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Abstract

Models incorporating uncertain inputs, such as random forces or
material parameters, have been of increasing interest in PDE-constrained
optimization. In this paper, we focus on the efficient numerical mini-
mization of a convex and smooth tracking-type functional subject to
a linear partial differential equation with random coefficients and box
constraints. The approach we take is based on stochastic approxima-
tion where, in place of a true gradient, a stochastic gradient is chosen
using one sample from a known probability distribution. Feasibility
is maintained by performing a projection at each iteration. In the
application of this method to PDE-constrained optimization under
uncertainty, new challenges arise. We observe the discretization error
made by approximating the stochastic gradient using finite elements.
Analyzing the interplay between PDE discretization and stochastic
error, we develop a mesh refinement strategy coupled with decreasing
step sizes. Additionally, we develop a mesh refinement strategy for the
modified algorithm using iterate averaging and larger step sizes. The
effectiveness of the approach is demonstrated numerically for different
random field choices.
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1 Introduction

In this paper, we are concerned with the numerical solution of a convex opti-
mization problem with convex constraints and an elliptic partial differential
equation (PDE) subject to uncertainty. In applications, the material coef-
ficients and external inputs might not be known exactly. They can then
be modeled to be distributed according to a known probability distribution.
When the number of possible scenarios in the probability space is small, then
the optimization problem can be solved over the entire set of scenarios. This
approach is not relevant for most applications, as it becomes intractable if the
source of uncertainty contains more than a few scenarios. Solvers for prob-
lems with random PDEs generally use either a discretization of the stochastic
space or rely on sampling. Methods with a discretized stochastic space in-
clude the stochastic Galerkin method [6] and sparse-tensor discretization [34].
Sample-based approaches involve taking random or carefully chosen realiza-
tions of the input parameters; these approaches include Monte Carlo or quasi
Monte Carlo methods and stochastic collocation [5].

In PDE-constrained optimization under uncertainty, there are several
main algorithmic approaches. Most approaches involve using determinis-
tic optimization methods in combination with a sampling or discretization
scheme for the stochastic space. Stochastic collocation has been combined
with multi-grid methods [7], gradient descent and SQP methods [35], and
a trust region method [21]. In combination with sparse-grid collocation or
low-rank tensors, trust-region methods have been proposed [22, 12]. Dis-
cretization of both spatial and stochastic spaces have been proposed in [19],
and with a one-shot approach with stochastic Galerkin finite elements in
[33]. All of these methods suffer from the curse of dimensionality – as the
stochastic dimension increases, the number of quadrature points must in-
crease exponentially.

Sample average approximation, also known as the Monte Carlo method,
involves replacing the stochastic integral with a fixed sample of randomly
chosen points. While the error in a Monte Carlo estimator decreases as
O(1/

√
N), where N is the number of sampled points, this rate is indepen-

dent of the stochastic dimension. There are known improvements to substan-
tially improve the slow convergence of this method that have been developed
for this problem class, including the multilevel Monte Carlo method [3] or
the quasi Monte Carlo method [16]. In the context of approaches indepen-
dent of the stochastic dimension, it is also worth mentioning the work of [2]
and a following work [10], which is fundamentally different from the above
approaches; this approach relies on Taylor expansions with respect to the
parameter of the parameter-to-objective map.
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Recently, stochastic approximation methods have been investigated for
efficiently solving PDE-constrained optimization problems involving uncer-
tainty [17, 26, 13]. This approach has previously been unexploited for PDE-
constrained optimization, even though it is a classical method for solving
stochastic optimization problems dating back to the 1950s [32, 20]. The
main tool in stochastic approximation is a stochastic gradient, in place of
the true gradient, to iteratively minimize the expected value over a random
function. This method differs from the approaches mentioned above in that
it is a fundamentally random method; sampling is performed in the course of
the optimization procedure, rather than in addition to it. Like sample aver-
age approximation, it enjoys convergence rates independent of the stochastic
dimension. In [17], the authors compare the stochastic approximation ap-
proach with the sample average approximation method for a fully discrete
(both spatially and stochastically) PDE-constrained optimization problem,
but they do not handle additional constraints or PDE discretization error.
A mesh refinement strategy was presented in [26], but only in combination
with step sizes of the form c/n; additionally, their results do not handle the
case with additional constraints or with iterate averaging. Convergence the-
ory with additional constraints in Hilbert spaces was presented in [13] along
with a summary of step size rules, both for strongly convex and generally con-
vex objective functionals; however, PDE discretization error was not handled
in this work. In this work, we will extend the results in [13] to incorporate
bias by PDE discretization error. We will see that we can obtain the same
convergence theory, with the same expected error decay, if the discretization
accuracy is steered such that the bias decays fast enough.

Relying on a priori error estimate for the discretization error, we pro-
vide a rule how the maximal mesh size should be coupled with the iter-
ation progress. Analogously, one could couple the iteration with some a
posteriori error measure, which has been well investigated for deterministic
PDE-constrained optimization problems, see, e.g., [30, 31], and including the
treatment of inexact discrete solutions [27].

The paper is structured as follows. In section 2, the algorithm and nota-
tion is presented. In section 3, efficiency estimates are derived for different
step sizes choices. An application to PDE-constrained optimization is intro-
duced in section 4, and a discretized version of the algorithm is presented.
The presented version allows the coupling of step size rules to successive
mesh refinement. Convergence orders for the algorithm are presented in The-
orem 4.7, which is our main result. Experiments supporting the theoretical
work are in section 5, and we close with final remarks in section 6.
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2 Preliminaries

We consider problems of the form

min
u∈Uad

{
j(u) = E[J(u, ξ)] =

∫
Ω

J(u, ξ(ω)) dP(ω)

}
, (2.1)

where Uad is a nonempty, closed, and convex subset of a Hilbert space
(U , (·, ·)U). We recall that a probability space is given by a triple (Ω,F ,P),
where Ω represents the sample space, F ⊂ 2Ω is the σ-algebra of events and
P : Ω→ [0, 1] is a probability measure defined on Ω. For the random vector
ξ : Ω→ Ξ ⊂ Rm, we will often denote a realization of the random vector as
simply ξ ∈ Ξ. It is assumed that for almost every ω, u 7→ J(u, ξ(ω)) is convex
on Uad, making j convex as well. Additionally, we require that J : U×Ξ→ R
is L2-Fréchet differentiable on an open neighborhood of Uad according to
the following definition, where Lp(Ω) denotes the space of all p-times inte-
grable real-valued functions with norm ‖f‖Lp(Ω) = (

∫
Ω
|f(ω)|p dP(ω))1/p and

‖·‖U =
√

(·, ·)U denotes the (strictly convex) norm on U .
For the convenience of the reader, we recall the following definition from

[13].

Definition 2.1. A p-times integrable random functional J : U × Ξ → R is
called Lp-Fréchet differentiable at u if for an open set U ⊂ U containing u
there exists a bounded and linear random operator A : U × Ξ→ R such that
limh→0‖J(u+ h, ξ)− J(u, ξ) + A(u, ξ)h‖Lp(Ω)/‖h‖U = 0.

By Hölder’s inequality, if u 7→ J(u, ·) is Lp-differentiable and 1 ≤ r < p,
then it is also Lr-differentiable with the same derivative. This implies that
j : U → R is Fréchet differentiable.1

The projection onto a closed convex set Uad ⊂ U is denoted by πUad :
U → Uad and is defined as the function such that

πUad(u) = arg min
w∈Uad

‖u− w‖U .

The projected stochastic gradient (PSG) method, which is studied in this
paper, is summarized in Algorithm 1. It relies on a stochastic gradient, or
a function G : U × Ξ → U such that G(u, ξ) ≈ ∇E[J(u, ξ)]; one choice for
G(u, ξ) is ∇uJ(u, ξ).

1Definition 2.1 with p = 1 is the minimal requirement for allowing the exchange of
the derivative and the expectation, i.e., ∇j(u) =

∫
Ω
∇uJ(u, ξ(ω)) dP(ω). A sufficient, but

not necessary, condition for this is that (i) j(v) is finite for all v ∈ U and u 7→ J(u, ξ) is
a.s. Fréchet differentiable at u; and (ii) there exists an P-integrable dominating function g
such that for all v ∈ U , ‖∇uJ(v, ξ)‖U ≤ g(ξ) a.s.
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Algorithm 1 Projected Stochastic Gradient (PSG) Method

1: Initialization: u1 ∈ U
2: for n = 1, 2, . . . do
3: Generate ξn, independent from ξ1, . . . , ξn−1, and tn > 0.
4: un+1 := πUad(un − tnG(un, ξn)).
5: end for

We recall that a sequence {Fn} of increasing sub-σ-algebras of F is called
a filtration. A stochastic process {βn} is said to be adapted to the filtration
if βn is Fn-measurable for all n. If

Fn = σ(β1, . . . , βn), 2

we call {Fn} the natural filtration. Furthermore, we define for an integrable
random variable β : Ω→ R the conditional expectation E[β|Fn], which is it-
self a random variable that is Fn-measurable and satisfies

∫
A
E[β(ω)|Fn] dP(ω) =∫

A
β(ω) dP(ω) for all A ∈ Fn.
We make the similar assumptions on the gradient as [13]; for the purposes

of this paper, we will focus on the case where Uad is bounded.

Assumption 2.2. Let {Fn} be an increasing sequence of σ-algebras and
the sequence of stochastic gradients generated by Algorithm 1 be given by
{G(un, ξn)}. For each n, there exist rn, wn with

rn = E[G(un, ξn)|Fn]−∇j(un), wn = G(un, ξn)− E[G(un, ξn)|Fn],

which satisfy the following assumptions: (i) un and rn are Fn-measurable; (ii)
Kn := ess supω∈Ω‖rn(ω)‖U is bounded, i.e., supnKn <∞; (iii) there exists a
constant M > 0 such that E[‖G(u, ξ)‖2

U ] ≤M for all u ∈ Uad.

Notice that by construction, E[wn|Fn] = 0 and hence no further assump-
tions on wn are needed.

3 Efficiency Estimates for Stochastic Gradi-

ent Methods

To obtain efficiency estimates, we let u be an optimal solution of (2.1) and
gn = G(un, ξn). Since u ∈ Uad, πUad(u) = u. Thus, the nonexpansivity of the

2The σ-algebra generated by a random variable β : Ω→ R is given by σ(β) = {β−1(B) :
B ∈ B}, where B is the Borel σ-algebra on R. Analogously, the σ-algebra generated by the
set of random variables {β1, . . . , βn} is the smallest σ-algebra such that βi is measurable
for all i = 1, . . . , n.
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projection operator yields

‖un+1 − u‖2
U = ‖πUad(un − tngn)− πUad(u)‖2

U

≤ ‖un − tngn − u‖2
U

= ‖un − u‖2
U − 2tn(un − u, gn)U + t2n‖gn‖2

U .

(3.1)

Since ξn is independent from ξ1, . . . , ξn−1, it follows that

E[‖gn‖2
U |Fn] = E[‖G(un, ξ)‖2

U ] ≤M. (3.2)

By Assumption 2.2, gn = ∇j(un) + wn + rn. Since un and rn are Fn-
measurable, it follows that E[un|Fn] = un and E[rn|Fn] = rn. Note as well
that E[wn|Fn] = 0 holds. Thus taking conditional expectation with respect
to Fn on both sides of (3.1), we get

E[‖un+1 − u‖2
U |Fn] ≤ ‖un − u‖2

U − 2tn(un − u,∇j(un) + rn)U + t2nM.
(3.3)

In the following computations, let e2
n := E[‖un − u‖2

U ].

3.1 Strongly Convex Case

Notice that

−2tn(un − u, rn)U ≤ 2tn(‖un − u‖2
U + 1)‖rn‖U

and the µ-strong convexity of j implies that (un−u,∇j(un))U ≥ µ‖un−u‖2
U .

Hence, taking expectation on both sides of (3.3), we obtain

e2
n+1 ≤ e2

n(1− 2µtn + 2tnKn) + t2nM + 2tnKn.

To ensure convergence of {e2
n}, we require that

∑
n tnKn <∞ and

∑
n t

2
n <

∞; see [13, Theorem 3.6]. We use for some later to be determined K, ν, θ > 0
the ansatz

Kn ≤
K

n+ ν
, tn =

θ

n+ ν
, (3.4)

resulting in the inequality

e2
n+1 ≤ e2

n

(
1− 2µθ

n+ ν
+

2θK

(n+ ν)2

)
+
θ2M + 2θK

(n+ ν)2
. (3.5)

Lemma 3.1. For a recursion of the form

e2
n+1 ≤ e2

n

(
1− c1

n+ ν
+

c2

(n+ ν)2

)
+

c3

(n+ ν)2
, (3.6)
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if e2
1, c2, c3 ≥ 0, c1 > 1, and ν + 1 ≥ c2

c1−1
, it follows that

e2
n ≤

ρ

n+ ν
, (3.7)

where

ρ := max
{

(1 + ν)e2
1,

−c3(1 + ν)

(1 + ν)(1− c1) + c2

}
.

Proof. We show (3.7) by induction. The statement for n = 1 is clearly
satisfied since e2

1 = ν+1
ν+1

e2
1 ≤ ρ

ν+1
.

For n > 1, we assume that (3.7) holds for n. We abbreviate n̂ := n + ν
and since ν + 1 ≥ c2

c1−1
, we have

1− c1

n̂
+
c2

n̂2
> 0.

Thus by (3.6) and (3.7), we get

e2
n+1 ≤

(
1− c1

n̂
+
c2

n̂2

) ρ
n̂

+
c3

n̂2

=

(
n̂2 − n̂
n̂3

)
ρ+

(
n̂(1− c1) + c2

n̂3

)
ρ+

c3

n̂2

≤ ρ

n̂+ 1
.

(3.8)

In the last inequality, we used the fact that n̂3 ≥ n̂(n̂ − 1)(n̂ + 1) and the
fact that for all n ∈ N and n̂ = n+ ν, the relation(

n̂(1− c1) + c2

n̂3

)
ρ+

c3

n̂2
≤
(
n̂(1− c1) + c2

n̂3

) −c3(1 + ν)

(ν + 1)(1− c1) + c2

+
c3

n̂2

is true, since the factor in front of ρ is negative by assumption on ν, i.e.,
(ν + 1)(1− c1) + c2 ≤ 0. Further, we calculate(
n̂(1− c1) + c2

n̂3

) −c3(1 + ν)

(1 + ν)(1− c1) + c2

+
c3

n̂2
≤ 0

⇔ −c3(1 + ν)[(n+ ν)(1− c1) + c2] ≥ −c3(n+ ν)[(1 + ν)(1− c1) + c2]

⇔ (1 + ν) ≤ (n+ ν),

thus showing (3.8).

Summarizing the above derivation, we obtain the following convergence
theorem.

7



thm 3.2. If j is µ-strongly convex and θ and ν are chosen such that θ >
1/(2µ) and ν ≥ 2θK/(2µθ − 1)− 1, then

E[‖un − u‖U ] ≤
√

ρ

n+ ν
(3.9)

with

ρ := max

{
(1 + ν)E[‖u1 − u‖2

U ],
−(θ2M + 2θK)(1 + ν)

(1 + ν)(1− 2µθ) + 2θK

}
.

If additionally, ∇j is Lipschitz continuous with constant L > 0 and
∇j(u) = 0, then

E[j(un)− j(u)] ≤ Lρ

2(n+ ν)
. (3.10)

Proof. The estimate (3.9) is an immediate consequence of (3.5) and Lemma 3.1.
If ∇j is Lipschitz continuous and ∇j(u) = 0, then it follows that

j(un) ≤ j(u) +
L

2
‖un − u‖2

U , (3.11)

so combining (3.11) with (3.9), we get (3.10).

3.2 Convex Case with Averaging

In the general convex case, or where a good estimate for µ does not exist,
step sizes of the form tn = θ/n may be too small for efficient convergence.
An example is given in [28] showing that an overestimated strong convexity
parameter µ leads to extremely slow convergence. A significant improvement
can be obtained by using larger steps of the order O(1/

√
n). Then, instead

of observing convergence of the sequence {un} we observe the convergence of
certain averages ũNi of the iterates, with γn := tn/(

∑N
`=i t`) and the average

of the iterates for some choice of i to N given by

ũNi =
N∑
n=i

γnu
n. (3.12)

To derive these estimates, we use (3.3) and the fact that (un−u,∇j(un))U ≥
j(un)− j(u) by convexity of j to get a recursion of the form

e2
n+1 ≤ e2

n(1 + 2tnKn)− 2tnE[j(un)− j(u)] + t2nM + 2tnKn. (3.13)
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Rearranging (3.13) and summing over 1 ≤ i ≤ N on both sides,

N∑
n=i

tnE[j(un)− j(u)] ≤
N∑
n=i

[
e2
n

2
(1 + 2tnKn)− e2

n+1

2
+
t2nM

2
+ tnKn

]

≤ e2
i

2
+

1

2

N∑
n=i

[
2tnKne

2
n + t2nM + 2tnKn

]
.

(3.14)
By convexity of j, we have j(ũNi ) ≤∑N

n=i γnj(u
n) so by (3.14)

E[j(ũNi )− j(u)] ≤ e2
i +

∑N
n=i[2tnKne

2
n + t2nM + 2tnKn]

2
∑N

n=i tn
. (3.15)

Set Dad := supu∈Uad‖u1 − u‖U . Notice that e2
1 ≤ D2

ad and e2
i ≤ 4D2

ad since
‖ui − u‖U ≤ ‖ui − u1‖U + ‖u1 − u‖U ≤ 2Dad. Thus from (3.15) we get

E[j(ũN1 )− j(u)] ≤ D2
ad +

∑N
n=1 [8tnKnD

2
ad + t2nM + 2tnKn]

2
∑N

n=1 tn
, (3.16)

E[j(ũNi )− j(u)] ≤ 4D2
ad +

∑N
n=i [8tnKnD

2
ad + t2nM + 2tnKn]

2
∑N

n=i tn
, 1 < i ≤ N.

(3.17)

If Kn = 0, then we recover the estimates [28, (2.18)].

Constant Step Size Policy First, observe the case where tn = t and
i = 1. It follows by (3.16) that

E[j(ũN1 )− j(u)] ≤ D2
ad +

∑N
n=1 [8tKnD

2
ad + t2M + 2tKn]

2Nt

Minimizing f(t) := (D2
ad +

∑N
n=1 [8tKnD

2
ad + t2M + 2tKn])/(2Nt), we get

the step size policy

t =
Dad√
MN

, (3.18)

which is the same step size rule as one would use where Kn = 0. Plugging
(3.18) into (3.16), we get

E[j(ũN1 )− j(u)] ≤ Dad

√
M√

N
+

4D2
ad + 1

N

N∑
n=1

Kn.

Hence for convergence with the same speed as in the case Kn = 0 it is
sufficient that

N∑
n=1

Kn ∝
√
N. (3.19)
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Variable Step Size Policy Alternatively, one can work with the decreas-
ing step size policy for a constant θ > 0

tn =
θDad√
Mn

. (3.20)

Plugging (3.20) into (3.17), we get using the inequalities

N∑
n=i

1

n
≤ N − i+ 1

i
,

N∑
n=i

1√
n
≥ N − i+ 1√

N

the following estimate for 1 ≤ i ≤ N

E[j(ũNi )−j(u)] ≤ 1√
N

[
2DadN

√
M

θ(N − i+ 1)
+

(4D2
ad + 1)N

N − i+ 1

N∑
n=i

Kn√
n

+
θDad

√
MN

2i

]
.

Hence to balance the terms it is suitable to select

N∑
n=i

Kn√
n
∝ 1 (3.21)

and i = dαNe for some α ∈ (0, 1).
We summarize the convergence rate for iterate averaging in the general

convex case in the following theorem.

thm 3.3. If j is convex and iterates are averaged according to (3.12), then
with the constant step size policy (3.18) and bias Kn satisfying (3.19), we
have

E[j(ũN1 )− j(u)] ≤ O
(

1√
N

)
.

If variable step sizes are chosen according to (3.20) and bias satisfies (3.21)
for i = dαNe and some α ∈ (0, 1), it follows

E[j(ũNi )− j(u)] ≤ O
(

1√
N

)
.

4 Application to PDE-Constrained Optimiza-

tion under Uncertainty

Let D ⊂ R2 be a convex polygonal domain. We set U = L2(D) and (·, ·)U =
(·, ·)L2(D) and use the same notation also for vector-valued functions. Let
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Y0 := H1
0 (D). Further, let | · |Hk(D) and ‖·‖Hk(D) be the seminorm and norm

on the Sobolev space Hk(D), respectively; see [1] for a definition of these
norms. We denote the set of t-Hölder continuous functions on D̄ with Ct(D̄).
For 1 ≤ p <∞, a measure space (Ξ,X , P ) and Banach space (X, ‖·‖X), the
Bochner spaces Lp(Ξ, X) and L∞(Ξ, X) are defined as the sets of strongly
X -measurable functions y : Ξ→ X such that

‖y‖Lp(Ξ,X) :=

(∫
Ξ

‖y(ξ)‖pX dP (ξ)

)1/p

, (4.1)

‖y‖L∞(Ξ,X) := ess sup
ξ∈Ξ

‖y(ξ)‖X (4.2)

are finite, respectively.
Let (Ω,F ,P) be a probability space. We consider the constraint, to be

satisfied P-a.s., of the form

−∇ · (a(x, ω)∇y(x, ω)) = u(x), x ∈ D,
y(x, ω) = 0, x ∈ ∂D, (4.3)

where a : D × Ω → R is a random field representing conductivity on the
domain. To facilitate simulation, we will make a standard finite-dimensional
noise assumption, meaning the random field has the form

a(x, ω) = a(x, ξ(ω)) in D × Ω

where ξ(ω) = (ξ1(ω), . . . , ξm(ω)) is a vector of real-valued uncorrelated ran-
dom variables ξi : Ω → Ξi ⊂ R.3 The support of the random vector will
be denoted with Ξ =

∏m
i=1 Ξi and its probability distribution with P . By

assumption on a, it is possible to reparametrize y as likewise depending on
ξ, see [24, Lemma 9.40]. Therefore, we can associate the random field y with
a function y = y(x, ξ) belonging to the space L2(Ξ,Y0). Now, the problem
of finding a u ∈ Uad bounded by ua, ub ∈ U such that the corresponding
y ∈ L2(Ξ,Y0) best approximates a target temperature yD ∈ L2(D) with cost
λ ≥ 0 is formulated in (4.4).

min
u∈Uad

{
j(u) := E[J(u, ξ)] := E

[
1

2
‖y − yD‖2

U

]
+
λ

2
‖u‖2

U

}
s.t. −∇ · (a(x, ξ)∇y(x, ξ)) = u(x), (x, ξ) ∈ D × Ξ,

y(x, ξ) = 0, (x, ξ) ∈ ∂D × Ξ,

Uad := {u ∈ U : ua(x) ≤ u(x) ≤ ub(x) a.e. x ∈ D}.

(4.4)

3We use ξi to denote the ith element of the vector ξ and ξn to denote the nth realization
of the vector ξn = (ξn1 , . . . , ξ

n
m).
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We will often suppress dependence on x and simply write a(ξ) = a(·, ξ)
and y(ξ) = y(·, ξ) for a realization of the random field and temperature,
respectively. The random field is subject to the following assumption.

Assumption 4.1. There exist amin, amax such that for almost every (x, ξ) ∈
D × Ξ, 0 < amin < a(x, ξ) < amax <∞. Additionally, a ∈ L∞(Ξ, Ct(D̄)) for
some 0 < t ≤ 1.

Remark 4.2. Assumption 4.1 allows for modeling with log-normal random
fields with truncated Gaussian noise, as in for instance [15] and [37]. The
Hölder condition a ∈ L∞(Ξ, Ct(D̄)) is weaker than the typical assumption,
where the fields are assumed to be almost surely continuously differentiable
with uniformly bounded gradient; see for instance [6] and [26].

Lemma 4.3. Let Assumption 4.1 be satisfied for some t ∈ (0, 1]. Then there
exists some s0 ∈ (0, t] such that for any 0 ≤ s < s0, any u ∈ Hs0−1(D), and
almost every ξ ∈ Ξ there exists a unique solution y(ξ) ∈ Y0 ∩H1+s(D) to

bξ(y, v) :=

∫
D

a(x, ξ)∇y(x, ξ) · ∇v(x) dx =

∫
D

u(x)v(x) dx =: (u, v)U (4.5)

for all v ∈ Y0. Moreover, for any such s there exists Cs independent of ξ
and u such that

‖y(ξ)‖H1+s(D) ≤ Cs‖u‖Hs−1(D). (4.6)

Additionally, if D is convex and t = 1, then the statement remains true for
s = s0 = 1.

Proof. It is an immediate consequence of the Lax–Milgram Lemma and the
bounds on a(ξ) from Assumption 4.1 that (4.5) has a unique solution in Y0

and (4.6) holds with s = 0. The existence of s0 and the regularity in H1+s

follows from [18, Lemma 1 and Theorem 1].
In the case of a convex domain and t = 1, [14, Theorem 3.2.1.2] pro-

vides the regularity y(ξ) ∈ H2(D) for the solution of (4.5). The a priori
bound (4.6) follows from [14, Theorem 3.1.3.1] and inspection of the proof
of [14, Theorem 3.2.1.2], showing that the bound also remains true for an
arbitrary convex domain.

Note that similar estimates, even with s0 = t, can be shown for smooth
domains, see, e.g., [9, Proposition 3.1].

Using standard arguments, it can be shown that for ξ ∈ Ξ, the stochastic
gradient ∇uJ(u, ξ) for problem (4.4) is given by

∇uJ(u, ξ) = λu− p(·, ξ), (4.7)

where p(·, ξ) ∈ Y0 solves bξ(v, p) = (yD − y(ξ), v)U for all v ∈ Y0; see [13].
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4.1 Discretization

We now define a discretization of (4.4) by finite elements. To this end,
let Th be a decomposition of D into shape regular triangles T with h =
maxT∈Th diam(T ), see, e.g., [11, 8].

Now, we can define standard H1-conforming finite element spaces, where
Pi denotes the space of polynomials of degree up to i,

Yh := {v ∈ H1(D) : v|T ∈ P1(T ) for all T ∈ Th},
Y0
h := Yh ∩ Y0

of piecewise linear finite elements. For the controls, we choose a discretization
of U by piecewise constants, i.e.,

Uh := {u ∈ U : v|T ∈ P0(T ) for all T ∈ Th}, Uad
h = Uh ∩ Uad.

Further, we define Ph : U → Uh as the L2-projection, i.e., for v ∈ L2(D) it is

Ph(v)
∣∣
T

=
1

|T |

∫
T

v dx.

Then the (spatially) discretized version of (4.4) becomes

min
uh∈Uad

h

{
jh(uh) := E[Jh(uh, ξ)] = E

[
1

2
‖yh − yD‖2

U

]
+
λ

2
‖uh‖2

U

}
s.t. P-a.s. bξh(yh, vh) = (uh, vh)U ∀vh ∈ Y0

h.
(4.8)

Here bξh is given by

bξh(y, v) :=

∫
D

Iha(ξ)∇y · ∇v dx

where Ih is either the interpolation into element wise constants or continuous
linear finite elements. As it will be useful later, we state some well-known
error estimates for the interpolation. As it will make calculations more easily
accessible, we will use so-called generic constants c > 0 which may have a
different value at each appearance but are independent of all relevant quan-
tities.

Lemma 4.4. Given Assumption 4.1, there exists a constant Cr such that for
almost every ξ ∈ Ξ, the expression

‖a(ξ)− Iha(ξ)‖L∞(D) ≤ Crh
t

is satisfied for both the interpolation by constants as well as the interpolation
by piecewise linear functions.
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Proof. We use a well-known interpolation estimate [8, Theorem 4.4.20] with
s = 0, p = ∞ and the cases m = 0 and m = 1 in combination with [36,
Section 4.5.2] for the case of smooth domains and [25, Example 1.9] for the
case of convex polygons. Then, it follows that

‖a(ξ)− Iha(ξ)‖L∞(D) ≤ cht‖a(ξ)‖Ct(D)

with the almost sure bound

‖a(ξ)‖Ct(D) ≤ ‖a‖L∞(Ξ;Ct(D)).

It is then easy to see a representation of the gradient for the reduced
discretized functional jh : Uh → R. Analogously to (4.7), one obtains

Lemma 4.5. For ξ ∈ Ξ and any uh ∈ Uh, the stochastic gradient ∇uJh(uh, ξ) ∈
Uh for problem (4.8) is given by

∇uJh(uh, ξ) = λuh − Phph(ξ),

where ph(ξ) ∈ Y0
h solves the PDE

bξh(vh, ph(ξ)) = (yD − yh(ξ), vh)U ∀vh ∈ Y0
h (4.9)

and Ph denotes the L2-projection onto Uh.

We notice that uh ∈ Uh ⊂ U and thus one could simply apply Algorithm 1
to this discrete problem. However, the gradient of j at unh is

∇j(unh) = λunh − E[pn(ξ)]

= λunh − E[pn(ξ)]± pn(ξn)± Phpnh(ξn)

= λunh − Phpnh(ξn)︸ ︷︷ ︸
∇uJh(unh ,ξ

n)

+ pn(ξn)− E[pn(ξ)]︸ ︷︷ ︸
wn

+Php
n
h(ξn)− pn(ξn)︸ ︷︷ ︸

rn

,

highlighting that suitable mesh refinement needs to be added to assert that
rn and thus Kn = ess supω∈Ω‖rn(ω)‖U vanishes sufficiently fast in view of the
equations (3.4), (3.19), or (3.21).

To this end, we need to provide an estimate for

Kn = ‖Phpnh(ξ)− pn(ξ)‖L∞(Ξ,U).

14



In view of the L2(D) = U stability of Ph we have

‖Phpnh(ξ)− pn(ξ)‖U ≤ ‖Phpnh(ξ)− Phpn(ξ)‖U + ‖Phpn(ξ)− pn(ξ)‖U
≤ ‖pnh(ξ)− pn(ξ)‖U + ‖Phpn(ξ)− pn(ξ)‖U
≤ ‖pnh(ξ)− pn(ξ)‖U + ch‖∇pn(ξ)‖U
≤ ‖pnh(ξ)− pn(ξ)‖U + ch

(
‖yD‖U + ‖uh‖U

) (4.10)

using well-known error estimates for Ph and the stability estimate (4.6) for
p(ξ) and y(ξ). To bound the first term on the right of (4.10) we need a bit
of preparation.

Lemma 4.6. Under Assumption 4.1 there exists s ∈ (0, 1] and c > 0 such
that

‖yh(ξ)− y(ξ)‖U ≤ chmin(2s,t)‖uh‖U ,
‖ph(ξ)− p(ξ)‖U ≤ chmin(2s,t)

(
‖yD‖U + ‖uh‖U

)
holds for almost every ξ ∈ Ξ.

Proof. We split the error by introducing the intermediate function yh(ξ) ∈ Y0

solving
bξh(y

h(ξ), v) = (u, v)U ∀v ∈ Y0.

Then to estimate ‖yh(ξ)− yh(ξ)‖U , we employ a standard duality argument
(Aubin-Nitsche trick) using the uniform H1+s-regularity of the problem, see
Lemma 4.3, and obtain

‖yh(ξ)− yh(ξ)‖U ≤ ch2s‖uh‖U .

To estimate ‖yh(ξ) − y(ξ)‖U , we notice that e = yh(ξ) − y(ξ) solves the
equation

bξ(e, v) = ((a(ξ)− Iha(ξ))∇yh,∇v)U ∀v ∈ Y0.

In view of Lemma 4.3, it is sufficient to estimate the H−1-norm of the right-
hand side f = −∇ · ((a(ξ) − Iha(ξ))∇yh(ξ)). It is immediately clear by
definition, and Lemma 4.3, that

‖f‖H−1(D) ≤ ‖∇yh(ξ)‖U‖a(ξ)− Iha(ξ)‖L∞(D)

≤ C0Cr‖uh‖Uht,

showing
‖yh(ξ)− y(ξ)‖U ≤ cht‖uh‖U .

The triangle inequality yields the estimate for yh(ξ)− y(ξ).
Analogous calculations give the estimate for ph(ξ)− p(ξ).
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Combining Lemma 4.6 with (4.10), we obtain the bound

Kn ≤ chmin(2s,t,1)
(
‖yD‖U + ‖uh‖U

)
. (4.11)

From this it is easy to derive relations for the selection of the mesh size hn in
the nth iteration based on the estimates obtained in section 3 and the bound
(4.11).

For the strongly convex case, (3.4) implies that we need for a fixed K > 0

chmin(2s,t,1)
(
‖yD‖U + ‖uh‖U

)
≤ K

n+ ν
.

We note that the strongly convex parameter for (4.4) is µ = λ. From Theo-
rem 3.2 we get with θ > 1/(2λ) and ν ≥ 2θK/(2λθ − 1)− 1 the rule

tn =
θ

n+ ν
, hn ≤

( c

n+ ν

)1/min(2s,t,1)

. (4.12)

For the convex case with constant step sizes, from (3.19) we have the
requirement that

N∑
n=1

chmin(2s,t,1)
n ∝

√
N. (4.13)

Thus we get from (3.18) and (4.13) the rule

t =
Dad√
MN

, hn ≤
(
c(
√
n−
√
n− 1)

)1/min(2s,t,1)
. (4.14)

For the convex case with variable step sizes, choosing i = dαNe for a fixed
α ∈ (0, 1), (3.21) requires

N∑
n=i

1√
n
chmin(2s,t,1)

n ∝ 1. (4.15)

Therefore with a similar argument, we get for a constant θ > 0

tn =
θDad√
Mn

,

hn ≤
(
c(
√
n−
√
n− 1)

)1/min(2s,t,1)

=

(
c√

n+
√
n− 1

)1/min(2s,t,1)

.

(4.16)

Summarizing, by suitable control of the mesh size, and thus the discretiza-
tion bias, we can recover the convergence rates proven in Theorem 3.2 and
Theorem 3.3 as follows:
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thm 4.7. If j is µ-strongly convex, θ and ν are chosen such that θ > 1/(2µ)
and ν ≥ 2θK/(2µθ − 1) − 1, and step sizes and mesh fineness is chosen to
satisfy (4.12), then

E[‖un − u‖U ] ≤ O
(

1√
n+ ν

)
.

If j is µ-strongly convex, ∇j is Lipschitz continuous, and ∇j(u) = 0, then

E[j(un)− j(u)] ≤ O
(

1

n+ ν

)
.

If j is generally convex, and step sizes and mesh fineness are chosen to
satisfy (4.14), then

E[j(ũN1 )− j(u)] ≤ O
(

1√
N

)
.

Finally, if j is generally convex, and step sizes and mesh fineness are
chosen to satisfy (4.16), then

E[j(ũNi )− j(u)] ≤ O
(

1√
N

)
as long as i = dαNe for some α ∈ (0, 1).

Proof. This result immediately follows from Theorem 3.2 and Theorem 3.3.

Theorem 4.7 allows for an a priori coupling of the mesh refinement with
the progress of the projected stochastic gradient method, and we obtain
the discretized version of Algorithm 1. The resulting algorithm is given
in Algorithm 2. Let us note that in both cases the scaling of the mesh
size parameters hn is identical, and boundedness of (3.21) follows by the
particular choice i = dαNe since then

hmin(2s,t,1)
n ≤ c√

n

and consequently

N∑
n=i

h
min(2s,t,1)
n √

n
≤ c

N∑
n=i

1

n
≤ c

(N − i+ 1)

i
≤ c

(1− α)N + 1

αN
→ c

as (N →∞).
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Algorithm 2 Projected Stochastic Gradient (PSG) - Discretized Version

1: Initialization: Select h1 > 0, u1
h ∈ Uad

h

2: for n = 1, 2, . . . do
3: Generate ξn, independent from ξ1, . . . , ξn−1, and tn > 0, Kn > 0
4: if h = hn is too large per (4.12), (4.13), or (4.16) then
5: Refine mesh Thn until h = hn is small enough.
6: end if
7: Calculate (ynh , p

n
h) solving

bξ
n

(ynh , vh) = (unh, vh)U , bξ
n

(vh, p
n
h) = (yD − ynh , vh)U

for all vh ∈ Y0
h.

8: un+1
h := πUad

h
(unh − tn(λunh − Phpnh))

9: end for

Remark 4.8. While in some situations, the constant s can be calculated,
in general it is unknown. Hence it appears to be natural to guess, probably
mistakenly, that min(2s, t, 1) = 1. Now, for large values of n

c√
n+
√
n− 1

< 1

and thus

c√
n+
√
n− 1

≥ c√
n+
√
n− 1

(
c√

n+
√
n− 1

)1/min(2s,t,1)−1

=

(
c√

n+
√
n− 1

)1/min(2s,t,1)

.

Consequently, having hn ' c√
n+
√
n−1

while min(1, 2s, t) = p < 1 will give

hmin(2s,t,1)
n ' 1

(n+ ν)p
� 1

n+ ν
,

slowing the convergence of the algorithm. An analogous argument can be
made for the rule (4.12).

Remark 4.9. Note that our above coupling does not require the mesh to
be uniform, i.e., it is possible that minT∈Th hT � minT∈Th hT . This allows
to handle singularities in the problem, e.g., boundary values or jumping
coefficients by suitably graded meshes.
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Further, for a reliable a posteriori error estimator η(ξ), i.e., for some c
independent of h and ξ it holds

‖a(ξ)− Iha(ξ)‖L∞(D) + ‖yh(ξ)− y(ξ)‖U + ‖ph(ξ)− p(ξ)‖U ≤ cη(ξ),

one can easily obtain an analogous coupling between n and a tolerance for
η(ξ) by replacing hmin(2s,t,1) with η(ξn) in (4.13) and (4.15). Then the a pos-
teriori controlled version of the algorithm is immediately obtained replacing
line 5 in Algorithm 2 by Refine mesh Thn until η(ξn) is small enough.

5 Numerical Experiments

Let the domain be given by D = (0, 1) × (0, 1) and Uad = {u ∈ U | − 1 ≤
u(x) ≤ 1 ∀x ∈ D}. For all simulations, we choose u1 ≡ 0. For the strongly
convex case, we define yD(x) = −

(
8π2 + 1

8π2λ

)
sin(2πx1) sin(2πx2). For the

convex case, we use λ = 0 and the following modified PDE constraint

−∇ · (a(x, ξ)∇y(x, ξ)) = u(x) + eD(x), (x, ξ) ∈ D × Ξ (5.1)

y(x, ξ) = 0, (x, ξ) ∈ ∂D × Ξ. (5.2)

with yD(x) = sin(πx1) sin(πx2)+3 sin(2πx1) sin(2πx2) and the function eD(x) =
6π2 sin(πx1) sin(πx2)− sign(sin(2πx1) sin(2πx2)).

5.1 Random Field Choices

To demonstrate the effect of the random field choice on the convergence, we
observe three different random fields. Example realizations of the fields are
shown in Figure 1. We recall that for a random field a, the Karhunen–Loève
expansion takes the form

a(x, ω) = a0 +
∞∑
i=1

√
λiφi(x)ξi(ω), (5.3)

where ξi is a random variable with given probability distribution, and λi and
φi denote the eigenvalues and eigenfunctions associated with the compact
self-adjoint operator defined via the covariance function C ∈ L2(D ×D) by

C(φ)(x) =

∫
D

C(x, y)φ(y) dy, x ∈ D.

For simulations, we use a finite dimensional noise assumption to replace (5.3)
with

a(x, ξ) = a0 +
m∑
i=1

√
λiφi(x)ξi(ω). (5.4)
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For an interval [a, b] where a < b, we denote the uniform distribution by
U(a, b) and the truncated normal distribution with parameters µ and σ by
N (µ, σ, a, b) 4

Remark 5.1. Of course, truncating the Karhunen–Loève expansion after
m summands will introduce an additional error, in general. This can be
included in the error estimates in Lemma 4.6 analogous to the error in the
uncertain coefficient due to interpolation.

Example 1 For the first example (cf., [24, Example 9.37]), we choose a0 =
5,m = 20, and ξi ∼ U(−

√
3,
√

3) for i = 1, . . . ,m. The eigenfunctions and
eigenvalues are given by

φ̃j,k(x) := 2 cos(jπx2) cos(kπx1), λ̃k,j :=
1

4
exp(−π(j2 + k2)l2), j, k ≥ 1,

where we reorder terms so that the eigenvalues appear in descending order
(i.e., φ1 = φ̃1,1 and λ1 = λ̃1,1) and we choose the correlation length l = 0.5.

Example 2 For the second example, we generate a log-normal random field
with truncated Gaussian noise by first generating a truncated expansion for
a Gaussian field with a separable exponential, i.e., the covariance function
has the form

C(x, y) = e−|x1−y1|/l1−|x2−y2|/l2

on D = [−1
2
, 1

2
]2. The eigenfunctions are given by φj(x) = φi,1(x1)φk,2(x2) and

the eigenvalues are λj = λi,1λk,2, where φi,m, λi,m are for m = 1, 2 solutions
to ∫ 1/2

−1/2

e−|xm−ym|/lmφm(ym) dym = λmφm(xm), xm ∈ [−1
2
, 1

2
]. (5.5)

Solutions to (5.5) have the analytic expression (cf., [24, Example 7.55])

φi,m =

{√
1/2 + sin(ωi)/(2ωi)

−1
cos(ωixm), i odd√

1/2− sin(ωi)/(2ωi)
−1

sin(ωixm), i even

λi,m =
2l−1
m

ω2
i + l−2

m

, ωi =

{
ω̂di/2e, i odd

ω̃i/2, i even
,

(5.6)

4The parameters µ and σ correspond to the mean and standard deviation of the stan-
dard normal distribution N(µ, σ); see [23] for a definition of the truncated distribution.
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(a) Example 1 (b) Example 2 (c) Example 3

Figure 1: Single realizations of each random field.

where ω̂j is the jth positive root of l−1−ω tan(ω/2) and ω̃j is the jth positive
root of l−1 tan(ω/2)+ω. Sorting terms in (5.6) by decreasing eigenvalues and
reindexing, we define the log-normal field with truncated Gaussian noise by

a(x, ξ) = ea0+
∑m

i=1

√
λiφi(x)ξi(ω) (5.7)

with a0 = 1, l1 = l2 = 1, m = 100, and ξi ∼ N (0, 0.1,−100, 100). In
simulations, the random fields are additionally transformed to (0, 1)× (0, 1).
For this choice, the trajectories of a belong to Ct(D̄) for all t < 1/2; see [9,
Lemma 2.3].

Example 3 We observe an example that does not satisfy Assumption 4.1.
We partition D into two non-overlapping subdomains D1, D2 and define a
piecewise constant field by

a(x, ω) = ξ1(ω)1D1(x) + ξ2(ω)1D2(x) (5.8)

where 1Di
is the indicator function of the set Di ⊂ D and ξi are bounded,

positive and independent random variables. In simulations, we let D1 =
(0, 1)×(1/2, 1) andD2 = (0, 1)×(0, 1/2); we let ξ1 ∼ U(3, 4) and ξ2 ∼ U(1, 2).

5.2 Experiments

Simulations were run on FEniCS [4] on a laptop with Intel Core i7 Processor
(8 x 2.6 GHz) with 16 GB RAM. In all experiments, the initial mesh contained
eight triangles and was uniformly refined using newest vertex bisection.

Effect of mesh refinement on objective function value In the first
experiment, we observe objective function values with and without mesh
refinement for the random field in example 1. The strongly convex case is
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Figure 2: Behavior of objective function with and without mesh refinement.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 3: Reference solutions for strongly convex case.

observed with λ = 0.1. A total of 1000 samples is taken at iteration n = 100
and objective function values are compared. We use step sizes (4.12) where
θ = 1/(2λ)+1, ν = 2θK/(2λθ−1)−1 and K = 5. Without refinement, where
the mesh is constant h ≈ 0.18, ĵ100 ≈ 779.503. With refinement, where the
mesh is refined according to (4.12), we get h100 ≈ 0.04 and ĵ100 ≈ 779.479.
Figure 2 shows clear jumps where the mesh is refined.

Convergence plots - Strongly Convex Case To demonstrate Algo-
rithm 2 using (4.12), we choose the example for the strongly convex case
with λ = 0.2, θ > 1/(2λ)+1, K = 1, and ν = 2θK/(2λθ−1)−1, and finally,
c = 17.5, which was chosen to prevent the mesh from refining too aggres-
sively. To generate reference solutions, the algorithm was run for n = 3000
iterations with h1000 ≈ 0.0044 to get ū := u3000; these solutions are shown
for each of the random fields in Figure 3.

We observe behavior of the algorithm for a single run with 300 iterations.
To approximate objective function values, m = 1000 samples are generated
to get ĵ(unh) = 1

m

∑m
i=1 J(unh, ξ

n,i), where ξn,i denotes a newly generated ith
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Figure 4: Strongly convex functional with smooth random field (example 1).
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Figure 5: Strongly convex functional with log-normal random field (example
2).

sample at iteration n. We set ˆ̄j := ĵ(u3000
h ). We observe objective function

decay and convergence rates ‖unh − ū‖U and |ĵ(unh) − ˆ̄j| for a single run of
the algorithm for each of the random fields; see Figure 4–6. To approximate
‖unh − ū‖U , we project unh onto the fine mesh used for ū and compute the
error on the fine mesh. In each example, we see clear jumps in the objective
function value when the mesh is refined, followed by decay at or better than
the expected rate. A single run of 1000 iterations with mesh refinement
took 36% of the CPU time when compared to computations on a fixed mesh
(corresponding to h1000 ≈ 0.011).

Convergence Plots - Averaging For the general convex case, we choose
the convex example with the modified constraint (5.1). We denote the
discretization of the average of iterates i to N ũNi , defined in (3.12), as
ũNi,h. We note that the bound on the second moment of the stochastic gra-
dient M can be analytically computed as in [13] by M = ‖G(u, ξ)‖2

U ≤
[C(‖yD‖U +C(‖u‖U +‖eD‖U))]2 with C = C2

p/amin, where Cp is the Poincaré

constant, which can be bounded by diam(D)/π =
√

2/π [29]. Note that
‖yD‖2

U = 5/2, ‖eD‖2
U = 1 + 9π4 and ‖u‖U ≤ 1 for all u ∈ U . In addition, for
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Figure 6: Strongly convex functional with piecewise constant random field
(example 3).

example 1, amin ≈ 3.55; for example 2, amin ≈ 2.72; for example 3, amin = 1.

To generate reference solutions, the algorithm is run with the variable
step size rule (4.16) with θ = 50 for n = 5000 iterations with h5000 ≈ 0.0055
and α = 0.1 for the averaging factor to get ū = ũ5000

4500,h; see Figure 7 for the
solutions for each random field. To approximate objective function values,
m = 5000 samples were generated to get ĵ(ũNdαNe,h) = 1

m

∑m
i=1 J(ũNdαNe,h, ξ

n,i),

where ξn,i denotes a newly generated ith sample at iteration n. We set ˆ̄j :=
ĵ(ū) and use α = 0.5 for the experiments. We choose a fixed number of
iterations N ∈ {25, 50, . . . , 250} and for each of these iteration numbers,
we ran a separate simulation using the step sizes and mesh refinement rules
informed by (4.14) and (4.16). To prevent the mesh from refining too quickly,
we choose c = 2. For the variable step size rule (4.16) we use θ = 1. Plots
of convergence for example 1 and example 2 are shown in Figure 8–Figure 9.
Again we see agreement with the theory, with clear jumps when the mesh
is refined, both with constant and variable step sizes. We also note that
positive jumps in the objective function value are possible when the mesh is
refined, as seen in Figure 9–Figure 10. For the third example, we modified
the random field so that we can view the effect of reduced regularity more
clearly; we used ξ ∼ U(5, 5.1) and U(1, 1.1). In Figure 10–Figure 10, we see a
decrease in convergence rate, which could be caused by missing regularity due
to the jump discontinuity in the random field as mentioned in Remark 4.8.
We reran the experiment with the guess min(2s, t, 1) = 0.5, which results in
a more aggressive mesh refinement and convergence according to the theory;
see Figure 11. In all examples, the variable step size yields a lower error for
the same number of iterations when compared to the constant step size rule.
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(a) Example 1 (b) Example 2 (c) Example 3

Figure 7: Reference solutions for general convex case.
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Figure 8: General convex functional with smooth random field (example 1)
using constant and variable step size rules.
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Figure 9: General convex functional with log-normal random field (example
2) using constant and variable step size rules.
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Figure 10: General convex functional with piecewise constant random field
(example 3) using constant and variable step size rules.
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26



6 Conclusion

In this paper, we developed efficiency estimates incorporating numerical er-
ror for the projected stochastic gradient algorithm applied to stochastic op-
timization problems in Hilbert spaces. We distinguish between a strongly
convex functional and a general convex case, where in the latter case we use
averaging to allow for larger step sizes. These estimates informed how to
balance the error and step size rules for both the strongly convex case and
the convex case with averaging. We introduced a model stochastic optimiza-
tion problem with a PDE constraint subject to uncertain coefficients. Using
a priori error estimates for the PDE constraint, we developed a mesh re-
finement strategy that, coupled with reducing step sizes, yields convergence
rates according to our efficiency estimates. This was demonstrated using
three different random fields on problems with and without a regularization
term, which allowed us to test our convergence theory on a strongly convex
and general convex objective function.
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convex domains, Arch. Rational Mech. Anal., 5 (1960), pp. 286–292,
https://doi.org/10.1007/bf00252910.

[30] R. Rannacher and B. Vexler, Adaptive finite element discretiza-
tion in PDE-based optimization, GAMM-Mitt, 33 (2010), pp. 177–193,
https://doi.org/10.1002/gamm.201010014.

[31] R. Rannacher, B. Vexler, and W. Wollner, A posteriori error
estimation in PDE-constrained optimization with pointwise inequality
constraints, in Constrained Optimization and Optimal Control for Par-
tial Differential Equations, vol. 160 of International Series of Numerical
Mathematics, Springer, 2012, pp. 349–373, https://doi.org/10.1007/
978-3-0348-0133-1_19.

[32] H. Robbins and S. Monro, A stochastic approximation method, Ann.
Math. Statist., 22 (1951), pp. 400–407, https://doi.org/10.1214/

aoms/1177729586.

[33] E. Rosseel and G. Wells, Optimal control with stochastic PDE con-
straints and uncertain controls, Comput. Methods Appl. Mech. Engrg.,
(2012), pp. 152–167, https://doi.org/10.1016/j.cma.2011.11.026.

[34] C. Schwab and C. J. Gittelson, Sparse tensor discretizations of
high-dimensional parametric and stochastic PDEs, Acta Numer., 20
(2011), pp. 291–467, https://doi.org/10.1017/s0962492911000055.

[35] H. Tiesler, R. M. Kirby, D. Xiu, and T. Preusser, Stochastic
collocation for optimal control problems with stochastic PDE constraints,

30

https://doi.org/10.1137/140975863
https://doi.org/10.1137/070704277
https://doi.org/10.1137/070704277
https://doi.org/10.1007/bf00252910
https://doi.org/10.1002/gamm.201010014
https://doi.org/10.1007/978-3-0348-0133-1_19
https://doi.org/10.1007/978-3-0348-0133-1_19
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1016/j.cma.2011.11.026
https://doi.org/10.1017/s0962492911000055


SIAM J. Control Optim., 50 (2012), pp. 2659–2682, https://doi.org/
10.1137/110835438.

[36] H. Triebel, Interpolation Theory, Function Spaces, Differential Oper-
ators, Johann Ambrosius Barth Verlag; Heidelberg, Leipzig, 2., rev. and
enl. ed., 1995.

[37] E. Ullmann, H. C. Elman, and O. G. Ernst, Efficient iterative
solvers for stochastic Galerkin discretizations of log-transformed random
diffusion problems, SIAM J. Sci. Comput., 34 (2012), pp. A659–A682,
https://doi.org/10.1137/110836675.

31

https://doi.org/10.1137/110835438
https://doi.org/10.1137/110835438
https://doi.org/10.1137/110836675

	1 Introduction
	2 Preliminaries
	3 Efficiency Estimates for Stochastic Gradient Methods
	3.1 Strongly Convex Case
	3.2 Convex Case with Averaging

	4 Application to PDE-Constrained Optimization under Uncertainty
	4.1 Discretization

	5 Numerical Experiments
	5.1 Random Field Choices
	5.2 Experiments

	6 Conclusion

