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The framework of inner product norm preserving relaxation Runge–Kutta meth-
ods (David I. Ketcheson, Relaxation Runge–Kutta Methods: Conservation and Stability
for Inner-Product Norms, SIAM Journal on Numerical Analysis, 2019) is extended to
general convex quantities. Conservation, dissipation, or other solution properties
with respect to any convex functional are enforced by the addition of a relaxation
parameter that multiplies the Runge–Kutta update at each step. Moreover, other
desirable stability (such as strong stability preservation) and efficiency (such as low
storage requirements) properties are preserved. The technique can be applied to
both explicit and implicit Runge–Kutta methods and requires only a small modifica-
tion to existing implementations. The computational cost at each step is the solution
of one additional scalar algebraic equation forwhich a good initial guess is available.
The effectiveness of this approach is proved analytically and demonstrated in sev-
eral numerical examples, including applications to high-order entropy-conservative
and entropy-stable semi-discretizations on unstructured grids for the compressible
Euler and Navier–Stokes equations.
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1 Introduction

Consider a time-dependent ordinary differential equation (ODE)

d
dt u(t) � f (t , u(t)), t ∈ (0, T),

u(0) � u0 ,
(1.1)

in a real Hilbert space H with inner product 〈·, ·〉, inducing the norm ‖·‖. Let η : H → R
denote a smooth convex function whose correct evolution in time is important in the solution of
(1.1). In relevant applications ηmight represent e.g. some form of energy or momentum; in the
presentworkwe refer to η as entropy, with a view to applications in hyperbolic and incompletely
parabolic system of partial differential equations (PDEs) such as the compressible Euler and
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Navier–Stokes equations. The time evolution of η is given by d
dt η(u(t)) �

〈
η′(u(t)), f (t , u(t))〉.

Thus entropy dissipative systems satisfy

∀u ∈ H , t ∈ [0, T] : 〈
η′(u), f (t , u)〉 ≤ 0, (1.2)

while entropy conservative ones fulfill

∀u ∈ H , t ∈ [0, T] : 〈
η′(u), f (t , u)〉 � 0. (1.3)

In many applications it is important to preserve this qualitative behavior; i.e. to ensure that

η(un+1) ≤ η(un)
for a dissipative problem or that

η(un+1) � η(u0)
for a conservative problem. Violation of these properties can lead to solutions that are unphys-
ical and qualitatively incorrect. Nevertheless, most numerical methods fail to guarantee these
discrete properties. In the presentwork, we present amodification thatmakes any Runge–Kutta
(RK) method preserve conservation or dissipativity while also retaining other important and
desirable properties of the unmodified Runge–Kutta method.
In this work we focus on applications to entropy conservative or entropy dissipative semi-

discretizations of hyperbolic conservation laws [49, 51] and the Navier–Stokes equations (in-
completely parabolic). Nevertheless, the methods presented here may be useful in many other
applications, includingHamiltonian systems, dispersivewave equations, and other areaswhere
geometric numerical integration is important.

Remark 1.1. It is possible to generalize this setting to Banach spaces instead of Hilbert spaces.
In that case, scalar products of the form

〈
η′, f

〉
should be read as the application of the bounded

linear functional η′ to f .

1.1 Related Work

Recently, there has been some interest in nonlinear and entropy stability of numerical methods
for balance laws. Several major hurdles remain on the path towards complete nonlinear and
entropy stability of numerical algorithms because most of the research has been focused on
semi-discrete schemes (see, for instance, [10, 17, 18, 35, 38, 48, 55, 56]). Stability/dissipation
results for fully discrete schemes have mainly been limited to semi-discretizations including
certain amounts of dissipation [24, 39, 49, 57], linear equations [42, 46, 47, 50], or fully implicit
time integration schemes [19, 31, 49]. For explicit methods and general equations, there are
negative experimental and theoretical results concerning entropy stability [32, 37].

While applications to entropy conservative/dissipative schemes for hyperbolic and parabolic
balance laws are included in this article, the general technique is not limited to this setting
but can be applied to many ordinary differential equations, and to both explicit and implicit
Runge–Kutta methods. Since the basic idea is to preserve properties given at the continuous
level discretely, these schemes are related to the topic of geometric numerical integration, see
[22] and references therein.
The basic idea behind the methods proposed here comes from Dekker & Verwer [15, pp.

265-266] and has been developed for inner-product norms in [27]. The idea (and notation) of
Dekker & Verwer [15] was applied in [16] to a restricted class of fourth order methods. This
was extended in [8] by giving a general proof that applying the technique to a Runge–Kutta
method of order p results in a method of order at least p − 1. The idea was referred to therein as
the incremental direction technique (IDT), and viewed as a Runge–Kutta projection method where
the search direction is the same as the direction of the next time step update. Nevertheless,
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the main focus in [8] is on a different type of projection in which the search direction is chosen
based on an embedded method. Grimm & Quispel [21] extended the standard orthogonal
projection method [22, Section IV.4] to dissipative systems possessing a Lyapunov function and
the same approach was used in [7, 30] with the choice of search directions advocated in [8].
Kojima [29] reviewed some related methods and proposed another kind of projection scheme
for conservative systems.
Like standard Runge–Kutta methods, and in contrast to orthogonal projection methods,

the schemes based on the approach of Dekker & Verwer [15] or Calvo et al. [8] preserve
linear invariants – a feature that is absolutely essential in the numerical solution of hyperbolic
conservation laws. It is also interesting to study different projectionmethods since the behavior
of these schemes can depend crucially on the choice of conserved quantities [22, Section IV.4]
and the type of projection or search direction [7, 9, 29, 40].
The goal of this article is to extend the theory developed in [27] to a much broader class of

problems. The resulting schemes are shown to possess desirable properties, both theoretically
and in numerical experiments. In particular, applications include fully-discrete entropy stable
numerical methods of any order for the three-dimensional compressible Euler and Navier–
Stokes equations on unstructured grids based on summation-by-parts (SBP) operators [11, 36].
Analytical and numerical comparisons with other types of projection schemes are left for future
work.

1.2 Runge–Kutta Methods

A general (explicit or implicit) Runge–Kutta method with s stages can be represented by its
Butcher tableau [6, 23]

c A
bT , (1.4)

where A ∈ Rs×s and b , c ∈ Rs . For (1.1), a step from un ≈ u(tn) to un+1 ≈ u(tn+1) where
tn+1 � tn + ∆t is given by

yi � un
+ ∆t

s∑
j�1

ai j f (tn + c j∆t , y j), i ∈ {1, . . . , s} , (1.5a)

un+1
� un

+ ∆t
s∑

i�1
bi f (tn + ci∆t , yi). (1.5b)

Here, yi are the stage values of the Runge–Kutta method. We will make use of the shorthand

fi :� f (tn + ci∆t , yi), f0 :� f (tn , un). (1.6)

As is common in the literature, we assume that A1 � c with 1 � (1, . . . , 1)T ∈ Rs .
A Runge–Kutta method is (entropy) dissipation preserving if η(un+1) ≤ η(un) whenever the

right hand side fulfills (1.2). Similarly, it is (entropy) conservative if η(un+1) � η(un) whenever
the system satisfies (1.3). Depending on the context, such schemes are also called monotone or
strongly stable [24, 37].

2 Relaxation Runge–Kutta Methods

Following [15, pp. 265–266] and [27], the basic idea to make a given Runge–Kutta method
entropy stable is to scale the weights bi by a parameter γn ∈ R, i.e. to use

un+1
γ :� un

+ γn∆t
s∑

i�1
bi fi (2.1)
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instead of un+1 in (1.5b) as the new value after one time step. If the entropy is just the energy
η(u) � 1

2 ‖u‖2, the choice of γn proposed in [27] is such that

1
2

un+1
γ

2
− 1

2
un

2
� γn∆t

s∑
i�1

bi
〈

yi , fi
〉
. (2.2)

The new generalization to entropy stability proposed in this article is to enforce the condition

η(un+1
γ ) − η(un) � γn∆t

s∑
i�1

bi
〈
η′(yi), fi

〉
(2.3)

by finding a root γn of

r(γ) � η
(
un

+ γ∆t
s∑

i�1
bi fi

)
− η(un) − γ∆t

s∑
i�1

bi
〈
η′(yi), fi

〉
. (2.4)

Note that the direction

dn :�
s∑

i�1
bi fi (2.5)

and the estimate of the entropy change

e :� ∆t
s∑

i�1
bi

〈
η′(yi), fi

〉
(2.6)

can be computed on the fly during the computation of the Runge–Kutta method and are not
influenced by γn . Hence, existing low-storage implementations can be used. In the end, finding
a root of r(γ) � η(un + γd) − η(un) − γe is just a scalar root finding problem for the convex
function r.

Remark 2.1. If f is a semi-discretization of a (hyperbolic) PDE with entropy S and entropy
variables w(u) � S′(u) in the domain Ω, (2.4) corresponds to a discrete version of

r(γ) �
∫
Ω

S(un
+ γ∆t dn)dΩ −

∫
Ω

S(un)dΩ − γ∆t
s∑

i�1
bi

∫
Ω

wi · fi dΩ, (2.7)

since the total entropy is η(u) �
∫
Ω

S(u)dΩ.
If f is a semi-discretization of a PDE and η the global entropy, r(γ � 1) can be interpreted

as global entropy production of the unmodified Runge–Kutta method. Indeed, η(un+1) − η(un)
is the global entropy change and e is the entropy change, which has the same sign as the true
entropy time derivative if the weights bi ≥ 0. Hence, r will sometimes be called temporal entropy
production. Thus, finding a root of r yields a scheme that is entropy conservative for conservative
problems and entropy dissipative for dissipative problems. This can be viewed as an extension
of [27, Theorem 2.1], which dealt only with inner-product norms.

Theorem 2.2. The method defined by (1.5a) & (2.1), where γn is a root of (2.4), is conservative. If the
weights bi are non-negative and γn ≥ 0, then the method is dissipation preserving.

The new numerical solution un+1
γ can be interpreted as an approximation to either u(tn +∆t)

(with scaled weights γn bi) or to u(tn + γn∆t) (with scaled time step γn∆t). As mentioned in
[27], the given Runge–Kutta method determines the direction d and γn can be interpreted as a
relaxation parameter determined by the requirement of preserving the evolution of η. Hence,
the method defined by (1.5a) & (2.1) with the interpretation un+1

γ ≈ u(tn + γn∆t) is called a
relaxation Runge–Kutta (RRK) method. The scheme using un+1

γ ≈ u(tn + ∆t) will be referred to
as an IDT method [8].
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Remark 2.3. Some well-known Runge–Kutta schemes do not satisfy the sufficient condition
bi ≥ 0, i ∈ {1, . . . , s}. For example, the classical fifth/fourth order pairs of Fehlberg and
Dormand & Prince have negative coefficients b5 < 0.

2.1 Existence of a Solution

Relaxation Runge–Kutta methods have been developed in [27] for the preservation of inner
product norms; in that setting r(γ) is quadratic and its roots can be explicitly computed. Here
we deal instead with arbitrary functionals; as we will see, new techniques are required.
Obviously, r(0) � 0 and r is convex since the entropy η is convex. There is a positive root of r

if and only if r(γ) is negative for small γ > 0 and positive for large enough γ > 0.

Lemma 2.4. Let a Runge–Kutta method be given with coefficients such that
∑s

i�1 bi ai j > 0 and let r(γ)
be defined by (2.4). If η′′(un)( f0 , f0) > 0, then r′(0) < 0 for sufficiently small ∆t > 0.

Proof. By definition of r (2.4),

r′(0) � ∆t
s∑

i�1
bi

〈
η′(un), fi

〉 − ∆t
s∑

i�1
bi

〈
η′(yi), fi

〉
� −∆t

s∑
i�1

bi

∫ 1

0
η′′

(
un

+ v∆t
s∑

k�1
aik fk

) (
fi ,∆t

s∑
j�1

ai j f j

)
dv.

(2.8)

Using Taylor expansions of fi , f j � f0 + O(∆t),

r′(0) � −∆t2
s∑

i , j�1
bi ai j

∫ 1

0
η′′

(
un

+ v∆t
s∑

k�1
aik fk

)
( f0 , f0)dv + O(∆t)3. (2.9)

Using the given assumptions, r′(0) < 0 for sufficiently small ∆t > 0. �

Remark 2.5. The assumption
∑s

i�1 bi ai j > 0 is satisfied for all (at least) second order accurate
Runge–Kutta methods since

∑s
i�1 bi ai j � 1/2 is a condition for second-order accuracy.

Lemma 2.6. Let a Runge–Kutta method be given with coefficients satisfying
∑s

i , j�1 bi(ai j − b j) < 0. If
η′′(un)( f0 , f0) > 0, then r′(1) > 0 for sufficiently small ∆t > 0.

Proof. By definition of r (2.4),

r′(1) � ∆t
s∑

i�1
bi

〈
η′(un+1), fi

〉
− ∆t

s∑
i�1

bi
〈
η′(yi), fi

〉
� −∆t

s∑
i�1

bi

∫ 1

0
η′′

(
un+1

+ v∆t
s∑

k�1
(aik − bk) fk

) (
fi ,∆t

s∑
j�1
(ai j − b j) f j

)
dv.

(2.10)

Using Taylor expansions of fi , f j � f0 + O(∆t),

r′(1) � −∆t2
s∑

i , j�1
bi(ai j − b j)

∫ 1

0
η′′

(
un+1

+ v∆t
s∑

k�1
(aik − bk) fk

)
( f0 , f0)dv + O(∆t)3. (2.11)

Using the given assumptions, r′(1) > 0 for sufficiently small ∆t > 0. �

Remark 2.7. The assumption
∑s

i , j�1 bi(ai j − b j) < 0 is satisfied for all (at least) second order
accurate Runge–Kutta methods since

∑s
i , j�1 bi(ai j − b j) � 1/2 − 1 � −1/2 in that case.

5



Together, these results establish the existence of a positive root of r.

Theorem 2.8. Assume that the Runge–Kutta method satisfies
∑s

i�1 bi ai j > 0 and
∑s

i , j�1 bi(ai j−b j) < 0,
which is true for all (at least) second order accurate schemes. If η′′(un)( f0 , f0) > 0, r (2.4) has a positive
root for sufficiently small ∆t > 0.

Proof. Since r(0) � 0 and r′(0) < 0, r(γ) < 0 for small γ > 0. Because r′(1) > 0 and r is convex,
r′ is monotone. Hence, there must be a positive root of r. �

Remark 2.9. The value η′′(un)( f0 , f0) of the quadratic form η′′(un) is positive for a strictly convex
entropy η if f0 , 0. If f0 � 0 and the system is autonomous, every explicit Runge–Kutta method
will yield a stationary solution. The results of Lemmas 2.4 & 2.6 and hence of Theorem 2.8 still
hold if we instead assume only that η′′( fi , fi) > 0 for some intermediate stage i, since the Taylor
series can be expanded around that value.

Remark 2.10. The proof of Theorem 2.8 reveals another property of r: the temporal entropy
dissipation. Since r is convex, there are exactly two distinct roots of r, namely zero and
the desired positive root γn (if the assumptions of Theorem 2.8 are satisfied). Additionally,
r(γ) → ∞ for γ→ ±∞. Therefore, choosing a value of γ > 0 smaller than the positive root of r
results in some additional temporal entropy dissipation, because r(γ) < 0 in that case.

2.2 Accuracy

At first glance, the method described above seems to be not even consistent, since γn
∑

j b j �

γn , 1 in general. Nevertheless, an RRK scheme is of at least the same order of accuracy as
the RK scheme it is based on. In order to prove this, we obtain several results, which will
be combined and are also interesting on their own. Readers who are interested only in the
statement of the main accuracy result can skip these parts and continue with Theorem 2.15 and
Remark 2.16.

The following result has been obtained in [27, Theorem 2.4].

Theorem 2.11. Let the given Runge–Kutta method be of order p. Consider the IDT/RRKmethod defined
by (1.5a) & (2.1) and suppose that γn � 1 + O(∆tp−1).

1. The IDT method interpreting un+1
γ ≈ u(tn + ∆t) has order p − 1.

2. The relaxation method interpreting un+1
γ ≈ u(tn + γn∆t) has order p.

Using un as initial value for u at tn , a Runge–Kutta method with order of accuracy p yields

η(un+1) − η(un) � η(u(tn + ∆t)) − η(un) + O(∆tp+1)

�

∫ tn+∆t

tn

〈
η′(u(t)), f (t , u(t))〉 dt + O(∆tp+1)

� ∆t
s∑

i�1
bi

〈
η′(u(tn + ci∆t)), f (tn + ci∆t , u(tn + ci∆t))〉 + O(∆tp+1)

(2.12)

because of the required accuracy as a quadrature rule. Although the stage values yi are
not necessarily high-order approximations of u(tn + ci∆t), the Runge–Kutta order conditions
guarantee

s∑
i�1

bi f (tn + ci∆t , yi) �
s∑

i�1
bi f (tn + ci∆t , u(tn + ci∆t)) + O(∆tp). (2.13)

Hence, it is interesting to know whether f can be replaced by any smooth function in this
equation.
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Theorem 2.12. Let W be a Banach space, ψ : [0, T]×H →W a smooth function, and bi , ci coefficients
of a Runge–Kutta method of order p. Then

s∑
i�1

biψ(tn + ci∆t , yi) �
s∑

i�1
biψ(tn + ci∆t , u(tn + ci∆t)) + O(∆tp). (2.14)

Corollary 2.13. If η is smooth and the given Runge–Kutta method is p-th order accurate, r(γ � 1) �
O(∆tp+1).
Proof of Corollary 2.13. Apply Theorem 2.12 to ψ(t , u) � 〈

η′(u), f (t , u)〉 and use (2.12), resulting
in

η(un+1) − η(un) � ∆t
s∑

i�1
bi

〈
η′(yi), f (tn + ci∆t , yi)

〉
+ O(∆tp+1). (2.15)

�

Proof of Theorem 2.12. Consider φ(t) �
∫ t

tn
ψ(τ, u(τ))dτ. Applying the Runge–Kutta method to

the extended ODE (with a slight abuse of notation)

d
dt

(
φ(t)
u(t)

)
︸¨︷︷¨︸
�x(t)

�

(
ψ(t , u(t))
f (t , u(t))

)
, t ∈ (tn , T),

(
φ(tn)
u(tn)

)
�

(
0

un

)
, (2.16)

yields the same stage values yi for the second component u of x. Since the method is p-th order
accurate,

∆t
s∑

i�1
biψ(tn + ci∆t , yi) � φn+1

� φ(tn + ∆t) + O(∆tp+1). (2.17)

Additionally,

φ(tn + ∆t) �
∫ tn+∆t

tn

ψ(t , u(t))dt � ∆t
s∑

i�1
biψ(tn + ci∆t , u(tn + ci∆t)) + O(∆tp+1). (2.18)

Combining (2.17) and (2.18) yields the desired result. �

Remark 2.14. Theorem 2.12 can be seen as a superconvergence result for integrals evaluated
using the quadrature rule associated with a Runge–Kutta method. It extends a related result
of [27, Lemma 4] in two ways. Firstly, general functionals instead of the energy are considered.
Secondly, the proof is simplified and does not rely on extensive computations involving the
theory of Butcher series.

Theorem 2.15. Assume that the conditions of Theorem 2.8 are satisfied. Hence, there exists a unique
positive root γn of r (2.4). Consider the IDT/RRK method defined by (1.5a)& (2.1) and suppose that the
given Runge–Kutta method is p-th order accurate.

1. The IDT method interpreting un+1
γ ≈ u(tn + ∆t) has order p − 1.

2. The relaxation method interpreting un+1
γ ≈ u(tn + γn∆t) has order p.

Proof. Because of Corollary 2.13, r(1) � O(∆tp+1). As can be seen in the proof of Lemma 2.6,
r′(1) � c∆t2

+O(∆t3), where c > 0. Hence, there is a root γn � 1+O(∆tp−1) of r (2.4). Applying
Theorem 2.11 yields the desired accuracy result. �
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Remark 2.16. As an extension of Remark 2.10, the behavior of the temporal entropy dissipation
r (2.4) can be described as follows for sufficiently small ∆t if the assumptions of Theorem 2.8
are satisfied: Firstly, r(0) � 0, r(1) � O(∆tp+1) ≈ 0, and there is a unique 0 < γn � 1 + O(∆tp−1)
such that r(γn) � 0. Between zero and this root of r, the values of r are negative, i.e. additional
entropy dissipation is introduced in that region. Outside of the bounded interval given by zero
and γn , r is positive and the time integration scheme produces entropy. Additionally, r(γ) → ∞
for γ → ±∞. Finally, r is convex and looks approximately similar to a parabola with the same
roots for sufficiently small ∆t > 0. See Figure 1a for a typical plot of r(γ).
Remark 2.17. Theorem 2.15 gives a guaranteed minimal order of accuracy. For some specific
problems and schemes, the resulting order of accuracy can be even greater. For example,
applying the classical third order, three stage method of Heun to the harmonic oscillator

u′1(t) � −u2(t), u′2(t) � u1(t), (2.19)

with entropy (energy) η(u) � ‖u‖2 /2, it canbe shown thatwith relaxation the rate of convergence
is fourth order. The same result holds true for a nonlinear oscillator given by

u′1(t) � −‖u‖2 u2(t), u′2(t) � ‖u‖2 u1(t), (2.20)

and the same entropy η.

2.3 Additional Properties and Generalizations

As described in [27], relaxation RK methods still conserve linear invariants, although γn is
determined in a nonlinear way. Such linear invariants are e.g. the total mass for a semi-
discretization of a hyperbolic conservation law in a periodic domain.
Another desirable stability property of numerical time integration schemes is the preservation

of convex stability properties that hold for the explicit Euler method. Such schemes are called
strong stability preserving (SSP), as described in the monograph [20] and references cited therein.
It has been shown in [27, Section 3] that the relaxation modification of many SSP methods
retains the same SSP property of the original method as long as γn deviates not too much from
unity.
If there are several convex quantities ηi which do not necessarily have to be conserved but

might also be dissipated, one could compute a relaxation factor γn ,i for every ηi and choose
γn � mini γn ,i . The resulting scheme will dissipate every entropy (if bi ≥ 0) because of the
general shape of the temporal entropy dissipation r, cf. Remark 2.16.
If concave quantities (which shall typically increase) are of interest, they can be treated in

the same framework using a sign change of η. If general functions η without any convex-
ity/concavity assumptions are of interest, relaxation and IDT methods can still be applied.

Proposition 2.18. Suppose that the given Runge–Kutta method is p-th order accurate with p ≥ 2.
If

〈
η′(un+1), dn/‖dn ‖〉 � B(un)∆t + O(∆t2) with B(un) , 0, then r (2.4) has a positive root γn �

1 + O(∆tp−1). If this root is used to define IDT/RRK methods by (1.5a) & (2.1), then:

1. The IDT method interpreting un+1
γ ≈ u(tn + ∆t) has order p − 1.

2. The relaxation method interpreting un+1
γ ≈ u(tn + γn∆t) has order p.

Proof. The proof of [7, Theorem 2] using the implicit function theorem can be adapted to this
setting; the normalized search direction considered there is w � dn/‖dn ‖ and the projected
value is un+1

γ � un+1 + (1 − γn)∆t dn � un+1 + λn w, i.e. the step parameters are related via
γn � 1 + λn/‖∆t dn ‖. Since there is a solution λn � O(∆tp) and ∆t dn � ∆t

∑s
i�1 bi fi scales as

∆t, there is a solution γn � 1+O(∆tp−1). Applying Theorem 2.11 yields the desired results. �
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Remark2.19. WhileProposition 2.18 canbe applied to general functions η, thedetailed existence
and accuracy results developed in the previous sections reveal more properties in the convex
case and provide additional insights. These additional properties (such as the general shape
of r, possible entropy dissipation by smaller values of γn) are useful for applications and root
finding procedures.

2.4 Implementation

For a given Runge–Kutta method with coefficients ai j , bi , the relaxation method defined by
(1.5a) & (2.1) requires additionally only the solution of a scalar equation, which can be done
effectively using standard methods. The derivative of r is

r′(γ) � 〈
η′(un

+ γ∆t dn), ∆t dn〉 − e , (2.21)

where the direction ∆t dn and the estimate e are defined as in (2.4) and (2.6), respectively.
For most of the numerical experiments presented below, scipy.optimize.brentq (using

Brent’s method [5, Chapters 3–4]) or scipy.optimize.root with method=’lm’ (using a modi-
fication of the Levenberg-Marquardt algorithm as implemented in MINPACK [33]) from SciPy
[25] have been used. In most cases, Brent’s method is more efficient. For the first step, γ � 1
is a good initial guess; cf. Section 2.2. In subsequent steps the previous value of γ is chosen
as initial guess, since γ changes only slightly from step to step. Implementations used for the
numerical examples up to section 3.4 are provided in [41].
In particular for any convex entropy η, standard results of numerical analysis guarantee

that Newton’s method converges if the conditions of the existence and accuracy theorems are
satisfied [45, Theorem 1.9]. Optimized implementations that are robust and efficient for both
small (ODE) and large (PDE) problems are left for future research.

3 Numerical Examples

The following Runge–Kutta methods with weights bi ≥ 0 will be used in the numerical experi-
ments. The value of ∆t is fixed in each test and embedded error estimators are not used.

• SSPRK(2,2): Two stage, second order SSP method of [43].

• SSPRK(3,3): Three stage, third order SSP method of [43].

• SSPRK(10,4): Ten stage, fourth order SSP method of [26].

• RK(4,4): Classical four stage, fourth order method.

• BSRK(8,5): Eight stage, fifth order method of [3].

• VRK(9,6): Nine stage, sixth order method of the family developed in [54]1.

• VRK(13,8): Thirteen stage, eight order method of the family developed in [54]2.

1The coefficients are taken from http://people.math.sfu.ca/~jverner/RKV65.IIIXb.Robust.00010102836.
081204.CoeffsOnlyFLOAT at 2019-04-27.

2The coefficients are taken from http://people.math.sfu.ca/~jverner/RKV87.IIa.Robust.00000754677.
081208.CoeffsOnlyFLOAT at 2019-04-27.
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(b) r(γ � 1) for some Runge–Kutta methods.

Figure 1: Numerical results for the temporal entropy production r (2.4) at the first time step for the
entropy conservative ODE (3.1).

3.1 Conserved Exponential Entropy

Consider the system
d
dt

(
u1(t)
u2(t)

)
�

(− exp(u2(t))
exp(u1(t))

)
, u0

�

(
1

0.5

)
, (3.1)

with exponential entropy

η(u) � exp(u1) + exp(u2), η′(u) �
(
exp(u1)
exp(u2)

)
, (3.2)

which is conserved for the analytical solution

u(t) �
(
log

(
e(
√

e+e)t(√e + e)√
e + e(

√
e+e)t

)
, log

(
e + e3/2

)
− log

(√
e + e(

√
e+e)t

))T

. (3.3)

The shape of r(γ) for the first time step using SSPRK(3,3) is shown in Figure 1a. In accordance
with the description given in Remark 2.16, r(0) � 0, r(1) ≈ 0, r is negative between its roots
and positive outside of this interval. The order of accuracy r(1) � O(∆tp+1) guaranteed by
Corollary 2.13 is obtained for the methods shown in Figure 1b.
Results of a convergence study in this setup are shown in Figure 2. The unmodified and

relaxation schemes (un+1
γ ≈ u(tn + γn∆t)) converge with the expected order of accuracy p, in

accordance with Theorem 2.15. The IDT methods (un+1
γ ≈ u(tn + ∆t)) yield a reduced order of

convergence according to Theorem 2.15. Moreover, they are far more sensitive to variations of
the nonlinear solvers (algorithms, tolerances, and other related parameters) and show serious
convergence issues for small time steps in this case, as can be seen in Figure 2c. Hence, the
relaxation schemes are far superior in this case.

3.2 Dissipated Exponential Entropy

Consider the ODE
d
dt

u(t) � − exp(u(t)), u0
� 0.5, (3.4)
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(c) IDT methods.

Figure 2: Convergence study for the entropy conservative ODE (3.1) with unmodified methods, RRK
schemes (un+1

γ ≈ u(tn + γn∆t)), and IDT methods (un+1
γ ≈ u(tn + ∆t)).

with exponential entropy η(u) � exp(u), which is dissipated for the analytical solution

u(t) � − log
(
e−1/2

+ t
)
. (3.5)

The shape of r and the convergence behavior of r(1) → 0 as ∆t → 0 are very similar to the
ones of Section 3.1 and are therefore not shown in detail. However, the dissipative system
(3.4) results in a better convergence behavior of the modified schemes: They depend less on
the nonlinear solvers and there are less problems for small ∆t. Nevertheless, the order of
convergence using the RRK schemes is still better than for the IDT methods, as explained by
Theorem 2.15.

3.3 Nonlinear Pendulum

Consider the system
d
dt

(
u1(t)
u2(t)

)
�

(− sin(u2(t))
u1(t)

)
, u0

�

(
1.5
1

)
, (3.6)

with non-quadratic energy

η(u) � 1
2 u2

1 − cos(u2), η′(u) �
(

u1
sin(u2)

)
, (3.7)

which is conserved for all u. Further, this entropy is convex for all u1 and |u2 | < π/2. Note that
the border of the convex region is crossed for this initial condition, since |u2 | becomes larger
than π/2.

The energy of numerical solutions of (3.6) with ∆t � 0.9 is shown in Figure 4. As can be
seen there, the energy deviates significantly for all unmodified schemes while it is conserved to
machine accuracy for the RRK and IDT methods, as expected.
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(c) IDT methods.

Figure 3: Convergence study for the entropy dissipative ODE (3.4) with unmodified methods, RRK
schemes (un+1

γ ≈ u(tn + γn∆t)), and IDT methods (un+1
γ ≈ u(tn + ∆t)).
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Figure 4: Evolution of the non-quadratic energy (3.7) of numerical solutions for the nonlinear pendulum
(3.6).
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Figure 5: Numerical solutions for the nonlinear pendulum (3.6) using the unmodified and relaxation
versions of SSPRK(3,3) and RK(4,4) with ∆t � 0.9.

Typical results for this problem are shown in Figure 5. Explicit methods tend to either create
energy and drift away from the origin such as SSPRK(3,3) or to dissipate energy and drift
towards the origin such as RK(4,4). In contrast, the corresponding relaxation schemes stay on
the solution manifold with constant energy and show qualitatively correct long time behavior.

3.4 Other Equations

Other systems such as the Lotka–Volterra equations with convex Lyapunov function, the har-
monic oscillator with quartic entropy η(u) � ‖u‖4, and Burgers’ equation with a logarithmic
entropy have also been tested. The results are qualitatively similar to those presented above
and can be found in the accompanying repository [41].

4 The Compressible Euler and Navier–Stokes Equations

In this section, we apply the relaxation time integration schemes to the compressible Euler and
Navier–Stokes equations, which can be written as

∂Q
∂t

+

3∑
m�1

∂F (I)xm

∂xm
�

3∑
m�1

∂F (V)xm

∂xm
, ∀ (x1 , x2 , x3) ∈ Ω, t ≥ 0,

Q (x1 , x2 , x3 , t) � G
(B) (x1 , x2 , x3 , t) , ∀ (x1 , x2 , x3) ∈ Γ, t ≥ 0,

Q (x1 , x2 , x3 , 0) � G
(0) (x1 , x2 , x3 , 0) , ∀ (x1 , x2 , x3) ∈ Ω.

(4.1)

The vectors Q, F (I)xm , and F
(V)
xm respectively denote the conserved variables, the inviscid (I)

fluxes, and the viscous (V) fluxes. The boundary data, G(B), and the initial condition, G(0), are
assumed to be in L2(Ω), with the further assumption thatG(B) will be set to coincide with linear
well-posed boundary conditions and such that entropy conservation or stability is achieved.
The compressible Euler equations can be obtained from (4.1) by setting F

(V)
xm � 0.
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It is well known that the compressible Navier–Stokes equations (4.1) possess a convex exten-
sion that, when integrated over the physical domainΩ, only depends on the boundary data on
Γ. Such an extension yields the entropy function

S � −ρs , (4.2)

where ρ and s are the density and the thermodynamic entropy, respectively. The entropy
function, S, is convex with S′′ > 0 if the thermodynamic variables are positive and is a useful
tool for proving stability in the L2 norm [13, 52].
Following the analysis described in [10, 11, 17, 35], we multiply multiply the PDE (4.1) by the

(local) entropy variablesW � ∂S/∂Q and arrive at the the integral form of the (scalar) entropy
equation

d
dt

∫
Ω

SdΩ �
d
dt
η ≤

3∑
m�1

∫
Γ

(
W
>
F
(V)
xm − Fxm

)
nxm dΓ − DT, (4.3)

where nxm is the m-th component of the outward facing unit normal to Γ and

DT �

3∑
m , j�1

∫
Ω

(
∂W
∂xm

)>
Cm , j

∂W
∂x j

dΩ. (4.4)

We remark that viscous dissipation always introduces a negative rate of change in entropy,
since the −DT term in (4.3) is negative semi-definite. An increase in entropy within the domain
can only result from data that convects or diffuses through the boundary Γ. For smooth flows,
we note that the inequality sign in (4.3) becomes an equality. Finally, we highlight that the
integral form of the entropy equation for the compressible Euler equations can be obtained
from (4.3) by removing all the viscous terms.
Since our focus in the present work is on new time discretizations, we give only a brief

explanation of the spatial discretization. We partition the physical domain Ω with boundary
Γ into non-overlapping hexahedral elements and we discretize the spatial terms using a multi-
dimensional SBP simultaneous-approximation-terms (SBP-SAT) operator as described in [11,
17, 18, 35], where the interested reader can find the details of the spatial discretization.
Using an SBP operator and its equivalent telescoping form and following closely the entropy

stability analysis presented in [10, 11, 35], the total entropy of the spatial discretization satisfies

d
dt

1>P̂ S �
d
dt
η � BT −DT + Υ. (4.5)

This equation mimics at the semi-discrete level each term in (4.3). Here BT is the discrete
boundary term (i.e., the discrete version of the first integral term on the right-hand side of
(4.3)), DT is the discrete dissipation term (i.e., the discrete version of the second term on the
right-hand side of (4.3)) and Υ enforces interface coupling and boundary conditions [10, 11,
35]. For completeness, we note that the matrix P̂ may be thought of as the mass matrix in the
context of the discontinuous Galerkin finite element method.
In the next part of this section, six test caseswill be considered. The first one is the propagation

of an isentropic vortex for the compressible Euler equations. This test case is used to i) perform
a convergence study of the combined space and time discretizations for the compressible Euler
equations and ii) verify the entropy conservative properties of the full discretization. The second
test case is the propagation of a viscous shock and is used to assess the accuracy properties
of the complete entropy stable discretization for the compressible Navier–Stokes equations.
The third and fourth test cases are the Sod’s shock tube and the sine-shock interaction of
Titarev and Toro [53] which is the extension of the Shu–Osher problem with much more severe
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Figure 6: Isentropic vortex: mesh cut and polynomial degree distribution with non-conforming inter-
faces; p � 2 to p � 7.

oscillations. These two test cases are used to show the robustness of the fully-discrete entropy
stable algorithm for non-smooth solutions [11, 36]. The fifth test case is the laminar flow in a
lid-driven cavity where a non-zero heat entropy flux is imposed on one of the vertical faces of
the cavity. This test case is used to show the capabilities of the full discretization to capture
correctly the time evolution of the entropy when, for instance, non-homogeneous boundary
conditions are imposed. Finally, the supersonic turbulent flow past a rod of square section [35]
is used to demonstrate algorithmic robustness for the compressible Navier–Stokes equations.
The error is computed using the following norms:

Discrete L1 : ‖q‖L1 � Ω−1
c

Nel∑
j�1

1>P jJ jabs
(
q j

)
,

Discrete L2 : ‖q‖2L2 � Ω
−1
c

Nel∑
j�1

q>j P jJ j q j ,

Discrete L∞ : ‖q‖L∞ � max
j�1...Nel

abs
(
q j

)
.

(4.6)

Here J j is the metric Jacobian of the curvilinear transformation from physical space to compu-
tational space of the j-th hexahedral element, Nel is the total number of hexahedral elements in

the mesh. Furthermore, Ωc indicates the volume of Ω computed as Ωc ≡
K∑
κ�1

1>κP
κ
J j1κ, where

1κ is a vector of ones of the size of the number of nodes on the κ-th element.
The unstructured grid solver used herein has been developed at the Extreme Computing

Research Center (ECRC) at KAUST on top of the Portable and Extensible Toolkit for Scientific
computing (PETSc) [2], its mesh topology abstraction (DMPLEX) [28] and scalable ordinary
differential equation (ODE)/differential algebraic equations (DAE) solver library [1]. The pa-
rameter γn of the relaxation Runge–Kutta schemes is computed from Equation (2.4) to machine
precision using the bisection method which, for efficiency, is implemented directly in the un-
structured grid solver.

4.1 Propagation of an Isentropic Vortex in Three Dimensions

In this section, we investigate the accuracy and the entropy conservation property of the full
discretization obtained by combining SBP-SAT entropy conservative operators and relaxation
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Table 1: Convergence study for the isentropic vortex using entropy conservative SBP-SAT schemes with
different solution polynomial degrees p and relaxation Runge–Kuttamethods (U∞∆t/∆x � 0.05,
error in the density).

p RK Method L1 Error L1 Rate L2 Error L2 Rate L∞ Error L∞ Rate

3 RK(4,4) 2.66E-03 — 1.36E-04 — 2.46E-02 —
2.15E-04 3.63 1.20E-05 3.50 3.18E-03 2.95
1.29E-05 4.06 8.50E-07 3.82 3.49E-04 3.19
6.60E-07 4.29 5.21E-08 4.03 2.66E-05 3.71
3.84E-08 4.10 2.82E-09 4.21 2.04E-06 3.70

4 BSRK(8,5) 3.34E-04 — 4.57E-05 — 8.50E-03 —
3.08E-05 4.76 2.05E-06 4.48 9.06E-04 3.23
7.33E-07 5.39 5.62E-08 5.19 5.80E-05 3.97
2.05E-08 5.16 1.71E-09 5.04 1.33E-06 5.45
5.70E-10 5.17 4.76E-11 5.17 3.38E-08 5.30

5 VRK(9,6) 2.23E-04 — 1.31E-05 — 3.39E-03 –
3.55E-06 5.98 2.31E-07 5.82 8.69E-05 5.29
6.74E-08 5.72 4.87E-09 5.57 3.25E-06 4.74
1.10E-09 5.93 6.81E-11 6.16 7.48E-08 5.44
1.70E-11 6.02 9.57E-13 6.15 1.64E-09 5.51

time integration schemes. To do so, we simulate the propagation of an isentropic vortex by
solving the three-dimensional compressible Euler equations. The analytical solution of this
problem is

G � 1 −
{[(

x1 − x1,0
) −U∞ cos (α) t]2

+
[ (

x2 − x2,0
) −U∞ sin (α) t]2

}
,

ρ � T
1
γ−1 , T �

[
1 − ε2

νM2∞
γ − 1
8π2 exp (G)

]
,

U1 � U∞ cos(α) − εν
(
x2 − x2,0

) −U∞ sin (α) t
2π exp

(G
2

)
,

U2 � U∞ sin(α) − εν
(
x1 − x1,0

) −U∞ cos (α) t
2π exp

(G
2

)
, U3 � 0,

(4.7)

where U∞ is the modulus of the free-stream velocity, M∞ is the free-stream Mach number, c∞
is the free-stream speed of sound, and

(
x1,0 , x2,0 , x3,0

)
is the vortex center. The following values

are used: U∞ � M∞c∞, εν � 5, M∞ � 0.5, γ � 1.4, α � 45°, and
(
x1,0 , x2,0 , x3,0

)
� (0, 0, 0). The

computational domain is

x1 ∈ [−5, 5], x2 ∈ [−5, 5], x3 ∈ [−5, 5], t ∈ [0, 10].
The initial condition is given by (4.7) with t � 0. Periodic boundary conditions are used on
all six faces of the computational domain. First, we run a convergence study for the complete
entropy-stable discretization by simultaneously refining the grid spacing and the time step and
keeping the ratio U∞∆t/∆x constant and equal to 0.05. The errors and convergence rates in the
L1, L2 and L∞ norms for fourth-, fifth-, sixth-order accurate algorithms are reported in Table 1.
We observe that the computed order of convergence in both L1 and L2 normsmatches the design
order of the scheme.
Next, we validate the full entropy-conservative property by simulating the propagation of

the isentropic vortex using a grid with ten hexahedra in each coordinate direction and non-
conforming interfaces (see Figure 6). The grid is generated by setting the solution polynomial
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Figure 7: Isentropic vortex: time evolution of total entropy, using the spatial discretization shown in
Figure 6.

degree in each element to a random integer chosen uniformly from the set {2, 3, 4, 5} [17].3
All the dissipation terms used for the interface coupling [17, 34] are turned off, including
upwind and interior-penalty SATs. To highlight that the space and time discretizations and
their coupling are truly entropy conservative, we compute in quadruple precision.
In addition to the Runge–Kutta methods mentioned at the beginning of Section 3, we use the

following methods, that also have weights bi ≥ 0. Again, the value of ∆t is fixed in each test,
and embedded error estimators are not used.

• LSCKRK(5,4): Five stage, fourth order method of [12].

• BSRK(3,3): Three stage, third order method of [4].

• BSRK(7,5): Seven stage, fifth order method of [3].

• VRK(10,7): Ten stage, seventh order method of the family developed in [54]4.

We show the entropy variation with and without relaxation in Figure 7. The entropy is
conserved up to machine (quadruple) precision using relaxation, whereas, without relaxation,
all solutions show significant changes in total entropy.

4.2 Three-Dimensional Propagation of a Viscous Shock

Next we study the propagation of a viscous shock using the compressible Navier–Stokes equa-
tions. We assume a planar shock propagating along the x1 coordinate direction with a Prandtl
number of Pr � 3/4. The exact solution of this problem is known; the momentum V(x1)
satisfies the ODE

αV ∂V
∂x1
− (V − 1)(V −Vf ) � 0, −∞ ≤ x1 ≤ +∞ (4.8)

3This corresponds to SBP-SAT operators which are formally third to sixth order accurate.
4The coefficients are taken from http://people.math.sfu.ca/~jverner/RKV76.IIa.Robust.000027015646.
081206.CoeffsOnlyFLOAT at 2019-05-02.
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Table 2: Convergence study for the viscous shock using entropy stable SBP-SAT schemes with different
solution polynomial degrees p and relaxation Runge–Kutta methods (U∞∆t/∆x2 � 0.05, error
in the density).

p RK Method L1 Error L1 Rate L2 Error L2 Rate L∞ Error L∞ Rate

3 RK(4,4) 2.59E-02 — 3.78E-02 — 1.11E-01 —
1.88E-03 3.79 2.81E-03 3.75 9.77E-03 3.51
1.03E-04 4.19 1.99E-04 3.82 9.89E-04 3.30
5.90E-06 4.13 9.97E-06 4.32 6.12E-05 4.02
3.30E-07 4.16 5.47E-07 4.19 3.92E-06 3.97

4 BSRK(8,5) 6.80E-03 — 9.01E-03 — 2.00E-02 —
5.74E-04 3.57 9.11E-04 3.31 4.02E-03 2.32
2.78E-05 4.37 5.25E-05 4.12 3.32E-04 3.60
6.30E-07 5.46 1.33E-06 5.30 1.06E-05 4.97
1.70E-08 5.21 3.30E-08 5.33 3.59E-07 4.88

5 VRK(9,6) 3.67E-03 — 6.17E-03 — 2.53E-02 —
1.61E-04 4.51 2.57E-04 4.59 1.24E-03 4.35
1.34E-06 6.90 2.93E-06 6.45 2.07E-05 5.91
1.62E-08 6.37 3.90E-08 6.23 3.94E-07 5.71

whose solution can be written implicitly as5

x1 − 1
2α

(
log

���(V(x1) − 1)(V(x1) − Vf )
��� + 1 +Vf

1 −Vf
log

����� V(x1) − 1
V(x1) − Vf

�����
)
� 0, (4.9)

where
Vf ≡ UL

UR
, α ≡ 2γ

γ + 1
µ

Pr ÛM . (4.10)

Here UL/R are known velocities to the left and right of the shock at −∞ and +∞, respectively,
ÛM is the constant mass flow across the shock, Pr is the Prandtl number, and µ is the dynamic

viscosity. The mass and total enthalpy are constant across the shock. Moreover, the momentum
and energy equations become redundant.
For our tests, V is computed from Equation (4.9) to machine precision using bisection. The

moving shock solution is obtained by applying a uniform translation to the above solution.
The shock is located at the center of the domain at t � 0 and the following values are used:
M∞ � 2.5, Re∞ � 10, and γ � 1.4. The domain is given by

x1 ∈ [−0.5, 0.5], x2 ∈ [−0.5, 0.5], x3 ∈ [−0.5, 0.5], t ∈ [0, 0.5].
The boundary conditions are prescribed by penalizing the numerical solution against the exact
solution. The analytical solution is also used to furnish data for the initial conditions.
We run a convergence study for the complete entropy stable discretization by simultaneously

refining the grid spacing and the time step and keeping the ratio U∞∆t/∆x2 constant and equal
to 0.05. The errors and convergence rates in the L1, L2 and L∞ norms for fourth-, fifth-, sixth-
order accurate algorithms are reported in Table 2. As for the compressible Euler equations, we
observe that the order of convergence in both L1 and L2 norms is the expected one.

5The integration constant is taken equal to zero because the center of the viscous shock is assumed to be at x1 � 0.
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Figure 8: Density profile of Sod’s shock tube problem (exact solution shown with circles).

4.3 Sod’s Shock Tube

Sod’s shock tube problem is a classical Riemann problem that evaluates the behavior of a
numericalmethodwhena shock, expansion, and contact discontinuity arepresent. Ofparticular
interest is smearing in the shock and contact, or oscillations at any of the discontinuities. The
governing equations are the time-dependent one-dimensional compressible Euler equations
which are solved in the domain given by

x1 ∈ [0, 1], t ∈ [0, 0.2].
The problem is initialized with

ρ �

{
1 x1 < 0.5,
1/8 x1 ≥ 0.5, p �

{
1 x1 < 0.5,
1/10 x1 ≥ 0.5, U1 � 0,

where ρ and p are the density and pressure, respectively. All simulations used a ratio of specific
heats equals to 7/5.
The entropy stable spatial discretization uses polynomials of degree p � 3 and a grid with

128 elements. The problem is integrated in time using the classical fourth-order accurate
Runge–Kutta method RK(4,4).
Results of the density with and without relaxation are visually indistinguishable, as shown

in Figure 8. The relaxation approach does not increase the quality of the solution and small
overshoots near non-smooth parts of the numerical approximation are visible. This behavior is
expected for a spatial discretization which uses high-order polynomials and no explicit shock
capturing mechanism.
Nevertheless, the relaxation approach does also not decrease the quality of the solution while

guaranteeing the correct sign of the entropy evolution. In particular, this guarantee does not
result in excessive artificial viscosity for shocks and the relaxation scheme does not smear the
shock solution for a high-order accurate SBP spatial scheme.
For this experiment, γ deviates from unity by less than 5×10−4, as shown in Figure 9a. After a

short initial period, the value of γ seems to oscillate following a regular pattern with amplitude
. 10−4.

4.4 Sine-Shock Interaction

The solution of this benchmark problem contains both strong discontinuities and smooth struc-
tures and is well suited for testing high-order shock-capturing schemes. The governing equa-
tions are the time-dependent one-dimensional compressible Euler equations which are solved
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Figure 9: Variation of the relaxation parameter, γ, for the shock problems.
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Figure 10: Density profile of the sine-shock interaction problem.

in the domain given by
x1 ∈ [−5,+5], t ∈ [0, 5].

The problem is initialized with [53](
ρ,U1 , p

)
�

{ (1.515695, 0523346, 1.805) , if − 5 ≤ x < −4.5(
1 + 0.1 sin(20πx), 0, 1

)
, if − 4.5 ≤ x ≤ 5.

The exact solution to this problem is not available. The entropy stable semidiscretization uses
polynomials of degree p � 3 on a grid with 256 elements. The other parameters are the same
as for Sod’s shock tube problem in Section 4.3.
Again, results with and without relaxation are visually indistinguishable, as shown for the

density in Figure 10, supporting the conclusions of Section 4.3. For this experiment, γ deviates
from one less than 5 × 10−4, as shown in Figure 9b.

4.5 Lid-Driven Cavity Flow

Next, we validate the algorithm simulating a three-dimensional lid-driven cavity flow. The
domain is a cube with sides of length l discretized using a Cartesian grid composed of eight
elements in each direction. A velocity field is imposed on one of the walls, corresponding to
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Figure 11: Driven cavity with rigid body rotation ω and zero heat entropy flux.

a rigid body rotation about the center of the wall at an angular speed ω (see Figure 12b). We
choose the rotation velocity and the size of the cavity such that this example is characterized by
a Reynolds number Re � l2ω/ν � 100 and aMach number M � lω/c � 0.05. All the dissipation
terms used for the interface coupling [34] and the imposition of the boundary conditions [14]
are turned off, including upwind and interior-penalty SAT terms.
First, we show the performance of some relaxation Runge–Kutta schemes for the case where

entropy conservative adiabatic wall boundary conditions [14] are used on all the six faces of
the cavity (see Figure 11b). Figure 11a shows the time evolution of the discrete total entropy
η � 1>P̂ S.
Two highly resolved numerical solutions computed with an eighth-order accurate scheme

(p � 7), the BSRK(8,5) and theVRK(9,6) time integration schemeusing a time adaptive algorithm
with a tolerance of 10−8 are shown in Figure 11a. They are indistinguishable at the resolution of
the plot, and can be regarded as a reference solution. Because the solutions with and without
relaxation are very close to each other, only the results obtainedwith the relaxationRunge–Kutta
schemes are shown. After a very short transient phase associated with the impulsive startup of
the rotating plate, η decreases linearly. The reason is simple: the imposed no-slipwall boundary
conditions on the six faces of the cavity are entropy conservative and the only term in Equation
(4.5) which is non-zero is −DT. This contribution is strictly negative semi-definite and constant
because the flow at this Reynolds number is laminar and steady and therefore, the gradient of
the entropy variables in Equation (4.4) does not change in time.
The results of three additional simulations with second-, third- and fourth-order accurate

solvers (again with ∆t � 10−4) are also plotted in Figure 11a. For these methods, a fixed step
size ∆t � 10−4 was used. We find again that the entropy evolution with and without relaxation
is indistinguishable. This demonstrates that the relaxation approach gives a stability guarantee
and, unlike most numerical stabilization techniques, does not (in this case) add any significant
dissipation. It can be clearly seen that the rate of entropy decay is different for different entropy-
conservative algorithms because of their accuracy. However, higher-order discretizations give
an entropy evolution that is closer to that of the the reference solution.
Next we present in Figure 12a the results for the same set of relaxation Runge–Kutta schemes

when a non-zero heat entropyflux, g(t) � −10−4 sin(4πt), is imposed on one of the faces adjacent
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Figure 12: Driven cavity with rigid body rotation ω and non-zero heat entropy flux, g(t).

to the rotating face (see Figure 12b). Because of the added heat, the exact time evolution of
the entropy is not monotonic. This can be seen in the reference solutions provided again by
using an eighth-order accurate spatial scheme (p � 7) with the BSRK(8,5) and the VRK(9,6)
time integration schemes using a time-adaptive algorithm with a tolerance of 10−8. We observe
that the accuracy of the entropy evolution in time depends as expected on the order of the
temporal and spatial discretizations. Again, the entropy evolution with and without relaxation
is indistinguishable, indicating that the RRK methods do not add significant dissipation.

4.6 Supersonic Turbulent Flow Past a Rod

We finally provide further evidence of the robustness of the algorithm in the context of super-
sonic flow around a square cylinder with Re∞ � 104 and M∞ � 1.5, which features shocks,
expansion regions and three-dimensional vortical structures [35]. The three-dimensional mesh
used in the study consists of 87,872 hexahedral elements. The boundary conditions imposed are
adiabatic solid wall on the square cylinder surfaces [14], periodic boundary conditions in the x3
direction, and far field at the remaining boundaries. The problem is solved using a fourth-order
accurate (p � 3) spatial discretization and RK(4,4) with relaxation.
Figure 13 shows the results for the supersonic square cylinder at t � 130 and the time

evolution of the relaxation factor, γ. At t � 130, the flow is fully unsteady and the shock in
front of the cylinder has reached its final position. The flow is characterized by the shock in
front of the square cylinder and those in the near wake region. There is also an unsteady wake
populated by three-dimensional vortices shedding from the body. The time evolution of the
relaxation factor shows that the value of γ oscillates around one with a maximum deviation
from it of 2.5 × 10−7.

We finally remark that the small oscillations near the shock region are caused by disconti-
nuities in the solution and are expected for this scheme. In fact, we are not using any shock
capturing method or reducing the order of scheme at the discontinuity. Nevertheless, the sim-
ulation remains stable at all time, and the oscillations are always confined to small regions near
the discontinuities. This is a feat unattainable with several alternative approaches based on lin-
ear analysis which for this test problem lead to numerical instabilities and an almost immediate
crash of the solver [35].
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5 Conclusions

In this paper we have proposed, analyzed, and demonstrated a general approach which allows
any Runge–Kutta method to preserve the correct time evolution of an arbitrary functional,
without sacrificing linear covariance, accuracy, or stability properties of the original method.
In the case of convex functionals, there are additional insights such as the possibility to add
entropy dissipation by the time integration scheme. This and procedures for adaptive time step
controller will be studied deeper in the future. We are also studying the impact of relaxation
on the stable time step size.
The new approach, combined with an appropriate entropy-conservative/entropy-stable

semi-discretization on unstructured grids, yields the first discretization for computational fluid
dynamics that is:

• Primary conservative

• Entropy-conservative/entropy-stable in the fully-discrete sense with ∆t � O(∆x)
• Explicit, except for the solution of a scalar algebraic equation at each time step

• Arbitrarily high-order accurate in space and time

Furthermore, the added computational cost of this modification is insignificant in the context
of typical computational fluid dynamics calculations. It is anticipated that this type of entropy
stable formulation will begin to bear fruit for industrial simulations in the near future [44].
Finally, relaxation schemes provide an entropy guarantee without degrading solution accuracy
or adding unnecessary dissipation.
Further desirable properties of fully discrete numerical methods for the compressible Euler

and Navier–Stokes equations not studied in this article concern additional elements of robust-
ness, e.g. preserving the positivity of two thermodynamic variables (e.g., density and pressure).
To use the framework of [58], the interplay of limiters and relaxation schemes has to be studied.
Moreover, having a local entropy (in-)equality instead of the global one established in this

article might be advantageous. However, this seems to be currently out of reach using the re-
laxation schemes proposed here. While fully-discrete local entropy inequalities can be achieved
by the addition of sufficient artificial viscosity, the advantage of relaxation schemes is that they
do not impose excessive dissipation; if the baseline scheme is dissipative, they can even remove
some of this dissipation.
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