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Abstract

In the last few years, several methods have been developed to deal with
jump singularities in parametric or stochastic hyperbolic PDEs. They
typically use some alignment of the jump-sets in physical space before
performing well established reduced order modelling techniques such as
reduced basis methods, POD or simply interpolation. In the current lit-
erature, the transforms are typically of low resolution in space, mostly
low order polynomials, Fourier modes or constant shifts. In this paper,
we discuss higher resolution transforms in one of the recent methods, the
transformed snapshot interpolation (TSI). We introduce a new discretiza-
tion of the transforms with an appropriate behaviour near singularities
and consider their numerical computation via an optimization procedure.

Keywords: Parametric PDEs, shocks, transformations, interpolation, conver-
gence rates, optimization
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1 Introduction

On important ingredient in reduced order modeling and PDEs with random
coefficients is the numerical approximation of parametric functions u(x, µ) with
physical variables x ∈ Ω ⊂ Rd and deterministic or random parameters µ in
some parameter space P ⊂ Rn. The literature provides a rich toolbox for
this kind of approximation, see e.g. [11, 4, 37, 21] for an overview. However,
if u(x, µ) has parameter dependent jumps or kinks, the vast majority of the
available methods suffer from low convergence rates [12, 31, 47]. As a result,
problems from parametric hyperbolic PDEs, elliptic PDEs with jumping diffu-
sion (in parameter dependent locations) and parametric level-set methods still
pose severe challenges.

Besides a large body of literature on stability, offline/online decompositions
and error estimators for hyperbolic or singularly perturbed problems [9, 20,
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19, 29, 34, 36, 44, 26, 16, 48, 35, 32, 15, 14, 2, 23, 5], in the last few years,
several groups have addressed the poor regularity of u(x, µ) and developed sev-
eral methods with drastically improved convergence behaviour. While some use
localization strategies [12, 33], currently the majority relies on additional trans-
forms, shifts or similar tools in order to alleviate the issue. All these approaches
have in common that they try to align the discontinuities or sharp gradients
in physical space before applying classical reduced order modelling techniques
as interpolation, POD or reduced bases. This alignment drastically improves
the smoothness [25], Kolmogorov n-width, or decay rate of the singular val-
ues, respectively, which results in considerable efficiency gains in the presence
of jumps. Some approaches use characteristics [43], Lagrangian formulations
[27], extra equations or conditions [17, 30, 18] or jump tracking [42]. Another
approach is to use displacement interpolation or optimal transport [22, 39, 40],
which naturally builds on transport along the physical variables. One of the
more common recent approaches uses a composition of a snapshot u(x − s, µ)
with a shift s or alternatively a transform u(X(x), µ) in order to align the jump
locations in parameter, where s or X usually depend on the parameter and
may or may not depend on the location x. These shifted or transformed snap-
shots are then used for interpolation, reduced bases or further compressed by
POD, see e.g. [47, 38, 8, 7, 28, 46]. Alternatively, in [41], instead of a function
composition, the authors shift the coefficients of a discretization.

For the latter class of methods, one needs numerical procedures to find the
shifts s or transforms X. Since the shifts or transforms generally depend on x
and µ, one first chooses a suitable discretization. Then, one minimizes an error
formula among the chosen discrete representation during the “offline phase”, ei-
ther between individual (transformed) snapshots or the full reconstruction error
of the method. It seems that in all of the current literature the discretizations
are of low order in physical space either constants, low order polynomials or
Fourier modes. Clearly, these limitations on the transform’s resolutions pose
severe limitations on their applicability to many practical problems. As we will
see in Section 3, already quite simple scenarios require transforms with high
resolution in physical space.

As a first part of this paper, we discuss possible discretizations of high resolu-
tion transforms, which in the most general case are functions X(x, µ) depending
on the physical variables x and an arbitrary parameter µ. As we will discuss
in Section 3, these functions share some major properties with u itself: They
may require high resolution in the spacial variables and can be non-smooth in
parameter. However, we cannot use the same discretization strategy as for u
without introducing a second layer of transforms. Instead, we will see that
these transforms are naturally given as solutions of ODEs (generally different
from characteristic ODEs) and that variants of implicit solvers thereof provide
efficient ways for their discretization.

In principle, one can then use the same optimization strategies as for low res-
olution transforms, but as we will see in some experiments below, this results in
poor outcomes. Typically, naive implementations of gradient descent optimizers
stall after a few steps and the resulting transform is visually indistinguishable
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from the initial transform. In order to overcome this problem, in Section 6,
we discuss that the transforms X are functions of x and must be considered
in appropriate function spaces. This entails that the Fréchet derivative of the
objective function to optimize the transform is only a functional in a dual space
and must be appropriately “lifted” by a Riesz map to obtain a well defined
gradient descent method. In this paper, we report on two lifting methods, one
by inverting a Laplacian and one by using a multi-level frame.

The paper is organized as follows: To keep it self contained, in Section 2, we
briefly review the transformed snapshot interpolation (TSI), which is one of the
recently introduced transformed based reduced order modeling techniques for
problems with jumps. Then, in Section (3), we consider an example problem to
better understand the requirements for high resolution transforms. In Section
4 we discuss the discretization of the transforms and in Section 5 consider their
stability. In Section 6, we introduce suitable optimizers to practically find the
transforms and finally in Section 7 we provide some numerical experiments.

2 Transformed Snapshot Interpolation

In order to keep the paper self contained, let us first briefly review the trans-
formed snapshot interpolation (TSI) introduced in [47]. It approximates a para-
metric function u(x, µ) with physical variables x ∈ Ω ⊂ Rd and deterministic or
random parameters µ ∈ P ⊂ Rn by

u(x, µ) ≈ um(x, µ) := um(x, µ;X) :=
∑
η∈Pm

`η(µ)u(X(η;µ, x), η), (1)

where `η(µ) are Lagrange basis polynomials with respect to given interpolation
points η ∈ Pm ⊂ P. Similar to reduced basis methods and PODs, this interpo-
lation only requires us to know snapshots u(·, η) at finitely many interpolation
points in parameter. In addition we need the transforms η → X(η;µ, x) ⊂ Ω
which can be regarded as curves in physical space, together with an initial value
X(µ;µ, x) = x. We often write X(η) = X(η;µ, x) if µ and x are understood
from context.

As a notational convention, both µ and η refer to parameters, where µ
usually denotes a target parameter where we want to approximate u(·, µ) and η
is either a continuous auxiliary parameter in P as in the curve η → X(η) or a
discrete “source” parameter in Pm at locations where we know the snapshots,
e.g. as in the definition of the TSI (1). The distinction between continuous or
discrete should always be clear from context.

Let us now come back to the TSI (1). Choosing the trivial transform
X(η;µ, x) = x, the formula reduces to a standard polynomial interpolation.
However, this simple approach does not achieve good convergence rates in case
u(x, µ) has jumps or kinks in parameter dependent locations, because these en-
tail that u is not even differentiable in the interpolation direction. The extra
transform X(η;µ, x) is used to align these jumps so that they become “invisible”
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to the interpolation. In other words, for a target parameter µ and interpola-
tion point η, the transform X(η;µ, x) ensures that the transformed snapshots
(x, η) → u(X(η;µ, x), η) have jumps in the same locations as the correct so-
lution u(·, µ), independent of η. In particular, for all x, which are not in the
jump-set of u(·, µ), the transformed snapshots are smooth in η. The TSI (1)
is merely a polynomial interpolation of these transformed snapshots in η, and
thus provides high order accuracy.

Note that in the TSI (1) the transforms X(η;µ, x) are only evaluated at
finitely many interpolation points η ∈ Pm and the continuous variables x ∈ Ω
and µ ∈ P. If the transforms are smooth in µ, they can be efficiently discretized
in µ by interpolation

X(η;µ, x) =
∑
γ∈Pm

`γ(µ)X(η; γ, x), (2)

called low resolution transforms in the following. This was the original choice
in [47] together with low order polynomials for the remaining finitely many
functions x → X(η; γ, x), η, γ ∈ Pm with zero normal flux as a numerical
substitute for the condition X(η;µ, x) ∈ Ω. As we will see e.g. in Section
3, neither the smoothness in µ nor the choice of low order polynomials in x is
warranted in some fairly simple examples. Therefore, we will discuss alternative
representations of the transforms in Section 4.

Finally, similar to neural network training or greedy algorithms for reduced
basis methods, the remaining transforms X(η; γ, x), η, γ ∈ Pm are trained by
minimizing the worst case error

sup
µ∈PT

‖u(x, µ)− um(x, µ;X)‖L1(Ω), (3)

Since we do not know u(·, µ) for all µ ∈ P, we cannot calculate the full error and
confine ourselves to a training sample PT ⊂ P. Of course other Lp-norms in
parameter are also possible. The L1-norm for the physical variables is natural for
hyperbolic problems and ensures that the objective function of this optimization
problem is differentiable almost everywhere, given that u is of bounded variation,
see [47] for more details.

3 An Example Problem

In this section, we first consider a simple example problem that highlights some
typical difficulties for the low resolution transforms (2). Namely, let us consider
the function

u(x, µ) =

 1 x ≤ −(1− µ)
−1 x ≥ 1− µ

0 else
, (4)

for µ < 1 and

u(x, µ) =

{
1 x ≤ 0
−1 x > 0

, (5)
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Figure 1: Blue: Jump set of the example function (4), (5) in the x − µ-plane.
Dotted lines: Curves η → X(η;µ, x) defined in (6). Black: Inappropriate trans-
form η → X(η;µ, x) crossing a jump.

for µ ≥ 1, depicted in Figure 1. It serves as a prototype of problems for which
the original TSI as introduced in Section 2 is problematic: It starts out with
two jumps for µ < 1 that collide into one single jump for µ ≥ 1. This poses a
problem for the TSI because we cannot properly align a snapshot with a single
jump with a snapshot with two jumps. More formally, the TSI interpolates the
transformed snapshots η → u(X(η;µ, x), η), which should ideally be smooth in
the η variable. Since η → X(η; . . . ) itself is smooth, this can only be true if
X(η;µ, x) is not contained in the jump-set of u(·, η) for all η ∈ P. Obviously
this is impossible for a curve starting between the two jumps in the lower half
of Figure 1 indicated by the black solid line crossing a blue jump. In fact, this
condition forces all curves η → X(η;µ, x), which start at µ, x between the two
jumps, to converge to the collision point for η → 1, indicated by the dotted
lines. The remaining dotted lines complete this to a reasonable transform given
by

X(η;µ, x) =


x− (µ− η) x ≤ −(1− µ)
x+ (µ− η) x ≥ 1− µ
x− xµ−ηµ−1 else

. (6)

In particular, if we confine our parameter range to µ < 1 or µ ≥ 1, these
transforms never cross jumps, corresponding to the parameter ranges where
u has either one or two jumps. Therefore, we may proceed as follows: We
subdivide the parameter domain into two pieces for µ ≶ 1 and apply a TSI
on each of them. As simple version of this idea, which finds partitions of P
via h or hp adaption, is discussed in [46]. A more sophisticated algorithm that
cuts the parameter domain precisely at the jump collision is in preparation. In
this paper, we do not deal with the proper subdivision but with the necessarily
singular transforms:

1. For µ = 1 and η < 1, the transform has a jump at x = 0.

2. The dependence of the µ variable is of the type ∼ 1/(µ− 1) in the regions
between the two jumps and therefore singular at µ = 1.
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Both problems cannot be handled with the low resolution transforms (2).
These were low order polynomials both in the x and µ variables. For the x
variable one can simply increase the spacial resolution of the transforms to the
same resolution of the snapshots. Since the latter must be stored anyways, the
overall degrees of freedom do not blow up significantly. However, this higher
resolution requires some extra care with regard to the optimization of the error
(3), as is discussed in Section 6.

With regard to the singularity in the µ variable, a simple increase of the
resolution is more challenging without increasing the number of snapshots and
therefore we discuss an alternative discretization of the transform in Section 4.

Although the example discussed in this section is quite simple, the arising
problems are quite typical for problems where the jump-sets cannot be properly
aligned between snapshots. As we will see later in Section 4 when we have
developed some better tools, singular behaviour of the transforms generally
occurs when the jump-set topology changes in parameter.

4 Transforms as solutions of ODEs

In this section, we consider discretizations of the transforms, which allow the
types of singular behaviour that we observed in our introductory example in
Section (3). We have already chosen a notation for the transforms η → X(η) =
X(η;µ, x) with “initial value” X(µ, µ, x) = x that suggests to define them as a
solution of an ODE

d

dη
X(η) = Φ(X(η), η), X(µ) = x, (7)

where we call Φ : Ω × P → R the transport field. First note that this defini-
tion restricts us to one dimensional parameter domains. Nonetheless, higher
dimensional parameters can be treated by a tensor product type construction
as shown in [46], where we split dimensions of the parameter space one by one.
Even for one dimensional parameters, defining transforms via ODEs restricts
our possible choices since it induces a semi-group property in the dynamic vari-
able of the ODE: X(η;µ, x) = X(η; ν,X(ν;µ, x)). However, this restriction does
not seem to be overly severe and has two major benefits: It was argued in [47]
that it greatly helps optimizers to find global minima of (3) and as we shall see
in this section, it provides a way to find discretizations of the transforms in view
of singularities.

Let us first review the example in Figure 1 again. In order to properly
align the jumps, the blue lines must be a solution of the ODE (7), defining the
transforms. This implies that the trajectories intersect at the jump collision so
that the ODE does not have a unique solution. Therefore, at least one of the
assumption of the Picard Lindelöf theorem cannot be valid, which is typically
the Lipschitz continuity of Φ. This provides another motivation for dealing with
high spacial resolution transforms.
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One can easily generalize this observation: If the jump-sets of two snapshots
u(·, µ) and u(·, η) are not homeomorphic, no ODE, which aligns the jumps, can
satisfy all assumptions of the Picard Lindelöf theorem. For if one would, the
solution x→ X(η;µ, x) would be a homeomorphism of the respective jump-sets,
contradicting the assumption of having a change in topology.

In order to find a numerical method based on the ODE (7), let us assume for
the moment that we know Φ(x, µ) for all possible values of x and µ. Then we still
have to solve the ODE (7) to find X(η) and ultimately the TSI interpolation.
The easiest choice that comes to mind is Euler’s method

X(η) ≈ x+ (η − µ)Φ(x, µ),

which has the drawback that we have to be able to evaluate Φ at every possible
target parameter µ, which are of course unknown at the time we compute the
transforms. If however we use the implicit Euler method, we have

X(η) ≈ x+ (η − µ)Φ(X(η), η), (8)

where Φ is only evaluated at the parameter η, which for the TSI reconstruction
is only required at the finitely many snapshot locations Pm.

Of course the implicit Euler method limits trajectories X(η) to lines, so that
in the remainder of this section, we construct higher order alternatives. First
note that we cannot use higher order ODE solvers out of the box: Runge Kutta
methods require knowledge of Φ(·, η) at intermediate parameters depending on
the unknown target µ and multi-step methods rely on single step methods to
get started.

Given these difficulties, we take an alternative but related route. Assume
that we know Φ(·, η) at the interpolation points η ∈ Pn, just as we know the
snapshots u(·, η) at all Pm. Here Pn is another set of finitely many nodes, which
can in principle differ from Pm. Restricting the ODE (7) to the information we
have, we obtain

X ′(η) = Φ(X(η), η) for η ∈ Pn X(µ) = x, (9)

As we shall see in Proposition 4.1 below, these conditions are sufficient to
uniquely determine the curve X(η), if we restrict them to be polynomials of
degree n = |Pn|, denoted by Pn. The resulting transforms X(η) are called high
resolution transforms in the following.

Let us first verify that this construction contains the implicit Euler method
as a special case. For one single interpolation point, the transform of (9) is a
line and therefore uniquely determined by the initial condition X(µ) = x and
its slope, X ′(η) = Φ(X(η), η) at the interpolation point η. This implies that
the curve is given by

X(ξ) = x+ (ξ − µ)Φ(X(η), η)

at any point ξ ∈ P, which corresponds the implicit Euler method for ξ = η.
Similar to ODE theory, the next proposition provides some conditions under

which the interpolation problem (9) has a unique solution.
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Proposition 4.1. Let I be an interval that contains the interpolation points Pn
and the initial point µ.

1. Assume that all Φ(·, η) : Rd → Rd, η ∈ Pn are bounded and continuous.
Then the interpolation problem (9) has a solution in Pn restricted to I.

2. Assume that all Φ(·, η) : Rd → Rd, η ∈ Pn are Lipschitz continuous with
Lipschitz constant L and that Λn−1L|I| < 1, where Λn−1 := maxµ∈I

∑
η∈Pn

|`η(µ)|
is the Lebesgue constant for the interpolation points Pn. Then the inter-
polation problem (9) has a unique solution in Pn restricted to I.

Note that except for the discrete locations of the jump-set topology changes,
the maps Φ(·, η) can be expected to be continuous. Close to the toplogy changes,
the Lipschitz constant will deteriorate, which is discussed at the end of this
Section. In addition, we are only interested in Φ(x, η) with x ∈ Ω, so that the
boundedness assumption can be met by suitable modifications of Φ outside of Ω.
Therefore, with rather mild conditions the first part of the Proposition ensures
the global existence of transforms which satisfy (9).

As argued at the beginning of this section, we expect non-unique solutions
at the jump-set topology changes for the ODE (7). Likewise, we cannot expect
global uniqueness for the discrete variant (9) either. Nonetheless, locally this is
possible by classical arguments as stated by the second part of the proposition.

The proof is essentially a discrete version of the Picard-Lindelöf theorem.
To see this more clearly and for later reference, by the uniqueness of polynomial
interpolation, the problem (9) is equivalent to to following continuous variant:
find x ∈ Pn such that

X ′(η) = [In−1Φ(X(·), ·)](η) for η ∈ P, X(µ) = x, (10)

or equivalently

X(ξ) = x+

∫ ξ

µ

[In−1Φ(X(·), ·)](γ) dγ =: F [X](ξ), (11)

where In−1 is the interpolation operator on the n points Pn. Note that this is
not a standard ODE because the right hand side depends X(γ) for all γ ∈ Pn
instead of X(η) at the single point η. Nonetheless, the Picard-Lindelöf theorem
carries over verbatim.

Proof. We use the usual fixed point argument applied to the fixed point function
F defined in (11) on the space Pn(I) of polynomials up to degree n, restricted
to the interval I and equipped with the norm ‖X‖ := maxγ∈I |X(γ)|. Due to
the interpolation In−1 in the definition of F and the subsequent integration F
maps Pn(I) to itself.

We first show Part 1 of the proposition. Instead of the usual contraction map-
ping principle, we exploit the finite dimensional nature of Pn and use Schauder’s
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fixed point theorem. To this end, note that the continuity of Φ(·, η) implies the
continuity of F . In addition, we have

‖F [X]‖ = max
ξ∈I

∣∣∣∣∣x+

∫ ξ

µ

[In−1Φ(X(·), ·)](γ) dγ

∣∣∣∣∣
≤ |x|+ Λn−1‖Φ(X(·), ·)‖

∫ ξ

µ

dγ

≤ |x|+ Λn−1M |I|,

where M is the upper bound of |Φ(·, η)|, η ∈ Pn and Λn−1 is the Lebesgue
constant for the interpolation In−1. It follows that F maps the ball of all poly-
nomials p ∈ Pn with ‖p‖ ≤ |x| + Λn−1M |I| to itself. In conclusion, Schauder’s
fixed point theorem implies the existence of a fixed point of the integral equation
(11) and thus the discrete definition (9) of the transforms.

Since Schauder’s fixed point theorem does not guarantee uniqueness, we con-
tinue to proof part 2 of the proposition using the classical contraction mapping
principle. To show that F is a contraction, first note that

‖In−1Φ(X(·), ·)− In−1Φ(Y (·), ·)‖ ≤ Λn−1 max
η∈P
|Φ(X(η), η)− Φ(Y (η), η)|

≤ Λn−1L‖X − Y ‖,

where again Λn−1 is the Lebesgue constant and L the Lipschitz constant of Φ.
It follows that

‖F [X]− F [Y ]‖ ≤ Λn−1L ‖X − Y ‖
∫ ξ

µ

dγ ≤ Λn−1L|I| ‖X − Y ‖ . (12)

Since Λn−1L|I| < 1, the proposition follows from Banach’s fixed point theorem.

Remark 4.2. Since X(η) is a polynomial, which is uniquely defined on the
interval I, we may extend it to the real line R still satisfying the discrete and
continuous interpolation problems (9) and (10). However, beyond the interval I
in Proposition 4.1 part 2, the solution is not necessarily unique in the sense that
there can be two solutions x and y of (9) with different initial values X(µ) = x
and Y (µ) = y that intersect outside of I.

Let us compare the new transformX(η) constructed in the above Proposition
with the original choice (2) defined via polynomial interpolation. The original
choice is polynomial in µ, whereas the “ideal” transform in the example of
Section 3 is rational in µ. In contrast, both the new transform and the “ideal”
one are polynomial in η. In addition, the stability function of the implicit Euler
method is a rational function of η− µ and thus for a fixed interpolation node η
and variable target µ a rational function of µ. Again, this matches the “ideal”
transform of the example.
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For a practical application of the new transform, we need an algorithm to
solve the interpolation problem (9). Since the fixed point iteration for the map
F : Pn → Pn in the proof of Proposition 4.1 is defined on polynomials, it can
be carried out practically and it remains to devise an algorithm to compute
Y = F [X] ∈ Pn. This is reminiscent of implicit ODE solvers as e.g. the implicit
Euler method (8), which are also often solved by fixed point methods. We
carry out the fixed point iteration in a Newton basis, which easily leads to an
algorithm that is sufficient for the first experiments presented in this paper,
although more clever approaches might be possible.

Although we integrate polynomials, we cannot readily apply standard quadra-
ture rules because the integration bounds are variable and not known before-
hand. As an alternative, we first differentiate the definition (11) of F to obtain

Y ′(ξ) :=
d

dξ
F [X](ξ) = [In−1Φ(X(·), ·)] (ξ) (13)

The derivative Y ′(ξ) is a polynomial in Pn−1 and thus completely specified by
its values at the interpolation points η ∈ Pn, which are

Y ′(η) = [In−1Φ(X(·), ·)] (η) = Φ(X(η), η),

Of course these are the same interpolation conditions as in the original problem
(9), with the difference that currently X is not necessarily a fixed point. Now,
let us represent Y in a Newton basis with respect to the interpolation points
{µ} ∪ Pn = {µ, η1, . . . , ηn}, i.e.

Y (ξ) =

n∑
i=0

aiωi(ξ), ω0(ξ) = 1 ωi(ξ) = (ξ − µ)
∏
j<i

(ξ − ηi). (14)

First note that choosing ξ = µ the definition of F implies that a0 = x. For the
remaining a1, . . . , an, we first differentiate Y ′(ξ) =

∑n
i=1 aiω

′
i(ξ) and plug in the

interpolation points to obtain the systemω
′
1(η1) . . . ω′n(η1)

...
...

ω′1(ηn) . . . ω′n(ηn)


a1

...
an

 =

Φ(X(η1), η1)
...

Φ(X(ηn), ηn)

 . (15)

Note that for Newton interpolation we have ωj(ηi) = 0 for j > i, which leads
to triangular Vandermonde type matrices for standard interpolation problems.
However, this does not imply that also ω′j(ηi) = 0 for j > i. Therefore, in our
case we deal with a full matrix. Nonetheless, we can compute an LU decom-
position beforehand and solve the system efficiently for every new right hand
side.

Now that we can compute Y = F [X], we can numerically solve the interpo-
lation problem (9) by the fixed point iteration

Xk+1 = F [Xk], X0 = x. (16)

The following Corollary to Proposition 4.1 states that this converges to a solu-
tion of the interpolation problem.
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Corollary 4.3. Assume that all assumptions of Proposition 4.1 part 2 are sat-
isfied. Then the fixed point iteration (16) converges to a solution of the inter-
polation problem (9).

Proof. The corollary is a direct consequence of the proof of Proposition 4.1 part
2.

The fixed point iteration (16) provides us with polynomials η → X(η;µ, x)
for η ∈ P. For the TSI (1), we only need the transforms at the locations η ∈ Pm,
which we can easily evaluate even if Pm 6= Pn, i.e. we use different nodes for
the transform field than for the snapshots.

As discussed earlier, we expect the Lipschitz constant L to deteriorate near
jump-set topology changes so that a plain fixed point iteration as in the last
corollary is generally insufficient. Nonetheless, we can counterbalance this with
a small interval length I in order to meet the assumptions of Proposition 4.1.
The obvious choice is to add more snapshots close to the singularity, but that
clearly defeats the purpose of this section. Alternatively, we use this observation
to create better initial values for the fixed point iteration. To this end, note that
neither the definition of F [X] nor the assumptions of Proposition 4.1 need Φ(·, η)
for the full continuum of parameters η, but only for the few discrete η ∈ Pn.
For clarity, let us call them Φ0, . . . ,Φn. Once we have fixed these functions, the
interval length I only enters the equations via the Newton basis (14) for the
interpolation points {µ} ∪ Pn. Therefore, in order to obtain a shorter interval
I, we rescale these interpolation points by

{µ} ∪ {µ+ s(η − µ) : η ∈ Pn} (17)

which match the original choice with s = 1 and shrink to {µ} for s = 0. For s
sufficiently small, the fixed point iteration (16) will then be successful for the
unchanged Φ0, . . . ,Φn. We use the outcome as an improved initial value for
a new fixed point iteration with larger scaling s, although this case may no
longer be covered by Corollary 4.3. In the numerical experiments, we choose
an increasing sequence of scaling factors si and perform fixed point iterations
(16) for the corresponding scaled parameters, each using the last iterate from
the previous scaling as initial value.

5 A note about stability

Since we are dealing with (near) singular jump-sets, we have to be careful about
the stability of the TSI reconstruction with respect to perturbations of the
transforms. Such perturbations are generally inevitable because of numerical
errors due to iterative optimizers for (3) and discretizations of the transport
fields Φ.

Let us first consider a heuristic motivation in 1d. Assume we have two
transforms Xi(x) := Xi(η;µ, x), i = 0, 1. Ignoring higher order terms, and
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using the substitution y = X0(x) we can informally estimate the perturbation
error between two transformed snapshots v ◦Xi(x) := u(Xi(x), η) by

‖v ◦X1 − v ◦X0‖L1(Ω) ≈
∫

Ω

|u′(X0(x))||X0(x)−X1(x)| dx

=

∫
Ω

|u′(y)||y −X1(X−1
0 (y))| 1

|X ′0(x)|
dy

≤ sup
y∈Ω

[
|y −X1(X−1

0 (y))|
|X ′0(x)|

] ∫
Ω

|u′(y)| dy

= sup
x∈Ω

[
|X0(x)−X1(x)|
|X ′0(x)|

]
‖u‖BV (Ω).

(18)

If X ′0 is bounded from above and below, this gives us an estimate of the type

‖v ◦X1 − v ◦X0‖L1(Ω) ≤ C‖X0(x)−X1(x)|‖L∞(Ω)‖u‖BV (Ω).

for some constant C. However, this argument is not fully satisfactory for two
reasons.

1. In the vicinity of jump-set topology changes X ′0(x) is typically not uni-
formly bounded from above and below.

2. If Xi has a jump or sharp gradient, reasonable perturbations may not be
close in the L∞-norm.

If we are more careful, we see that wherever X0 has a large gradient so that
we possibly have a large L∞ error of the transforms, the denominator of the
right hand side of (18) is also large. The argument does not carry over to sharp
gradients of X1, but with an analogous argument, we could have had X ′1 in
the denominator instead. Therefore, in the following, we consider the question
if a judicious choice of the denominator can at least in principle provide some
control of the perturbation error in the face of sharp gradients.

The choice of the denominator, now for arbitrary spacial dimensions, is done
by selecting a homotopy, i.e. a continuous transition, Xs(η;µ, x), 0 ≤ s ≤ 1 be-
tween the two transforms so that the boundary cases X0(η;µ, x) and X1(η;µ, x)
are our original two perturbed transforms. A simple candidate is a convex com-
binationXs = (1−s)X0+sX1. The following stability result is a rigorous version
of our heuristic argument above and a slight refinement from a proposition in
[47].

Proposition 5.1. Assume that u ∈ BV (Ω) and that∫
Xs(η;µ,·)−1(A)

dx ≤ B|A|

for some B ≥ 0, all measurable sets A, all η ∈ Pn, µ ∈ P and s ∈ {0, 1}. Using
Ẋ := d

dsXs, define

S(µ, η) := sup
A

1

|A|

∫ 1

0

∫
Xs(η;µ,·)−1(A)

|Ẋs(η;µ, x)| dx ds. (19)
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Then, we have

‖um(·, µ;X0)− um(·, µ;X1)‖L1(Ω) ≤ Λn max
η∈Pm

[
S(µ, η)‖u(·, η)‖BV (Ω)

]
,

independent of B and where Λm is the Lebesgue constant.

The proof is essentially the same as in [47] and given in Appendix A. For
sufficiently regular transforms Xs, we can simplify the stability factor S(µ, η):
With Xs(x) = Xs(η;µ, x) we have

S(µ, η) = sup
A

1

|A|

∫ 1

0

∫
X−1

s (A)

|Ẋs(x)| dx ds

= sup
A

∫ 1

0

1

|A|

∫
A

|Ẋs(X
−1
s (y))||detDX−1

s (y)| dy ds

=

∫ 1

0

sup
y∈Ω
|Ẋs(X

−1
s (y))||detDX−1

s (y)| ds

=

∫ 1

0

sup
x∈Ω

|Ẋs(x)|
|detDXs(x)|

ds.

(20)

Note the similarity to our informal calculation (18): For the nominator, we have
|Ẋs(x)| ≈ |X0(x)−X1(x)| and in 1d the denominator simplifies to |X ′s(x)|. In
addition, because of the s dependence, we now have some explicit control over
the denominator by choosing a suitable homotopy.

In order to better understand the stability factor S(µ, η), let us first consider
the integral bound Xs(η;µ, ·)−1(A) in (19), or equivalently the denominator in
(20). To this end, we consider a set A ⊂ Ω and observe how its volume changes
when it is transformed along the flow η → Aη := Xs(η;µ,A). We expect the
stability factor to be small if the volume |Aµ| = |Xs(η;µ, ·)−1(Aη)| is not much
larger that the volume |Aη|. This implies that contracting sets from η → µ is
expected to be stable, while growing them is probably unstable.

To clarify this point, let us consider the example in Figure 1 again. Say we
have two parameters µc, where the two jumps collide, and µ2 < µc for which
we have two separate jumps. Let us first try to approximate u(·, µc) form a
transformation of u(·, µ2). If we choose any set Aµ2

between the two jumps,
the transform indicated in the figure shrinks it to zero volume. By our analysis
this is stable and intuitively all perturbations in the set Aµ2 are squashed to
measure zero and thus irrelevant. Vice versa, using a transform of the snapshot
u(·, µc) to approximate u(·, µ2) is problematic. Our stability bound becomes
large matching the intuition that the snapshot does not provide any information
on how to fill the void between the two jumps of the target u(·, µ2).

Let us next consider the problem with the L∞-norm for a simple example
problem. We choose Xs(η;µ, x) = X0(η;µ, x − sεv) for some direction v, so
that the perturbation X1 is a shift of X0, which generally has large L∞ error
if X0 has sharp gradients or jumps. Note that with this definition we also
have chosen a homotopy between the two transforms. Next, we assume that
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‖DXs(η;µ, ·)−1‖2 ≤ c for some constant c. This allows the transform Xs(η;µ, ·)
to have sharp gradients and places us in the situation where the sets Aη grow at
most moderately for which we expect stable behaviour by the discussion above.
In the example of Figure 1, this includes the case of approximating u(·, µc) form
u(·, µ2) using a perturbed transform that misses the correct collision location in
physical space by ε.

Computing the stability factor (20) yields

S(µ, λ) =

∫ 1

0

sup
x∈Ω

|Ẋs(x)|
|detDXs(x)|

ds ≤
∫ 1

0

sup
x∈Ω

sε
|DXs(x)|2|v|
|detDXs(x)|

ds.

where | · |2 denotes the `2(Rd) matrix norm. With the singular values σs1(x) ≥
· · · ≥ σsd(x) ≥ c of DXs, this simplifies to

S(µ, λ) =

∫ 1

0

sε|v| sup
x∈Ω

σs1(x)∏d
i=1 σ

s
i (x)

ds ≤ ε|v|c1−d
∫ 1

0

s ds =≤ 1

2
ε|v|c1−d.

Thus, even if the L∞ error of the perturbed transforms is large, we may nonethe-
less have a small TSI error. Of course the result relies on a carefully chosen
homotopy Xs. How to choose this in the general case is beyond the scope of
this paper.

6 Optimizing Singular Transforms

6.1 Difficulties with the optimization of the transform

In Section 4, we discussed singularities of the transforms at jump-set topology
changes and efficient ways to approximate them. However, we still need a way
to automatically calculate these transforms from the available data, i.e. the
snapshots and training snapshots. As in (3), we use an optimization problem

min
Φ∈T

σ(Φ), σ(Φ) := ‖u(·, µ)− um(·, µ; Φ)‖L1(Ω), (21)

where the notation um(x, µ; Φ) = um(x, µ) is used to emphasize the dependence
of the TSI on the choice of the transport field Φ and T ⊂ B is an admissible set
of transforms in a Banach space B as discussed below. Note that the constraints
T can be used to ensure that the resulting curves X(η) do not leave the spacial
domain Ω and that we only need to know Φ(·, η) for finitely many η ∈ Pn. We
therefore only need a spacial discretization of Φ by selecting a basis, or more
generally a dictionary, {ψi}i∈I for some index set I, with span{ψi}i∈I = Bn ⊂ B
and optimize

min
c∈RN

σ(c), σ(c) := σ

(
N∑
i=1

ciψi

)
. (22)

Instead of strictly enforcing that x → X(η;µ, x) maps Ω to itself, we usually
assume that ν · Φ(·, η) = 0, where ν is the outward normal, so that locally the

14



curves X(η;µ, x) do not flow through the boundary. As we have seen above,
already simple problems require sharp spacial gradients so that we want to
choose Bn with resolutions matching the high fidelity model of the snapshots.
In this section, we discuss the implications for the optimization of (21).

It has been shown in [47] that we can expect the map σ to be Lipschitz
continuous. Although more sophisticated algorithms for such non-smooth opti-
mization problems are available [24, 6], we start with a simple gradient descent
method:

cn+1 = cn − ασ′(cn). (23)

Unfortunately, this simple choice does not provide satisfactory results. For
example, Figure 2 shows the convergence behaviour for a very simple one di-
mensional test case: The gradient descent optimizer reduces the error a little bit
but then stalls way before any reasonable alignment has been achieved. Since
the example has no singularities, the figure also shows the results for a coarse
discretization of X(η;µ, x) by second order polynomials in x. As we see, this
coarse resolution does not pose a severe obstacle to the optimizer.

6.2 Optimization in Banach Spaces

To better understand the issue of the higher resolution, we first go all the way
to infinite resolution and optimize (21) over the full function space B. We solve
the optimization problem minΦ∈B σ(Φ) by a descent method so that

Φn+1 = Φn − αdn

for some descent direction dn. Usually, we choose the gradient dn = σ′(Φ), but
this time we have to be more careful: Since we optimize in a Banach space,
σ′(Φ) is a Fréchet derivative and thus an element of the dual space B′ of B.
If B = Rn, we can easily identify (Rn)

′
= Rn, but for a generic Banach space

B this is not always possible. This implies that a term Φn − ασ′(Φ) does not
necessarily make sense.

Thus, the descent direction dn depends on the Banach space B. A good
choice of B should depend e.g. on the existence of minimizers or their stability,
which is beyond the scope of this paper. Nonetheless, one can easily gain some
insight about the space B′. Formally, the variation of the error in the direction
v ∈ B is given by

∂vσ(Φ) =

∫
Ω

sign
[
u(x, µ)− um(x, µ; Φ)

]
∂vum(x, µ; Φ) dx

where using the definition of the TSI, we have

∂vum(x, µ; Φ) =
∑
η∈Pm

`η(µ)Du(X(η;µ, x), η)DX(η;µ, x)v

Note in particular that this derivative contains the derivative Du(x, η) with
respect to x. Since u has jumps we may assume that u is of bounded variation so
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that Du is a measure. At the jumps this measure has a singular component, e.g.
a Dirac delta in d = 1 or generally a measure supported on a d− 1 dimensional
manifold. This implies that the dual space B′ must be rich enough to contain
these singular measures, which makes an identification of B and B′ difficult.

Of course the optimization in Banach spaces is well understood and a descent
direction dn can be constructed along the following lines, see e.g. [45]. First
observe that the value of the objective function after one step is given by

σ(Φn+1) = σ(Φn)− α 〈σ′(Φn), dn〉+ o(α)

so that we obtain an error reduction for sufficiently small α if 〈σ′(Φn), dn〉 > 0.
For example, we can choose the Riesz representation of the Fréchet defined by

dn = ‖σ(Φn)‖B′w, w = argmaxv∈B
〈σ′(Φn), v〉
‖v‖B

, (24)

so that 〈σ′(Φn), dn〉 = ‖σ′(Φn)‖2B′ and we obtain

σ(Φn+1) = σ(Φn)− α‖σ′(Φn)‖2B′ + o(α).

Recall that in our case the dual space B should contain singular measures sup-
ported on d−1 dimensional manifolds. Via the trace theorem, measures of such
type are contained in H−1(Ω), which is a particularly simple choice because it is
a Hilbert space and the computation of the Riesz representer reduces to solving
the Poisson equation. More precisely, since Φ(·, η) : Ω → Rd is vector valued,
we choose B =

∏
η∈Pm

{v ∈ H1(Ω)d : ν · v = 0 on ∂Ω}, where ν is the outward
unit normal vector and the “slip” boundary conditions ensure that locally the
resulting curves X(η) do not leave Ω. The product is used to obtain one func-
tion for each Φ(·, η) with |Pn| = n values for η. Thus, the Riesz representation
(24) is given by −∆−1σ′(Φn) and we obtain the optimization scheme

Φn+1 = Φn + α∆−1σ′(Φn), (25)

where −∆−1 solves the vector valued Poisson equation with the given boundary
conditions. This is discretized by a Galerkin method in the obvious way. We
will refer to this method as Laplace smoothing in the following.

As an alternative to inverting a Laplacian, we can carefully choose the dictio-
naries {ψi}i∈I for the discretization, similar to e.g. wavelet methods for elliptic
equations [13, 10]. To this end, let us assume that the ψi are a frame for B′, so
that

A‖`‖2B′ ≤
∑
i∈I
|〈`, ψi〉| ≤ B‖`‖2B′

for all ` ∈ B′ and constants A,B ≥ 0. Then, there is a dual frame {ψ̄i}i∈I such
that

B−1‖Φ‖2B ≤
∑
i∈I

∣∣〈Φ, ψ̄i〉∣∣ ≤ A−1‖Φ‖2B′

for all Φ ∈ B and
Φ =

∑
i∈I

〈
Φ, ψ̄i

〉
ψi.
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Note that Φ ∈ B if and only if the frame coefficients ci =
〈
Φ, ψ̄i

〉
are in `2(RI)

so that in the original discretization (22) we now optimize over c ∈ `(RI) for
which we easily can identify the space with its dual. Indeed, for the resulting
iteration

cn+1 = cn − αdn, dni = ∂iσ(c) =

〈
σ′

( ∞∑
i=1

ciψi

)
, ψi

〉
(26)

we have the error reduction

σ(cn+1) = σ(cn)− α
∞∑
i=1

∣∣∣∣∣
〈
σ′

( ∞∑
i=1

ciψi

)
, ψi

〉∣∣∣∣∣
2

+ o(α)

≤ σ(cn)− αA

∥∥∥∥∥σ′
( ∞∑
i=1

ci

)∥∥∥∥∥
2

B′
+ o(α)

for α sufficiently small.
For simplicity, in the numerical experiments, we do not explicitly construct

a frame, but rather define the transform as X(η;µ, x) = x +
∑
`(X

`(η;µ, x) −
x), where X`(. . . ) are curves generated by transform fields Φ` with spacial
resolution level ` and X`(· · · )− x the updates from the respective levels. This
is referred to as multilevel smoothing in the following.

7 Numerical Experiments

In Section 7.1, we first choose a simple problem without singularity to see how
the optimizers of Section 6 perform in comparison to the original method recalled
in Section 2. Then, in Section 7.2, we consider a test with a singularity where
the original low resolution transforms fail. In Section 7.3, we compare different
orders of the transforms and in Section 7.4 we consider a 2d example.

In all examples, the finite element discretizations of the snapshots and trans-
form fields are handled by the Deal.II library [3] and all TSI components are
then put together in Tensorflow [1]. This setup allows all gradients of the error
to be automatically computed by the back-propagation algorithm in Tensorflow.

7.1 Testing the Optimizers

In this section, we first consider a very simple example in order to see how
the optimizers of Section 6 applied to high resolution transforms of Section 4
perform in comparison to a simple gradient descent method and low resolution
transforms as described in [47] or Section 2. To this end, we consider

u(x, µ) =

{
1 x ≤ µ
−1 x > µ

Pm = Pn = {−0.2, 0.2}
PT = {0}

Ω = [−1.5, 1.5].
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The snapshots and high resolution transforms are are discretized by piecewise
linear functions on 32 cells and the low resolution transforms are second order
polynomials. We use five fixed point iterations (16) and no scaling (17).

Since the objective function typically has a kink at the minimum, its value
from gradient descent steps typically oscillates near the minimum. For all op-
timization methods in this section, we select a learning rate that shows slight
oscillations at the end to make them comparable. This is not very accurate
but sufficient to demonstrate the main point of this experiment: Despite the
much higher number of degrees of freedom, the Laplace and multilevel smooth-
ing result in a convergence behaviour that is comparable to the original gradient
descent method applied to low resolution transforms in [47].

The concrete results are reported in Figure 2. First observe that a sim-
ple gradient descent method without smoothing for high resolution transforms
stalls way before it reaches an acceptable minimum. Second, the value of the
objective function never converges to zero. Instead, the TSI training error typi-
cally saturates at a level comparable to the discretization error of the snapshots.
This effect will be observed for all numerical experiments in this paper and is
discussed more thoroughly in [47].
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Figure 2: Results for the 1d Example in Section 7.1. Left: Snapshots (gray),
exact solution (solid red) and reconstructions at µ = 0: TSI with Laplace
smoothing (cyan, dashed), multilevel smoothing (violet, dotted) and a TSI with
low resolution transform (2) (black, dashed). Right: corresponding gradient
descent errors with the same color coding. In addition the figure shows the
errors for high resolution transforms without smoothing (olive dotted).
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7.2 Testing Transform Resolutions

Next, we test high versus low resolution transforms near a singularity. We
choose the example

u(x, µ) =


x−l

−(1−µ)−l x ≤ −(1− µ)
x−r

(1−µ)−r x ≥ 1− µ
0 else

,

Pm = {0.6}
Pn = {0.6}
PT = {0.9}

Ω = [−1.5, 1.5]

= [l, r]
,

with snapshots and high resolution transforms discretized by piecewise lin-
ear functions on 128 cells. For the low resolution transforms we choose x →
X(η;µ, x) as third order polynomials. They are defined by four values: Two are
used to ensure that the boundary positions do not move and two are optimized
to track the two jumps. We only compare the low and high resolution trans-
forms at the training parameter PT because by (2) the low order transform is
independent of the target µ for reconstructions from one single snapshot. For
the high resolution transforms, we use three fixed point iterations in (16) and
scaling s ∈ {0.7i : i = 0 . . . 3} in increasing size.

In Figure 3 left, we see the TSI reconstructions at PT . We see that the high
resolution transforms provide a good reconstruction, whereas the low resolution
transforms do not. We have chosen the degree of the low resolution transforms
sufficiently high so that in principle they can align the jumps. However, this
requires a rather sharp gradient, which would create a big oscillation in the
polynomial. As a result, the composition x→ u(X(η;µ, x), η) cannot be linear
in the regions where is exact solution x → u(µ, x) is. This can be seen by
carefully looking at the plot in the linear regions. Thus, the optimizer must
balance the fit in the linear regions with the aliment, which is not possible to
do accurately. In contrast, by Figure 3 right, the high resolution transforms are
almost piecewise linear with kinks at the jump locations. Therefore they can
simultaneously align the jumps and provide an accurate fit in the linear regions.
The effect can also be clearly seen in the training errors in Figure 4 left, where
the low resolution transforms saturate much earlier than the high resolution
transforms.

7.3 Testing Transform Orders

In this section, we compare different polynomial orders in η of the transforms.
To this end, we choose the example

u(x, µ) =


x−l

−p(µ)−l x ≤ −p(µ)
x−r

p(µ)−r x ≥ p(µ)

0 else

,

Pm = {0.6}
Pn = {0.6, 0.7}
PT = {0.8, 0.96}

Ω = [−1.5, 1.5]

= [l, r]
,

where p(µ) is a second order polynomial given by p(0.6) = 0.4, p(0.8) = 0.3 and
p(1) = 0. All the other parameters are set as in the example of Section 7.2. Note
in particular that the jump-set is now a parabola in parameter so that a first
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Figure 3: Results for the Example in Section 7.2. Left: Snapshots (gray), exact
function at PT (red) and TSI with low resolution (black dashed) and high reso-
lution with Laplace smoothing (cyan, dashed) and multilevel smoothing (violet,
dotted). Right: The corresponding transform with the same color coding. The
red lines are the locations of the jumps of the training snapshot (vertically) and
the target snapshots (horizontally).

order reconstruction as in the last section can no longer accurately recover u.
For a comparison, we choose Laplace smoothing once with first order transforms
(in η) with Pn = {0.6} and once with second order with Pn = {0.6, 0.7}. To be
fair, both are trained on the same training set PT as given above.

The results for µ = 0.86 are shown in Figure 5. In the function plot the
second order reconstruction looks marginally better, but a look at the training
errors reveals that they are better by a factor of about 6. The final training error
for the second order case is about twice as much as for the example of Section
7.2. This is encouraging because the profiles are identical, only the dynamic in
parameter is changed, and in the second order example we add the training error
at two training parameters, whereas we only use one in the previous example.
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Figure 4: Gradient descent errors for the examples in Sections 7.2 and 7.4. The
left picture uses the color coding of Figure 3.
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In principle, at this place we should present some plots of convergence rates.
However, these are difficult to achieve because of the error saturation. Even
if we achieve high order reconstructions, the errors need to be matched by the
discretizations of the snapshots in physical space. Since this is quite difficult
because of the jumps, we omit a more thorough convergence analysis.
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Figure 5: Results for the Example in Section 7.3. Left: Snapshots (gray), exact
function at PT (red) and TSI reconstruction with linear in η (black dashed)
and quadratic (cyan dashed) transforms. Right: The corresponding gradient
descent errors.

7.4 2d Example

Finally, we consider one example in two spacial dimensions. We use the function

u(x, y, µ) =

{
1
(
r

2µ

)2

+
(
s
µ

)2

≤ 1

0 else
,

(
r
s

)
=

(
cos(1.5µ) − sin(1.5µ)
sin(1.5µ) cos(1.5µ)

)
which is a rotated and scaled ellipse, with parameters

Pm = {c(1), c(0.3)}
Pn = {c(1)}
PT = {c(0.6), c(0)}

c(λ) = 0.2λ+ 0.05(1− λ) Ω = [−1, 1]2.

The snapshots and high resolution transforms are discretized by piecewise bilin-
ear functions on a rectangular gird with 64× 64 cells. We use three fixed point
iterations in (16) and scaling s ∈ {0.7i : i = 0 . . . 2} in increasing size.

Figure 6 shows a solution plot for µ = c(0.25) together with some of the
curves η → X(η;µ, x) originating on the boundary of the correct ellipse. Figure
4 right contains the corresponding training errors. We see that also in this 2d
example, the method can achieve a good alignment with a moderate number of
gradient descent steps.

As a final remark, note that for all experiments we use a fixed step size of
a conservative magnitude. This is necessary because of the non-smooth nature
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of the objective function. Normally, near a minimum, the gradient becomes
small so that the update between two gradient descent steps converges to zero.
In our case however, we expect a kink at the minimum, similar to minimizing
an absolute value |x|. Therefore, the gradient does not become small, which is
compensated by a small step size. The effect can be seen in the convergence
plots, where in the end the error oscillates around an equilibrium with amplitude
depending on the step size. On the other hand, far away from the minimum,
the conservative choice of the step size hinders a faster convergence.

Snapshot 0 Training Snapshot 0 Training Snapshot 1

Exact Solution Laplace

Figure 6: Results for numerical tests in Section 7.4. The top row contains the
input data and the bottom row the exact solution and TSI reconstruction. The
black lines in the last plot indicate several transforms η → X(η;µ, x) with initial
values x at the respective black ×s.

Appendix A Proof of Proposition 5.1

The following proof of Proposition 5.1 is almost verbatim from [47, Section 3].
Let us first estimate ‖v ◦X0−v ◦X1‖L1(Ω) for Xs(x) := Xs(η, µ, x) for some

fixed µ and η and some function v ∈ C1(Ω). Applying the fundamental theorem
for line integrals, we obtain

(v ◦X0)(x)− (v ◦X1)(x) =

∫ 1

0

v′(Xs(x))Ẋs(x) ds.

Note that we can regard |Ẋ(s)| as a density and thus define a transition kernel
τ(s,A) =

∫
A
|Ẋs(x)| dx. Then, with the pushforward κ(s,A) = (Xs)∗τ(s,A) =

τ(s,X−1
s (A)) and the Lebesgue measure λ1 on the real line, the definition of
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S(µ, λ) implies

(λ1 ⊗ κ)([0, 1]×A) =

∫ 1

0

κ(s,A) ds =

∫ 1

0

∫
X−1

s (A)

|Ẋs(x)| dx ds ≤ S(µ, η)|A|.

Thus, using the Fubini theorem for transition kernels we obtain

‖v ◦X0 − v ◦X1‖L1(Ω)

≤
∫

Ω

∫ 1

0

|v′(Xs(x))||Ẋs(x)|dsdx =

∫ 1

0

∫
Ω

|v′(Xs(x))|τ(s, dx) ds

=

∫ 1

0

∫
Ω

|v′(y)|κ(s, dy) ds =

∫
[0,1]×Ω

|v′(y)|d(λ1 ⊗ κ)(s, y)

≤ S(µ, η)

∫
Ω

|v′(y)|dy = S(µ, η)‖v‖BV (Ω).

(27)

Next, we extend this estimate from functions v ∈ C1(Ω) to functions v ∈ BV (Ω)
by a density argument. To this end, note that for all ε > 0 there is a vε ∈ C1(Ω)
such that

‖v − vε‖L1(Ω) ≤ ε ‖v′ε‖L1(Ω) ≤ ‖v‖BV (Ω) + ε.

Thus, to apply a density argument, is suffices to bound ‖v ◦X0 − vε ◦X0‖L1(Ω)

and ‖v ◦X1 − vε ◦X1‖L1(Ω). Since by assumption (Xs)∗λ(A) ≤ Bλ(A) for all
measurable sets A, we conclude that

‖v ◦X0 − vε ◦X0‖L1(Ω) =

∫
Ω

|v(y)− vε(y)|d(X0)∗λ(y)

≤ B‖v − vε‖L1(Ω)

The bound for ‖v ◦X1 − vε ◦X1‖L1(Ω) follows analogously.
Finally, recalling that Xs(x) = Xs(η;µ, x), we apply the estimate (27) to

the full TSI and obtain

‖um(·, µ;X0)− um(·, µ,X1)‖L1(Ω)

≤
∑
η∈Pm

|`η(µ)|‖u(X0(η;µ, ·), η)− u(X1(η;µ, ·), η)‖L1(Ω)

≤ Λn max
η∈Pm

‖u(X0(η;µ, ·), η)− u(X1(η;µ, ·), η)‖L1(Ω)

≤ Λn max
η∈Pm

[
S(µ, η)‖u(·, η)‖BV (Ω)

]
.
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[16] B. Després, G. Poëtte, and D. Lucor. Robust Uncertainty Propagation
in Systems of Conservation Laws with the Entropy Closure Method, pages
105–149. Springer International Publishing, Cham, 2013.

[17] J.-F. Gerbeau and D. Lombardi. Reduced-order modeling based on ap-
proximated lax pairs. Technical report, INRIA, 2012. http://arxiv.org/
pdf/1211.4153v1.

[18] J.-F. Gerbeau and D. Lombardi. Approximated lax pairs for the reduced
order integration of nonlinear evolution equations. Journal of Computa-
tional Physics, 265:246 – 269, 2014.

[19] B. Haasdonk and M. Ohlberger. Reduced basis method for explicit finite
volume approximations of nonlinear conservation laws. In Procceedings of
the 12th International Conference on Hyperbolic Problems: Theory, Nu-
merics, Application, College Park, Maryland, USA, June 09-13 2008.

[20] B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume ap-
proximations of parametrized linear evolution equations. ESAIM: M2AN,
42(2):277–302, 2008.

[21] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods
for Parametrized Partial Differential Equations. Springer, 2015.

[22] A. Iollo and D. Lombardi. Advection modes by optimal mass transfer.
Phys. Rev. E, 89:022923, Feb 2014.

[23] S. Jin, D. Xiu, and X. Zhu. A well-balanced stochastic galerkin method for
scalar hyperbolic balance laws with random inputs. Journal of Scientific
Computing, 67(3):1198–1218, 2016.

[24] K. C. Kiwiel. Methods of descent for nondifferentiable optimization, volume
1133 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985.

[25] Q. Li, J.-G. Liu, and R. Shu. Sensitivity analysis of burger’s equation with
discontinuous shocks. 2018.

25

http://arxiv.org/pdf/1211.4153v1
http://arxiv.org/pdf/1211.4153v1


[26] S. Mishra and C. Schwab. Sparse tensor multi-level monte carlo finite
volume methods for hyperbolic conservation laws with random initial data.
Math. Comp., 81:1979–2018, 2012.

[27] R. Mojgani and M. Balajewicz. Lagrangian basis method for dimensionality
reduction of convection dominated nonlinear flows. 2017.

[28] N. J. Nair and M. Balajewicz. Transported snapshot model order reduc-
tion approach for parametric, steady-state fluid flows containing parameter
dependent shocks. Preprint https://arxiv.org/abs/1712.09144, 2017.

[29] N.-C. Nguyen, G. Rozza, and A. Patera. Reduced basis approximation
and a posteriori error estimation for the time-dependent viscous burgers’
equation. Calcolo, 46(3):157–185, 2009.

[30] M. Ohlberger and S. Rave. Nonlinear reduced basis approximation of pa-
rameterized evolution equations via the method of freezing. Comptes Ren-
dus Mathematique, 351(23–24):901 – 906, 2013.

[31] M. Ohlberger and S. Rave. Reduced basis methods: Success, limitations
and future challenges. In D. Handlovičová, A. Ševčovič, editor, Proceedings
of the Conference Algoritmy 2016, pages 1–12. Publishing House of Slovak
University of Technology in Bratislava, 2016.

[32] P. Pacciarini and G. Rozza. Stabilized reduced basis method for
parametrized advection–diffusion PDEs. Computer Methods in Applied Me-
chanics and Engineering, 274(0):1 – 18, 2014.

[33] B. Peherstorfer. Model reduction for transport-dominated problems via
online adaptive bases and adaptive sampling. 2018.

[34] P. Pettersson, Q. Abbasb, G. Iaccarino, and J. Nordström. Efficiency of
shock capturing schemes for burgers’ equation with boundary uncertainty.
In Seventh South African Conference on Computational and Applied Me-
chanics SACAM10, 2010.

[35] P. Pettersson, G. Iaccarino, and J. Nordström. A stochastic galerkin
method for the euler equations with roe variable transformation. Jour-
nal of Computational Physics, 257, Part A:481 – 500, 2014.

[36] R. Pulch and D. Xiu. Generalised polynomial chaos for a class of linear
conservation laws. Journal of Scientific Computing, 51(2):293–312, 2012.

[37] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for
Partial Differential Equations. Springer, 2015.

[38] J. Reiss, P. Schulze, and J. Sesterhenn. The shifted proper orthogonal
decomposition: A mode decomposition for multiple transport phenomena.
https://arxiv.org/abs/1512.01985, 2015.

26

https://arxiv.org/abs/1712.09144
https://arxiv.org/abs/1512.01985


[39] D. Rim and K. Mandli. Displacement interpolation using monotone rear-
rangement. SIAM/ASA Journal on Uncertainty Quantification, 6(4):1503–
1531, 2018.

[40] D. Rim and K. Mandli. Model reduction of a parametrized scalar hyperbolic
conservation law using displacement interpolation. 2018.

[41] D. Rim, S. Moe, and R. J. LeVeque. Transport reversal for model reduc-
tion of hyperbolic partial differential equations. https://arxiv.org/abs/
1701.07529, 2017.

[42] P. Schulze, J. Reiss, and V. Mehrmann. Model reduction for a pulsed
detonation combuster via shifted proper orthogonal decomposition. 2018.

[43] Taddei, T., Perotto, S., and Quarteroni, A. Reduced basis techniques for
nonlinear conservation laws. ESAIM: M2AN, 49(3):787–814, 2015.
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