters from [k].

We remark that

1
k2ℓ − 1 ∑

i = 0

ℓ − 1 2i
i

2ℓ − 2 − 2i
ℓ − 1 − i = 1

k2ℓ − 1
2ℓ − 2
ℓ − 1 ∑

i = 0

ℓ − 1
ℓ − 1

i
ℓ − 1

i
2ℓ − 2

2i

≥ 2
k2ℓ − 1

2ℓ − 2
ℓ − 1 ,

where the inequality is obtained by enumerating the terms with i = 0 and i = ℓ − 1 only.
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Furthermore,

∑
j = p

k − d + p j − 1
p − 1

k − j
d − p

2
≥ (k − d + 1) ∑

j = p

k − d + p j − 1
p − 1

k − j
d − p

2

= (k − d + 1) k
d

2
≥ k

d
2
,

where we used Cauchy-Schwartz inequality in the first inequality and a variation of the Chu-

Vandermonde identity stated as

∑
j = p

k − d + p j − 1
p − 1

k − j
d − p = k

d .

This identity can be justified as follows: in order to choose d distinct letters from [k] we can 

first choose the p-th largest element among those d letters, call it j, from the interval [p, k − d 
+ p], then p − 1 letters from the interval [1, j − 1] and d − p letters from the interval [j + 1, 

k]. Collecting all the estimates together, we obtain that

E(A1) ≥ k
d

n
2ℓ − 1

2
k2ℓ − 1

2ℓ − 2
ℓ − 1 . (20)

Case II: s > 1. A suitable extension of (19) to the general case reads:

E(As) = ∑
{j, m: ∣ Ij ∩ Im ∣ = i}

E(Xn, jXn, m) = n
2ℓ − i Dk, v

(i) = Θ(n2ℓ − i), (21)

where Dk, v
(i) > 0 are strictly positive constants whose value depends on k and v only (but not 

on n). Having in hand these estimates for E(An) we can now evaluate the variance of Xn. 

Taking into the account (18), (20), and (21), we obtain that

VAR(Xn) ≥ k
d

n
2ℓ − 1

2
k2ℓ − 1

2ℓ − 2
ℓ − 1 − n2ℓ − 1 ℓ2

(ℓ!)2k2ℓ + O(n2ℓ − 2)

= δk, vn2ℓ − 1 + O(n2ℓ − 2),
(22)

where

δk, v = k
d

2
k2ℓ − 1(2ℓ − 1)((ℓ − 1)!)2 − ℓ2

(ℓ!)2k2ℓ = k
d

ℓ2

k2ℓ(ℓ!)2
2k

2ℓ − 1 − 1

≥ ℓ2

k2ℓ(ℓ!)2
2ℓ

2ℓ − 1 − 1 = ℓ2

k2ℓ(ℓ!)2(2ℓ − 1)
> 0 .

(23)

Finally, by virtue of (17), the following limit exists and is strictly positive:

Jk, v ≔ lim
n ∞

μn
σn n > 0, (24)
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and therefore, the remainder of the proof is a straightforward application of Theorem 2 in 

[22] to the random variables Xn,i, and can be carried as in [8] verbatim. □

Remark 2.13. A central limit theorem for multisets closely related to Theorem 2.12 can be 
found in [15], see also references therein for earlier versions. Let ai,n ≥ 0 represent the 
number of occurrences of the letter i ∈ [k] in the random word Wn, and denote by An the 
random vector (a1,n, … , ak,n). The CLT for Wn in [15] can be stated as a limit theorem for 

the random variable 
Xn − μn

σn
 under the conditional measure P(· |An). The main difference 

with Theorem 2.12 is that the scaling factors μn = μn(An) and σn = σn(An) are random in that 

they depend on the vector An. The relation of Theorem 2.12 to the CLT in [15] thus 
resembles the one between the so called annealed (average) and quenched limit theorems in 
the theory of random motion in a random media, see, for instance, [35]. In particular, 

σn2 = E(σn
2) + σn

2, where σn2 is the “annealed” variance that appears in the statement of 

Theorem 2.12 whereas the term σn
2 describes fluctuations of the “random environment” An.

Our next result is a Berry-Esseen type bound for the convergence rate of the above CLT. The 

bound is a direct implication of Theorem 2.2 in [29], along with the estimates in (22), (23) , 

and the following modification of (18):

Δn = n
ℓ − n − ℓ

ℓ − 1 = n2ℓ − 1ℓ2

ℓ! + O(n2ℓ − 2) . (25)

Here Δn is the number of random indicators Xn,i that are independent of Xn,i*, an indicator 

with a given index 1 ≤ i∗ ≤ n
ℓ . Let Φ(x) = 1

2π ∫−∞
x e− x2

2 dx, x ∈ ℝ, denote the distribution 

function of the standard normal variable. We have:

Corollary 2.14. In the notation of Theorem 2.12,

sup
x ∈ ℝ

P
Xn − μn

σn
≤ x − Φ(x) ≤ kℓ + 2ℓ!

k!
ℓ
πn + O(n−3 ∕ 2) + O(n−ℓ ∕ 2) .

Remark that the classical Berry-Esseen bound for the rate of convergence of the CLT for 

partial sums of i. i. d. random variables is of order n−1/2, thus the above bound is 

asymptotically optimal up to a constant.

Theorem 2.12 implies a weak law of large numbers for Xn and asserts that a typical 

deviation of Xn from E(Xn) is of order 1
nE(Xn). The main purpose of the following 

Chernoff type bounds is to estimate the probability of large deviations, namely the ones of 

the order of magnitude E(Xn). The result is merely an instance of Corollary 2.6 in [23] 

formulated using the notation of Theorem 2.12.

Corollary 2.15. For any t ≥ 0,
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P(Xn ≥ μn + t) ≤ exp −
t2(1 − Δn ∕ 4Kn)

2Δn(μn + t ∕ 3)(1 − μn ∕ Kn)

and

P(Xn ≤ μn − t) ≤ exp −
t2(1 − Δn ∕ 4Kn)

2Δnμn
,

where Δn is introduced in (25) and Kn = n
ℓ .

We will now state a direct consequence of Theorem 2.12 in terms of the weak avoidance 

penalty function ck, n
v (x). Our main motivation for including this result is the subsequent 

Theorem 2.17. Recall the notation of Theorem 2.12.

Lemma 2.16.

a. Let (θn)n ∈ ℕ be a sequence of positive reals such that limn→∞ θn = +∞ and 

limn ∞
μn
θn

 exists and is finite (possibly, zero). Then, the following holds for any 

constant t ∈ ℝ :

lim
n ∞

θn
μn

log E(e
tXn
θn ) = lim

n ∞

θn
μn

log E 1 + t
θn

Xn
= t (26)

b. The following holds for any constant t ∈ ℝ :

lim
n ∞

1
n log E(e

tXn n
nℓ ) = lim

n ∞
1
n log E 1 + t n

nℓ

Xn
= Jk, vt, (27)

where Jk,v are strictly positive constants introduced in (24).

Proof. Observe that all the expectations in the statement of the lemma are well-defined for 

all t ∈ ℝ because 1 ≤ Xn ≤ n
l . Let s = et. We will use the parameter s so defined in both 

parts, (a) and (b), of the proof.

(a) Let

γ ≔ lim
n ∞

μn
θn

.

We will consider separately two cases, γ = 0 and γ ∈ (0, ∞).

Case I: γ = 0. Using the second-order Taylor series with the remainder in the Lagrange form
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ey = 1 + y + ey∗y2

2 , with y = Xnt
θn

> 0, ∣ y∗ ∣ ∈ [0, ∣ y ∣ ], (28)

we obtain:

θn
μn

log{E(etXn ∕ θn)} =
θn
μn

log E 1 +
tXn
θn

+ etn∗Xn ∕ θn(Xnt)2

2(θn)2

for some random (because of the dependence on Xn) tn∗ ∈ [0, ∣ t ∣ ]. Note that in view of (17) 

and the condition limn ∞
μn
θn

< ∞, with probability one,

sup
n ∈ ℕ

etn∗Xn ∕ θn ≤ sup
n ∈ ℕ

e ∣ t ∣ n
ℓ ∕ θn < Mk, v(t) (29)

for some (deterministic) constant Mk,v(t) > 0 which depends on the parameters k, v and t. 

Furthermore, by Theorem 2.12, E(Xn
2) = σn2 + μn2~μn2. Therefore,

lim
n ∞

θn
μn

log E(etXn ∕ θn) = t . (30)

Recall the constant Mk,v(t) in (29). For any r ∈ ℕ, we have

ert ∕ θn − 1 + t
θn

r
= ert ∕ θn − 1 + t

θn
r

≤ rMk, v(t) e
t

θn − 1 − t
θn

≤
Mk, v(t)t2

2
r

θn2
,

where we used the mean-value theorem applied to the function f(y) = yr in the first step and 

(28) in the second one. Since,

θn
μn

⋅ 1
kn ∑

r ≥ 0
frv(k, n) r

θn2
= 1

θn
0 as n tends to 0,

we get (26) for γ = 0 by utilizing (30).

Case II: γ ∈ (0, ∞). In this case, (30) follows directly from the law of large numbers Xn/μn 

⇒ 1 in probability, as n → ∞, which is implied by Theorem 2.12. The rest of the proof of 

(26) is the same as in Case I.

(b) By Theorem 2.12, for any t ∈ ℝ we have:

lim
n ∞

e−tμn ∕ σnE(etXn ∕ σn) = et2
2 .
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The convergence of the moment generating functions of 
Xn − μn

σn
 can be verified using, for 

instance, a general Theorem 3 in [26], it is also transparent from the proofs in [22]. It 

follows that

lim
n ∞

−
μnt
σn

+ log {E(etXn ∕ σn)} = t2
2 ,

and hence

lim
n ∞

1
nlog {E(etXn ∕ σn)} = Jk, vt .

The last formula is an analogue of (30) in part (a) and plays a similar role, the remainder of 

the argument is similar to its counterpart in (a). □

Recall ℚk, n
v, x from (12) and let Ek, n

v, x denote the expectation with respect to ℚk, n
v, x. Then for any 

z > 0 and x ∈ (0, 1) we have

Ek, n
v, x(zXn) = 1

ck, n
v (x) ∑

w ∈ A
(1 − x)occv(w)zoccv(w) =

E (z(1 − x))Xn

E (1 − x)Xn
. (31)

Two interesting regimes in this model arise when it is assumed that x = xn depends on n and 

either xn = o(1) or 1 − xn = o(1). Both the regimes can be considered as a perturbation of a 

uniform distribution, over Sn in the former case and over the pattern-avoiding set {w ∈ [k]n : 

occv(w) = 0} in the latter. In the context of permutations, similar regimes for the particular 

case when the pattern is the inversion 21, were recently studied in [6, 19, 33]. In view of 

(31), Lemma 2.16 implies the following:

Theorem 2.17.

a. Let (θn)n ∈ ℕ and (ρn)n ∈ ℕ be two sequences of positive reals such that limn→∞ 

θn = +∞, and both limn ∞
μn
θn

 and limn ∞
θn
ρn

 exist and are finite (possibly, 

zero). Then the following holds for any t ∈ ℝ :

lim
n ∞

θn
μn

log E
k, n

v, 1
ρn(e

tXn
θn ) = t .

In particular, by virtue of (17),

lim
n ∞

E
k, n

v, 1
ρn(e

tXn
nℓ ) = exp t

kℓℓ!
k
d

(32)
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if limn ∞
nℓ
ρn

∈ [0, + ∞).

b. The following holds for any t ∈ ℝ and a sequence of positive reals (ρn)n ∈ ℕ such 

that limn ∞
nℓ

ρn n  exists and is finite (possibly, zero).

lim
n ∞

1
n log E

k, n

v, 1
ρn(e

tXn n
nℓ ) = Jk, vt, (33)

where Jk,v are strictly positive constants introduced in (24).

c. The following holds for any t ∈ ℝ and a sequence of positive reals (ρn)n ∈ ℕ such 

that limn ∞
nℓ
ρn

 exists and is finite (possibly, zero):

i. We have:

lim
n ∞

E
k, n

v, 1
ρn Xn

nℓ = 1
kℓℓ!

k
d . (34)

ii.
Let ℚn(r) = ℚ

k, n

v, 1
ρn (Xn = r) and

ℍn = − ∑
r ≥ 0

ℚn(r) log ℚn(r)

be the entropy of Xn under the law ℚ
k, n

v, 1
ρn . Then

lim
n ∞

ℍn
n = log k

d − 1 + γ
kℓℓ!

k
d .

Proof. For part (a), plug x = 1
ρn

 and z = et/θn into (31) and use (26). For part (b), substitute 

z = e t n
nℓ  and use (27). Part (i) in (c) follows then from the bounded convergence theorem and 

(32) which implies that the distribution of 
Xn
nℓ  under the law E

k, n

v, 1
ρn  converges to the 

degenerate distribution at 1
kℓℓ!

k
d . Finally,
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ℍn = − ∑
r ≥ 0

ℙn(r) log
frv(k, n)(1 − x)r

ck, n
v (x)

= − ∑
r ≥ 0

ℙn(r) log frv(k, n) − E
k, n

v, 1
ρn(Xn) log(1 − ρn−1) + log ck, n

v (ρn−1),

which implies the claim in (ii) of part (c). Indeed, 1
n∑r ≥ 0ℙn(r) log fr

v(k, n) converges to 

log(d − 1) by Theorem 2.7 and a discrete version of the bounded convergence theorem, 

1
nE

k, n

v, 1
ρn (Xn) log (1 − ρn−1)~

μn
ρn

 by (32), and 1
n log ck, n

v (ρn−1) converges to log k by virtue of (26). 

The proof of the theorem is complete. □

The results in Theorem 2.17 shed some light on the asymptotic behavior of Xn under ℚk, n
v, xn

for xn = o(1). More specifically, the corollary suggests that the intensity sequence xn = 1/ρn 

with ρn which is at least Θ(μn) yields a perturbative “light avoidance regime” in that the 

results in Lemma 2.16 and Theorem 2.17 formally correspond to their counterparts in the 

corollary with ρn = +∞. In particular, (32) shows that μn remains the proper scaling for Xn 

for any xn in this regime, namely the distribution of Xn/μn under ℚk, n
v, xn converges to that of 

the constant one as n → ∞. Furthermore, by the Gärtner-Ellis theorem [13], the result in 

(33) for moment generating functions implies Corollary 2.18 given below.

Corollary 2.18. Let ρn be as defined in the statement of part (b) of Theorem 2.17. Then the 
following holds for any Borel set B ⊂ ℝ :

lim
n ∞

1
n log ℚ

k, n

v, 1
ρn Xn

nℓ ∈ B = − ∞ .

It is reasonable to expect that a large deviation principle for Xn/nℓ under ℚ
k, n

v, 1
ρn  holds with a 

finite rate function and with respect to the usual scaling sequence n rather than n (in our 

context, cf. Corollary 2.15 where 
μn2

Δnμn
=

μn
Δn

= Θ(n)). However, proving such a result would 

be beyond the reach of methods we employed in this section.

We conclude the section with another corollary to Theorem 2.12, a limit theorem that 

concerns with a Poisson approximation of Xn in the case when k = kn is a rapidly enough 

increasing function of n. The result is an analogue for random words of [12, Theorem 3.1] 

for random permutations. The proof of the theorem relies on a Poisson approximation of the 

sum of random indicators Xn = ∑iXn,i via a modification of the Chen-Stein method which is 

due to [3], and follows the bulk of the argument in [12]. Recall that the total variation 

distance dTV(X, Y) between two ℕ0-valued random variables X and Y is defined as
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dTV (X, Y ) = sup
A ⊂ ℕ0

∣ P(X ∈ A) − P(Y ∈ A) ∣ = 1
2 ∑

r = 0

∞
∣ P(X = r) − P(Y = r) ∣ .

The following summary of results in [3] suffices for our purpose (cf. Theorem 4.2 in [12]):

Theorem 2.19 ([3]). Let N ∈ ℕ and (Yi)i∈[N] be a collection of identically distributed (but 
possibly dependent) Bernoulli variables with P(Yi = 1) = p ∈ (0, 1) and (Yi = 0) = 1 − p. For 

i, j ∈ [N] let pi,j = E (YiYj). Set Y = ∑i = 1
N Y i and λ = Np. For any i ∈ [N] let Di ⊂ [N] be a 

set of indices such that

Yi is independent of σi,

where σi is the σ-algebra generated by {Yj : j ∈ Di}, and define

b1 = ∑
i = 1

N
p2 ∣ Di ∣ and b2 = ∑

i = 1

N
∑

j ∈ Di\{i}
pij . (35)

Let W be a Poisson random variable with parameter λ, that is P(W = r) = λre−λ
r! , r ∈ ℕ0. 

Then,

dTV (Y , W ) ≤ 2(b1 + b2) .

We will apply Theorem 2.19 with Yi = Xn,i, where Xn,i are indicators introduced in the 

course of the proof of Theorem 2.12 assuming that k = kn and ℓ = ℓn. Note that under the 

conditions we impose,

μn = E(Xn) =
n

ℓn
kn
dn

1
knℓ

goes to zero as n tends to infinity. We have:

Theorem 2.20. Suppose that three sequences of natural numbers (kn)n ∈ ℕ, (ℓn)n ∈ ℕ, and 

(dn)n ∈ ℕ satisfy the following conditions:

i. dn ≤ ℓn and dn ≤ kn for all n ∈ ℕ.

ii. δ ≔ lim infn ∞
dn
ℓn

> 0.

iii. There exist constants A > 0 and β > 2
2 + δ  such that ℓn ≥ Anβ for all n ∈ ℕ.

Consider an arbitrary sequence of patterns vn ∈ [kn]ℓn, n ∈ ℕ, with dn distinct letters used to 
form vn. Let Xn = occvn (Wn), where Wn is drawn at random from [kn]n. Then
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lim
n ∞

dTV (Xn, Qn) = 0,

where Qn is a Poisson random variable with parameter μn. In particular,

lim
n ∞

fr
vn(kn, n)

knn
−

μnre−μn
r! = 0,

for any integer r ≥ 0:

Remark 2.21. We believe that the lower bound for β in the statement of the theorem is an 
artifact of the proof and can be improved. In the most favorable to us case δ = 1, the 

conditions of the theorem require β > 2
3 . This is compared to the lower bound β > 1

2  obtained 

in [12] for permutations.

Proof of Theorem 2.20. Fix any n ∈ ℕ, and let Kn =
n

ℓn
 and pn = E(Xn, j) = 1

kn
ℓn

kn
dn

 for this 

particular value of n. Note that μn = E(Xn) = Knpn. Recall the intervals Ij from the proof of 

Theorem 2.12, assuming that k = kn and ℓ = ℓn, define for j ∈ [N],

Y j = Xn, j and Dj = {m ∈ [Kn] : Ij ∩ Im = ∅} .

Let (ℓn − i) ∧ d denote min{ℓn − i, dn}. Observe that if Ij ∩ Im = i, then

E(Y jYm) = E(Y jE(Ym ∣ Y j)) ≤ E Y j
1

kn
ℓn − i

kn
(ℓn − i) ∧ dn

= 1
kn

ℓnkn
ℓn − i

kn
dn

kn
(ℓn − i) ∧ dn

.

Therefore, for b1 and b2 introduced in (35) we have:

b1 = KnΔnpn2 ≤ (Knpn)2 = μn2,

where Δn is defined in (25), and

b2 ≤ 1
kn

ℓn
kn
dn

∑
i = 1

ℓn − 1 n
2ℓn − i

2ℓn − i
ℓn

ℓn
i

kn
(ℓn − i) ∧ dn

1
kn

ℓn − i

= 1
kn

ℓn
kn
dn

n
ℓn ∑

i = 1

ℓn − 1 n − ℓn
ℓn − i

ℓn
i

kn
(ℓn − i) ∧ dn

1
kn

ℓn − i .

Therefore,
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b1 + b2 ≤ μn2 + μn ∑
i = 0

ℓn n − ℓn
ℓn − i

ℓn
i

kn
(ℓn − i) ∧ dn

1
kn

ℓn − i .

Since

kn
(ℓn − i) ∧ dn

1
kn

ℓn − i ≤ 1
((ℓn − i) ∧ dn)! ≤ 1

dn! + 1
(ℓn − i)! ,

we obtain that

b1 + b2 ≤ μn2 +
μn
dn!

n
ℓn

+ μn ∑
m = 0

ℓn n − ℓn
m

ℓn
ℓn − m

1
m!,

where we used Vandermonde’s identity for the second term and change of variables m = ℓn−i 
for the third one. Since

μn =
Kn
kn

ℓn
kn
dn

≤
Kn
kn

dn
kn
dn

≤
Kn
dn! ,

we obtain that

b1 + b2 ≤ 2
Kn
dn!

2
+ μnKnE 1

Λn! ,

where Λn is a random variable with hypergeometric distribution, P(Λn = m) =

n − ℓn
m

ℓn
ℓn − m

n
ℓn

for m = 0, …, ℓn. By Hoeffding’s inequality for partial sums of bounded random variables,

P Λn − ℓn
n − ℓn

n ≤ − εℓn ≤ e−2ε2ℓn

for any ε > 0. Thus for any given ε > 0 and n large enough,

P(Λn ≤ (1 − 2ε)ℓn) ≤ e−2ε2ℓn .

Therefore, for all an arbitrary ε > 0 and all n large enough,
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b1 + b2 ≤ 2
Kn
dn!

2
+ μnKne−2ε2ℓn +

μnKn
Γ((1 − 2ε)ℓn) ≤ 2

Kn
dn!

2
+ 2μnKne−2ε2ℓn

≤ 2
Kn
dn!

2
+ 2

Kn2e−2ε2ℓn
dn!

≤
4Kn2e−2ε2ℓn

dn! ,

where Γ(·) is the gamma function. Finally, using Stirling’s formula we obtain that

log
4Kn2e−2ε2ℓn

dn!

= 2{n log n − (n − ℓn) log (n − ℓn) − ℓn log ℓn − ε2ℓn} − dn log dn + dn + O(n)

= 2 ℓn log n
ℓn

− (n − ℓn) log 1 −
ℓn
n − dn log dn + O(n)

= 2ℓn log n
ℓn

− dn log dn + O(n) .

By the conditions of the theorem, δ = lim infn ∞
dn
ℓn

> 0. Therefore, for any γ ∈ (0, δ) and n 

large enough we have:

log(b1 + b2) ≤ log
4Kn2e−2ε2ℓn

dn! ≤ 2ℓn log n − (2 + γ)ℓn log ℓn + O(n) .

The proof of the theorem is complete. □

3 Permutation patterns

In this section, we discuss an extension of some of our results about counting occurrences of 

a pattern in words to permutations. The section is divided into two subsections. Subsection 

3.1 is devoted to Stanley-Wilf type limits for permutations, and Section 3.2 adapts the 

concept of weak avoidance to permutations. The main results of this section are Theorem 3.1 

and Proposition 3.2. The latter is a counterpart of Proposition 2.9 and the former is a 

modification for permutations of Theorem 2.7. Extensions of the CLT-related results in 

Section 2.5 to random permutations are readily available due to the CLT for permutations 

proved by Bóna in [8]. This is briefly discussed in the concluding paragraph of Section 3.2, 

the details are left to the reader.

We begin with notation. Permutations are bijections from a set [n] to itself. For n ∈ ℕ, let Sn 

denote the symmetric group of order n, the group of permutations of the integers in [n]. 

Occasionally, when confusion is not likely to occur, we will identify permutations in Sn with 

the words representing the image of the permutation. For instance, for permutations π = 

π(1) ⋯ π(n) ∈ Sn and ν = ν(1) ⋯ ν(m) ∈ Sm we refer to the permutation

πν ≔ π(1) ⋯ π(n)ν(1) ⋯ ν(m) ∈ Sn + m
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as the concatenation of the permutations π and ν.

Fix any k ∈ ℕ and ξ ∈ Sk. We refer to ξ as a pattern, it remains fixed throughout the rest of 

the paper. For a permutation π ∈ Sn with n ≥ k, an occurrence of the pattern ξ in π is a 

sequence of k indices 1 ≤ i1 < i2 < ⋯ < ik ≤ n such that the word π(i1) ⋯ π(ik) ∈ [n]k is 

order-isomorphic to the word ξ, that is

π(ip) < π(iq) ξp < ξq ∀1 ≤ p, q ≤ k .

For a permutation π ∈ Sn with n ≥ k we denote by occξ(π) the number of occurrences of the 

pattern ξ in π. For example, if ξ = 12 and π = 51324, then 13, 12, 14, 34, and 24 are order-

isomorphic to 12, and occξ(π) = 5. If occξ(π) = m, we say that π contains ξ (exactly) m 

times. For a given r ∈ ℕ0, let fr
ξ(n) denote the number of permutations in Sn that contain ξ 

exactly r times. That is,

frξ(n) = #{π ∈ Sn : occξ(π) = r}, r ≥ 0 .

For example, if ξ = 12 then f0
ξ(3) = 1 (only 321 counts), f1

ξ(3) = 2 (312 and 231 count) 

f2
ξ(3) = 2 (132 and 213 count), and f3

ξ(3) = 1 (only 123 counts).

3.1 Stanley-Wilf type limits

The celebrated Stanley-Wilf conjecture proved in [27] states that limn ∞
1
n log f0

ξ(n) exists 

and belongs to (0, ∞). For π ∈ Sn, let Zn = occξ(π), where π is a permutation chosen 

uniformly randomly from Sn. Notice that

P(Zn = r) =
frξ(n)

n! , r ∈ ℕ0 .

In the language of random permutations, the Stanley-Wilf limit is

lim
n ∞

1
nlog[n!P(Zn = 0)] = lim

n ∞
1
n log P(Zn = 0) + log n − 1 ,

which yields the following weaker conclusion:

lim
n ∞

1
n log n log P(Zn = 0) = − 1 .

Thus the limit can be interpreted in terms of the asymptotic behavior of P(Zn = 0) as a local 

large deviation result with respect to the scaling sequence n log n. The probability P(Zn = 0) 

is very small since according to the CLT obtain by Bóna in [8], Zn is tightly concentrated 
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around E(Zn) = 1
k!

n
k . The following theorem extends this large deviation result to P(Zn = r) 

with an arbitrary fixed r ∈ ℕ.

Theorem 3.1. For any r ∈ ℕ, limn ∞(fr
ξ(n))

1
n  exists and is equal to limn ∞(f0

ξ(n))
1
n .

Proof. The proof by induction on r. By Corollary 2 in [27], c ≔ limn ∞(f0
ξ(n))

1
n  exists and is 

finite. Assume that for some m ∈ ℕ the claim holds for r = 0, 1, … , m − 1. To complete the 

proof, we need to show that under this assumption it holds also for r = m.

To this end, let π be an arbitrary permutation in Sn that contains the pattern ξ exactly m 
times. By removing the leftmost letter in the leftmost occurrence of ξ in π and renaming the 

remaining letters, we obtain a permutation π′ in Sn−1 that contains ξ at most m − 1 times. 

Thus,

fmξ (n) ≤ n ∑
j = 0

m − 1
fj

ξ(n − 1) .

It follows that

lim sup
n ∞

(fm
ξ (n))1 ∕ n ≤ lim

n ∞
n ∑

j = 0

m − 1
fj

ξ(n − 1)
1 ∕ (n − 1)

= c . (36)

On the other hand, consider an arbitrary permutation π ∈ Sn that contains ξ exactly m − 1 

times and the concatenation π′ = πξ′ ∈ Sn+k, where ξ′ is obtained by adding n to each 

letter in ξ. For instance, if n = 5, π = 13542, and ξ = 12, then ξ′ = 67 and π′ = 1354267. 

Without loss of generality, we may assume that the letter k precedes 1 in ξ (the idea is 

borrowed from [2]). Because of this assumption, the new permutation π′ contains ξ exactly 

m times. We can therefore conclude that fm − 1
ξ (n) ≤ fm

ξ (n + k). This inequality along with the 

induction hypothesis imply that

c = lim
n ∞

(fm − 1
ξ (n))

1 ∕ n
≤ lim inf

n ∞
(fmξ (n + k))1 ∕ n = lim inf

n ∞
(fmξ (n))1 ∕ n .

In view of (36), this completes the proof of the theorem. □

3.2 Weak avoidance of permutation patterns

Similarly to (10), with any pattern ξ ∈ Sk one can associate a sequence of weak avoidance 

penalty functions cnξ : [0, 1] [0, n!], n ∈ ℕ, by setting

ck, n
v (x) = ∑

π ∈ Sn
∏

1 ≤ j1 < ⋯ < jk ≤ n
(1 + xV j1, ⋯, jk(ξ, π)),

(37)
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where

V j1, ⋯, jk(ξ, π) =
−1 if (π(jq) < π(jr) ξ(q) < ξ(r) ∀1 ≤ q, r ≤ k)
0 otherwise.

Notice that cnξ(0) = n! and cnξ(1) = f0
ξ(n). Similarly to (11), we have

cnv(x) = ∑
π ∈ Sn

(1 − x)occξ(π) = ∑
r ≥ 0

fr
ξ(n)(1 − x)r . (38)

For certain particular cases the polynomials cnv(1 − x) generating functions of the sequence 

fr
ξ(n), n ∈ ℕ have been studied in [24, 28] through the analysis of certain recursive functional 

equations that they satisfy.

The analogue of the ℚk, n
v, x measure introduced in (12) is the probability measure ℙn

v, x on Sn 

defined by

ℙnξ, x(A) = 1
cnv(x)

∑
π ∈ A

(1 − x)occξ(π), A ⊂ Sn .

In the case of inversions, i. e. for ξ = 21, ℙn
ξ, x is a Mallow’s distribution. Mallow’s 

permutations have been studied by several authors, see, for instance, recent [12, 19, 30] and 

references therein.

The next proposition establishes the existence of limn ∞(cnx(ξ))1 ∕ n. The proof is based on a 

standard sub-additivity argument, and follows the same line of argument as the one in [2]. 

Unfortunately, we were unable to verify that the limit is necessarily finite (cf. Proposition 

2.9 together with (13) for words).

Proposition 3.2. limn ∞(cnξ(x))1 ∕ n exits for all x ∈ [0, 1].

Proof. For π ∈ Sn and i, j ∈ ℕ such that 1 ≤ i < j ≤ n, let

πi, j = πi(i) ⋯ πi(j), where πi(r) ≔ π(r) − i + 1 .

That is πi,j ∈ [n]j−i+1 and πi,j(r) = π(i − 1 − r) − (i − 1) for all r ∈ [n]. Further, for any m, 

n ∈ ℕ such that m ≤ n let

Snm = {π ∈ Sn : π1, m ∈ Sm} .

Note that π ∈ Sn
m implies πm+1,n ∈ Sn−m. In other words,
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π (π1, j, πj + 1, n) is a bijection between Sn
j and Sj × Sn − j . (39)

Without loss of generality, we can and will assume that ξ−1(k) < ξ−1(1), that is k appears 

before 1 in ξ. Under this assumption, we have

{π ∈ Sn
m, j1 ≤ m, jk > m} Uj1, ⋯, jk(ξ, π) = 0 . (40)

In view of (39) and (40), for any n, m ∈ ℕ and x ∈ [0, 1] we have

cn + m
ξ (x) = ∑

π ∈ Sn + m
∏

1 ≤ j1 < ⋯ < jk ≤ n + m
(1 + xUj1, ⋯, jk(ξ, π))

≥ ∑
π ∈ Sn + mm

∏
1 ≤ j1 < ⋯ < jk ≤ n + m

(1 + xUj1, ⋯, jk(ξ, π))

= ∑
π1 ∈ Sm

∏
1 ≤ j1 < ⋯ < jk ≤ m

(1 + xUj1, ⋯, jk(ξ, π1)) ∑
π2 ∈ Sn

∏
1 ≤ j1 < ⋯ < jk ≤ n

(1 + xUj1, ⋯, jk(ξ, π2))

= cmξ (x)cnξ(x) .

Hence, −log cnξ(x), n ∈ ℕ, is a subadditive sequence, and by Fekete’s subadditive lemma, 

limn ∞(cnξ(x))
1
n  exists for all x ∈ [0, 1]. □

Example 3.3. Consider ξ = 21. Then the number of occurrences of ξ in a permutation π is 

the number of inversions in π, and fr
21(n) are Mahonian numbers [7]. The identity in (38) 

together with Netto’s formula for the generating function of the sequence {fr
21(n) : r ≥ 0}

(see, for instance, [7, p. 43] or [31, Seq A008302]) give cn21(x) = ∏j = 1
n 1 − (1 − x)j

x . In 

particular, limn ∞(cn21(x))1 ∕ n = x−1 for all x ≠ 0. Note that f0
21(n) = 1 for all n ∈ ℕ, and 

hence by virtue of Theorem 3.1, limn ∞(fr
21(n))1 ∕ n = 1 for all r ∈ ℕ. Interestingly enough, 

in contrast to Example 2.10, the asymptotic behavior of cn21(xn) for a sequence xn such that 

xn ~ 1 as n → ∞, does depend on the rate of convergence of xn.

Conjecture. limn ∞(cnξ(x))
1
n < ∞ for all patterns ξ ∈ ⋃kSk and all x ∈ (0, 1).

It is interesting to notice that while for words we have crv(k, n + m) ≤ crv(k, n)crv(k, m), the 

opposite is true for permutations, namely crξ(n + m) ≥ crξ(n)crξ(m). The differences can be 

explained as follows. For words we have:

crv(k, n + m) = E E[(1 − x)Xn + m] W n = E (1 − x)XnE[(1 − x)Xn + m − Xn] W n ,

and, since letters can be repeated in words, the conditional expectation is less than the 

unconditional one E[(1 − x]Xm]. Indeed, any pattern occurrence in the first n letters does not 

affect the last m letters in Wn+m, but does increase the probability of having occurrences of 

Mansour et al. Page 33

SIAM J Discret Math. Author manuscript; available in PMC 2020 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the pattern spread over two intervals, [1, n] and [n + 1, n = m]. It turns out that with 

permutations, where letters cannot be re-used, the situation is different and the correlation 

between occurrences of the pattern in the beginning and continuation of a large permutation 

is negative in contrast to words.

We conclude with a remark concerning the extension of the results in Section 2.5 to 

permutations. The key elements in the proofs in Section 2.5 is the specific covariance 

structure (the dependence graph) of the indicators Xn,i and the asymptotic relation 
μn
σn

= Θ( n) between the expectation and variance of Xn. Bona’s CLT for permutations [8] 

asserts that the key elements are similar for words and permutations, and thus enables one to 

carry over the proofs of Corollaries 2.14, 2.15, and 2.18, Lemma 2.16, and Theorem 2.20 to 

permutations nearly verbatim. We leave the details to the reader.

References

[1]. Andrews GE, The Theory of Partitions, Cambridge University Press, 1998.

[2]. Arratia R, On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern, 
Electron. J. Combin 6 (1999), paper no. 1.

[3]. Arratia R, Goldstein L, and Gordon L, Two moments suffice for Poisson approximations: the 
Chen-Stein method, Ann. Probab 17 (1989), 9–25.

[4]. Banderier C and Drmota M, Formulae and asymptotics for coefficients of algebraic functions, 
Combin. Probab. Comput 24 (2015), 1–53.

[5]. Bauerschmidt R, Duminil-Copin H, Goodman J, and Slade G, Lectures on self-avoiding walks In 
Ellwood D, Newman C, Sidoravicius V, and Werner W (Eds), Probability and Statistical Physics 
in Two and More Dimensions, Clay Math. Proc. 15, pp. 395–467, Amer. Math. Soc., 2012.

[6]. Bhatnagar N and Peled R, Lengths of monotone subsequences in a Mallow’s permutation, Probab. 
Theory Related Fields 161 (2015), 719–780.

[7]. Bóna M, Combinatorics of Permutations, Chapman & Hall/CRC, Boca Raton, 2004.

[8]. Bóna M, The copies of any permutation pattern are asymptotically normal, 2007, available at 
https://arxiv.org/abs/0712.2792.

[9]. Brändén P and Mansour T, Finite automata and pattern avoidance in words, J. Combin. Theory 
Ser. A 110 (2005), 127–145.

[10]. Burstein A, Enumeration of Words with Forbidden Patterns, Ph. D. thesis, University of 
Pennsylvania, 1998.

[11]. Cibulka J and Kynčl J, Better upper bounds on the Furedi-Hajnal limits of permutations. In 
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 
2280–2293, SIAM, 2017.

[12]. Crane H and DeSalvo S, Pattern avoidance for random permutations, Discrete Math. Theor. 
Comput. Sci 19 (2017), paper no. 13.

[13]. Dembo A and Zeitouni O, Large Deviations Techniques and Applications, Corrected reprint of 
the second (1998) edition, Springer-Verlag, Berlin, 2010.

[14]. Duchon P, Flajolet P, Louchard G, and Schaeffer G, Boltzmann samplers for the random 
generation of combinatorial structures, Combin. Probab. Comput 13 (2004), 577–625.

[15]. Féray V, Central limit theorems for patterns in multiset permutations and set partitions, to appear 
in Ann. Appl. Probab.

[16]. Flajolet P and Sedgewick R, Analytic Combinatorics, Cambridge University Press, 2008.

[17]. Fox J, Stanley-Wilf limits are typically exponential, to appear in Adv. Math.

[18]. Garrabrant S and Pak I, Pattern avoidance is not P-recursive, 2015, available at https://
arxiv.org/abs/1505.06508.

Mansour et al. Page 34

SIAM J Discret Math. Author manuscript; available in PMC 2020 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/0712.2792
https://arxiv.org/abs/1505.06508
https://arxiv.org/abs/1505.06508


[19]. Gladkich A and Peled R, On the cycle structure of Mallow’s permutations, Ann. Probab 46 
(2018), 1114–1169.

[20]. Heubach S and Mansour T, Combinatorics of Compositions and Words, Chapman and Hall/CRC, 
2009.

[21]. Hopcroft JE, Motwani R, and Ullman JD, Introduction to Automata Theory, Languages, and 
Computation, 3rd ed., Pearson, 2006.

[22]. Janson S, Normal convergence by higher semi-invariants with applications to sums of dependent 
random variables and random graphs, Ann. Probab 16 (1988), 305–312.

[23]. Janson S, Large deviations for sums of partly dependent random variables, Random Structures 
Algorithms 24 (2004), 234–248.

[24]. Janson S, Nakamura B, and Zeilberger D, On the asymptotic statistics of the number of 
occurrences of multiple permutation patterns, J. Comb 6 (2015), 117–143.

[25]. Kitaev S, Patterns in Permutations and Words, Springer, 2011.

[26]. Kozakiewicz W, On the convergence of sequences of moment generating functions, Ann. Math. 
Statistics 18 (1947), 61–69.

[27]. Marcus A and Tardos G, Excluded permutation matrices and the Stanley-Wilf conjecture, J. 
Combin. Theory Ser. A 107 (2004), 153–160.

[28]. Nakamura B, Approaches for enumerating permutations with a prescribed number of occurrences 
of patterns, Pure Math. Appl. (PU.M.A.) 24 (2013), 179–194.

[29]. Rinott Y, On normal approximation rates for certain sums of dependent random variables, J. 
Comput. Appl. Math 55 (1994), 135–143.

[30]. Pitman J and Tang W, Regenerative random permutations of integers, Ann. Probab 47 (2019), 
1378–1416.

[31]. Sloane NJ, The On-Line Encyclopedia of Integer Sequences, http://oeis.org,2010.

[32]. Stanley R, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997.

[33]. Starr S, Thermodynamic limit for the Mallows model on Sn, J. Math. Phys 50 (2009), 095208.

[34]. Steingrímsson E, Some open problems on permutation patterns, In Blackburn SR, Gerke S, and 
Wildon M (Eds.), Surveys in Ccombinatorics 2013, vol. 409 of London Math. Soc. Lecture Note 
Ser., Cambridge Univ. Press, 2013, pp. 239–263.

[35]. Zeitouni O, Random Walks in Random Environment, XXXI Summer School in Probability, (St. 
Flour, 2001) Lecture Notes in Math., Vol. 1837, Springer, 2004, pp. 193–312.

Mansour et al. Page 35

SIAM J Discret Math. Author manuscript; available in PMC 2020 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://oeis.org

	Abstract
	Introduction and main results
	Pattern occurrences in words
	Notation and settings
	Finite automata and pattern occurrences
	Stanley-Wilf type limits
	Weak pattern avoidance
	Random words

	Permutation patterns
	Stanley-Wilf type limits
	Weak avoidance of permutation patterns

	References

