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1. Introduction

A subset S ⊂ C∗ := C \ {0} is called a zero-free region for the
permanent if the permanent of a square matrix (of any size n) with
entries in S is necessarily nonzero. The motivation for studying such
regions comes from the work of A. Barvinok ([B1]), where he shows
that the logarithm of the permanent of such a matrix can be com-
puted within error ε in quasi-polynomial time nO(logn−log ε) (while the
problem of efficient computation of general permanents is hopelessly
hard). Namely, it is shown in [B1] that the disk |z − 1| ≤ 1/2 and a
certain family of rectangles are zero-free regions, which enables efficient
approximate computation of permanents of matrices with entries from
these regions.1

The goal of this note is to give a systematic method of constructing
zero-free regions for the permanent. We do so by refining the approach
of [B1] using the clever observation that a certain restriction on a set S
involving angles implies zero-freeness ([B1]); we call sets satisfying this
requirement angle-restricted. This allows us to reduce the question to a
low-dimensional geometry problem (notably, independent of the size of
the matrix!), which can then be solved more or less explicitly. We give
a number of examples, improving some results of [B1]. This technique
also applies to more general problems of a similar kind, discussed in
[B2].

Acknowledgements. This paper was inspired by the Simons lec-
tures of A. Barvinok at MIT in April 2019; namely, it is a (partial)
solution of a “homework problem” given in one of these lectures. I
am very grateful to A. Barvinok for useful discussions, suggestions and
encouragement. I am also very indebted to two anonymous referees for
thorough reading of the paper and very useful comments and correc-
tions.

I dedicate this paper to the memory of my teacher Elena Valerievna
Glivenko, Professor of Applied Mathematics at the Moscow Oil and
Gas Institute, where I was a student in the late 1980s. Her teaching
and care made an enormous difference for all of us.

1We note that a (randomized) efficient algorithm for computing the permanent
of a matrix with nonnegative entries was proposed earlier in [JSV].
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2. Definition and basic properties of angle-restricted
sets

For u, v ∈ C∗ let α(u, v) ∈ [0, π] be the angle between u and v. Let
θ, φ ∈ (0, 2π/3). Note that if u1, ..., un ∈ C∗ are such that α(ui, uj) ≤ θ
then there exists λ ∈ C∗ such that |arg(λui)| ≤ θ/2 for all i (where we
agree that arg(z) takes values in (−π, π]).

Definition 2.1. (i) We denote by Aθ,φ the set of subsets S ⊂ C∗ such
that for any u1, ..., un ∈ C∗ with α(ui, uj) ≤ θ for all i, j and any
a1, ..., an, b1, ..., bn ∈ S, the numbers v =

∑
i aiui and w =

∑
i biui are

nonzero and α(v, w) ≤ φ. In other words, if ui belong to the angle
|arg(z)| ≤ θ/2 then there exists µ ∈ C∗ such that µv, µw belong to
the angle |arg(u)| ≤ φ/2. We say that a set S ⊂ C∗ is (θ, φ)-angle
restricted if S ∈ Aθ,φ. If θ = φ then we denote Aθ,φ by Aθ.

(ii) We denote by A2
θ,φ the set of subsets S ⊂ C∗ such that for any

a, b, c, d ∈ S the map z 7→ az+b
cz+d

maps the angle {z ∈ C∗ : |arg(z)| ≤ θ}
into the angle {u ∈ C∗ : |arg(u)| ≤ φ}. In other words, S ∈ A2

θ,φ if and
only if any a, b, c, d ∈ S satisfy the condition of (i) for n = 2. We
denote A2

θ,θ by A2
θ.

(iii) We denote by B2
θ,φ the set of subsets S ⊂ C∗ such that for any

a, b ∈ S the map z 7→ az+b
z+1

maps the angle {z ∈ C∗ : |arg(z)| ≤ θ} into

the angle {u ∈ C∗ : |arg(u)| ≤ φ/2}. We denote B2
θ,θ by B2

θ .

Remark. Condition (i) for n = 2 says that for any u1, u2 ∈ C∗ with
α(ui, uj) ≤ θ and a, b, c, d ∈ S we have α(au1 + bu2, cu1 + du2) ≤ φ.
This can be written as |arg(az+b

cz+d
)| ≤ φ, where z := u1/u2, which implies

that the two definitions of A2
θ,φ in (ii) are equivalent.

It is clear that Aθ,φ ⊂ A2
θ,φ and B2

θ,φ ⊂ A2
θ,φ (as az+b

cz+d
= az+b

z+1
· z+1
cz+d

),

and that Aθ,φ, A
2
θ,φ are invariant under rescaling by a nonzero complex

number, while B2
θ,φ is invariant under rescaling by a positive real num-

ber. Also it is obvious that if S belongs to any of these sets then so do
all subsets of S. Finally, it is clear that any ray emanating from 0 is in
Aθ, so we will mostly be interested in sets S that are not contained in
a line.

The motivation for studying these notions comes from the following
result of A. Barvinok ([B1]).

Theorem 2.2. (i) If S ∈ Aπ/2 then any square matrix with entries
from S has nonzero permanent.

(ii) The disk |z − 1| ≤ 1/2 is in Aπ/2.
2



This implies that any square matrix with entries aij such that
|aij − 1| ≤ 1/2 has nonzero permanent. This allowed A. Barvinok
to give in [B1] an algorithm for efficient approximate computation of
(logarithms of) permanents of such matrices with good precision.

The sets Aθ,φ for more general θ and φ, also studied by A. Barvi-
nok, have similar properties and applications (see [B1, B2]). Namely,
as explained in [B2], the condition that S ∈ Aθ,φ for suitable θ and φ
guarantees that some quite general combinatorially defined multivari-
ate polynomials P (z1, ..., zn), such as the graph homomorphism parti-
tion function, are necessarily non-zero whenever z1, ..., zn ∈ U , and can
be efficiently approximated there.

The sets A2
θ,φ, B2

θ,φ introduced here play an auxiliary role, but they
are fairly easy to study (as their definition involves a small number of
parameters), and yet we will show that a convex set belonging to A2

θ,φ

must belong to Aθ,φ.

Proposition 2.3. (i) If S ∈ A2
θ,φ and a, b ∈ S then α(a, b) < π − θ

and α(a, b) ≤ φ.
(ii) If S ∈ A2

θ,φ and a1, ..., an ∈ S then for any u1, ..., un ∈ C∗ with
α(ui, uj) ≤ θ for all i, j we have

∑
j ajuj 6= 0.

Proof. (i) If a, b ∈ S then au1 + bu2 does not vanish if α(u1, u2) ≤ θ.
Suppose b/a = reiψ where 0 ≤ ψ ≤ π (this can always be achieved
by switching a, b if needed). Then ψ < π − θ, since otherwise we may
take u2 = 1, u1 = −b/a (so that α(u1, u2) ≤ θ) and au1 + bu2 = 0, a
contradiction. Also ψ ≤ φ, since otherwise α(au1 + bu2, a(u1 + u2)) for
u1 = 1 and u2 = N � 1 will exceed φ.

(ii) By (i) we have α(ai, aj) < π− θ and α(ai, aj) ≤ φ < 2π/3. Thus
after rescaling by a complex scalar we may assume that

|arg(aj)| <
1

2
(π − θ)

for all j. Let u1, ..., un ∈ C∗ with pairwise angles ≤ θ. By rescaling
by a complex scalar we may make sure that |arg(uj)| ≤ θ/2. Then
|arg(ajuj)| < π/2, so Re(ajuj) > 0 for all j. Thus

∑
j ajuj 6= 0. �

Proposition 2.4. Let φ ≤ π/2. Then a set S ⊂ C∗ is in A2
θ,φ if

and only if for all a, b, c, d ∈ S the map z 7→ az+b
cz+d

maps the angle
{z ∈ C∗ : |arg(z)| ≤ θ} into {u ∈ C∗ : |arg(u)| ≤ φ} ∪ {0,∞}.

Proof. Only the “if” direction requires proof. It suffices to show that
for a, b ∈ S and z ∈ C∗ with |arg(z)| ≤ θ one has az + b 6= 0. As-
sume the contrary. For any c ∈ S, the map w 7→ aw+b

cw+c
must map the

angle |arg(z)| ≤ θ to the set {u ∈ C∗ : |arg(u)| ≤ φ} ∪ {0,∞}, while
3



mapping z to 0. Considering these maps for c = a, b near w = z (with
w/z > 0) and using that φ ≤ π/2, we get that b/a > 0, i.e., z < 0, a
contradiction. �

3. Convexity and reduction to n = 2

The following theorem reduces checking that a convex set is (θ, φ)-
angle restricted to checking that it is in A2

θ,φ, which is just a low-
dimensional geometry problem.

Theorem 3.1. (i) If S ∈ Aθ,φ then so is the convex hull of S.
(ii) If S ∈ A2

θ,φ is convex then S ∈ Aθ,φ.

Proof. (i) Let CH(S) be the convex hull of S. Assume S ∈ Aθ,φ.
Let a1, ..., an, b1, ..., bn ∈ CH(S). Then ai =

∑
j rijaij where aij ∈ S,

rij > 0 and
∑

j rij = 1. Similarly, bi =
∑

k sikbik where bik ∈ S, sik > 0

and
∑

k sik = 1. Let u1, ..., un ∈ C∗ with angle between each two ≤ θ.
Let uijk = rijsikui. Consider

v :=
∑
i,j,k

aijuijk =
∑
i,j,k

aijrijsikui =
∑
i,k

aisikui =
∑
i

aiui

and

w :=
∑
i,j,k

bikuijk =
∑
i,j,k

bikrijsikui =
∑
i,j

birijui =
∑
i

biui.

Since aij, bik ∈ S, we have that v, w 6= 0 and the angle between them
does not exceed φ. Thus CH(S) ∈ Aθ,φ.

(ii) Denote by Rn,θ ⊂ CPn−1 the set of points u = (u1, ..., un) such
that the pairwise angles between ui and uj (when both are nonzero)
are at most θ. It is clear that Rn,θ is closed (hence compact). By
Proposition 2.3(ii) for any a1, ..., an ∈ S we have

∑
j ajuj 6= 0. Now fix

a1, ..., an, b1, ..., bn ∈ S and consider the function

f(u1, ..., un) = Im log

∑
j ajuj∑
j bjuj

(we choose a single-valued branch of this function). The function f is
harmonic on Rn,θ in each variable. Let u ∈ Rn,θ be a global maximum
or minimum point of f . By the maximum principle2, we may choose
u = (u1, ..., un) so that each ui is zero or has argument ±θ/2. By
reducing n if needed and relabeling, we may assume that all uj are

2Note that using the coordinates vi := ui∑n
j=1 uj

, 1 ≤ i ≤ n − 1, we may identify

Rn,θ with a closed region in Cn−1. Thus we may apply the maximum principle for
harmonic functions on subsets of a Euclidean space.

4



nonzero and that uj = rje
iθ/2 for j = 1, ...,m and uj = rje

−iθ/2 for
j = m+ 1, ..., n, where rj > 0 for all j. By rescaling by a positive real
number, we may assume that

∑m
j=1 rj = r and

∑n
j=m+1 rj = 1. Thus

we have

v =
∑
j

ajuj = areiθ/2 + be−iθ/2, w =
∑
j

bjuj = creiθ/2 + de−iθ/2,

where

a =
m∑
j=1

ajrj/r, b =
n∑

j=m+1

ajrj, c =
m∑
j=1

bjrj/r, d =
n∑

j=m+1

bjrj.

Since S is convex and a, b, c, d are convex linear combinations of the
numbers {aj, j ≤ m}, {aj, j > m}, {bj, j ≤ m}, {bj, j > m} respectively,
we get that a, b, c, d ∈ S. Thus, using that S ∈ A2

θ,φ and setting

z = reiθ, we see that the angle between v and w does not exceed φ, as
claimed. �

Lemma 3.2. Let S ∈ A2
θ,π/2, and a, b ∈ S with b/a = x+ iy, x, y ∈ R.

Then we have x ≥ 0 and

(1) |y| ≤ 2
√
x+ (x+ 1) cos θ

sin θ
,

and if θ > π/2 then

(2)

(
x+

1

cos θ

)2

+ y2 ≤ tan2 θ.

In particular, if θ > π/2 then

1− sin θ

| cos θ|
≤ x ≤ 1 + sin θ

| cos θ|
,

i.e., b/a is separated from the imaginary axis and from infinity (so any
S ∈ A2

θ,π/2 is bounded). Moreover, conditions (1),(2), together with

condition (1) with a and b switched are also sufficient for the set {a, b}
to be in A2

θ,π/2.

Proof. Let a, b ∈ S with b/a = x + iy. Pick u1 = re±iθ, u2 = 1. The
angle between au1 + bu2 and au1 +au2 does not exceed π/2. Hence the
real part of au1+bu2

au1+au2
is non-negative. Thus, we have

Re

(
re±iθ + x+ iy

re±iθ + 1

)
≥ 0, ∀r > 0.

This yields

Re
(
(re±iθ + x+ iy)(re∓iθ + 1)

)
≥ 0, ∀r > 0,

5



i.e.,

r2 + ((x+ 1) cos θ ± y sin θ)r + x ≥ 0, ∀r > 0.

This implies that x ≥ 0, and minimizing with respect to r, we get

(x+ 1) cos θ ± y sin θ ≥ −2
√
x,

which yields

|y| ≤ 2
√
x+ (x+ 1) cos θ

sin θ
,

as claimed.
Similarly, the real part of au1+bu2

bu1+au2
is non-negative. Thus, we have

Re

(
re±iθ + x+ iy

(x+ iy)re±iθ + 1

)
≥ 0, ∀r > 0.

This yields

Re((re±iθ + x+ iy)((x− iy)re∓iθ + 1)) ≥ 0, ∀r > 0,

i.e.

xr2 + (x2 + y2 + 1)r cos θ + x ≥ 0,∀r > 0.

This is satisfied automatically if θ ≤ π/2, but if θ > π/2 then minimiz-
ing the left hand side with respect to r gives the condition

(x2 + y2 + 1) cos θ + 2x ≥ 0,

which is equivalent to (2).
Finally, to check that {a, b} ∈ A2

θ,π/2, it suffices to check that for any
u1, u2 ∈ C∗ that are within angle θ of each other, the angles

α(au1 +bu2, au1 +au2), α(au1 +bu2, bu1 +au2), α(au1 +bu2, bu1 +bu2)

do not exceed π/2. These angles are harmonic functions of u1/u2, so
the maximum has to be attained on the boundary. Hence it suffices to
choose u1 = re±iθ and u2 = 1. Thus, conditions (1),(2), together with
condition (1) with a and b switched are sufficient for the set {a, b} to
be in A2

θ,π/2, as claimed. �

Thus we see that the region for b/a is bounded by two parabolas
given by (1) and their inversions under the circle |z| = 1, as well as
the circle given by (2) if θ > π/2 (note that this circle is stable under
inversion).

Proposition 3.3. Suppose that φ ≤ π/2. Then
(i) if S ∈ A2

θ,φ then the closure S of S in C∗ belongs to A2
θ,φ;

(ii) if S ∈ A2
θ,φ then the convex hull CH(S) of S belongs to A2

θ,φ.
6



Proof. (i) follows by continuity from Proposition 2.4, since the set
{u ∈ C∗ : |arg(u)| ≤ φ} ∪ {0,∞} is closed in the Riemann sphere.

(ii) Let a, b, b′, c, d ∈ C∗ be such that the maps z 7→ az+b
cz+d

and

z 7→ az+b′

cz+d
satisfy the condition of Proposition 2.4, r ∈ [0, 1] and

b′′ := rb+ (1− r)b′. We claim that the map z 7→ az+b′′

cz+d
also satisfies the

condition of Proposition 2.4. It suffices to show this for z 6= −d/c. We
have

az + b′′

cz + d
= r

az + b

cz + d
+ (1− r)az + b′

cz + d
,

and az+b
cz+d

, az+b
′

cz+d
belong to the set {u ∈ C∗ : |arg(u)| ≤ φ}∪{0}, which is

convex since φ ≤ π/2. Hence az+b′′

cz+d
also belongs to this set, as claimed.

Also note that the condition of Proposition 2.4 is invariant under
the transpositions (a, b, c, d) 7→ (b, a, d, c) and (a, b, c, d) 7→ (c, d, a, b),
which generate a group Z2 × Z2 acting transitively on a, b, c, d. Now
(ii) follows by using this symmetry and applying the above claim four
times (to each of the four variables a, b, c, d). �

This proposition gives a simple method of constructing convex poly-
gons which are in A2

θ,π for φ ≤ π/2 by doing a finite check on the
vertices. We will see examples of this below.

4. The sets A2
π/2 and B2

π/2

From now on we focus on the case θ = φ = π/2 relevant for zero-free
regions for the permanent. The general case can be treated by similar
methods.

4.1. Explicit characterization. Let us give a more explicit charac-
terization of the sets A2

θ and B2
θ for θ = π/2. Let

F (a, b, c, d) = (Im(ad̄− bc̄))2 − 4Re(ac̄)Re(bd̄),

and

G1(a, b) = (a2 − b2)2 − 4a1b1, G2(a, b) = (a1 − b1)2 − 4a2b2,

where a1 + ia2 = eiπ/4a, b1 + ib2 = eiπ/4b, aj, bj ∈ R. Note that

F (a, b, c, d) = F (b, a, d, c) = F (c, d, a, b) = F (d, c, b, a).

Lemma 4.1. (i) S ∈ A2
π/2 if and only if for any a, b, c, d ∈ S we have

F (a, b, c, d) ≤ 0.
(ii) S ∈ B2

π/2 if and only if |arg(a)| ≤ π/4 for a ∈ S, and for any

a, b ∈ S we have G1(a, b) ≤ 0, G2(a, b) ≤ 0.
7



Proof. (i) Suppose that F (a, b, c, d) ≤ 0 for all a, b, c, d ∈ S. Then
Re(ac̄) ≥ 0 for all a, c ∈ S (as we can take b = d). Therefore,
az+b
cz+d
6= 0 when Re(z) ≥ 0. Indeed, otherwise, we must have Re(b/a) =

|a|−2Re(bā) ≤ 0, so Re(b/a) = 0 and b/a = it for some real t 6= 0. But
then F (a, b, a, a) = t2|a|4 > 0, a contradiction.

Thus by the definition of A2
π/2, it suffices to show that for a, b, c, d ∈ S

one has Reaz+b
cz+d
≥ 0 whenever z = it, t ∈ R. We have

ait+ b

cit+ d
=

(ait+ b)(−c̄it+ d̄)

|cit+ d|2

and

Re
(
(ait+ b)(−c̄it+ d̄)

)
= Re(ac̄)t2 − Im(ad̄− bc̄)t+ Re(bd̄).

Since Re(ac̄),Re(bd̄) ≥ 0, the condition for this to be ≥ 0 is that the
discriminant of this quadratic function is ≤ 0, which gives the result.

Conversely, if S ∈ A2
π/2 then the above calculation shows that

F (a, b, c, d) ≤ 0 for all a, b, c, d ∈ S.
(ii) Let a′ = eiπ/4a = a1 + ia2, b

′ = eiπ/4b = b1 + ib2. The condition
on a′, b′ is that for t ∈ R we have Rea

′it+b′

it+1
≥ 0 and Ima′it+b′

it+1
≥ 0. We

have
a′it+ b′

it+ 1
=

(a′it+ b′)(−it+ 1)

t2 + 1
,

and
(a′it+ b′)(−it+ 1) = a′t2 + (a′ − b′)it+ b′ =

= (a1t
2 − (a2 − b2)t+ b1) + i(a2t

2 + (a1 − b1)t+ b2).

Since a1, a2, b1, b2 ≥ 0 (as seen by setting t = 0 and t = ∞), the
condition is that the discriminants of these two quadratic functions
must be ≤ 0, which gives the result. �

4.2. Examples.

Example 4.2. Lemma 4.1(ii) implies that the interval [a, b] ⊂ R for
0 < a ≤ b is in B2

π/2 iff b/a ≤ 3 + 2
√

2.

Example 4.3. Let a = 1/2, b = 1 + i/2, c = 1− i/2 and d = 3/2 + t.
Let us find the largest t > 0 for which {a, b, c, d} is in B2

π/2 (hence in

A2
π/2). Since a, b, c belong to the disk |z − 1| ≤ 1/2, which was shown

by A. Barvinok in [B1] to belong to B2
π/2, it suffices to check when

Gi(a, d) ≤ 0, Gi(b, d) ≤ 0, Gi(c, d) ≤ 0. The first condition gives the
inequality of Example 4.2, which is 3 + 2t ≤ 3 + 2

√
2, i.e. t ≤

√
2.

The second (or, equivalently, third) condition gives the inequalities
t2 ≤ 2t + 3, (1 + t)2 ≤ 3(2t + 3) which hold for 0 ≤ t ≤

√
2. Thus

8



we find that the optimal value is t =
√

2 and the quadrilateral with
vertices 1/2, 1± i/2 and 3

2
+
√

2:
1.5 

1.0 

0.5

y 0.0

-0.5

-1.0

-1.5
�-�-�-��-�-�-�-�-�-�� 

0.0 0.5 1.0 1.5 

X 

2.0 2.5 3.0 

is in A2
π/2, hence in Aπ/2 by Proposition 3.3(ii); thus it is a zero-free

region for the permanent.

Example 4.4. Let us find the values of t > 1/2 for which the union of
the disk |z−1| ≤ 1/2 and the point 1+t belongs to B2

π/2 (hence to A2
π/2).

Such t are determined by the condition that G1(1+ 1
2
ei(φ−π/4), 1+t) ≤ 0

for all φ (the condition involving G2 is the same due to axial symmetry).
This can be written as

(t+
1√
2

cosφ)2 ≤ 4(1 + t)(1 +
1√
2

sinφ)

for all φ. This gives

t ≤ 2+
√

2 sinφ−
√

2

2
cosφ+

√
6
√

2 sinφ− 2
√

2 cosφ− sin 2φ− cos 2φ+ 9,

and minimizing this function (numerically), we get the answer

t ≤ t∗ = 1.64.....

Thus the ice cream cone, which is the convex hull of the disk |z− 1| ≤
1/2 and the point 1 + t∗ (significantly larger than the disk):

belongs to A2
π/2, hence to Aπ/2 by Proposition 3.3(ii), and thus is a

zero-free region for the permanent.
9



Example 4.5. Let S = {a, b}, and b/a = x+ iy. Let us compute when
S ∈ A2

π/2. By Lemma 3.2 the conditions for this are

y2 ≤ 4x, y2 ≤ 4x(x2 + y2).

This gives

(3) |y| ≤ 2
√
x; and |y| ≤ 2x3/2√

1− 4x
, x < 1/4.

So we get a region which is bounded by a parabola and its inversion
with respect to the circle |z| = 1, which is a cissoid of Diocles:

By Proposition 3.3, this is also the necessary and sufficient condition
for the segment [a, b] ⊂ C∗ to be in A2

π/2.

Example 4.6. Consider now a 3-element set S = {1, a, b} and let us
give a necessary condition for it to be in A2

π/2.

Proposition 4.7. Assume a /∈ R. Then one has

a1
(|1 + a| − 1− a1)2

a22
≤ b1 ≤ a1

(|1 + a|+ 1 + a1)
2

a22
,

where a = a1 + ia2, b = b1 + ib2 and a1, a2, b1, b2 ∈ R. In other words,

one has K−1 ≤ b1
a1
≤ K, where K := (|1+a|+1+a1)2

a22
. Thus any S ∈ A2

π/2

which is not contained in a line is bounded and separated from the
origin.

Proof. We have the inequalities F (a, 1, 1, b) ≤ 0 and F (a, b, 1, 1) ≤ 0,
which yields

(a1b2 − a2b1)2 ≤ 4a1b1, (a2 − b2)2 ≤ 4a1b1,

or, equivalently,

(4) |a1b2 − a2b1| ≤ 2
√
a1b1, |a2 − b2| ≤ 2

√
a1b1.

10



From the second inequality in 4 we have

(5) |b2| ≤ 2
√
a1b1 + |a2|.

Hence

|a1b2| ≤ (2
√
a1b1 + |a2|)a1.

Thus

|a2b1| ≤ 2
√
a1b1 + |a1b2| ≤ 2(1 + a1)

√
a1b1 + |a2|a1.

Hence

b1 ≤
2(1 + a1)

√
a1b1

|a2|
+ a1

This yields

b1 ≤ a1
(|1 + a|+ 1 + a1)

2

a22
,

as claimed. From this we also have

|a2| ≤ 2
√
a1b1 + |b2| ≤ 2

√
a1b1 +

2
√
a1b1 + |a2|b1

a1
,

which yields

b1 ≥
a1(|1 + a| − 1− a1)2

a22
,

again as claimed. Now (5) implies that S is bounded if it is not con-
tained in a line. �

4.3. Rectangular and trapezoidal regions. Let us now try to char-
acterize rectangular and trapezoidal regions which are in A2

π/2 (hence

in Aπ/2).

Proposition 4.8. (i) Let L,M,N > 0 and R(M,L,N) be the rectangle
M ≤ x ≤M + L, |y| ≤ N . Then R(M,L,N) ∈ A2

π/2 if

N ≤ 2M3/2

√
L+ 24M

.

(ii) Let 0 < M < L and T (M,L, t) be the trapezoid

M ≤ x ≤ L, |y| ≤ tx.

Then T (M,L, t) ∈ A2
π/2 if t <

√
2− 1 and

L ≤M

(
t2 + t−2 − 4 + (t−1 − t)

√
t2 + t−2 − 6

2

)1/2

= Mt−1(1 + o(t)) as t→ 0.
11



Proof. In coordinates the desired basic inequality F (a, b, c, d) ≤ 0 looks
like

(a2d1 − a1d2 − b2c1 + b1c2)
2 ≤ 4(a1c1 + a2c2)(b1d1 + b2d2),

where the subscript 1 denotes the real part and the subscript 2 the
imaginary part (i.e., a1 = Re(a), a2 = Im(a) etc.).

(i) Since the absolute values of a2, b2, c2, d2 don’t exceed N , the basic
inequality would follow from the inequality

N2(a1 + b1 + c1 + d1)
2 ≤ 4(a1c1 −N2)(b1d1 −N2) =

= 4a1c1b1d1 − 4N2(a1c1 + b1d1) +N4.

(as long as N ≤ M , which follows from the inequality in (i)). This, in
turn, would follow from the inequality

N2((a1 + b1 + c1 + d1)
2 + 4(a1c1 + b1d1)) ≤ 4a1c1b1d1.

Let q be the largest of a1, b1, c1, d1 and p the second largest. Then the
latter inequality would follow from the inequality

N2((a1 + b1 + c1 + d1)
2 + 4(a1c1 + b1d1)) ≤ 4M2pq.

Now observe that on the left hand side we have 24 quadratic monomials
in a1, b1, c1, d1, which are all ≤ pq except one, which is q2 ≤ (M +L)q.
So the last inequality would follow from the inequality

N2(23p+M + L) ≤ 4M2p,

or

N2(M + L) ≤ p(4M2 − 23N2).

This, in turn, follows from the inequality

N2(M + L) ≤M(4M2 − 23N2),

or

N2(L+ 24M) ≤ 4M3,

giving

N ≤ 2M3/2

√
L+ 24M

,

as claimed.
(ii) Since |a2| ≤ ta1, |b2| ≤ tb1, |c2| ≤ tc1, |d2| ≤ td1, the basic

inequality would follow from the inequality

4t2(a1d1 + b1c1)
2 ≤ 4(1− t2)2a1c1b1d1,

which is equivalent to the inequality

t2(a21d
2
1 + b21c

2
1) ≤ (1− 4t2 + t4)a1b1c1d1,
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or µ+ 1
µ
≤ t−2− 4 + t2, where µ = a1d1

b1c1
. The largest value of this ratio

is L2/M2, so it sufficient to require that

L2

M2
+
M2

L2
≤ t2 − 4 + t−2 := T.

This is satisfied whenever

L ≤M

(
T +
√
T 2 − 4

2

)1/2

,

as claimed. �

In particular, if L = 1 and M is small then for the rectangle we
have N = 2M3/2(1 + o(M)). Comparing this to the bound (3), we see
that this is sharp up to a factor 1 + o(M). This also relaxes the bound
N ≤ CM2 from [B1].

Also for the trapezoid we have M ≥ t(1 + o(t)), so its short side has
half-length N = tM , so the largest possible N is ∼M2.

4.4. Maximal angle-restricted sets. From now on we will only con-
sider closed convex sets S, since we have seen in Proposition 3.3 that
if S ∈ A2

π/2 then so do its closure and its convex hull, and a convex set

is in Aπ/2 iff it is in A2
π/2.

It is clear from Zorn’s lemma that any (π/2, π/2)-angle restricted
set is contained in a maximal one, which is necessarily closed and con-
vex. The problem of finding and classifying maximal (π/2, π/2)-angle-
restricted sets is a special case of a more general problem of optimal
control theory – to find maximal regions R with the property that a
given function F (z1, ..., zn) is ≤ 0 when all zi ∈ R; one of the simplest
and best known problems from this family is to describe curves of con-
stant width ` (in this case F (z1, z2) = |z1− z2|2− `2). As is typical for
such problems, the problem of describing maximal regions in Aπ/2 is
rather nontrivial; presumably, it can be treated by the methods of the
book [BCGGG].

Maximal regions can also be constructed as limits of nested sequences
Πn of convex n-gons, each obtained from the previous one by “pushing
out” a point on one of the sides as far as it can go while still preserv-
ing the property of being in Aπ/2. This approach should be good for
numerical computation of maximal regions, since the verification that
the region is in A2

π/2 (equivalently, in Aπ/2) is just a finite check on the
vertices of the polygon.

Here we will not delve into this theory and will restrict ourselves to
proving the following result. Let µS(a) := maxb,c,d∈SF (a, b, c, d). We
have seen that S ∈ Aπ/2 iff µS(a) ≤ 0 ∀a ∈ S.

13



Proposition 4.9. A closed convex set S ∈ Aπ/2 (not contained in a
line) is maximal iff µS(a) = 0 for all a ∈ ∂S.

Proof. Note that S is bounded by Proposition 4.7, hence compact.
Suppose S ∈ Aπ/2 is maximal and a ∈ ∂S is such that there are no
b, c, d ∈ S with F (a, b, c, d) = 0. Then µS(a) = −ε < 0. Now take
sufficiently small δ and let S ′ = S ∪ {|z − a| ≤ δ}, which is strictly
larger than S as a ∈ ∂S. Let us maximize F (x, b, c, d) over x, b, c, d ∈
S ′. If these points are further than δ from a then they are in S so
F (x, b, c, d) ≤ 0. Otherwise, if one of them is δ-close to a, say, x (it
does not matter which one because of the permutation symmetry of F ),
then F (x, b, c, d) ≤ F (a, b, c, d) + ε ≤ 0 (a number δ with this property
exists due to uniform continuity of F on S). So S ′ and its convex hull
are in Aπ/2, contradicting the assumption that S is maximal.

Conversely, suppose µS(a) = 0 on ∂S, let S ′ ⊃ S be a larger convex
region. Then there exists a ∈ ∂S which is an interior point of S ′. Also
there exist b, c, d ∈ S with F (a, b, c, d) = 0. But for fixed b, c, d the
function F (z, b, c, d) is inhomogeneous quadratic in z, z̄ with nonnega-
tive degree 2 part, which implies that there is a point a′ arbitrarily close
to a with F (a′, b, c, d) > 0. Hence S ′ /∈ Aπ/2 and S is maximal. �

Thus, we see that if S ∈ Aπ/2 and a ∈ ∂S with µS(a) < 0 then S
can be enlarged near a (e.g. by adding a point a′ /∈ S close to a and
taking the convex hull of S and a′), so that the larger set S ′ is still
in Aπ/2. Otherwise, if µS(a) = 0, then a must be on the boundary of
any S ′ ∈ Aπ/2 containing S. We will say that S is maximal at a if
µS(a) = 0 and non-maximal at a if µS(a) < 0.

Example 4.10. Let S be the disk |z − 1| ≤ 1/2. Then it is easy to
check that S is maximal at the three points a = 1/2, 1 ± i/2 (indeed,
picking b, c, d from the same set, we can make F (a, b, c, d) = 0). On
the other hand, we claim that S is not maximal at any other points of
the boundary circle. The proof is by a direct computation. Namely, if
a 6= 1/2, 1 ± i/2 but |a − 1| = 1/2, then it can be shown that for any
b with |b− 1| ≤ 1/2 one has G1(a, b) < 0 and G2(a, b) < 0 (hence, any
small perturbation of S at a will still be in B2

π/2, hence in A2
π/2). Indeed,

setting a = 1 + 1
2
ei(u−π/4) and b = 1 + 1

2
ei(v−π/4) for u, v ∈ R/2πZ, we

have

G1(a, b) = H(u, v) :=
1

4
(sinu− sin v)2 − (

√
2 + cosu)(

√
2 + cos v),

and maximization of this function (e.g., using Wolfram Alpha, or ana-
lytically) yields H(u, v) ≤ 0, and H(u, v) = 0 if and only if u = −3π/4

14



and v = 3π/4 or u = 3π/4 and v = −3π/4, which implies the desired
statement.
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