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Abstract. For a fixed symmetric matrix A and symmetric perturbation E we develop purely
deterministic bounds on how invariant subspaces of A and A + E can differ when measured by a
suitable “row-wise” metric rather than via traditional measures of subspace distance. Understanding
perturbations of invariant subspaces with respect to such metrics is becoming increasingly important
across a wide variety of applications and therefore necessitates new theoretical developments. Under
minimal assumptions we develop new bounds on subspace perturbations under the two-to-infinity
matrix norm and show in what settings these row-wise differences in the invariant subspaces can be
significantly smaller than the analogous two or Frobenius norm differences. We also demonstrate that
the constitutive pieces of our bounds are necessary absent additional assumptions and, therefore, our
results provide a natural starting point for further analysis of specific problems. Lastly, we briefly
discuss extensions of our bounds to scenarios where A and/or E are non-normal matrices.
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1. Introduction. Given a matrix A, it is natural to try and “understand” how
properties of A change after it has been perturbed in some way. Understanding can
take many forms, as can the way we choose to perturb A. In this work we are primarily
concerned with additive perturbations and understanding how spectral properties of
the matrix change—i.e., given a perturbation E how do certain invariant subspaces
of A + E relate to those of A. This is a long standing question and one that has
received extensive attention over the years. This includes the well-known Davis-Kahan
theorem [10], work by Wedin [29], and more general and extensive perturbation theory;
see, e.g., [25] for an overview.

Nevertheless, many problems of growing interest in mathematics, statistics, and
computer science require new variants of such theory. Most notably, this manifests
as modifications to the metrics we use to assess the similarity of invariant subspaces
of A and A+E. Concretely, whereas traditional theory is often interested in classical
notions of subspace distance measured by spectral or Frobenius norms, we will be
interested in row-wise1 (or closely related) measures of error. In Section 2 we will for-
mally outline the specifics of these metrics, contrast them to traditionally considered
metrics, and provide additional preliminary material relevant to our work.

The impetus for these new types of bounds is often, though not exclusively, prob-
lems arising in statistics and computer science such as matrix completion [5, 17],
principal component analysis [4, 20], robust factor analysis [12], spectral cluster-
ing [2, 3, 9, 19, 22, 28], and more. In these settings A will often represent some

model and a given instance of the model Â can be thought of as a (random) pertur-

bation to this baseline, i.e. Â = A + E. Many models A have highly structured and
meaningful invariant subspaces whose properties form the basis for a wide variety of
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1As elaborated on later, we must somewhat carefully define what it means for two subspaces to

be close row-wise.
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2 A. DAMLE AND Y. SUN

algorithmic development and analysis of the underlying problem. Therefore, given Â
we would like to understand if that structure can still be reliably leveraged. For many
of these applications traditional measures of distance do not not necessarily provide
adequate control over changes to the invariant subspaces.

A simple, concrete illustration of the types of bounds we will develop is encapsu-
lated in the following scenario. Given a rank-k symmetric matrix A, an n× k matrix
V with orthonormal columns representing the subspace associated with the non-zero
eigenvalues, and a symmetric perturbation E, when is the dominant invariant sub-
space of A + E closer to V row-wise than may be expected based on the smallest
non-zero eigenvalue of A and the spectral norm of E?

More specifically, if we let k = 1 this question reduces to understanding when

min
s=±1

‖v̂ − sv‖∞ � min
s=±1

‖v̂ − sv‖2,

where v is the eigenvector of A associated the eigenvalue λ 6= 0 and v̂ is the eigenvector
of A+E associated with the eigenvalue largest in magnitude (assuming ‖E‖2 is small
enough for this to be the appropriate pairing). Our main results restricted to this
setting answer such a question by providing explicit bounds on mins=±1 ‖v̂ − sv‖∞.
In particular we show that

min
s=±1

‖v̂ − sv‖∞ ≤ 8‖v‖∞
‖Ev‖22
λ2

+ 2ζ
‖Ev‖∞
λ

+ 4ζ
‖Ev‖2
λ2

max
i
‖Ei,:‖2,

where ζ = ‖I − vvT ‖∞. Notably, this upper bound can be substantially smaller than
a traditional Davis-Kahan bound on ‖vvT − v̂v̂T ‖2 that, up to constants, behaves like
‖Ev‖2/λ.

As illustrated by the above bound and the more general results we present later,
in situations where E and V have relatively uniform row norms (i.e., they are in-
coherent [5]) we may expect significantly better bounds than what is captured by
traditional subspace perturbation theory. We will formalize these results for symmet-
ric matrices in Section 3 where we also provide proofs and investigate the behavior of
our bounds. To complement our theoretical developments, Section 4 provides several
numerical examples illustrating our bounds in appropriate scenarios.

Given the potential usefulness of such bounds and the extent of relevant applica-
tions, this area has received significant attention over the past several years [2, 6, 11,
13]. Our main contributions are summarized as:

1. We develop new deterministic row-wise perturbation bounds for orthonor-
mal bases of invariant subspaces of symmetric matrices. Prior work often
entangles deterministic bounds with assumptions and/or analysis tailored to
specific random settings. Nevertheless, our deterministic bounds are easily
amenable to further analysis in the probabilistic settings as illustrated in Sec-
tion 3.3.3. Furthermore, in Section 5 we provide some basic extensions of our
results to situations where A and/or E are non-normal matrices.

2. We show that our bounds are sharp by constructing adversarial perturbations
that saturate the bounds.

3. Our perturbation bounds apply under more general conditions than preceding
results and we argue that our assumptions are minimal in certain respects by
considering specific examples.

While some aspects of our bounds are broadly in alignment with prior work, as noted
above others are new, rely on less restrictive assumptions, and are more directly
interpretable. We will draw specific comparisons to existing results parallel to the
development of our bounds in Section 3.
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2. Preliminaries.

2.1. Matrices. Let A ∈ Rn×n be a symmetric (not necessarily positive-definite)
matrix. We arrange its eigenvalues in descending order

λ1 ≥ · · · ≥ λn,

and denote its eigen-decomposition as

(2.1) A = V1Λ1V
T
1 + V2Λ2V

T
2 ,

where Λ1 = diag(λ1, . . . , λr) and Λ2 = diag(λr+1, . . . , λn) and V1 ∈ Rn×r and V2 ∈
Rn×(n−r) are matrices with orthonormal columns whose columns are the associated
eigenvectors.2 To make this splitting well defined we assume that λr > λr+1. In
addition, for our later results it is important that Λ2 explicitly include any zero
eigenvalues of A as they must be incorporated into our measure of how close Λ1 and
Λ2 are. Because we are interested in algebraic orderings of the eigenvalues we use
the term dominant to refer to the algebraically largest eigenvalues (in contrast to the
largest in magnitude). Lastly, for a matrix A we let Λ(A) denote the set of eigenvalues
of A.

Remark 1. Note that the restriction to the r algebraically largest eigenvalues is
not essential. Our results will only depend on spectral separation (or closely related
quantities) and therefore may be easily adapted to any isolated collection of r eigen-
values. However, such an adaptation introduces notational overhead without adding
anything fundamentally new. Similarly, with appropriate adaptation these results are
applicable to magnitude based ordering of the eigenvalues—though the ordering itself
may be more sensitive to perturbations than the associated subspaces. Therefore, to
streamline the exposition we present everything for the r algebraically largest eigen-
values.

Now, let Â = A+E represent a perturbation of A by a symmetric matrix E and
let V̂1 ∈ Rn×r be a matrix with orthonormal columns whose range is the r-dimensional
invariant subspace of Â associated with the algebraically largest eigenvalues. For the
moment we will assume λ̂r > λ̂r+1 so this notation is well defined, later assump-
tions we make will ensure this property. The primary contributions of this paper are
centered around relating V1 and V̂1.

Throughout this work we will be interested in projections of matrices onto the
invariant subspaces associated with A (represented by V1 and V2). Therefore, for any
matrix B ∈ Rn×n define Bi,j as V Ti BVj with i, j ∈ {1, 2}. Lastly, for any matrix
B ∈ Rn×n we define the Sylvester operator SB : Rn×r → Rn×r as

SB : Z → ZB1,1 −B2,2Z.

Note that we have embedded V1 and V2 directly into the definition of this Sylvester
operator for convenience.

2.2. Norms. Throughout this paper, we let ‖·‖1 , ‖·‖∞ , and ‖·‖2 denote the
standard `p vector norms and their associated induced matrix norms. Similarly, we
let ‖·‖F denote the Frobenius norm. In this work we will also be concerned with the
two-to-infinity induced matrix norm. Specifically, we denote this norm by ‖ ·‖2,∞ and

2In the case of repeated eigenvalues any orthonormal basis for the associated eigenspace suffices.
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note that for an n × k matrix B it can be defined as the maximum `2 norm of rows
of B, i.e.

‖B‖2,∞ = max
i=1,...,n

‖Bi,:‖2 .

We outline a few easily verified properties of ‖ · ‖2,∞ that will be useful later:
Unitary invariance from the right: For any orthogonal Z ∈ Rk×k

‖BZ‖2,∞ = ‖B‖2,∞.

In other words, the norm is invariant under orthogonal transforms from the
right (though, notably, not from the left). This property follows immediately
from the unitary invariance of the two-norm.
Invariance to signed permutations from the left: For any signed
permutation Π ∈ Rn×n

‖ΠB‖2,∞ = ‖B‖2,∞.

This result follows from the invariance of ‖ · ‖∞ to signed permutations.
Sub-multiplicative relations: The relevant sub-multiplicative relation-
ships are

‖B1B2‖2,∞ ≤ ‖B1‖2,∞ ‖B2‖2 and ‖B1B2‖2,∞ ≤ ‖B1‖∞ ‖B2‖2,∞.

These inequalities follow from the definition of induced matrix norms and
consistency of ‖ · ‖2 and ‖ · ‖∞.

2.3. Subspace distances. Given our fairly loose assumptions on the eigenvalues
of A, we cannot always talk about convergence to individual eigenvectors. Instead,
we consider the distances between invariant subspaces. We will often (implicitly)
associate matrices with orthonormal columns and subspaces, and refer to the range
of a matrix W as ranW. Given two n× k matrices with orthonormal columns W and
W̃ the distance between the subspaces ranW and ranW̃ is

dist(W, W̃ ) ≡ ‖WWT − W̃W̃T ‖2.

Equivalent definitions include (see, e.g., [14, § 2.6]):
Complementary subspaces: Let W2 ∈ Rn×n−k be an orthonormal basis
for the orthogonal complement of the subspace spanned by W, then

dist(W, W̃ ) ≡ ‖WT
2 W̃‖2.

Sine-Θ distance: Let Θ(W, W̃ ) be a diagonal matrix containing the princi-

ple angles between W and W̃ , then

dist(W, W̃ ) ≡ ‖ sin Θ(W, W̃ )‖2.

The bounds we develop in Section 3 will focus on a slightly different measure
between W and W̃ . Specifically, we will be concerned with the row-wise error metric

(2.2) min{‖W̃U −W‖2,∞ : U ∈ Ok},

where the minimization over orthogonal matrices ensures the metric is appropriate
for subspaces (as opposed to relying on a specific choice of basis). Further motivation
for this metric is encapsulated by the following proposition.
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Proposition 2.1. Given two orthonormal bases W and W̃ , for any w ∈ ranW
there exists a w̃ ∈ ranW̃ such that

‖w − w̃‖∞ ≤ min{‖W̃U −W‖2,∞ : U ∈ Ok}.

In contrast, the analogy to Proposition 2.1 for traditional subspace distances would
provide a bound on ‖w − w̃‖2.

Conceptually, the metric (2.2) is closely related to the so-called orthogonal Pro-
crustes problem

(2.3) min{‖W̃U −W‖F : U ∈ Ok},

which is well-studied and has a known solution easily computable via the SVD of
W̃TW (see, e.g., [14, § 12.4]). In fact, the orthogonal Procrustes problem can also be
related to subspace distance since (see, e.g., [4] and [14, § 12.4])

‖ sin Θ(W, W̃ )‖2 ≤ min{‖W̃U −W‖F : U ∈ Ok} ≤
√

2k‖ sin Θ(W, W̃ )‖2.

Notably, the entry-wise definitions of ‖·‖2,∞ and ‖·‖F immediately show it is plausible
that (2.2) can be considerably (by a factor of 1/

√
n) smaller than (2.3). In short, using

‖ · ‖2,∞ allows us to understand how well the error is distributed over the rows.

2.4. Applications of two-to-infinity distances. From an application per-
spective there are many reasons why we may be interested in distances measured via
‖ · ‖2,∞. For example, spectral algorithms for clustering interpret invariant subspaces
row-wise to build low-dimensional embeddings of nodes in a graph or points in a
point cloud [27] (specifically, rows of V1 correspond to an r-dimensional embedding
of the graph nodes or data points). Therefore, concrete analysis of the performance
of spectral algorithms on model problems or justification of observed performance on
real-world data benefits from “point-wise” control over perturbations to the embed-
ding.

Concretely, related work has been used to show spectral methods are information
theoretically optimal for the Stochastic Block Model (SBM) with two blocks in the
regime where node degree grows logarithmically with graph size [2]. (See [1] for
a more general perspective on recent advances for this problem, and [18] for how
random matrix theory and concentration results play a role in community detection.)
Algorithmically, it is significantly more difficult to analyze situations with more than
two blocks, but we believe our results paired with specific formulations of spectral
algorithms [9] may allow for more general analysis. Other problems that benefit
from such bounds include so-called synchronization problems [21, 23], recovery of
unknown mixture components via spectral methods [28], and analysis of algorithmic
performance on more general graph models such as random dot product graphs [3].

2.5. Separation of matrices. An important concept for our work is the sepa-
ration of matrices in various norms. Specifically, for any two matrices B ∈ R`×` and
C ∈ Rm×m and norm ‖ · ‖∗ on Rm×`, define3

sep∗(B,C) = inf{‖ZB − CZ‖∗ : ‖Z‖∗ = 1}.

3This specific form of sep differs slightly notationally, though not mathematically, from the
standard way it is written for the two or Frobenius norm. Since we will ultimately be dealing with
norms where ‖B‖∗ 6= ‖BT ‖∗ this definition is required for consistency.
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Perhaps the most pervasive use of sep is in traditional invariant subspace perturbation
theory. In fact, for normal matrices B and C

sepF (B,C) = min
λ∈Λ(B),µ∈Λ(C)

|λ− µ|,

thereby recovering the commonly used notion of an eigengap (see, e.g., [25]).
Importantly, and in alignment with our algebraic ordering of eigenvalues above,

sep is shift invariant in any norm, i.e.

sep∗(B + ξI, C + ξI) = sep∗(B,C)

for any ξ ∈ R. Furthermore, in any unitarily invariant norm sep is relatively insensitive
to perturbations of small spectral norm. In other words (see Proposition 2.1 of [16])

sep2(B + EB , C + EC) ≥ sep2(B,C)− ‖EB‖2 − ‖EC‖2

and

sepF (B + EB , C + EC) ≥ sepF (B,C)− ‖EB‖2 − ‖EC‖2

for EB ∈ R`×` and EC ∈ Rm×m. Lastly, given diagonal matrices it is possible to
control sep in a variety of norms necessary for our work. These bounds are captured
collectively in Lemma 2.2 (the results about sep2 and sepF are well known).

Lemma 2.2. Let D1 ∈ R`×` and D2 ∈ Rm×m be diagonal matrices and assume
that λmin(D1) ≥ λmax(D2), then

(2.4) sep2(D1, D2) = sepF (D1, D2) = sep2,∞(D1, D2) = λmin(D1)− λmax(D2).

Proof. We defer the proof to Appendix A.1.

In addition to the above “canonical” definition of separation, some of our bounds
requires that we introduce a slight variant of sep. In particular, we will occasionally
consider the separation measured only over matrices in a linear subspace. More specif-
ically, let W ∈ Rn×k be an orthonormal basis for a k-dimensional linear subspace and
define

sep∗,W (B,C) = inf{‖ZB − CZ‖∗ : Z ∈ ranW, ‖Z‖∗ = 1}.

It is immediate that sep∗,W (B,C) ≥ sep∗(B,C) for any W and therefore, as will
become evident, consideration of this restricted version of sep can only improve our
bounds. For us, the key use of this restricted separation quantity will be when C =
WD2W

T for some diagonal matrix D2.
4

In anticipation of its use later, we prove some results about this restricted version
of sep analogous to our earlier statements. First, we generalize the notion of sep being
shift invariant in Lemma 2.3.

Lemma 2.3. Consider B ∈ R`×` and C ∈ Rm×m, and let W ∈ Rn×m with n ≥ m
be a matrix with orthonormal columns. Then,

sep∗,W (B + ξI,WCWT + ξWWT ) = sep∗,W (B,WCWT )

for any ξ ∈ R.

4One consequence of this restriction is that it will allow us to eliminate any artificial requirement
that Λ1 be separated from zero when A is not low-rank.
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Proof. The proof follows immediately from the fact that for any Z ∈ ranW
ξWWTZ = ξZ.

Perhaps more importantly, and as illustrated in Lemma 2.4 in any unitarily invariant
norm we can relate this restricted version of sep directly to sep(B,C).

Lemma 2.4. Consider B ∈ R`×` and C ∈ Rm×m, and let W ∈ Rn×m with n ≥ m
be a matrix with orthonormal columns. Then, for any unitarily invariant norm ‖ · ‖∗

sep∗,W (B,WCWT ) = sep∗(B,C)

for any ξ ∈ R.

Proof. We first rewrite the infimum over ranW in terms of coefficients X of Z in
the orthonormal basis W as

sep∗,W (B,WCWT ) = inf{‖WXB −WCWTWX‖∗ : ‖X‖∗ = 1},

where we have used the fact that ‖ · ‖∗ is unitarily invariant to say that ‖WX‖∗ =
‖X‖∗. Using WTW = I and the unitary invariance of ‖ · ‖∗ once more concludes the
proof.

We now use these results to control a restricted version of sep(2,∞) (something
that will be of particular importance to us) in terms of more traditional and directly
interpretable quantities. These results are encapsulated in Lemma 2.5 and we stress
that they are worse case bounds that may be far from achieved in practice or provably
loose in specific cases.5 Nevertheless, the fact that the 2,∞ norm is not unitarily
invariant from the left significantly changes the landscape of possible outcomes.

Lemma 2.5. Consider B ∈ R`×` and C ∈ Rm×m, and let W ∈ Rn×m with n ≥ m
be a matrix with orthonormal columns. Then,

sep(2,∞),W (B,WCWT ) ≥ max

{
1√
n
, βW

}
sepF (B,C),

where

βW = inf

{
‖WX‖2,∞
‖W‖2,∞

: ‖X‖F = 1

}
.

Proof. We prove two lower bounds on sep(2,∞),W (B,WCWT ) that always hold
and then maximize over them. First, observe that for any Z ∈ ranW there exists an
X such that Z = WX, hence

‖ZB −WCWTZ‖2,∞
‖Z‖2,∞

=
‖WXB −WCX‖2,∞

‖WX‖2,∞

≥ ‖W (XB − CX)‖F√
n‖X‖F

≥ sepF (B,C)√
n

,

where we have used that 1√
n
‖A‖F ≤ ‖A‖2,∞ ≤ ‖A‖F for any A ∈ Rn×m.

5Concrete examples being when C = 0 or W = I and B and C are diagonal (see Lemma 2.2) in
which case sepF = sep2 = sep2,∞.
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Once again using that there exists an X such that Z = WX we see that

‖ZB −WCWTZ‖2,∞
‖Z‖2,∞

=
‖WXB −WCX‖2,∞

‖WX‖2,∞

≥ ‖W (XB − CX)‖2,∞
‖W‖2,∞‖X‖F

≥ ‖WT‖2,∞
‖W‖2,∞

,

where T = (XB − CX)/‖X‖F . Since ‖T‖F ≥ sepF (B,C) we take an infimum of the
lower bound over X to conclude the proof.

Lastly, in Lemma 2.6 we provide a direct bound on sep2,∞ in terms of traditional
matrix norms. In some situations, this may provide the most direct control over
sep2,∞ while in others it may be vacuous and one must resort to Lemma 2.5 instead.

Lemma 2.6. Consider B ∈ R`×` and C ∈ Rm×m, and let W ∈ Rn×m with n ≥ m
be a matrix with orthonormal columns. Then,

sep(2,∞),W (B,WCWT ) ≥ σmin(B)− ‖WCWT ‖∞,

where σmin(B) is the minimal singular value of B.

Proof. Staring from sep(2,∞),W (B,WCWT ) ≥ sep(2,∞)(B,WCWT ) we have that

‖ZB −WCWTZ‖2,∞
‖Z‖2,∞

≥ ‖ZB‖2,∞ − ‖WCWTZ‖2,∞
‖Z‖2,∞

≥ σmin‖Z‖2,∞ − ‖WCWT ‖∞‖Z‖2,∞
‖Z‖2,∞

≥ σmin(B)− ‖WCWT ‖∞.

3. Main result. Given the notation and concepts from Section 2 we may now
proceed to present our core results bounding ‖ ·‖2,∞ changes in invariant subspaces of
symmetric matrices A under symmetric perturbation; the proofs appear in Section 3.2.
Notably, our main result includes bounds for a specific U ∈ Or, not just the minimum
over all orthogonal matrices.

Theorem 3.1. Let A ∈ Rn×n be symmetric with eigen-decomposition

A = V1Λ1V
T
1 + V2Λ2V

T
2

following the conventions of (2.1) and

gap = min{sep2(Λ1,Λ2), sep(2,∞),V2
(Λ1, V2Λ2V

T
2 )}.

If ‖E‖2 ≤ gap
5 then

‖V̂1Ũ − V1‖2,∞ ≤ 8‖V1‖2,∞
(
‖E2,1‖2

sep2(Λ1,Λ2)

)2

(3.1)

+ 2
‖V2E2,1‖2,∞

gap
+ 4
‖V2E2,2V

T
2 ‖2,∞‖E2,1‖2

gap× sep2(Λ1,Λ2)
,
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where V̂1 is any matrix with orthonormal columns whose range is the dominant r-
dimensional invariant subspace of Â, and Ũ solves the orthogonal Procrustes problem

min{‖V̂1U − V1‖F : U ∈ Or}.

Corollary 3.2. Following the notation of Theorem 3.1 and under the same as-
sumptions, we have that

min{‖V̂1U − V1‖2,∞ : U ∈ Or} ≤ 8‖V1‖2,∞
(
‖E2,1‖2

sep2(Λ1,Λ2)

)2

(3.2)

+ 2
‖V2E2,1‖2,∞

gap
+ 4
‖V2E2,2V

T
2 ‖2,∞‖E2,1‖2

gap× sep2(Λ1,Λ2)
,

where V̂1 is any matrix with orthonormal columns whose range is the dominant r-
dimensional invariant subspace of Â.

First, we briefly remark on the assumptions and implications of Theorem 3.1.
The condition ‖E‖2 ≤ gap

5 is standard in the literature; it ensures the two parts of

Λ(Â) corresponding to the r-largest eigenvalues and the n − r smallest eigenvalues
of A are disjoint.6 The first term on the right hand side is also expected, it looks
like a traditional Davis-Kahan bound reduced by of the incoherence of V1 and an
additional factor of ‖E‖2. The second term captures how (in)coherent V2V

T
2 EV1 is,

a term we often expect to be well controlled. Lastly, the third term is controlled by
the incoherence of E itself (relative to its spectral norm).7

As we will see later, it is often the case that either the second or third term
dominates the upper bound. In fact, in Section 3.3 we provide an illustrative ex-
ample showing that both terms are necessary as part of our bound and are ef-
fectively tight. Furthermore, many random models for E have the property that
‖V2E2,2V

T
2 ‖2,∞ and ‖E2,1‖2 are on the same order, so in these settings using Theo-

rem 3.1 may only marginally improve on the classical Davis-Kahan bound. However,
the third term can be more sharply controlled when E is drawn from suitable ran-
dom models by modifying the proof — Theorem 3.6 explicitly shows how such an
improvement is constructed. Lastly, in Section 3.3 we will argue that the presence of
sep(2,∞),V2

(Λ1, V2Λ2V
T
2 ) is essential, though Lemma 2.5 provides some control over it

via more interpretable quantities.

Remark 2. Of particular note, when A is rank r and, therefore, Λ2 = 0 Theo-
rem 3.1 simplifies significantly since

gap = sep2(Λ1,Λ2) = sep(2,∞),V2
(Λ1, V2Λ2V

T
2 ) = min

i=1,...,r
|λi|.

Remark 3. Eq. (3.1) of Theorem 3.1 is a particularly useful result since there are

circumstances where it is possible to estimate Ũ given only V̂1 and some structural
assumptions about V1. Algorithms based around this paradigm have been developed
for spectral clustering [9] and localization of basis functions in Kohn-Sham Density
Functional Theory [7, 8].

Prior to embarking on a proof of the main result, we present a corollary of in-
dependent interest. Corollary 3.3 simplifies our result in the case where the infinity

6Technically, the constant in the denominator just needs to be bigger than 4.
7Note that if we define µ =

√
n‖V1‖2,∞ it is possible to further simplify the bound by observing

that ‖V2V T
2 E‖2,∞ ≤ ‖V2V T

2 ‖∞‖E‖2,∞ ≤ (1 + µ2)‖E‖2,∞.
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norm of E is sufficiently bounded relative to the spectral gap and the incoherence
of V1. This assumption allows us to remove the third term in the upper bound of
Theorem 3.1.

Corollary 3.3. Let A ∈ Rn×n be symmetric with eigen-decomposition

A = V1Λ1V
T
1 + V2Λ2V

T
2

following the conventions of (2.1),

gap = min{sep2(Λ1,Λ2), sep(2,∞),V2
(Λ1, V2Λ2V

T
2 )},

and µ =
√
n‖V1‖2,∞. If ‖E‖2 ≤ gap

5 and ‖E‖∞ ≤ gap/(4 + 4µ2) then

‖V̂1Ũ − V1‖2,∞ ≤ 8‖V1‖2,∞
(
‖E2,1‖2

sep2(Λ1,Λ2)

)2

+ 4
‖V2E2,1‖2,∞

gap
,

where V̂1 is any matrix with orthonormal columns whose range is the dominant r-
dimensional invariant subspace of Â and Ũ solves the orthogonal Procrustes problem

min{‖V̂1U − V1‖F : U ∈ Or}.

3.1. Related work. The most closely related results to our own are the two-
to-infinity bounds in [6], though other results exist for single eigenvectors [11] and for
similar, though distinct, measures of subspace perturbations [2]. The results in [6]
concern orthonormal bases of the singular subspaces of (possibly non-symmetric) ma-
trices. However, when specialized to orthonormal bases of the invariant subspaces of
symmetric matrices our results lead to sharper bounds. Specifically, in [6] the authors

establish a general decomposition of V̂1Ũ − V1, where Ũ solves

min{‖V̂1U − V1‖F : U ∈ Or},

and deduce general bounds on ‖V̂1Ũ − V1‖2,∞ through repeated use of the triangle
inequality.

More concretely, the first bound in [6] (Theorem 3.7) is most similar to our main
result, albeit proved in a significantly different manner. For symmetric positive defi-
nite matrices, combining Theorems 3.7 and 6.9 in [6] (and recasting them using our
notation) yields

‖V̂1Ũ − V1‖2,∞ ≤ 4‖V1‖2,∞
(

‖E‖2
sep2(Λ1,Λ2)

)2

+ 2
‖V2E2,1‖2,∞

λr
(3.3)

+ 4
‖V2E2,2V

T
2 ‖2,∞‖E‖2

λrsep2(Λ1,Λ2)
+ 4
‖V2Λ2V

T
2 ‖2,∞‖E‖2

λrsep2(Λ1,Λ2)
.

In the case where A has rank r (3.3) is comparable to our main result.8 However, if
A is not low-rank our result implies tighter upper bounds. In this case, ‖V2Λ2V

T
2 ‖2,∞

is non-zero, and the right hand side of the bound from [6] in (3.3) is dominated
by a term depending on ‖E‖2 — the same behavior immediately implied by Davis-
Kahan. If, for example, E ∈ Rn×n is a matrix of iid N (0, 1/n2) random scalars, their

8While we are able to use the potentially smaller quantity ‖E2,1‖2 in place of ‖E‖2, for many
random models on E these two quantities behave essentially the same.
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bound implies ‖V̂1Ũ −V1‖2,∞ vanishes at the rate Õ (1/
√
n). On the other hand, our

bound shows that ‖V̂1Ũ − V1‖2,∞ vanishes at the faster rate Õ(1/n)—an observation
illustrated in Section 4.

In [2] the authors develop similar results to Theorem 3.1 as corollaries to their
main results. Specifically, their final expressions in Theorem 2.1 and Corollary 2.1 are
row-wise perturbations bounds on orthonormal bases of invariant subspaces. However,
this is not the main focus of their work, and these results are generally looser than our
bounds. Furthermore, in contrast to our results their bounds are not purely deter-
ministic; they rely on probabilistic assumptions on the error matrix E and additional
assumptions on A itself.

3.2. Proof of the main result. At a high level, our proof has two parts. In the
first part, we develop a specific characterization of V̂1 parametrized by a matrix X̂ that
is a root of a quadratic matrix equation. In the second part, we show that ‖V̂1−V1‖2,∞
is small under our stated assumptions. Throughout the proof we extensively leverage
notation from Section 2 to refer to projections of arbitrary matrices B with respect to
the representations V1 and V2 of invariant subspaces associated with A— recall that
for any B ∈ Rn×n Bi,j = V Ti BVj .

Part 1: Our starting point is the bound

min{‖V̂1U − V1‖2,∞ : U ∈ Or} ≤ ‖V̂1Ũ − V1‖2,∞,

where Ũ is the solution of the orthogonal Procrustes problem:

(3.4) min{‖V̂1U − V1‖F : U ∈ Or}.

Notably, the solution to this problem is well known and computable given V̂1 and V1,
which will prove useful in our numerical experiments. More pertinent to our needs at
the moment, V̂1Ũ is the closest matrix with orthonormal columns to V1 in Frobenius
norm whose range is the dominant r-dimensional invariant subspace of Â.

We start by constructing a matrix with orthonormal columns V̂1 whose range is
the dominant r-dimensional invariant subspace of Â and a matrix V̂2 characterizing
the orthogonal complement of V̂1. We will pick V̂1 such that the solution to (3.4) is
the identity, thereby simplifying the remainder of the proof. Nevertheless, any bound
for this specific choice of V̂1 simultaneously holds for any orthonormal basis of ranV̂1

since the discrepancy may be formally resolved by solving the orthogonal Procrustes
problem. Specifically, consider

(3.5) V̂1 = (V1 + V2X̂)(Ir + X̂T X̂)−
1
2 ,

and

(3.6) V̂2 = (V2 − V1X̂
T )(I(n−r) + X̂X̂T )−

1
2

for some X̂ ∈ R(n−r)×r.

Remark 4. A clean construction of this characterization is to start with the gen-
eral formula for an arbitrary invariant subspace V̂1 = V1H+V2X for some H ∈ Rr×r

and X ∈ R(n−r)×r. Requiring that V̂ T1 V̂1 = I ensures that H is non-singular as long as

‖X‖2 < 1, which is guaranteed by our assumptions. Letting X̂ = XH−1 the condition

that V̂1 has orthonormal columns shows that

H2 +HX̂T X̂H = I.
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Multiplying on the left and right by H−1 we conclude that H−2 = I+X̂T X̂ and arrive
at (3.5).

It is not hard to check that V̂1 and V̂2 have orthonormal columns and their ranges
are complementary subspaces of Rn. Thus ranV̂1 is an invariant subspace of Â if and
only if

(3.7) 0 = V̂ T2 ÂV̂1 = −Â2,1 + X̂Â1,1 − Â2,2X̂ + X̂Â1,2X̂.

In other words, X̂ is a root of the map F : R(n−r)×r → R(n−r)×r defined as

F : X → −Â2,1 +XÂ1,1 − Â2,2X +XÂ1,2X.

We find a root of F by appealing to a Newton-type method (for root-finding). Starting
at X0 = 0, we construct the sequence

(3.8) Xt+1 ← Xt − S−1

Â
(F (Xt)).

To characterize the limit of (Xt) we appeal to the Newton-Kantorovich theorem (The-
orem B.1). We remark that this construction is similar, but not identical to, that in
[24, §3].

Lemma 3.4. As long as ‖E‖2 ≤ sep2(Λ1,Λ2)
4 , (Xt) converges to X̂ such that X̂

satisfies (3.7) and ‖X̂‖2 ≤ 4‖E2,1‖2
sep2(Λ1,Λ2) .

Proof. We defer the proof to Appendix B.1.

Since X̂ satisfies (3.7), ranV̂1 is an invariant subspace of Â. It remains to show that

ranV̂1 is the dominant r-dimensional invariant subspace of Â. We block-diagonalize
Â to obtain

(3.9)
[
V̂1 | V̂2

]T
Â
[
V̂1 | V̂2

]
=

[
V̂ T1 ÂV̂1 0

0 V̂ T2 ÂV̂2

]
.

The first diagonal block is

V̂ T1 ÂV̂1 = (Ir + X̂T X̂)−
1
2 (V1 + V2X̂)T Â(V1 + V2X̂)(Ir + X̂T X̂)−

1
2

= (Ir + X̂T X̂)−
1
2 (Â1,1 + Â1,2X̂ + X̂T Â2,1 + X̂T Â2,2X̂)(Ir + X̂T X̂)−

1
2 .

Recalling X̂ satisfies (3.7), we have

X̂T Â2,1 + X̂T Â2,2X̂ = X̂T X̂Â1,1 + X̂T X̂Â1,2X̂.

Plugging this expression into the right side of the preceding display, we obtain

V̂ T1 ÂV̂1 = (I + X̂T X̂)−
1
2 (Â1,1 + Â1,2X̂ + X̂T X̂Â1,1 + X̂T X̂Â1,2X̂)(I + X̂T X̂)−

1
2

= (I + X̂T X̂)−
1
2 (I + X̂T X̂)(Â1,1 + Â1,2X̂)(I + X̂T X̂)−

1
2

= (I + X̂T X̂)
1
2 (Â1,1 + Â1,2X̂)(I + X̂T X̂)−

1
2 .
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In other words, the first diagonal block is similar to Â1,1 + Â1,2X̂. This implies that

Λ(V̂ T1 ÂV̂1) = Λ(Â1,1 + Â1,2X̂)

= Λ(Λ1 + E1,1 + E1,2X̂)

⊂ Λ(Λ1) + (‖E1,1‖2 + ‖E1,2‖2‖X̂‖2)[−1, 1] (Bauer-Fike theorem)

⊂ Λ(Λ1) + (‖E‖2 +
4‖E‖22

sep2(Λ1,Λ2) )[−1, 1] (‖X̂‖2 ≤ 4‖E‖2
sep2(Λ1,Λ2) )

⊂ Λ(Λ1) + 2‖E‖2[−1, 1] ( ‖E‖2
sep2(Λ2,Λ2) ≤

1
4 ),

where, as before, Λ(A) is defined to be the set of eigenvalues of the matrix A.

Similarly, it is possible to show that the second diagonal block is similar to Â2,2−
X̂Â1,2 and

Λ(V̂ T2 ÂV̂2) ⊂ Λ(Λ2) + 2‖E‖2[−1, 1].

Recalling ‖E‖2 ≤ sep2(Λ1,Λ2)
5 , we have

min{λ1 : λ1 ∈ Λ(V̂ T1 ÂV̂1)} ≥ λr − 2‖E‖2
> λr+1 + 2‖E‖2
> max{λ2 : λ2 ∈ σ(V̂ T2 ÂV̂2)},

which implies ran(V̂1) is the dominant r-dimensional invariant subspace of Â as
claimed.

Finally, it is well-known that the optimal point Ũ of the orthogonal Procrustes
problem (3.4) is the unitary factor in the polar decomposition of V̂ T1 V1. Since

V̂ T1 V1 = (I + X̂T X̂)−
1
2 (V1 + V2X̂)TV1

= (I + X̂T X̂)−
1
2 (V T1 V1 + X̂V T2 V1)

= (I + X̂T X̂)−
1
2

is symmetric and positive definite, that unitary factor is the identity. Therefore, as
desired, V̂1 is the closest matrix to V1 in Frobenius distance among all matrices of
the form V̂1U , where U ∈ Or. Note that this is exactly the set of matrices with
orthonormal columns whose range is the dominant r-dimensional invariant subspace
of Â.

Part 2: For the remainder of the proof V̂1 is as defined in (3.5) and we proceed
to explicitly bound

‖V̂1 − V1‖2,∞.

We start by decomposing the error V̂1−V1 into its components in ranV1 and (ranV1)⊥

(recall that ranV2 = (ranV1)⊥). Specifically, from (3.5) it follows that

(3.10) V̂1 − V1 = V1((Ir + X̂T X̂)−
1
2 − Ir) + V2X̂(I + X̂T X̂)−

1
2 .

We now proceed to address each part of this decomposition of the error separately.
The (2,∞)-norm of the first term on the right side of (3.10) is at most

‖V1((Ir + X̂T X̂)−
1
2 − Ir)‖2,∞ ≤ ‖V1‖2,∞‖(Ir + X̂T X̂)−

1
2 − Ir‖2.

Since
‖(Ir + X̂T X̂)−

1
2 − Ir‖2 = |1− (1 + ‖X̂‖22)−1/2|,
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we can use the fact that for any x > 0

|1− (1 + x)−1/2| =
∣∣∣∣√1 + x− 1√

1 + x

∣∣∣∣
≤
∣∣∣∣ x√

1 + x+ 1

∣∣∣∣
≤ 1

2
x

to conclude that

‖(Ir + X̂T X̂)−
1
2 − Ir‖2 ≤

1

2
‖X̂‖22.

Furthermore, by Lemma 3.4 ‖X̂‖2 ≤ 4‖E2,1‖2
sep2(Λ1,Λ2) and therefore

‖V1((Ir + X̂T X̂)−
1
2 − Ir)‖2,∞ ≤ 8‖V1‖2,∞

(
‖E2,1‖2

sep2(Λ1,Λ2)

)2

.

At this point we have control over the first term in (3.10). In addition, since the
(2,∞)-norm of the second term on the right side of (3.10) is at most

‖V2X̂(Ir + X̂T X̂)−
1
2 ‖2,∞ ≤ ‖V2X̂‖2,∞‖(Ir + X̂T X̂)−

1
2 ‖2 ≤ ‖V2X̂‖2,∞

it follows from the triangle inequality that

(3.11) ‖V̂1 − V1‖2,∞ ≤ 8‖V1‖2,∞
(
‖E2,1‖2

sep2(Λ1,Λ2)

)2

+ ‖V2X̂‖2,∞.

For the remainder of the proof we focus on bounding ‖V2X̂‖2,∞. At first glance,
we are tempted to appeal to the compatibility of ‖ · ‖2,∞ and ‖ · ‖2 to obtain

‖V2X̂‖2,∞ ≤ ‖V2‖2,∞‖X̂‖2 ≤ ‖V2‖2,∞
2‖E2,1‖2

sep2(Λ1,Λ2)
.

Unfortunately, this bound is generally inadequate because ‖V2‖2,∞ may be much

larger than ‖V1‖2,∞.9 Instead, we must study ‖V2X̂‖2,∞ directly. To start, observe

that V2X̂ satisfies

(3.12) 0 = −V2Â2,1 + V2X̂Â1,1 − V2Â2,2V
T
2 V2X̂ + V2X̂Â1,2V

T
2 V2X̂.

In other words, V2X̂ is a root of the map G : Rn×r → Rn×r defined as

G : Y → −V2Â2,1 + Y Â1,1 − V2Â2,2V
T
2 Y + Y Â1,2V

T
2 Y.

Letting Ŷ = V2X̂, we rearrange (3.12) to obtain

Ŷ Â1,1 − V2Λ2V
T
2 Ŷ = −V2Â2,1 + Ŷ Â1,2V

T
2 Ŷ + V2E2,2V

T
2 Ŷ

= −V2E2,1 + Ŷ E1,2V
T
2 Ŷ + V2E2,2V

T
2 Ŷ ,

where we have used that A1,2 = AT2,1 = 0.

9In fact, we have that ‖
[
V1 V2

]
‖2,∞ = 1.
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We take norms to see that

‖Ŷ Â1,1 − V2Λ2V
T
2 Ŷ ‖2,∞

≤ ‖V2E2,1‖2,∞ + ‖Ŷ E1,2V
T
2 Ŷ ‖2,∞ + ‖V2E2,2V

T
2 Ŷ ‖2,∞

≤ ‖V2E2,1‖2,∞ + ‖Ŷ ‖2,∞‖Ŷ TV2E
T
1,2‖2 + ‖V2E2,2V

T
2 Ŷ ‖2,∞

≤ ‖V2E2,1‖2,∞ + ‖Ŷ ‖2,∞‖V2E
T
1,2‖2‖Ŷ ‖2 + ‖V2E2,2V

T
2 Ŷ ‖2,∞.

It now follows from Lemma 3.4 that

‖Ŷ Â1,1 − V2Λ2V
T
2 Ŷ ‖2,∞

≤ ‖V2E2,1‖2,∞ + ‖Ŷ ‖2,∞
2‖E2,1‖22

gap
+ ‖V2E2,2V

T
2 Ŷ ‖2,∞.

Next, observe that the left side is at least

‖Ŷ Â1,1 − V2Λ2V
T
2 Ŷ ‖2,∞ ≥ ‖Ŷ Λ1 − V2Λ2V

T
2 Ŷ ‖2,∞ − ‖Ŷ ‖2,∞‖E1,1‖2

≥ sep(2,∞),V2
(Λ1, V2Λ2V

T
2 )‖Ŷ ‖2,∞ − ‖Ŷ ‖2,∞‖E1,1‖2

≥ sep(2,∞),V2
(Λ1, V2Λ2V

T
2 )‖Ŷ ‖2,∞ − ‖Ŷ ‖2,∞‖E‖2

≥ 3

4
gap‖Ŷ ‖2,∞,

and, therefore,(
3

4
gap− 2‖E2,1‖22

gap

)
‖Ŷ ‖2,∞ ≤ ‖V2E2,1‖2,∞ + ‖V2V

T
2 EŶ ‖2,∞.

Since 2‖E2,1‖2/gap ≤ 1 and ‖E2,1‖2 ≤ gap/4 by assumption (using ‖E2,1‖2 ≤ ‖E‖2)
we have that

(3.13) ‖Ŷ ‖2,∞ ≤
2‖V2E2,1‖2,∞

gap
+

2‖V2V
T
2 EŶ ‖2,∞
gap

.

Prior to concluding the proof, we summarize our results up to this point in
Lemma 3.5. We partly pause to highlight a natural launching point for problem
specific analysis, particularly in settings where it is possible to control ‖V2V

T
2 EŶ ‖2,∞

in a tighter manner than suggested by our worst-case bounds that follow.

Lemma 3.5. Let A ∈ Rn×n be symmetric with an eigen-decomposition A =
V1Λ1V

T
1 + V2Λ2V

T
2 following the conventions of (2.1) and

gap = min{sep2(Λ1,Λ2), sep(2,∞),V2
(Λ1, V2Λ2V

T
2 )}.

If ‖E‖2 ≤ gap
5 then

‖V̂1Ũ − V1‖2,∞ ≤ 8‖V1‖2,∞
(
‖E2,1‖2

sep2(Λ1,Λ2)

)2

+ 2
‖V2E2,1‖2,∞ + ‖V2E2,2V

T
2 Ŷ ‖2,∞

gap
,

where V̂1 is any matrix with orthonormal columns whose range is the dominant r-
dimensional invariant subspace of Â, Ũ solves the orthogonal Procrustes problem

min{‖V̂1U − V1‖F : U ∈ Or},
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and Ŷ = V2X̂ where X̂ is the root of

F : X → −Â2,1 +XÂ1,1 − Â2,2X +XÂ1,2X

found by the iteration (3.8) starting at X0 = 0 and thereby satisfying Lemma 3.4.

Moving forward, Lemma 3.5 immediately implies that

‖Ŷ ‖2,∞ ≤ 2
‖V2E2,1‖2,∞

gap
+ 4
‖V2E2,2V

T
2 ‖2,∞‖E2,1‖2

gap× sep2(Λ1,Λ2)
,

where we have used the sub-multiplicative relationships

‖V2E2,2V
T
2 Ŷ ‖2,∞ ≤ ‖V2E2,2V

T
2 ‖2,∞‖Ŷ ‖2

in conjunction with Lemma 3.4 to bound ‖Ŷ ‖2. This concludes the proof of (3.1) in
Theorem 3.1 and Corollary 3.2 follows immediately.

We now briefly retrace our steps to prove Corollary 3.3. In particular, returning
to Lemma 3.5 we can instead conclude that

‖Ŷ ‖2,∞

(
1− 2(1 + µ2)

gap

‖EŶ ‖2,∞
‖Ŷ ‖2,∞

)
≤ 2‖V2E2,1‖2,∞

gap
,

where we have used the observation that

‖V2V
T
2 ‖∞ = ‖In − V1V

T
1 ‖∞

≤ 1 + max{
∑n
j=1 |vTi vj | : i ∈ [n]}

≤ 1 + n‖V1‖22,∞
≤ 1 + µ2,

and that Ŷ ∈ ranV2. Now, since ‖EŶ ‖2,∞/‖Ŷ ‖2,∞ ≤ ‖E‖∞ if we further assume that
‖E‖∞ ≤ gap/(4 + 4µ2) we get that(

1− 2(1 + µ2)

gap

‖EŶ ‖2,∞
‖Ŷ ‖2,∞

)
≥ 1

2
.

Therefore,

‖Ŷ ‖2,∞ ≤ 4
‖V2E2,1‖2,∞

gap
,

which concludes the proof of Corollary 3.3.

3.3. Observations and implications. We now discuss several aspects of our
bounds in greater detail. In particular, we first construct specific examples that
show any of the 3 terms in the bound of Theorem 3.1 may tightly control the error
and therefore are all necessary. We then argue why sep(2,∞),V2

(Λ1, V2Λ2V
T
2 ) should

be directly included in our bounds by showing that in the worst case it may be
considerably smaller than sepF (Λ1,Λ2). Lastly, we discuss the use of our bound in
certain probabilistic scenarios motivated by applications and highlight how our bounds
can facilitate further analysis of those situations.
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3.3.1. When the upper bound is tight. The first term of our upper bound
represents the projection of the error onto V1 while the latter two terms arise from the
projection onto V2. Therefore, we focus on the latter piece to understand if both the
terms are necessary and examine our potentially loose use of the triangle inequality
and sub-multiplicative bounds in the proof. To accomplish this, we construct a specific
example and examine the behavior of our bound.

We bounded the projection of the error onto ranV2 as

(3.14) ‖V2V
T
2 (V̂1 − V1)‖2,∞ ≤

2‖V2E2,1‖2,∞
gap

+ 4
‖V2E2,2V

T
2 ‖2,∞‖E2,1‖2

gap× sep2(Λ1,Λ2)
.

While the first term on the right hand side of (3.14) is a natural part of our bound
given the quadratic form (3.12), the second term arose from the sub-multiplicative
bound

‖V2E2,2V
T
2 Ŷ ‖2,∞ ≤ ‖V2E2,2V

T
2 ‖2,∞‖Ŷ ‖2 ≤

2

sep2(Λ1,Λ2)
‖V2E2,2V

T
2 ‖2,∞‖E2,1‖2.

Nevertheless, both terms are necessary—there are perturbations that saturate each
part of the bound.

To show this, we build an example that demonstrates two clear regimes—one
where the first term of (3.14) controls the error tightly and one where the second

term does. We accomplish this by picking E such that for the resulting Ŷ

‖EŶ ‖2,∞ ≈ ‖V2E2,2V
T
2 ‖2,∞

‖E‖2
gap

.

To keep thing simple, we consider the r = 1 case with λ1 = 1 and λ2, . . . , λn = 0,
which implies gap = 1. We then let V1 = 1/

√
n and observe that if E1,2 = 0 and

E1,1 = 0 then Ŷ satisfies

(I − V2E2,2V
T
2 )Ŷ = V2E2,1.

The core insight in our construction is that we can now choose V2E2,2V
T
2 and V2E2,1

carefully to accomplish our goal. This is because we can essentially determine Ŷ (in
fact, to first order it looks like V2E2,1 if the norm of E is sufficiently small).

Now, let

V2E2,2V
T
2 = V2V

T
2 (e11

T
±/
√
n+ 1±e

T
1 /
√
n)V2V

T
2 .

In this case there exists a y with y1 = 1 and y2, . . . , yn = O(1/
√
n) such that (I −

V2E2,2V
T
2 )y = O(1/

√
n) entry-wise. Setting V2E2,1 to be proportional to V2V

T
2 (I −

V2E2,2V
T
2 )y lets us deterministically construct an E where Ŷ essentially saturates the

sub-multiplicative bound.10 The preceding construction yields a purely deterministic
example illustrating in Figure 1b that either part of (3.14) can be dominant. Similarly,
Figure 1a shows, as expected, that our bound on the projection of the error onto V1

tightly captures the asymptotic behavior.

10Practically one can make E symmetric by setting E1,2 appropriately without destroying the

example and scale E by n−1/3 so that we expect convergence in n. Details are available in the online
materials referred to in the numerical experiments section. Choices of scaling constants in individual
parts of E control where the crossover point occurs between the two bounds.
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(b) Projection onto V2

Fig. 1: Asymptotic behavior of minŨ=±1 ‖V̂1 − V1Ũ‖2,∞ split into the component of
the error in ranV1 and ranV2. This example shows that either part of the upper bound
in Theorem 3.1 associated with the error projected onto ranV2 can tightly control
the rate of decay. Similarly, our control over the projection of the error onto ranV1

matches the observed rate for this example. Note that, as indicated by the legend, we
have not included constants (they would appear to be slightly loose in this case) and
used the upper bound ‖V2E2,2V

T
2 ‖2,∞ ≤ ‖V2V

T
2 E‖2,∞. Therefore the dotted lines

technically represent our upper bounds to within small constants.

3.3.2. Inclusion of norm specific separation. In the proof of Theorem 3.1
sep(2,∞),V2

(Λ1, V2Λ2V
T
2 ) arises somewhat naturally. Nevertheless, ideally one would

be able to generically relate it tightly to traditional notions of an eigengap. Unfortu-
nately, the lower bound provided in Lemma 2.5 is essentially tight. To show this we
explicitly construct an example that achieves (to within a small constant) the lower
bound sep(2,∞),V2

(Λ1, V2Λ2V
T
2 ) ≥ sepF (Λ1,Λ2)/

√
n.

Assume n is even and let 1 be the vector of all ones and (1±)i = −1 if i > n/2 and

1 otherwise. Now, define v1 =
[
0 1T

]T
/
√
n and v2 =

[
0 1T±

]T
/
√
n and consider

the (n+ 1)× (n+ 1) matrix

A = 2 ∗ v1v
T
1 +

[
e1 v2

] [0 1
1 0

] [
e1 v2

]T
In our framework this corresponds to setting Λ1 = 2, Λ2 = diag(1,−1, 0, . . . , 0) ∈
Rn×n, and letting V2 to be any matrix with orthonormal columns spanning the or-
thogonal complement of v1 such that

[
e1 v2

] [0 1
1 0

] [
e1 v2

]T
= V2Λ2V

T
2 .

In this case, by picking the vector q = e1 + 2v2 (which is in the range of V2 and
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satisfies ‖q‖2,∞ = 1 if n ≥ 4) we see that

‖qΛ1 − V2Λ2V
T
2 q‖2,∞ = ‖2q − 2e1 − v2‖2,∞

= ‖3v2‖2,∞

=
3√
n
.

Therefore, sep(2,∞),V2
(Λ1, V2Λ2V

T
2 ) ≤ 3/

√
n and since sepF (Λ1,Λ2) = 1 this shows

that Lemma 2.5 is essentially tight. Nevertheless, Lemmas 2.5 and 2.6 also show situa-
tions where sep(2,∞),V2

and sepF are more closely related. Ultimately, the range of pos-
sible relationships between sep(2,∞),V2

and sepF motivates the inclusion of sep(2,∞),V2

directly in any worst-case deterministic bound.

3.3.3. Probabilistic settings. While the two preceding sections illuminate why
various terms in our constructed bounds are necessary, one may expect that in random
settings these terms can be controlled more effectively and the expected behavior may
be far from the worst case. In particular, if we consider E = σZ where Z is symmetric
and Zi,j are iid N (0, 1) (up to the symmetry constraint) random variables we have by
standard properties of Gaussian random matrices (see, e.g., [26, § 4.4])

P(‖E‖2 > 3σ
√
n) . e−

n
2 .

Furthermore, under an assumption that V1 is incoherent (recall that µ =
√
n‖V1‖2,∞)

and E is independent from V1 we may assert (again via standard properties of Gaus-
sian random matrices and a union bound [26, § 4.4]) that

‖E2,1‖2,∞ ≤ (1 + µ2)‖EV1‖2,∞ . σ
√

log n

with high probability. Ideally, these results would directly imply that in such a setting

(3.15) min{‖V̂1U − V1‖2,∞ : U ∈ Or} . σ
√

log n

with high probability. Unfortunately, this does not follow directly from Theorem 3.1 as
for certain values of σ the error bound is dominated by the term ‖E‖2,∞‖E‖2 . σ2n.

Figure 1 shows that this is not an artifact of our analysis; it is possible to construct
examples that saturate the error bound. However, these examples are adversarial. In
particular, the independence among the entries of Z permits more direct control of
‖EŶ ‖2,∞ and [2] appeal to a leave-one-out technique to achieve such direct control.
Based on our analysis, we conjecture that their column-wise independence condition
may be relaxed to independence among the Ei,j ’s (i, j ∈ {1, 2}). While we defer a
thorough analysis of this problem in the probabilistic setting for future work, Theo-
rem 3.6 illustrates how additional mild assumptions on E can be used to improve our
bounds. While we have stated Theorem 3.6 for the Procrustes solution, the result for
the minimum over U ∈ Or (analogous to Corollary 3.2) follows immediately.

Theorem 3.6. Let A ∈ Rn×n be symmetric with eigen-decomposition

A = V1Λ1V
T
1 + V2Λ2V

T
2

following the conventions of (2.1),

gap = min{sep2(Λ1,Λ2), sep(2,∞),V2
(Λ1, V2Λ2V

T
2 )}



20 A. DAMLE AND Y. SUN

be independent of n, and ‖V1‖2,∞ . 1/
√
n. If E = σZ where Z is symmetric, Zi,j

are iid N (0, 1) random variables (up to the symmetry constraint) and σ . 1/
√
n then

with probability 1− o(1)

min{‖V̂1Ũ − V1‖2,∞ : U ∈ Or} . σ2
√
n+ σ

√
log n+ (σ

√
n)3,

where V̂1 is any matrix with orthonormal columns whose range is the dominant r-
dimensional invariant subspace of Â, and Ũ solves the orthogonal Procrustes problem

min{‖V̂1U − V1‖F : U ∈ Or}.

Proof. The key idea behind this proof is to consider a second perturbation Ẽ
drawn from the same distribution as E conditioned on Ẽ1,2 = E1,2 and Ẽ1,1 =

E1,1 — nevertheless, E2,2 and Ẽ2,2 are still independent. Given E and Ẽ appropriate

control of ‖E‖2 and ‖Ẽ‖2 [26, § 4.4] with probability 1 − o(1) allow us to invoke
Lemma C.1 to get that

‖V̂1Ũ − V1‖2,∞ .
1√
n
‖E2,1‖22 + ‖V2E2,1‖2,∞ + ‖V2E2,2V

T
2 Ỹ ‖2,∞

+ ‖E2,2‖2‖V2E2,2V
T
2 ‖2,∞‖E2,1‖2 + ‖V2E2,2V

T
2 ‖2,∞‖E2,1‖32

where Ỹ ∈ Rn×r is in the range of V2 and satisfies

0 = −V2Ã2,1 + Ỹ Ã1,1 − V2Ã2,2V
T
2 Ỹ + Ỹ Ã1,2V

T
2 Ỹ .

This implies that Ỹ is independent of E2,2 and satisfies ‖Ỹ ‖2 . ‖E2,1‖2. The stated
bound follows immediately from the following bounds on E that all hold with proba-
bility 1− o(1) [26, § 4.4]

‖E2,1‖2 . σ
√
n

‖V2E2,1‖2,∞ . σ
√

log n

‖V2E2,2V
T
2 Ỹ ‖2,∞ . σ2

√
n log n

‖E2,2‖2 . σ
√
n

‖V2E2,2V
T
2 ‖2,∞ . σ

√
n,

where because ‖V1‖2,∞ . 1/
√
n we have that ‖V2V

T
2 ‖∞ . 1.

Remark 5. If we consider µ to be constant in n (synonymous with ‖V1‖2,∞ .
1/
√
n), the rate of convergence of min{‖V̂1U − V1‖2,∞ : U ∈ Or} implied by Theo-

rem 3.6 is faster than that given by direct application Theorem 3.1. In particular, we
get that min{‖V̂1U −V1‖2,∞ : U ∈ Or} → 0 as (σ

√
n)3 vs (σ

√
n)2. While an improve-

ment, we believe more intricate probabilistic techniques will be necessary to prove an
upper bound that matches our conjectured rate of σ

√
log n (see (3.15)) in this setting.

4. Numerical simulations. We now provide numerical simulations to illustrate
the effectiveness of our bounds and elaborate on a key difference between them and
prior work. We consider two settings, one where A is low-rank and one where A is not
low-rank and ‖V2Λ2V

T
2 ‖2,∞ is constant with respect to n. In all these experiments,

and as before, we let 1 be the vector of all ones and (1±)i = −1 be 1 in the first half
of the entires and −1 in the second half. We also let E = σZ where Z is a symmetric
matrix whose entries are iid N (0, 1). Code to generate these plots (and Figure 1) is
available at https://github.com/asdamle/rowwise-perturbation.
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4.1. A is low-rank. Assume n is even, let

V1 =
1√
n

[
1 1±

]
,

and consider A = V1V
T
1 . In this setting, gap = 1 and if σ = 1/n Theorem 3.1

shows that min{‖V̂1U − V1‖2,∞ : U ∈ Or} .P
√

logn
n , where the term controlling

the rate with respect to n is ‖V2E2,1‖2,∞. Furthermore, Theorem 3.1 shows that

‖V̂1Ũ − V1‖2,∞ .P
√

logn
n . Therefore, we conduct an experiment where for increasing

values of n we construct Â for several instances of E, compute V̂1 and the solution
to the orthogonal Procrustes problem, and measure ‖V̂1Ũ −V1‖2,∞. Figure 2a clearly
shows the expected behavior for both the traditional subspace distance and our bound
on ‖ · ‖2,∞. We also explicitly include our upper bound from Theorem 3.1, showing
that it tightly describes the behavior to within constants. Lastly, Figure 2a shows a
clear distinction between our upper bound and simply using Davis-Kahan to upper
bound ‖V̂1Ũ − V1‖2,∞ (viable since ‖ · ‖2,∞ ≤ ‖ · ‖2) — it is not just a matter of
constants, in this case the rate of decay with respect to n is fundamentally different
for the two bounds.

Perhaps more interestingly, we also consider the case where E = (1/n3/4)Z. In

this case, simply applying concentration bounds to Theorem 3.1 predicts ‖V̂1Ũ −
V1‖2,∞ .P

√
logn√
n
. However, as expected in this setting, the bound used to control

‖EŶ ‖2,∞ is loose and Figure 2b shows that the error acts as if E and Ŷ were indepen-

dent (though they are decidedly not) yielding an observed convergence rate of
√

logn
n3/4 .

Nevertheless, as before we explicitly compute and plot the upper bound from Theo-
rem 3.1 for comparison. Notably, in this setting the improved bound of Theorem 3.6
is sufficient to correctly capture the observed asymptotic behavior.

4.2. A is not low-rank. Next, we consider the case where A itself is no longer
low-rank. For even n let

V1 =
1√
n

[
1 1±

]
,

v2 = e1 − e2 ∈ Rn×1, and
A = 4V1V

T
1 + v2v

T
2 .

Notably, A is no longer low-rank and the component of A orthogonal to V1 is coherent,
of significant relative magnitude, and does not decay with n. Nevertheless, our results
immediately imply that the asymptotic behavior of ‖V̂1Ũ − V1‖2,∞ should match
that of the low-rank case.11 In contrast, this behavior is not accurately predicted
by the upper bounds from [6] reproduced in (3.3). Using the same experimental
set up as before, Figures 3a and 3b clearly illustrate the asymptotic behavior we
expect—mirroring that of Figures 2a and 2b respectively. We also compute and plot
our upper bound from Theorem 3.1 for reference, observing that it is once again
descriptive. Inclusion of the Davis-Kahan bound shows, once again, that there is a
clear distinction between ‖V̂1Ũ − V1‖2,∞ and ‖V̂1Ũ − V1‖F .

5. Extensions of our bounds for non-normal matrices. We have con-
structed our bounds for symmetric matrices A subject to arbitrary additive symmetric
perturbations E. Nevertheless, they may be extended in several directions for non-
normal A and/or E by considering more general invariant subspaces arising in the

11Here sep(2,∞)(Λ1, V2Λ2V T
2 ) ≥ 2 as a consequence of Lemma 2.6
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Fig. 2: Asymptotic behavior of ‖V̂1Ũ − V1‖2,∞ where A is low-rank and E = σZ
for varying σ (in this case E[‖E‖2] ∼ σ

√
n), along with the upper bound given by

Theorem 3.1 for each instance of the problem. For each n the experiment was repeated
30 times and we report the mean of the error and computed upper bounds. The
shaded regions represent the area between the 0.05 and 0.95 quantiles of the respective
lines. We see that the bounds provided by theorems 3.1 and 3.6 are sharp (modulo a

multiplicative constant). In the plot on the left, the slope of red line (‖V̂1Ũ −V1‖2,∞)
matches the slope of the black line (bound provided by Theorem 3.1). In the plot on
the right, the slope of the red line matches the slope of the purple line (rate provided
by Theorem 3.6). For reference we provide the more slowly converging quantity

‖V̂1Ũ − V1‖F , which is within constants of dist(V̂1, V1) and behaves as predicted by
classical theory such as the Davis-Kahan Theorem [10].

Schur forms of A and A + E. We briefly articulate how such extensions are readily
obtained following the same proof strategy used for Theorem 3.1.

5.1. Schur form subspaces. Our results can be directly extended to the Schur
form for non-normal matrices; notably, we also no longer require any assumptions on
E. We now let

(5.1) A =
[
U1 U2

] [T1,1 T1,2

0 T2,2

] [
U1 U2

]∗
where U1 ∈ Cn×r and U2 ∈ Cn−r×r have orthonormal columns, and T1,1 and T2,2 are
upper triangular.

Adding one additional assumption about the norm of T1,2 our results extend
via Theorem 5.1 to the Schur form. For simplicity we have been loose with our
assumptions on ‖E‖2 and ‖T1,2‖2 and small improvements to the necessary constants
are possible. Importantly, rather then T1,2 showing up in the upper bounds it shows
up in the assumptions — thereby controlling the matrices for which this result is valid.
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(b) E = (1/n3/4)Z

Fig. 3: Asymptotic behavior of ‖V̂1Ũ − V1‖2,∞ where A is not low-rank and E = σZ
for varying σ (in this case E[‖E‖2] ∼ σ

√
n), along with the upper bound given by

Theorem 3.1 for each instance of the problem. For each n the experiment was repeated
30 times and we report the mean of the error and computed upper bounds. The
shaded regions represent the area between the 0.05 and 0.95 quantiles of the respective
lines. We see that the bounds provided by theorems 3.1 and 3.6 are sharp (modulo a

multiplicative constant). In the plot on the left, the slope of red line (‖V̂1Ũ −V1‖2,∞)
matches the slope of the black line (bound provided by Theorem 3.1). In the plot on
the right, the slope of the red line matches the slope of the purple line (rate provided
by Theorem 3.6). For reference we provide the more slowly converging quantity

‖V̂1Ũ − V1‖F , which is within constants of dist(V̂1, V1) and behaves as predicted by
classical theory such as the Davis-Kahan Theorem [10].

Theorem 5.1. Let A ∈ Rn×n have the Schur form

A =
[
U1 U2

] [T1,1 T1,2

0 T2,2

] [
U1 U2

]∗
following (5.1) and let gap = min{sep2(T1,1, T2,2), sep(2,∞),U2

(T1,1, U2T2,2U
∗
2 )}. If

‖E‖2 ≤ gap
10 , and ‖T1,2‖2 ≤ gap

10 then there exists a matrix Ŷ ∈ Cn−r×r such that

Û1 = (U1 + U2Ŷ )(I + Ŷ ∗Ŷ )−1/2

forms an invariant subspace for Â satisfying

min{‖Û1Q− U1‖2,∞ : Q ∈ Or} ≤ 8‖U1‖2,∞
(

‖E‖2
sep2(T1,1, T2,2)

)2

+ 2
‖U2U

∗
2EU1‖2,∞
gap

+ 4
‖U2U

∗
2EU2U

∗
2 ‖2,∞‖E2,1‖2

gap× sep2(T1,1, T2,2)
.
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Proof. Following the proof of the main result, in this setting the upper right
block of (3.9) is no longer zero, but V̂ T1 ÂV̂2. However, our additional assumptions

ensure that ‖Â1,2‖2 ≤ gap/5. Therefore, the result follows from the same argument

as Lemma 3.4 and Theorem 3.1 where we simply use Â1,2 in place of E1,2 and T1,1

and T2,2 in lieu of Λ1 and Λ2.

Remark 6. While we have formulated Theorem 5.1 for general A and E, in the
case where A is normal the upper bound simplifies significantly (independent of any
structural assumptions on E). In particular, T1,1 and T2,2 become diagonal and T1,2 =

0. This implies that when we consider invariant subspaces of Â for symmetric A we can
constructed qualitatively similar bounds regardless of whether or not E is symmetric.

5.2. Singular vectors and subspaces. More generally, and perhaps of more
interest for non-normal matrices, analogous questions about subspace perturbations
can be posed for singular subspaces. While omitted here, we believe the proof strategy
employed in this work can be extended to develop similar bounds for pairs of singular
subspaces. This assertion is based on the quadratic forms given in [24] for singular
subspaces of A+ E, though we leave such developments for future work.

6. Conclusions. Throughout this manuscript we have developed bounds on
‖V̂1 − V1Ũ‖2,∞ that are characterized by easily interpretable quantities (such as
‖V1‖2,∞) and rely on minimal assumptions. By additionally demonstrating that vari-
ous aspects of our bounds are “essential” when allowing for arbitrary symmetric A and
E we clearly show where the limits are for this problem absent additional assumptions.
Nevertheless, this effort also provides a natural launching point for further analysis, as
it points to the key assumptions that have to (or may) be made to further understand

the behavior of ‖V̂1 − V1Ũ‖2,∞ in specific settings. One concrete example of this is

the random setting explored in Section 4, where more refined control of ‖EŶ ‖2,∞ is
possible. Lastly, there are several ways in which our bounds show commonly made as-
sumptions in prior work (such as incoherence of A or certain assumptions on V2Λ2V

T
2 )

are unnecessary. The consequence of this is that our bounds are sharper in certain
situations. Collectively, we believe that these qualities make our bounds useful and
interpretable across a broad range of applications.

Acknowledgments. We would like to thank the anonymous referees for their
many helpful suggestions that improved this manuscript.

Appendix A. Proofs on properties of separation.

A.1. Proof of Lemma 2.2. First, we observe that because sep is shift invariant
it suffices to prove the result for non-negative D1 and D2. Therefore, we assume D1

and D2 have non-negative entries for the remainder of this proof. We now prove lower
bounds for all three variants of sep.

2-norm. For any Z we let UZΣZV
T
Z denote its reduced SVD and note that since

‖Z‖2 = 1 we have that σ1 = 1. Now we observe that

‖ZD1 −D2Z‖2 ≥ ‖ZD1‖2 − ‖D2Z‖2
≥ λmin(D1)− ‖D2‖2
≥ λmin(D1)− λmax(D2)
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where we have used that

‖XD1‖2 = ‖ΣZV TZ D1‖2
≥ ‖ΣZV TZ D1VZe1‖2
≥ ‖σ1e

T
1 V

T
Z D1VZe1‖2

≥ λmin(D1).

Frobenius norm. For any Z with unit Frobenius norm observe that

‖ZD1 −D2Z‖F ≥ ‖ZD1‖F − ‖D2Z‖F
≥ λmin(D1)− ‖D2Z‖2
≥ λmin(D1)− λmax(D2).

2,∞-norm. For any Z with ‖Z‖2,∞ = 1 there exists an index k such that
‖eTk Z‖2 = 1 where ek ∈ Rm is a canonical basis vector. Now, observe that

‖ZD1 −D2Z‖2,∞ ≥ ‖ZD1‖2,∞ − ‖D2Z‖2,∞
≥ ‖eTk ZD1‖2 − ‖D2Z‖2,∞
≥ λmin(D1)− λmax(D2),

where the last inequality follows because D2 represents a row scaling of Z.
Finally, let j denote the column in which λmin(D1) arises and let i denote the

column in which λmax(D2) arises. Now, observe that

eie
T
j D1 −D2eie

T
j = (λmin(D1)− λmax(D1)) eie

T
j ,

where ei ∈ Rm and ej ∈ R` are canonical basis vectors. Since

‖eieTj ‖2 = ‖eieTj ‖F = ‖eieTj ‖2,∞ = 1

we achieve the aforementioned lower bounds in all cases and thereby conclude the
proof.

Appendix B. The Newton-Kantorovich theorem. This is the version of
the the Newton-Kantorovich theorem we appeal to. It appears in [15, pp 536].

Theorem B.1. Let X,Y be Banach spaces and F : X → Y be twice-continuously
(Frechet) differentiable in a neighborhood of U of x ∈ X. Assume there is a linear
map J : X → Y such that S−1

A is bounded and satisfies
1. ‖J−1(F (x))‖ ≤ η,
2. ‖J−1 ◦ ∂F (x)− I‖ ≤ δ,
3. ‖J−1 ◦ ∂2F (y)‖ ≤ K for all y ∈ U .

If δ < 1 and h := ηK
(1−δ)2 <

1
2 , then the sequence (xt) defined recursively as

x0 ← x

xt+1 ← xt − J−1(F (xt))

converges to x̄ ∈ X such that F (x̄) = 0 and

‖x̄− x‖ ≤ 2η

(1− δ)(1 +
√

1− 2h)
.
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B.1. Proof of Lemma 3.4. We start by evaluating the derivatives of F :

∂F (0) : X → XÂ1,1 − Â2,2X,

∂2F (X) : X1, X2 → X1Â1,2X2.

Recognizing ‖S−1

Â
‖2 = 1

sep2(Â1,1,Â2,2)
and F (0) = E2,1, we have

‖S−1

Â
(F (0))‖2 ≤

‖E2,1‖2
sep2(Â1,1, Â2,2)

,

so the first condition of Theorem B.1 is satisfied by η =
‖E2,1‖2

sep2(Â1,1,Â2,2)
. We recognize

SÂ = ∂F (0), so the second condition of Theorem B.1 is satisfied by δ = 0. Finally,
we have

‖S−1

Â
(∂2F (0)(X1, X2))‖2 ≤

‖X1Â1,2X2‖2
sep2(Â1,1, Â2,2)

≤ ‖X1‖2‖E1,2‖2‖X2‖2
sep2(Â1,1, Â2,2)

,

so the third condition of Theorem B.1 is satisfied by K =
‖E1,2‖2

sep2(Â1,1,Â2,2)
. From Propo-

sition 2.1 of [16] we then have that

sep2(Â1,1, Â2,2) ≥ sep2(Λ1 + E1,1,Λ2 + E2,2)

= sep2(Λ1,Λ2)− ‖E1,1‖2 − ‖E2,2‖2
≥ sep2(Λ1,Λ2)− 2‖E‖2.

We combine this bound on sep2(Â1,1, Â2,2) with the condition ‖E‖2 ≤ sep2(Λ1,Λ2)
4 to

obtain

η =
‖E2,1‖2

sep2(Â1,1, Â2,2)
≤ ‖E2,1‖2

sep2(Λ1,Λ2)− 2‖E‖2
≤ 2‖E2,1‖2

sep2(Λ1,Λ2)
,

h =
ηK

(1− δ)2
=
‖E2,1‖2‖E1,2‖2
sep2(Â1,1, Â2,2)2

≤ ‖E‖22
(sep2(Λ1,Λ2)− 2‖E‖2)2

≤ 1

4
<

1

2
,

so the NK theorem implies F has a root X̂ such that

‖X̂‖2 ≤
2η

(1− δ)(1 +
√

1− 2h)
< 2η ≤ 4‖E2,1‖2

sep2(Λ1,Λ2)

as claimed.

Appendix C. Multiple perturbations. Here, we characterize how changes in
the invariant subspaces may be controlled when we have multiple perturbations of the
matrix A. Our primary use of this result is in developing Theorem 3.6. Specifically,
when E is drawn from a random model satisfying certain independence assumptions
we can use multiple draws of E to develop tighter bounds on the changes in V1

generated by any single instance of E.

Lemma C.1. Let A ∈ Rn×n be symmetric with eigen-decomposition

A = V1Λ1V
T
1 + V2Λ2V

T
2
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following our conventions in (2.1) and

gap = min{sep2(Λ1,Λ2), sep(2,∞),V2
(Λ1, V2Λ2V

T
2 )}.

Consider two symmetric perturbations E and Ẽ satisfying E1,2 = Ẽ1,2, E1,1 = Ẽ1,1,

‖E‖2 ≤ gap
5 , and ‖Ẽ‖2 ≤ gap

5 . In this setting

‖V̂1Ũ − V1‖2,∞ ≤ 8‖V1‖2,∞
(
‖E2,1‖2

sep2(Λ1,Λ2)

)2

+ 2
‖V2E2,1‖2,∞

gap
+ 4
‖V2E2,2V

T
2 Ỹ ‖2,∞

gap

+ 5
(‖E2,2‖2 + ‖Ẽ2,2‖2)‖V2E2,2V

T
2 ‖2,∞‖E2,1‖2

gap× sep2(Λ1,Λ2)2

+ 10
‖V2E2,2V

T
2 ‖2,∞‖E2,1‖32

gap× sep2(Λ1,Λ2)3
,

where V̂1 is any matrix with orthonormal columns whose range is the dominant r-
dimensional invariant subspace of A+E, Ũ solves the orthogonal Procrustes problem

min{‖V̂1U − V1‖F : U ∈ Or}.

In addition, Ỹ ∈ Rn×r is in the range of V2, is a root of

G : Y → −V2Ã2,1 + Y Ã1,1 − V2Ã2,2V
T
2 Y + Y Ã1,2V

T
2 Y

where Ã = A+ Ẽ, and satisfies ‖Ỹ ‖2 ≤ 4‖E2,1‖2
sep2(Λ1,Λ2) .

Proof. First, the assumption ‖E‖2 ≤ gap
5 allows us to invoke Lemma 3.5 and

deduce the first two terms in the bound directly. To construct the last three terms
we bound

4
‖V2E2,2V

T
2 Ŷ ‖2,∞

gap

in a more nuanced manner than the näıve sub-multiplicative bound used in Section 3.
Letting Ã = A + Ẽ we may invoke Lemma 3.4 to assert that there exists X̃ ∈

R(n−r)×r such that
Ṽ1 = (V1 + V2X̃)(Ir + X̃T X̃)−

1
2

is an orthonormal basis for the dominant r-dimensional invariant subspace of Ã and

‖X̃‖2 ≤ 4‖E2,1‖2
sep2(Λ1,Λ2) . As before, X̃ is a root of

F : X → −Ã2,1 +XÃ1,1 − Ã2,2X +XÃ1,2X

and therefore Ỹ = V2X̃ is a root of

G : Y → −V2Ã2,1 + Y Ã1,1 − V2Ã2,2V
T
2 Y + Y Ã1,2V

T
2 Y.

We now proceed by observing that

4
‖V2E2,2V

T
2 Ŷ ‖2,∞

gap
≤ 4
‖V2E2,2V

T
2 Ỹ ‖2,∞

gap
+ 4
‖V2E2,2V

T
2 (Ŷ − Ỹ )‖2,∞
gap

≤ 4
‖V2E2,2V

T
2 Ỹ ‖2,∞

gap
+ 4
‖V2E2,2V

T
2 ‖2,∞‖Ŷ − Ỹ ‖2
gap

.
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Control over ‖Ŷ − Ỹ ‖2 is achieved by observing that Ỹ and Ŷ satisfy

0 = −V2Â2,1 + Ŷ Â1,1 − V2Â2,2V
T
2 Ŷ + Ŷ Â1,2V

T
2 Ŷ

and
0 = −V2Ã2,1 + Ỹ Ã1,1 − V2Ã2,2V

T
2 Ỹ + Ỹ Ã1,2V

T
2 Ỹ .

In particular, since Ãi,j = Âi,j for all i, j pairs except i = j = 2 subtracting the
equations yields

0 = (Ŷ − Ỹ )Â1,1 − V2Â2,2V
T
2 Ŷ + V2Ã2,2V

T
2 Ỹ + Ŷ Â1,2V

T
2 Ŷ − Ỹ Ã1,2V

T
2 Ỹ ,

and via further rearrangement

(Ŷ − Ỹ )Â1,1 − V2A2,2V
T
2 (Ŷ − Ỹ ) = V2E2,2V

T
2 Ŷ − V2Ẽ2,2V

T
2 Ỹ

− Ŷ Â1,2V
T
2 Ŷ + Ỹ Ã1,2V

T
2 Ỹ .

Taking norms we observe that the left hand side is at least

(C.1)
4

5
sep2(Λ1,Λ2)‖(Ŷ − Ỹ )‖2 ≤ ‖(Ŷ − Ỹ )Â1,1 − V2A2,2V

T
2 (Ŷ − Ỹ )‖2

where we have used that ‖E1,1‖2 ≤ sep2(Λ1,Λ2)/5. We may bound the right hand
side via the triangle inequality and repeated used of Lemma 3.4 as

(C.2)

‖V2E2,2V
T
2 Ŷ − V2Ẽ2,2V

T
2 Ỹ − Ŷ Â1,2V

T
2 Ŷ + Ỹ Ã1,2V

T
2 Ỹ ‖2 ≤

4
(‖E2,2‖2 + ‖Ẽ2,2‖2)‖E2,1‖

sep2(Λ1,Λ2)
+ 8

‖E2,1‖32
sep2(Λ1,Λ2)2

,

where we have also used that A1,2 = 0. Combining (C.1) and C.2 yields the desired
upper bound.
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