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Abstract

For ε > 0, let uε : Ω→ R2 be a solution of the Ginzburg-Landau system

−∆uε =
1

ε2
uε(1− |uε|2)

in a Lipschitz bounded domain Ω. In an energy regime that excludes interior vortices, we
prove that 1 − |uε| is uniformly estimated by a positive power of ε globally in Ω provided
that the energy of uε at the boundary ∂Ω does not grow faster than ε−α with α ∈ (0, 1).

1 Introduction

Let Ω ⊂ R2 be a Lipschitz bounded open connected set (not necessarily simply connected) with
the unit outer normal and tangent vector fields (ν, τ) defined a.e. on ∂Ω with

τ = ν⊥ = (−ν2, ν1)

so that (ν, τ) forms an oriented frame a.e. on ∂Ω. For every small ε > 0, let uε : Ω → R2 be a
solution of the Ginzburg-Landau system:−∆uε =

1

ε2
uε(1− |uε|2) in Ω,

uε = gε on ∂Ω
(1)

with the boundary data gε : ∂Ω→ R2. For the boundary energy

Nε :=

∫
∂Ω

1

2
|∂τgε|2 +

1

4ε2
(1− |gε|2)2 dH1 (2)

and the interior energy

Mε :=

∫
Ω

1

2
|∇uε|2 +

1

4ε2
(1− |uε|2)2 dx, (3)
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Cedex 9, France. Email: Xavier.Lamy@math.univ-toulouse.fr

1



we assume that there exists a power α ∈ (0, 1) such that 1

Mε ≤ κ| log ε| and Nε �
1

εα
as ε→ 0, (4)

for some small constant κ > 0 depending on the Lipschitz regularity of Ω. The first condition in
(4) avoids nucleation of interior vortices of non-vanishing winding number (because the energetic
cost of an interior vortex of non-zero winding number is of order | log ε|, see the seminal book of
Bethuel-Brezis-Hélein [4]). The second condition in (4) corresponds to an energetic regime avoiding
the presence of boundary vortices: indeed, a transition of gε between two opposite directions at
the boundary on a distance ε (the length scale of a vortex) has an energetic cost of order 1

ε (see
Example 1 below). If Nε . 1

ε , then solutions uε of (1) may have zeros on the boundary (see
Proposition 3).

1.1 Main result

Our main result is the following global uniform estimate in the regime (4) for the convergence of
|uε| to 1 in Ω, which means that 1− |uε| behaves as a positive power of ε.

Theorem 1 Let Ω ⊂ R2 be a Lipschitz bounded domain. There exists a (small) constant κ > 0
depending on the Lipschitz regularity of Ω such that for every solution uε of (1) satisfying (4) for
some α ∈ (0, 1) we have the following global estimate 2

sup
Ω

∣∣|uε| − 1
∣∣ ≤ C(ε1−(1 +Nε +Mε)(1 +Mε)

1
2−
) 1

6−

as ε→ 0,

for some constant C > 0 depending only on the Lipschitz regularity 3 of Ω. In particular, gε has
zero winding number on ∂Ω, i.e.,4

deg(gε, ∂Ω) :=
1

2π

∫
∂Ω

g⊥ε
|gε|
· ∂τ
(
gε
|gε|

)
dH1 = 0.

In particular, under the assumption of Theorem 1, we deduce that

sup
Ω

∣∣|uε| − 1
∣∣ ≤ Cε 1−α

6 − as ε→ 0.

We believe that the power 1
6− of ε in the above estimate is not optimal; moreover, the optimal

power of ε is expected to be ≤ 1
2 (see (9) below). The proof of Theorem 1 is done in several steps.

In Section 2, we obtain a preliminary estimate of the uniform convergence of |uε| to 1, but at a
much slower rate than the one claimed in Theorem 1. Thanks to this preliminary estimate, in
Section 3, we will be able to use more efficiently the Ginzburg-Landau system (1) to deduce an
improved rate for the convergence of |uε| to 1, first in the L2-norm and then in the L∞-norm.

Remark 1 Our proof adapts with minor modifications to critical points of the energy

Eε(uε; Ω) :=

∫
Ω

1

2
|∇uε|2 +

1

4ε2
F (|u|2) dx, (5)

where F ∈ C2([0,∞)) satisfies F ≥ 0, F (1) = 0 and (s−1)F ′(s) ≥ c(1− s)2 for all s ≥ 0 and some
constant c > 0. The typical example is F (s) = (1− s)2.

1We write a� b if a
b
→ 0, and a . b if a

b
is bounded by a universal constant.

2We denote by a+ (resp. a−) any number strictly bigger than a (resp. strictly smaller than a) that one can
think of as close to a. The constants in inequalities involving a+ or a− may depend on the choice of these numbers.

3In fact, C > 0 depends only on the lowest angle and lowest radius of interior and exterior cones at any point of
the Lipschitz boundary ∂Ω.

4In general, ∂Ω is not connected; the definition of the degree is coherent with the choice of the orientation τ = ν⊥

given by the outer normal field ν.
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1.2 Optimality of our assumptions

Let us discuss the optimality of the assumption (4) in Theorem 1. First, the assumption on Mε

in (4) is optimal: if the constant κ is not small enough, then solutions uε of (1) may vanish inside
Ω. Moreover, the threshold value of κ at which this happens can be arbitrarily small depending
on the Lipschitz regularity of the domain:

Proposition 2 For any θ0 ∈ (0, π) and any η > 0 there exists a cone shape domain Ω of opening
angle θ0, an exponent α ∈ (0, 1) and a solution uε of the Ginzburg-Landau system (1) such that for
small ε > 0, uε(Pε) = 0 for a degree-one vortex point Pε ∈ Ω and (4) holds true for κ = θ0

2 + η.

Second, the assumption on Nε in (4) is near-optimal in the following sense: if Nε . 1
ε , then a

solution uε of (1) may have zeros at the boundary of any Lipschitz domain Ω.

Proposition 3 For any Lipschitz domain Ω, there exists a solution uε of the Ginzburg-Landau
system (1) such that for small ε > 0, uε(x0) = 0 for some x0 ∈ ∂Ω, while Mε . 1 and Nε . 1

ε .

We also point out that solutions of (1) with Mε ≤ κ |log ε| with small κ may present an interior
vortex with non-zero degree if the boundary energy is of order 1

ε .

Proposition 4 For any smooth simply connected domain Ω and any small η = η(ε) > 0, there
exists a solution uη of the Ginzburg-Landau system (1) such that |uη| = 1 on ∂Ω and deg(uη, ∂Ω) =

1 (in particular, uη has a vortex on non-vanishing degree in Ω ), while Mε .
(
η
ε

)2| log η| and
Nε . 1

η . In particular,

• we can choose η = η(ε) > 0 such that Mε . 1 and Nε .
| log ε|1/2

ε ;
• for every small κ > 0, we can choose η = η(ε, κ) > 0 such that Mε ≤ κ| log ε| and Nε . 1

ε .

Finally we remark that even for S1-valued boundary data with zero degree, if Nε � 1
ε then

minimizers may have bounded energy but modulus not uniformly close to 1. (This is related
to Example 1 in Section 1.4 below.)

Proposition 5 For any smooth bounded domain Ω and η(ε)� ε� 1, there exists gε ∈ H1(∂Ω;S1)
with deg(gε, ∂Ω) = 0 and5 Nε ∼ 1

η(ε) , such that any minimizer uε of Eε(·; Ω) under the Dirichlet

boundary condition uε = gε on ∂Ω satisfies

sup
Ω

∣∣∣1− |uε|2∣∣∣ ≥ 1

2
for ε� 1,

while Mε . 1.

The proofs of Propositions 2 to 5 can be found in Section 4. The case Nε � 1
ε (i.e., α = 1 in

the regime (4)) remains open; in that case, we conjecture that our global estimate in Theorem 1
should still hold true, at least in smooth domains.

1.3 Related works

There is a huge literature on the analysis of solutions uε of the Ginzburg-Landau system (1). Let
us only mention some of them (and apologize for omitting many other important ones).

In the seminal paper [3], Bethuel, Brezis and Hélein studied the system (1) on a smooth simply
connected domain Ω for minimizers uε of the associated energy functional, with a fixed smooth
boundary data gε := g such that |g| = 1 on ∂Ω and g is of zero winding number (so Nε,Mε are of

5 We write a ∼ b if a . b and b . a.
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order 1); they proved that
∣∣|uε|−1

∣∣ behaves as ε2 globally in Ω and this rate is optimal. They also
studied the case of non-fixed smooth boundary data gε : ∂Ω→ R2 that is of zero winding number
and has uniformly bounded energy Nε . 1; then for minimizers uε, they deduced that Mε . 1
and

∣∣|uε| − 1
∣∣ behaves as ε2 locally in Ω. These results also hold for non-minimizing solutions if

uε → u0 strongly in H1 for some limit u0, see [4, Remark A.1].
In [5], Bethuel, Orlandi and Smets considered solutions of (1) that need not be minimizing,

without imposing any bounds on Mε or Nε. They proved local estimates on
∣∣|uε| − 1

∣∣, away from

the boundary and from a vorticity set. In our setting, their results imply that
∣∣|uε| − 1

∣∣ is of order

at most ε2(1−β)Mε in the region {x ∈ Ω: dist (x, ∂Ω) ≥ εβ}, for any β ∈ (0, 1), but do not provide
a good uniform estimate up to the boundary.

In the present work we focus on obtaining, for solutions of (1) that need not be minimizing,
precise uniform estimates on

∣∣|uε| − 1
∣∣ which hold:

• up to the boundary ∂Ω of a general Lipschitz domain,

• and in a regime that goes beyond the restrictive uniform bound Nε . 1.

Estimates up to the boundary of a rectangle were obtained in [7, Appendix] in the regime

Mε, Nε � | log ε|. There it was proved that
∣∣|uε| − 1

∣∣ is of order at most ( 1+Nε+Mε

| log ε| )
1
6− globally in

Ω. In Section 2 we will follow the same approach in a general Lipschitz domain and under the less
restrictive regime (4), as a first step towards the stronger estimate of Theorem 1.

1.4 Motivation

The energy functional Eε is a simplified version of a model describing superconducting materials.
We simply mention here that

∣∣|uε| − 1
∣∣ measures how close the system is to a superconducting

state, and refer the interested reader to the monographs [4, 16].
Another motivation comes from several studies of the pattern formation in thin ferromagnetic

films [11, 7, 10], where one wishes to approximate uε by S1-valued maps away from the vortices.
In a vortexless region Ω (assume e.g. Eε(uε; Ω) � | log ε|), the idea introduced in [11] consists
in finding a (squared, spherical etc.) grid Rε, each cell of the grid having the size ∼ εβ with
β ∈ (0, 1) (i.e., much larger than the length-scale of a vortex) such that the energy Eε(uε;Rε) on
the 1-dimensional grid Rε is of order Eε(uε; Ω)/εβ . Then Theorem 1 implies that

∣∣|uε|−1
∣∣ behaves

as a positive power of ε in Ω, and vε = uε/|uε| is a “good” approximation of uε (in terms of the
L2 norm, their global Jacobian etc., see [10]). In that context, we give the following consequence
of Theorem 1 for a cell of the grid leading to a key estimate needed in [10] (only a weaker version
of this key estimate was needed in [11, 7]):

Corollary 6 Let C ⊂ R2 be a Lipschitz bounded domain. Let ε > 0, β ∈ (0, 1) and Cε := εβC be a
cell of size εβ. Assume that uε is a solution of (1) in Cε with∫

∂Cε

1

2
|∂τgε|2 +

1

4ε2
(1− |gε|2)2 dH1 � | log ε|

εβ

and ∫
Cε

1

2
|∇uε|2 +

1

4ε2
(1− |uε|2)2 dx� | log ε|,

then ∣∣|uε| − 1
∣∣ ≤ Cε 1−β

6 − in Cε,

for some C > 0 depending on the Lipschitz regularity of C. In particular, gε has zero winding
number on Cε.
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Proof. Denoting the rescaled map ũε̃(x̃) := uε(ε
β x̃) for x̃ ∈ C with ε̃ := ε1−β , then ũε̃ satisfies the

system (1) with the parameter ε̃ instead of ε and the boundary energy, resp. interior energy of ũε̃
on ∂C, resp. in C are estimated by Nε̃,Mε̃ � | log ε̃|. By Theorem 1, the conclusion follows. �

As already hinted at, the regime (4) is motivated by the study of boundary vortices (see e.g.
[14, 10]). In the absence of interior vortices, the first nontrivial example corresponds to a dipole
of two compensating boundary vortices.

Example 1 Let Ω ⊂ R2 be a bounded smooth domain containing the upper half unit ball, more
precisely,

Ω ∩B(0, 1) = {x = (x1, x2) ∈ B(0, 1) : x2 > 0},
where B(0, 1) is the unit ball centered at the origin. Let η = η(ε) ∈ (0, 1) be a parameter. Consider
the boundary data gε : ∂Ω→ S1 such that gε(x) = eiφε with

φε(x) =

{
0 if x ∈ ∂Ω \B(0, η),

π(1− |x1|
η ) if x = (x1, x2) ∈ ∂Ω ∩B(0, η).

(6)

(This is the prototype of a dipole of two boundary vortices corresponding of two consecutive
transitions between opposite directions τ and −τ at the boundary at a distance η). We extend φε
to the entire domain Ω by setting φε = 0 in Ω \B(0, η) and φε(x) = π(1− |x|η ) if x ∈ Ω ∩B(0, η).
Then we compute that

Nε =

∫
∂Ω

1

2
|∂τgε|2 dH1 .

1

η
, Eε(e

iφε ; Ω) . 1.

Therefore, if uε is a minimizer of Eε(·; Ω) under the Dirichlet boundary condition uε = gε on
∂Ω, we have that Eε(uε; Ω) ≤ Eε(e

iφε ; Ω) so that (4) holds provided that 1
η �

1
εα . In this case,

Theorem 1 implies that |uε| remains close to 1 as a positive power of ε, in particular, no interior
vortices appear in Ω. We highlight the fact that the regime εα � η with α ∈ (0, 1) is essential in
the above example for minimizers uε to have modulus close to 1 uniformly. This scenario changes
dramatically in the opposite regime η � ε (see Proposition 5).

Notations

In the sequel we will use the symbol . to denote an inequality up to a multiplicative constant that
depends only on the Lipschitz regularity of Ω, that is, on (ρ0, θ0) ∈ (0,∞)× (0, π) such that for all
x ∈ ∂Ω there is a cone of vertex x, radius ρ0 and opening angle θ0 which is included in Ω, and the
opposite cone is included in R2\Ω (this is the uniform cone property, see e.g. [8, Theorem 1.2.2.2]).
We also note that, thanks to the uniform cone property, the rectangle

R = (−ρ0

2
sin

θ0

2
,
ρ0

2
sin

θ0

2
)× (−ρ0 cos

θ0

2
, ρ0 cos

θ0

2
),

has the following property: for all x ∈ Ω, there exists an angle γ = γ(x) ∈ R such that for all
t ∈ (0, 1], the set

Rt(x) = (x+ teiγR) ∩ Ω is bi-Lipschitz homeomorphic to tB, (7)

where B is the unit ball, and the Lipschitz constants of the homeomorphism and its inverse are
bounded by a constant depending only on (ρ0, θ0). See Figure 1 below. (The angle γ just serves
to rotate the rectangle in order to align it with the cone; Figure 1 corresponds to γ = 0.)

We recall that for a ∈ R we write a+ (resp. a−) to denote any real number strictly greater
(resp. smaller) than a but that can be chosen arbitrarily close to a. In inequalities involving such
exponents, the constant will also depend on the distance of that number to a.

We write B(x, r) for the ball centered at x of radius r.
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Figure 1: Cone property and rectangle R1(x) at a boundary point x ∈ ∂Ω

ρ0

θ0

R1(x)

∂Ω
•
x

2 A-priori global uniform estimate of |uε| in Ω

The aim of this section is to prove the following weaker estimate of
∣∣|uε| − 1

∣∣ in Ω:

Theorem 7 Let Ω ⊂ R2 be a Lipschitz bounded domain. If uε satisfies (1) and (4), then we have

sup
Ω

∣∣|uε| − 1
∣∣ . (1 +Mε

| log ε|

) 1
6−

.

In particular, if κ is small enough in (4) then |uε| ≥ 1
2 in Ω as ε→ 0.

Theorem 7 is an improvement of [7, Theorem 6 in Appendix], where the boundary data satisfies
the additional condition |gε| ≤ 1, Ω is a square and Nε � | log ε|. We will follow the strategy in
[7], generalizing to Lipschitz domains and general boundary data gε : ∂Ω→ R2 with Nε satisfying
the wider regime (4). The proof of Theorem 7 is divided into three parts:

Part 1 of the proof of Theorem 7 . We prove the following upper bound of |uε| in Ω:

‖uε‖L∞(Ω) − 1 .
√
εNε. (8)

For that, we start by denoting ζ = (1− |gε|)2 on ∂Ω. The Cauchy-Schwarz inequality yields: 6

1

2
|∂τgε|2 +

1

4ε2
(1− |gε|2)2 ≥ 1

8ε2
ζ +

(
1

8ε2
ζ +

1

2

∣∣∂τ |gε|∣∣2) ≥ 1

8ε2
ζ +

1

4ε
|∂τζ| on ∂Ω.

Using the embedding W 1,1(∂Ω) ⊂ L∞(∂Ω), as H1(∂Ω) ≥ ε, we deduce by (2):

Nε =

∫
∂Ω

1

2
|∂τgε|2 +

1

4ε2
(1− |gε|2)2 dH1 &

1

ε
‖ζ‖L∞(∂Ω), as ε→ 0,

so that
δε :=

∥∥|gε| − 1
∥∥
L∞(∂Ω)

.
√
εNε. (9)

6For the more general energy (5), only the estimate F (s) & (1 − s)2 is needed, which is a consequence of
(s− 1)F ′(s) & (1− s)2 and F (1) = 0.
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Let ρ̃ε = 1− |uε|2 in Ω. Then (1) implies that

−∆ρ̃ε +
2

ε2
|uε|2ρ̃ε = 2|∇uε|2 ≥ 0 in Ω

and ρ̃ε = 1−|gε|2 ≥ 1−(1+δε)
2 on ∂Ω. Thus, the maximum principle7 implies that ρ̃ε ≥ 1−(1+δε)

2

in Ω, i.e., |uε| ≤ 1 + δε in Ω yielding (8) by (9).

Part 2 of the proof of Theorem 7 . We estimate a Hölder seminorm for uε.

Lemma 8 Let Ω ⊂ R2 be a Lipschitz bounded domain. If uε satisfies (1) and (4), then 8

|uε(x)− uε(y)| ≤ C
(
|x− y|
ε

) 1
2−

∀x, y ∈ Ω,

where C > 0 depends only on the Lipschitz regularity of Ω.

Remark 2 In general, we don’t have that ‖∇uε‖L∞(Ω) ≤ C
ε because this estimate can be violated

by the boundary condition gε on ∂Ω. But since gε belongs to H1(∂Ω) that embeds into the Hölder

space C0, 12 (∂Ω), we can deduce an appropriate estimate of a Hölder seminorm for uε in Ω.

Proof of Lemma 8. Consider the rescaled map û(x̂) = uε(εx̂) defined for x̂ ∈ Ωε = ε−1Ω. (The
map û depends on ε, we omit this dependence to simplify notation.) This map solves{

−∆û = (1− |û|2)û in Ωε,

û = ĝ on ∂Ωε,

where ĝ(x̂) = gε(εx̂) for x̂ ∈ ∂Ωε. We fix x0 ∈ Ωε and consider the Lipschitz domain

R = R(x0) =
1

ε

(
(εx0 + εeiγ(εx0)R) ∩ Ω

)
,

which is bi-Lipschitz homeomorphic to the unit ball B, with Lipschitz bounds uniform in ε and x0

and depending only on the Lipschitz regularity of Ω, thanks to the definition of R, see (7). Since
|ĝ| ≤ 1 + δε ≤ 2 on ∂Ωε (by (9)) and |û| ≤ 1 + δε ≤ 2 in Ωε (by (8)) as ε→ 0, elliptic estimates in
Lipschitz domains (see e.g. [12, 17], and [13, Section VI] for the theory of traces) yield

‖û‖
H

3
2
−(R)

. 1 + ‖∂τ ĝ‖L2(∂Ωε)
.

The constant depends only on the Lipschitz regularity of the domain R (see e.g. the proof of
Theorem 2 in [17]), and is therefore bounded independently of x0 ∈ Ωε and ε ∈ (0, 1]. By Sobolev
embedding we deduce that

‖û‖
C0, 1

2
−(R)

. 1 + ‖∂τ ĝ‖L2(∂Ωε)
. 1 + (εNε)

1
2 .

The constant in the Sobolev imbedding depends only on the Lipschitz regularity of Ω, since the
imbedding inequalities ‖v‖L4−(B) . ‖v‖H 1

2
−(B)

and ‖v‖
C0, 1

2
−(B)

. ‖v‖W 1,4−(B) are valid on the

unit ball B ⊂ R2 and behave well under composition by a bi-Lipschitz homeomorphism. Since any

7This argument adapts to critical points of the general energy (5), provided F ′(s) ≥ 0 for s ≥ 1, see e.g. [15,
Lemma 8.3].

8For the general energy (5) this argument only uses the fact that F is C1 and the validity of a uniform upper
bound ‖uε‖∞ . 1, implied e.g. by (8) which is valid as soon as F ′(s) ≥ 0 for s ≥ 1.
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two points x, y ∈ Ωε which are close enough are contained in a domain R(x0) for some x0 ∈ Ωε,
recalling once more that |û| ≤ 2 in Ωε (by (8)) we infer

‖û‖
C0, 1

2
−(Ωε)

. 1 + (εNε)
1
2 . 1 as ε→ 0.

The last inequality is due to our assumption (4). The conclusion follows by scaling back to
uε(x) = û(ε−1x). �

Part 3 of the proof of Theorem 7. We start by estimating the normal derivative of uε at the
boundary ∂Ω:

Lemma 9 Let Ω ⊂ R2 be a Lipschitz bounded domain. If uε satisfies (1), then we have 9∫
∂Ω

|∂νuε|2 dH1 .Mε +Nε.

Proof of Lemma 9. We use the Pohozaev identity for uε in the spirit of [3, Proposition 3], the
only difference is to adapt that result to the setting of Lipschitz domains Ω. More precisely, we
consider a map V : Ω → R2 that is C1 in the closed domain Ω̄ and such that V · ν ≥ a > 0 on
∂Ω for some a > 0 depending only on the Lipschitz regularity of Ω (see e.g. [8, Lemma 1.5.1.9]).
Multiplying the equation (1) by (V (x) · ∇)uε and integrating by parts, as V ∈ C1(Ω̄), we deduce
by (2) and (3):

∣∣ 1

ε2

∫
Ω

uε(1− |uε|2) · (V (x) · ∇)uε dx
∣∣ =

∣∣∣∣ 1

4ε2

∫
Ω

∇ · V (1− |uε|2)2 dx

− 1

4ε2

∫
∂Ω

V (x) · ν(1− |gε|2)2 dH1

∣∣∣∣ .Mε +Nε, (10)∫
Ω

∆uε · (V (x) · ∇)uε dx =

∫
∂Ω

(
(ν · ∇)uε · (V · ∇)uε −

1

2
V · ν|∇uε|2

)
dH1 (11)

+

∫
Ω

(
1

2
∇ · V |∇uε|2 −

∑
j=1,2

∂juε · (∂jV · ∇)uε

)
dx.

For x ∈ ∂Ω, we decompose V = s(x)ν + t(x)τ where s, t ∈ L∞(∂Ω), s(x) = V · ν ≥ a > 0 for a.e.
x ∈ ∂Ω, and ∇uε = ν ⊗ ∂νuε + τ ⊗ ∂τgε on ∂Ω. By (1), (2), (3), (10) and (11), as V ∈ C1(Ω̄), we
conclude by Young’s inequality:

Mε +Nε &
∫
∂Ω

(
s(x)

2

∣∣∂νuε|2 − s(x)

2

∣∣∂τgε∣∣2 + t(x)∂νuε · ∂τgε
)
dH1 &

∫
∂Ω

∣∣∂νuε|2 dH1 −Nε.

�

We use Lemma 9 to prove the following estimate of the potential energy in small balls (of radius
� εα). To simplify notation, we denote the energy density by

eε(uε) :=
1

2
|∇uε|2 +

1

4ε2
(1− |uε|2)2, uε : Ω→ R2.

(In the context of the energy (5), only the assumption F ∈ C1 is needed for the following estimate).

9In the context of the general energy (5), we need only the assumption that F ∈ C1.
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Lemma 10 Let Ω ⊂ R2 be a Lipschitz bounded domain and uε be a solution of (1) in the regime
(4). Fix 1 > α1 > α2 > α > 0. There exists C ≥ 1 such that for every x0 ∈ Ω, we can find
r0 = r0(x0) ∈ (εα1 , εα2) such that∫

∂
(
B(x0,r0)∩Ω

) eε(uε) dH1 ≤ C(1 +Mε)

r0| log ε|
(12)

for every ε ≤ ε0 with ε0 = ε0(α2, α) > 0. Moreover, we have that

1

ε2

∫
B(x0,r0)∩Ω

(1− |uε|2)2 dx ≤ C̃(1 +Mε)

| log ε|
(13)

for some C̃ ≥ 1.

Proof of Lemma 10. We distinguish two steps:

Step 1. Proof of (12). Assume by contradiction that for every C ≥ 1 there exists x ∈ Ω such that
for every r ∈ (εα1 , εα2) we have∫

∂
(
B(x,r)∩Ω

) eε(uε) dH1 ≥ C(1 +Mε)

r| log ε|
.

Since Nεε
α � 1, by (2) and Lemma 9, there exists c1 > 0 such that∫
∂Ω

eε(uε) dH1 ≤ c1(Mε +Nε) ≤
1 +Mε

2εα2 | log ε|
≤ C(1 +Mε)

2r| log ε|
, ∀r ∈ (εα1 , εα2)

for every ε ≤ ε0 (with ε0 > 0 depending on α2 and α). Therefore, we deduce that∫
∂B(x,r)∩Ω

eε(uε) dH1 ≥ C(1 +Mε)

2r| log ε|
.

Integrating in r ∈ (εα1 , εα2), we obtain by (3):

Mε =

∫
Ω

eε(uε) dx ≥
∫
B(x,εα2 )∩Ω

eε(uε) dx ≥
∫ εα2

εα1

dr

∫
∂B(x,r)∩Ω

eε(uε) dH1 ≥ C(α1 − α2)(1 +Mε)

2

which is a contradiction with the fact that C can be arbitrary large.

Step 2. Proof of (13). Let ν be the outer unit normal vector at the boundary of the domain

D := B(x0, r0) ∩ Ω.

As in the proof of Lemma 9, we use the Pohozaev identity for the solution uε of (1). Indeed,
multiplying the equation by (x− x0) · ∇uε and integrating by parts, we deduce:∫

D
−∆uε ·

(
(x− x0) · ∇uε

)
dx =

∫
∂D

(
1

2
(x− x0) · ν|∇uε|2 − ∂νuε ·

(
(x− x0) · ∇

)
uε

)
dH1,

1

ε2

∫
D
uε(1− |uε|2) ·

(
(x− x0) · ∇uε

)
dx =

1

2ε2

∫
D

(1− |uε|2)2 dx

− 1

4ε2

∫
∂D

(x− x0) · ν(1− |uε|2)2 dH1.

Since |x− x0| ≤ r0 on ∂D, by (12), we deduce that (13) holds true. �

The conclusion of Theorem 7 comes from the following result:
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Lemma 11 Let Ω ⊂ R2 be a Lipschitz bounded domain. If uε satisfies (1) and (4), then we have
10

‖|uε|2 − 1‖L∞(Ω) .

(
1 +Mε

| log ε|

) 1
6−

.

Proof. Let x0 ∈ Ω and set 1 > A ≥ 0 such that

4C A
1
2− =

∣∣1− |uε(x0)|2
∣∣

2
,

where C ≥ 1 is given by Lemma 8. By Lemma 8, we obtain for any y ∈ B(x0, Aε) ∩ Ω∣∣1− |uε(y)|2
∣∣ ≥ ∣∣1− |uε(x0)|2

∣∣− 4C A
1
2− =

∣∣1− |uε(x0)|2
∣∣

2

as |uε(y)|+ |uε(x0)| ≤ 4. Hence, for small ε,∫
B(x0,Aε)∩Ω

(1− |uε(y)|2)2 dy ≥ C(Ω)A2ε2(1− |uε(x0)|2)2

≥ C̃(Ω)ε2(1− |uε(x0)|2)6+,

(14)

where C(Ω), C̃(Ω) > 0. We have that B(x0, Aε) ⊂ B(x0, r0) for ε ≤ ε0 with ε0 depending only on
α1 in Lemma 10. Thus, by (13), we obtain

(1− |uε(x0)|2)6+ ≤ Ĉ 1 +Mε

| log ε|

and the conclusion follows. �

3 Proof of Theorem 1

The main idea is to improve the convergence of |uε| to 1 locally in L2-norm; this involves improving
the local estimate of the potential energy (13) to a positive power of ε and then the argument in
Lemma 11 yields the conclusion (i.e., the desired estimate in L∞-norm of |uε| − 1 in our main
result).

Let x0 ∈ Ω and ε > 0. By Fubini’s theorem we may choose t ∈ [1/2, 1] such that the domain

R = Rt(x0) (15)

defined in (7) satisfies ∫
∂R∩Ω

1

2
|∇uε|2 +

1

4ε2
(1− |uε|2)2 dH1 .Mε. (16)

Recall that R is bi-Lipschitz homeomorphic to the unit ball B, in particular it is simply connected.
Moreover by Theorem 7 if κ is small enough then uε does not vanish. So we may write

uε = ρεe
iϕε in R,

with ρε, ϕε ∈ H1(R) (moreover, ρ2
ε and ϕε are smooth in R as uε is smooth by standard elliptic

regularity). The system (1) writes in terms of ρε and ϕε:{
−∆ρε + ρε|∇ϕε|2 = 1

ε2 ρε(1− ρ
2
ε)

∇ · (ρ2
ε∇ϕε) = 0

in R. (17)

10For the general energy (5) we only need here (s− 1)2 . F (s).
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Step 1. We prove the following estimate 11 of ∇ϕε in Lq(R), where q = 4−:

‖∇ϕε‖Lq(R) . 1 +Nε
1
2 +Mε

1
2 . (18)

Indeed, by (2), (9), Lemma 9 and (16), we note that∫
∂Ω∩R

|∇ϕε|2 dH1 .
∫
∂Ω

|∇uε|2 dH1 . Nε +Mε

and

∫
Ω∩∂R

|∇ϕε|2 dH1 .
∫
∂R∩Ω

|∇uε|2 dH1 .Mε.

(19)

Therefore, by the Poincaré-Wirtinger inequality, up to adding a constant to ϕε, we can assume
that

‖ϕε‖H1(∂R) . 1 +N
1
2
ε +Mε

1
2 . (20)

By the theory of traces in Lipschitz domains (see e.g. [13, Section VI.2]), for s = 1− there is a
continuous extension operator from Hs(∂R) to Hs+1/2(R), and its operator norm is bounded by
a constant depending only on the Lipschitz regularity of R, hence only on the Lipschitz regularity
of Ω. Thus there exists an extension Φ ∈ H 3

2−(R) of ϕε
∣∣
∂R such that

‖Φ‖
H

3
2
−(R)

. 1 +N
1
2
ε +Mε

1
2 .

By Sobolev embedding H
1
2−(R) ⊂ L4−(R) we deduce the bound

‖∇Φ‖Lq(R) . 1 +N
1
2
ε +Mε

1
2 . (21)

The constant in the Sobolev embedding depends only on the Lipschitz regularity of Ω since R
is bi-Lipschitz homeomorphic to the unit ball (with Lipschitz constants depending only on the
Lipschitz regularity of Ω). Denoting

ψ := ϕε − Φ ∈ H1
0 (R),

by (17), ψ solves
∆ψ = ∇ ·

(
(1− ρ2

ε)∇ϕε −∇Φ
)

in R,
so that elliptic estimates in Lipschitz domains (see e.g. [12, Theorem 0.5] or [17, Theorem 2]) yield

‖∇ϕε‖Lq(R) ≤ C(1 +
∥∥(1− ρ2

ε)∇ϕε
∥∥
Lq(R)

+ ‖∇Φ‖Lq(R)).

By Theorem 7, C
∣∣1− ρ2

ε

∣∣ ≤ 1
2 in R for κ > 0 small enough. This implies

‖∇ϕε‖Lq(R) . 1 + ‖∇Φ‖Lq(R) .

The last term can be estimated by (21) and this proves (18).

Step 2. An improved local estimate of the potential energy. We will prove the following:

Lemma 12 Let Ω ⊂ R2 be a Lipschitz bounded domain. If uε satisfies (1) and (4), then

1

ε2

∫
R

(1− |uε|2)2 dx . ε1−(1 +Nε +Mε)(1 +Mε)
1
2−,

for every point x0 ∈ Ω with the associated domain R in (15).

11For the general energy (5), no modification is required for this step since the equation satisfied by ϕε stays the
same.
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Proof. Multiplying (17) by 1−ρ2
ε, as ρε ≥ 1/2 in R (by Theorem 7), integration by parts yields12

1

2ε2

∫
R

(1− ρ2
ε)

2 dx ≤ 1

ε2

∫
R
ρε(1− ρ2

ε)
2 dx

= −
∫
R

(1− ρ2
ε)∆ρε dx+

∫
R
ρε(1− ρ2

ε)|∇ϕε|2 dx

= −
∫
∂R

(1− ρ2
ε)∂νρε dH1 − 2

∫
R
ρε |∇ρε|2 dx+

∫
R
ρε(1− ρ2

ε) |∇ϕε|
2
dx

≤
∥∥1− ρ2

ε

∥∥
L2(∂R)

‖∂νρε‖L2(∂R) + 2 ‖∇ϕε‖2Lq(R)

∥∥1− ρ2
ε

∥∥
L

q
q−2 (R)

. ε(Mε +Nε) + ε1−(1 +Nε +Mε)M
1
2−
ε

for q = 4−, where we used
• (2) and (16) yielding

∥∥1− ρ2
ε

∥∥
L2(∂R)

. ε(Mε +Nε)
1
2 ;

• (19) yielding ‖∂νρε‖L2(∂R) . (Mε +Nε)
1
2 ;

• (18) and the interpolation inequality for λ = 2(q−2)
q = 1−

∥∥1− ρ2
ε

∥∥
L

q
q−2 (R)

≤
∥∥1− ρ2

ε

∥∥1−λ
L∞(R)

∥∥1− ρ2
ε

∥∥λ
L2(R)

(3),(8)

. ελM
λ
2
ε

yielding the last estimate. �

Step 3. Conclusion of Theorem 1. Applying the arguments in the proof of Lemma 11 in the
domain R = Rt(x0) defined at (15), we find

(|uε(x0)|2 − 1)6+ .
1

ε2

∫
R

(1− ρ2
ε)

2 dx . ε1−(1 +Nε +Mε)(1 +Mε)
1
2−.

The last inequality follows from the previous step. Since x0 ∈ Ω is arbitrary and the constant
depends only on the Lipschitz regularity of Ω, this proves Theorem 1. �

4 Optimality of the regime (4)

In this section, we prove Propositions 2 to 5:

Proof of Proposition 2. Let Ω be a cone of opening angle θ0 and height 1, see Figure 4. Consider
the point Pε on the medial axis at distance sε from the corner, where

sε = εµ with 0 < µ < 1.

Set α = 1+µ
2 ∈ (0, 1). We also denote by dε the distance of Pε to the boundary ∂Ω. For θ1 = θ0 +η

(where, possibly lowering η, we may assume η < θ0) consider the cone K1 of opening θ1 and height
1 centered at Pε and with the same medial axis. The boundaries of the two cones intersect in two
points at a distance rε from Pε. It follows that Ω ⊂ B(Pε, rε) ∪K1 (as sε < rε),

dε = sε sin
θ0

2
∼ εµ and rε = sε

sin θ0
2

sin η
2

∼ εµ.

12For the general energy (5), this estimate holds thanks to the assumption (s− 1)F ′(s) & (s− 1)2 for s ≥ 0.
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Figure 2: The cones Ω and K1 of opening angles θ0 and θ1 respectively.

•
Pε

••

θ0

θ1

dε

sε

rε

We consider the following degree-one vortex solution uε of (1):

uε(x) = f

(
|x− Pε|

ε

)
x− Pε
|x− Pε|

for every x ∈ R2,

where Pε is the vortex point (i.e., uε(Pε) = 0), f : [0,∞)→ [0, 1) is the smooth radial profile given
by the unique solution of

−f ′′ − 1

r
f ′ +

1

r2
f = f(1− f2) for every r ∈ (0,∞),

with f(0) = 0 and limr→∞ f(r) = 1; f and f ′ have the following asymptotics for r →∞ (see [6, 9])

f(r) = 1− 1

2r2
− 9

8r4
+O(r−6), f ′(r) =

1

r3
+

9

2r5
+O(r−7).

In a point x ∈ R2 with |x− Pε| = t, the Ginzburg-Landau energy density is given by

eε(uε(x)) =
1

2

( |f ′( tε )|2

ε2
+
|f( tε )|2

t2

)
+

1

4ε2

(
1− |f( tε )|2

)2
,

so that for t ≥ ε, we find

eε(uε(x)) =
1

2t2
+

1

ε2
O(
ε4

t4
) (22)

Recalling that rε � ε, we obtain by integrating over K1 \B(Pε, rε):∫
K1\B(Pε,rε)

eε(uε) dx ≤ θ1

∫ 2

rε

t

(
1

2t2
+

1

ε2
O(
ε4

t4
)

)
dt ≤ θ1

2
log

2

rε
+O(

ε2

r2
ε

).
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In B(Pε, rε), using (22) and the fact that f(0) = 0 and |f ′| . 1 (in particular, |f(t)| . t for t > 0),
we estimate∫

B(Pε,rε)

eε(uε) dx ≤ π
(∫ ε

0

+

∫ rε

ε

)[( |f ′( tε )|2

ε2
+
|f( tε )|2

t2

)
+

1

2ε2

(
1− |f( tε )|2

)2]
t dt

≤ C
∫ ε

0

t

ε2
dt+ π log

rε
ε

+O(1) = π log
rε
ε

+O(1).

As Ω ⊂ B(Pε, rε) ∪K1, it follows that the interior energy Mε is estimated as:

Mε =

∫
Ω

eε(uε) dx ≤ π log
rε
ε

+
θ1

2
log

2

rε
+O(1) ≤

(
π(1− µ) +

θ1

2
µ

)
| log ε|+ C

where C > 0 is a constant depending only on η and θ0. Note that for µ sufficiently close to 1 and
ε small enough, this implies

Mε ≤ (
θ0

2
+ η)| log ε|.

To estimate the boundary energy Nε, we write ∂Ω = Γ1 ∪ Γ+
2 ∪ Γ−2 , where Γ1 is the basis of the

cone, and Γ±2 are the two sides of the cone adjacent to its vertex. Since Pε is at distance ∼ 1 of
Γ1, it holds ∫

Γ1

eε(uε) dH1 = O(1).

On the rest of the boundary, note that for every point x ∈ Γ±2 that has a distance s from the
orthogonal projections of Pε onto Γ±2 , we have

eε(uε(x)) =
1

2t2
+

1

ε2
O(
ε4

t4
), where t = |x− Pε| =

√
s2 + d2

ε,

since t ≥ dε ∼ εµ � ε. We can thus estimate

Nε ≤ 2

∫ ∞
−∞

(
1

2(s2 + d2
ε)

+ C
ε2

(s2 + d2
ε)

2

)
ds+O(1) .

1

dε
+
ε2

d3
ε

.
1

sε
∼ 1

εµ
� 1

εα

as α was chosen such that α = 1+µ
2 < 1. So (4) holds with κ = θ0

2 + η, while uε(Pε) = 0. �

Remark 3 Applying the construction in the proof of Proposition 2 to a half-space domain, we
deduce that a necessary condition in order that Theorem 1 holds true is given by κ ≤ π

2 in (4)
(even for smooth domains Ω).

Proof of Proposition 3. Let f : [0,∞) → [0, 1] be a smooth function with f(0) = 0, f(r) = 1
for r ≥ 1 and |f ′(r)| ≤ C. Let x0 ∈ ∂Ω and consider vε(x) = f(x−x0

ε ) for every x ∈ R2. Let gε =
(vε, 0) on ∂Ω and let uε be a minimizer of the Ginzburg-Landau energy with Dirichlet boundary
conditions gε, in particular, uε(x0) = gε(x0) = 0. Then uε satisfies (1) and (by minimality)
Mε ≤ Eε(vε; Ω) . 1 while Nε . 1

ε . �

Proof of Proposition 4. Since Ω is smooth, bounded and simply connected, upon applying
a conformal diffeomorphism we assume Ω = B(0, 1) is the unit disk.13 Our example is strongly
inspired by [1, Example 1] and [2, Lemma 4.1]. For η > 0 small we consider

vη(z) =
z − (1− η)

1− (1− η)z
for z ∈ B(0, 1) ⊂ C,

13 Only the bulk energy changes and is bounded (up to a multiplicative constant depending on Ω) by the new
bulk energy in the disk B(0, 1).
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and denote by gη its boundary datum gη(θ) = vη(eiθ), which satisfies |gη| = 1 on ∂B(0, 1). As
explained in [2, Lemma 4.1], the map vη satisfies

1

2

∫
B(0,1)

|∇vη|2 dx = π, and deg(vη, ∂B(0, 1)) = 1.

Lengthy but direct computations show that for θ ∈ (−π, π) we have

∣∣g′η(θ)
∣∣2 =

(2− η)2

η2

1(
1 + 2 1−η

η2 (1− cos θ)
)2 .

Moreover 1− cos θ ≥ 2
π2 θ

2 for θ ∈ (−π, π), and therefore, for small η,∫ π

−π

∣∣g′η(θ)
∣∣2 dθ . 1

η2

∫ π

−π

dθ

(1 + θ2

η2 )2
=

1

η

∫ π
η

−πη

dt

(1 + t2)2

.
1

η
.

For 0 < r < 1 and θ ∈ (−π, π), setting a = 1− η we have

1−
∣∣vη(reiθ)

∣∣2 = (1− a2)
1− r2

(1 + a2r2 − 2ar cos θ)
.

In order to estimate
∫

(1− |vη|2)2 we first compute

I :=

∫ π

−π

dθ

(1 + a2r2 − 2ar cos θ)2
.

The change of variable x = tan θ
2 gives dθ = 2dx/(1 + x2) and cos θ = (1− x2)/(1 + x2), so

I = 2

∫ ∞
−∞

1 + x2

((1− ar)2 + (1 + ar)2x2)
2 dx

=
2

(1 + ar)4

∫ ∞
−∞

1 + x2

(A2 + x2)2
dx, A :=

1− ar
1 + ar

.

We have ∫ ∞
−∞

1 + x2

(A2 + x2)2
dx =

∫ ∞
−∞

dx

A2 + x2
+ (1−A2)

∫ ∞
−∞

dx

(A2 + x2)2

=
1

A

∫ ∞
−∞

dt

1 + t2
+ (1−A2)

1

A3

∫ ∞
−∞

dt

(1 + t2)2

=
1

A

(
π +

1−A2

A2

π

2

)
=
π

2

1 +A2

A3
.

Since 1 + ar ≥ 1, plugging this back into I yields

I = 2π
1 + a2r2

(1 + ar)3

1

(1− ar)3
≤ 2π

(1− ar)3
.
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We deduce ∫
B(0,1)

(1− |vη|2)2 dx = (1− a2)2

∫ 1

0

(1− r2)2I r dr

. η2

∫ 1

0

(1− r)2

(1− ar)3
dr = η2

∫ 1

0

t2

(at+ η)3
dt

=
1

η

∫ 1

0

t2

(aη t+ 1)3
dt =

η2

a3

∫ a
η

0

s2

(s+ 1)3
ds

. η2 log
1

η
.

In particular,

• choosing η = ε/ |log ε|
1
2 and uε minimizing the Ginzburg-Landau energy with Dirichlet con-

dition uε = gη on ∂B(0, 1), we have that uε is of modulus one and degree one on ∂B(0, 1) while

Mε . 1 and Nε .
|log ε|

1
2

ε ;

• choosing η := ε
√
κ

L with L > 0 big enough and uε minimizing the Ginzburg-Landau energy
with Dirichlet condition uε = gη on ∂B(0, 1), we have that uε is of modulus one and degree one
on ∂B(0, 1) while Mε ≤ κ| log ε| and Nε . 1

ε .
�

Proof of Proposition 5. Upon locally flattening the boundary and rescaling the domain (thus
only introducing multiplicative constants in all estimates), we may assume that Ω is as in Exam-
ple 1, i.e. it contains the upper half unit ball:

Ω ∩B(0, 1) = {x = (x1, x2) ∈ B(0, 1) : x2 > 0}.

As in Example 1, for η = η(ε) � ε we consider the boundary data gε : ∂Ω → S1 such that
gε(x) = eiφε with

φε(x) =

{
0 if x ∈ ∂Ω \B(0, η),

π(1− |x1|
η ) if x = (x1, x2) ∈ ∂Ω ∩B(0, η).

As in Example 1 we then have that Nε ∼ 1
η and any map uε minimizing Eε(·; Ω) with Dirichlet

boundary data uε = gε on ∂Ω satisfies Mε . 1.
It remains to show that

sup
Ω

∣∣∣1− |uε|2∣∣∣ ≥ 1

2
for ε� 1. (23)

The idea is to use the decomposition uε = vε + wε with−∆vε =
1

ε2
(1− |uε|2)uε in Ω,

vε = 0 on ∂Ω,
and

{
∆wε = 0 in Ω,

wε = gε on ∂Ω,

(see also the proof of Lemma 3 in [7]).
The maximum principle can be used to see that |wε| ≤ 1 and |uε| ≤ 1 in Ω. Indeed, since

−∆|wε|2 = −2|∇wε|2 ≤ 0 in Ω and |wε| = 1 on ∂Ω, the maximal principle implies that |wε| ≤ 1
in Ω. Moreover, recalling that ρ̃ε = 1− |uε|2 satisfies

−∆ρ̃ε +
2

ε2
|uε|2ρ̃ε = 2|∇uε|2 ≥ 0 in Ω,
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and ρ̃ε = 0 on ∂Ω, the maximum principle ensures that ρ̃ε ≥ 0 in Ω, i.e. |uε| ≤ 1 in Ω.
We deduce that |vε| ≤ 2 in Ω. Using this together with the equation satisfied by vε, and the

interpolation inequality [3]

‖∇vε‖L∞(Ω) . ‖vε‖
1
2

L∞(Ω)‖∆vε‖
1
2

L∞(Ω),

we find that ‖∇vε‖L∞(Ω) .
1
ε . In particular, since vε = 0 on ∂Ω, we deduce that |vε| . η

ε � 1 in
Ω ∩B(0, 2η). As a consequence we have

sup
Ω∩B(0,2η)

∣∣∣|uε|2 − |wε|2∣∣∣� 1,

and to prove (23) it suffices to show that

|wε(0, η)|2 < 1

2
for ε� 1. (24)

To this end we rescale wε, setting w̃η(x) = wε(ηx) so that
∆w̃η = 0 in B(0,

1

η
) ∩ {x2 > 0},

w̃η = eiφ̃ on B(0,
1

η
) ∩ {x2 = 0},

where φ̃(x1, 0) =

{
0 if |x1| > 1,

π(1− |x1|) if |x1| ≤ 1.

Since |w̃η| ≤ 1 and φ̃ is Lipschitz, elliptic estimates ensure that w̃η is bounded in C0,α
loc ({x2 ≥ 0})

for any α ∈ (0, 1) and therefore admits a subsequence converging locally uniformly to a map
w̃0 : {x2 ≥ 0} → C which solves {

∆w̃0 = 0 in {x2 > 0},

w̃0 = eiφ̃ on {x2 = 0},

and satisfies |w̃0| ≤ 1. This system has a unique bounded solution, given by the Poisson formula

w̃0(x1, x2) =
x2

π

∫ ∞
−∞

eiφ̃(t,0)

(x1 − t)2 + x2
2

dt.

In particular no subsequence is needed for the locally uniform convergence, and we have

wε(0, η) = w̃η(0, 1) −→ w̃0(0, 1) as ε→ 0.

Using the explicit expression of φ̃ we compute

w̃0(0, 1) =
2

π

(∫ 1

0

eiπ(1−t)

1 + t2
dt+

∫ ∞
1

1

1 + t2
dt

)
=

2

π

∫ 1

0

1− e−iπt

1 + t2
dt.

It can be checked that ∣∣∣∣∫ 1

0

1− e−iπt

1 + t2
dt

∣∣∣∣ ≤ 1,

and we infer that

lim
ε→0
|wε(0, η)|2 ≤ 4

π2
<

1

2
,

which implies (24). �
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