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A BREGMAN FORWARD-BACKWARD LINESEARCH ALGORITHM
FOR NONCONVEX COMPOSITE OPTIMIZATION: SUPERLINEAR

CONVERGENCE TO NONISOLATED LOCAL MINIMA∗

MASOUD AHOOKHOSH† , ANDREAS THEMELIS‡ , AND PANAGIOTIS PATRINOS§

Abstract. We introduce Bella, a locally superlinearly convergent Bregman forward-backward
splitting method for minimizing the sum of two nonconvex functions, one of which satisfies a relative
smoothness condition and the other one is possibly nonsmooth. A key tool of our methodology is
the Bregman forward-backward envelope (BFBE), an exact and continuous penalty function with
favorable first- and second-order properties, which enjoys a nonlinear error bound when the objec-
tive function satisfies a  Lojasiewicz-type property. The proposed algorithm is of linesearch type
over the BFBE along user-defined update directions and converges subsequentially to stationary
points and globally under the Kurdyka– Lojasiewicz condition. Moreover, when the update direc-
tions are superlinear in the sense of Facchinei and Pang [Finite-Dimensional Variational Inequalities
and Complementarity Problems, Volume I, Springer, New York, 2003], owing to the given nonlin-
ear error bound unit stepsize is eventually always accepted and the algorithm attains superlinear
convergence rates even when the limit point is a nonisolated minimum.

Key words. nonsmooth nonconvex optimization, Bregman–Moreau and Bregman forward-
backward envelopes, relative smoothness, KL inequality, nonlinear error bound, nonisolated local
minima, superlinear convergence
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1. Introduction. In this paper, we address the composite minimization problem

(1.1) minimizeϕ(x) ≡ f(x) + g(x) subject tox ∈ C.

Here, C is an open convex set (C denotes the closure of C), g is proper and lower semi-
continuous (lsc), and f is relatively smooth with respect to a Legendre kernel h (see
subsection 2.2) with dom∇h = C (for detailed assumptions we refer to section 4).
Despite its simple structure, (1.1) encompasses a variety of optimization problems
frequently encountered in scientific areas such as signal and image processing, ma-
chine learning, and inverse problems [11, 24, 40, 55, 60]. The notion of Lipschitz-like
convexity was recently discovered in the seminal work [11] as a generalization of the
Lipschitz smoothness condition and was later renamed relative smoothness in [55].
Studying optimization problems involving relatively smooth functions has received
much attention in the last few years [11, 24, 34, 39, 40, 55, 63, 79]. In our setting
(1.1), since f is relatively smooth and g is nonsmooth nonconvex, we can cover a
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wide spectrum of applications. In the Euclidean setting, there are plenty of optimiza-
tion algorithms that can handle composite minimization of the form (1.1), such as
[2, 1, 16, 21, 62, 81] for convex problems and [7, 23, 27, 26, 28, 37, 74, 83] for nonconvex
problems.

One of the most significant discussions in the field of numerical optimization
has been related to designing iterative schemes guaranteeing a superlinear conver-
gence rate; see, e.g., [64] for many algorithms attaining a superlinear convergence
rate for smooth problems and [37, 38, 83] for other related works in the noncon-
vex nonsmooth setting. In most of these attempts, the key element is the so-called
Dennis–Moré condition [31, 32] which guarantees superlinear convergence to an iso-
lated critical point of the objective function. However, there are many applica-
tions that have nonisolated critical points such as low-rank matrix completion [77],
low-rank matrix recovery [17], phase retrieval [76], and deep learning [43]. Up to
now, besides some attempts for minimizing smooth nonlinear least-squares problems
(see, e.g., [3, 4, 41] and references therein) far too little attention has been paid to
the superlinear convergence to nonisolated critical points for nonconvex nonsmooth
problems.

1.1. Related work. In order to guarantee convergence, most first-order meth-
ods for problem (1.1) in the nonconvex setting require Lipschitz differentiability of
f ; however, there are plenty of examples that fail to comply with this assumption
(see, e.g., [6, 5, 11, 34, 55, 60]). Recently, from the seminal work conducted in [11] it
emerged that the Lipschitz smoothness assumption of f can be relaxed by introducing
the notion of relative smoothness (see Definition 2.4), which was further developed
in [55, 88]. Assuming the convexity of f and g and the relative smoothness of f , a
Bregman proximal-gradient method was proposed in [11], while primal and dual algo-
rithms were developed in [55]. More recently, in the convex setting, [63] proposed an
accelerated tensor method, and [39, 40] suggested a Nesterov-type accelerated method
and a stochastic mirror descent method.

The developments of relative smoothness also led to a renewed interest in theory
and algorithms of nonconvex optimization. Recently, [24] extended the results of
[11] for the Bregman proximal-gradient method, and [79] discussed several first-order
algorithms. More recently, the linear convergence of the gradient method for relatively
smooth functions was studied in [10]. In [66], a generic Bregman linesearch was
proposed for not necessarily Lipschitz smooth problems, which covers the Bregman
forward-backward splitting as a special case for nonconvex smooth f and convex
g. In [61], some Bregman proximal-gradient algorithms with inertial effects were
presented in the nonconvex setting for smooth f and hypoconvex g. Furthermore,
a stochastic convex model-based minimization algorithm was proposed in [30] for
hypoconvex functions under relative smoothness and high-order growth conditions.
The notion of relative smoothness was further extended to its block version [6, 5],
opening the possibility of alternating minimization algorithms in the fully nonconvex
setting. To the best of our knowledge, apart from the latter papers, there have not
been many attempts to deal with (1.1) in the relatively smooth and fully nonconvex
setting.

1.2. Contribution. Our goal is to design an efficient framework for addressing
the structured nonconvex problem (P) with superlinear guarantees of convergence,
even when the limit point is a nonisolated local minimum. We aim at devising a
linesearch strategy that globalizes the convergence of fast local methods, stemming,
for instance, from Newton-type schemes. The lack of differentiability in problem (1.1)
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A SUPERLINEAR BREGMAN FORWARD-BACKWARD SPLITTING 655

makes classical smooth optimization methodologies, such as Armijo backtracking,
not applicable. Nevertheless, favorable properties of the Bregman forward-backward
envelope (BFBE) introduced here lead to the Bregman envelope linesearch algorithm
(Bella), which overcomes said limitations exclusively by means of Bregman forward-
backward operations. Our contribution can be summarized as follows:

(i) Bregman–Moreau envelope analysis. We provide new insights on the Bregman–
Moreau envelope complementing the ones in [42, 15, 45]. Among these, we
highlight properties of fixed points, a local equivalence with the forward-
backward envelope (FBE) [68], and ultimately a second-order differentiability
result with classical generalized differentiability tools [69, 73].

(ii) Bregman forward-backward splitting and linesearch extension. We highlight a
connection between Bregman forward-backward mapping and Bregman prox-
imal mapping (Theorem 4.1), revealing that the proximal point algorithm is
as general as the forward-backward splitting in the Bregman setting. Corre-
spondingly, we introduce a BFBE function which is at the core of Bella, a
linesearch algorithm that can globalize the convergence of fast local methods
for problem (1.1).

(iii) Superlinear convergence to nonisolated critical points. Differentiability prop-
erties of the BFBE (Theorem 4.7) allow us to link the Kurdyka– Lojasiewicz
(KL) property to a nonlinear error bound involving the distance to sublevel
sets (Lemma 5.11). This observation is the key for showing that Bella can
converge superlinearly to local minima even if nonisolated (Theorem 5.12),
when “fast” directions (in a sense that will be made precise in Definition 5.9)
are selected. More generally, global and linear convergence are shown utilizing
the KL inequality (Theorems 5.7 and 5.8).

1.3. Paper organization. Section 2 introduces the notation used and some
known facts. In section 3 we investigate properties of the Bregman proximal mapping
and the Bregman–Moreau envelope, which we then use in section 4 to derive similar
results for the Bregman forward-backward mapping and the corresponding envelope
function, the BFBE, which is a key tool of our analysis. In section 5 we introduce
Bella, a linesearch algorithm on the BFBE, and show its convergence properties.
Section 6 concludes the paper.

2. Preliminaries.

2.1. Notation. The extended-real line is denoted by R := R ∪ {∞}. The open
and closed balls of radius r > 0 centered at x ∈ Rn are denoted as B(x; r) and B(x; r),
respectively. We say that (xk)k∈N ⊂ Rn converges at R-linear rate (to a point x?)
if there exist c > 0 and ρ ∈ (0, 1) such that ‖xk − x?‖ ≤ cρk holds for every k.
The distance of a point x ∈ Rn to a nonempty set S ⊆ Rn is given by dist(x, S) =
infz∈S ‖z − x‖. The interior, closure, and boundary of S are respectively denoted as
intS, S, and bdryS = S \ intS. The indicator function of S is δS : Rn → R defined
as δS(x) = 0 if x ∈ S and ∞ otherwise.

A function f : Rn → R is proper if f 6≡ ∞, in which case its domain is defined as
the set dom f := {x ∈ Rn | f(x) <∞}. For α ∈ R, [f ≤ α] := {x ∈ Rn | f(x) ≤ α} is
the α-(sub)level set of f ; the α-level set [f = α] is defined accordingly. We say that
f is level bounded if [f ≤ α] is bounded for all α ∈ R. A point x? ∈ dom f is a local
minimum for f if f(x) ≥ f(x?) holds for all x in a neighborhood of x?. If the inequality
can be strengthened to f(x) ≥ f(x?) + µ

2 ‖x−x?‖
2 for some µ > 0, then x? is a strong

local minimum. The convex conjugate of f is denoted as f∗ := supz {〈 · , z〉 − f(z)}.
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656 M. AHOOKHOSH, A. THEMELIS, AND P. PATRINOS

Given x ∈ dom f , a vector v ∈ ∂f(x) is a subgradient of f at x, where ∂f(x) is the
(limiting) subdifferential

∂f(x) :=
{
v ∈ Rn | ∃(xk, vk)k∈N s.t. xk → x, f(xk)→ f(x), ∂̂f(xk) 3 vk → v

}
,

and ∂̂f(x) is the set of regular subgradients of f at x, namely vectors v ∈ Rn such

that lim infz→x
z 6=x

f(z)−f(x)−〈v,z−x〉
‖z−x‖ ≥ 0. Following the terminology of [73], we say that

f : Rn → R is strictly continuous at x̄ if lip f(x̄) := lim supy,z→x̄
y 6=z

|f(y)−f(z)|
‖y−z‖ <∞ and

strictly differentiable at x̄ if∇f(x̄) exists and satisfies limy,z→x̄
y 6=z

f(y)−f(z)−〈∇f(x̄),y−z〉
‖y−z‖ =

0. If f is everywhere strictly continuous on an open set U , then its gradient exists
almost everywhere on U , and as such its Bouligand subdifferential

∂Bf(x) :=
{
v | ∃xk → x with ∇f(xk)→ v

}
is nonempty and compact for all x ∈ U [73, Thm. 9.61]. Ck(U) is the set of functions
U → R which are k times continuously differentiable. We write Ck if U is clear
from context. For a function F : Rn → Rm, we denote by JF : Rn → Rm×n its
Jacobian, defined whenever it makes sense. The notation T : Rn ⇒ Rn indicates a
set-valued mapping, whose domain and range are respectively defined as domT =
{x ∈ Rn | T (x) 6= ∅} and rangeT =

⋃
x∈Rn T (x).

2.2. Relative smoothness. Here, after giving some definitions, we provide a
list of results regarding relative smoothness that will be useful in what follows.

Definition 2.1 (Bregman distance [29]). Relative to a convex function h : Rn →
R that is continuously differentiable on int domh 6= ∅, the Bregman distance Dh :
Rn × Rn → R is

(2.1) Dh(x, y) :=

{
h(x)− h(y)− 〈∇h(y), x− y〉 if y ∈ int domh,
∞ otherwise.

Function h will be referred to as a distance-generating function.

Throughout the paper we will consider distance-generating functions that are
Legendre kernels, as defined next. We refer the reader to [15] for a list of popular
such functions.

Definition 2.2. A proper, lsc, and strictly convex function h : Rn → R with
int dom h 6= ∅ and such that h ∈ C1(int domh) is said to be a Legendre kernel if it is
(i) 1-coercive, i.e., such that lim‖x‖→∞ h(x)/‖x‖ =∞, and (ii) essentially smooth, i.e.,
if ‖∇h(xk)‖ → ∞ for every sequence (xk)k∈N ⊆ int domh converging to a boundary
point of domh.

Fact 2.3. The following assertions hold for a Legendre kernel h : Rn → R:
(i) h∗ ∈ C1(Rn) is strictly convex and ∇h−1 = ∇h∗ [72, Thm. 26.5 and Cor.

13.3.1];
(ii) Dh(·, x) and Dh(x, ·) are level bounded locally uniformly in x on int domh×

int domh [12, Lem. 7.3(v)–(viii)].1

Moreover, for any open convex set U ⊆ int domh the following hold:

1Although [12] only states level boundedness, a trivial modification of the proof shows local
uniformity too.
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(iii) If h is σ̃h-strongly convex on U , then Dh(y, x) ≥ σ̃h
2 ‖y− x‖

2 for all x, y ∈ U .

(iv) If ∇h is L̃h-Lipschitz on U , then Dh(y, x) ≤ L̃h
2 ‖y − x‖

2 for all x, y ∈ U .

We will sometimes require properties such as Lipschitz differentiability or strong
convexity to hold locally, where locality amounts to the existence for any point of a
convex neighborhood in which such property holds.

Definition 2.4 (relative smoothness [11]). We say that a proper, lsc function
f : Rn → R is smooth relative to a Legendre kernel h : Rn → R if dom f ⊇ domh,
and there exists Lf ≥ 0 such that Lfh±f are convex functions on int domh. We will
simply say that f is relatively smooth when h is clear from context, or Lf -relatively
smooth to make the modulus Lf explicit.

Proposition 2.5. Let f be smooth relative to a Legendre kernel h. Then, the
following hold:

(i) f ∈ C1(int domh);
(ii) if h is Lipschitz differentiable on an open set U , then so is f .

Proof.
Proposition 2.5(i). Convexity of Lfh± f and continuous differentiability of h on

int domh ensure through [73, Ex. 8.20(b) and Cor. 9.21] that both f and −f are

subdifferentially regular on int domh, in the sense of [73, Def. 7.25], with ∂̂f and

∂̂(−f) both nonempty. The proof now follows from [73, Thm. 9.18(d)].
Proposition 2.5(ii). Let L̃h be a Lipschitz modulus for ∇h on U . Convexity of

Lfh+ f yields

〈∇f(x)−∇f(y), x− y〉 ≥ − Lf 〈∇h(x)−∇h(y), x− y〉 ≥ − Lf L̃h‖x− y‖2

for x, y ∈ U , while due to concavity of f − Lfh it holds that

〈∇f(x)−∇f(y), x− y〉 ≤ Lf 〈∇h(x)−∇h(y), x− y〉 ≤ Lf L̃h‖x− y‖2.

The two inequalities together prove that ∇f is L̃f -Lipschitz on U with L̃f =

Lf L̃h.

The proof of the following result is a simple adaptation of that of [55, Prop. 1.1].

Proposition 2.6 (characterization of relative smoothness). Let a proper lsc func-
tion f : Rn → R and a Legendre kernel h : Rn → R be fixed. The following are
equivalent:

(a) f is Lf -smooth relative to h;
(b)

∣∣f(y)− f(x)− 〈∇f(x), y − x〉
∣∣ ≤ Lf Dh(y, x) for all x, y ∈ int domh.

3. Bregman proximal mapping and Moreau envelope. This section is de-
voted to the analysis of the Bregman proximal mapping and the Bregman–Moreau
envelope, which we will need in the coming sections. Our main results include their
local equivalence with Euclidean objects, namely the forward-backward mapping and
the FBE (Theorem 3.8), respectively, which in turn will be used to derive novel second-
order properties (Theorem 3.11) as simple byproducts of similar results available in
the literature.

Relative to a Legendre kernel ĥ : Rn → R, the Bregman proximal mapping of
ϕ : Rn → R with stepsize γ > 0 is the set-valued map proxĥγϕ : int dom ĥ ⇒ Rn
given by

proxĥγϕ(x) = prox
ĥ/γ
ϕ (x) := arg min

z∈Rn

{
ϕ(z) + 1

γ Dĥ(z, x)
}
,(3.1)
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and the corresponding Bregman–Moreau envelope is ϕĥ/γ : Rn → [−∞,∞] defined as

ϕ
ĥ/γ(x) := inf

z∈Rn

{
ϕ(z) + 1

γ Dĥ(z, x)
}
.(3.2)

The first equality in (3.1) owes to the invariance of the arg min operator under
positive scalings, whereas the notation in (3.2) is justified from the identity 1

γ Dĥ =

Dĥ/γ . Although writing prox
ĥ/γ
ϕ better reflects the kinship with the envelope ϕĥ/γ ,

the (equally well-posed) notation proxĥγϕ is more consistent with the classical proxγϕ
adopted in the Euclidean setting, i.e., when ĥ = 1

2‖ · ‖
2. To maintain this consistency

and for simplicity of exposition, the distance-generating function ĥ will be omitted
in the Euclidean case; we will thus write proxγϕ and ϕ1/γ to indicate the Euclidean
proximal map and Moreau envelope of ϕ with stepsize γ.

The proximal mapping is a fundamental building block of splitting algorithms,
and the corresponding envelope function offers an extremely valuable tool for the
convergence analysis of such schemes. For this reason, starting from the pioneering
work [59] a lot of research has been devoted to the study of their properties in the
Euclidean case [69, 71, 70, 47, 58]. It is well known, for instance, that when ϕ is a
(proper, lsc, and) convex function, its (Euclidean) proximal mapping is (single-valued
and) nonexpansive, and its Moreau envelope is convex and Lipschitz differentiable
[14, sect. 12]. More generally, even in the nonconvex setting, the Moreau envelope is
a continuous function sharing infimum and minimizers with ϕ, and local smoothness
properties have been established with variational analysis tools such as prox-regularity
and epigraphical differentiation [69, 71, 70].

As detailed in the introduction, the extension to non-Euclidean ĥ offers a sig-
nificant additional degree of flexibility. Furthermore, the Bregman proximal map-
ping can encapsulate an entire splitting algorithm, as is the case of the (Euclidean)
proximal-gradient operator proxγg(id − γ∇f) that can be expressed as proxĥf+g for

ĥ := 1
2γ ‖ · ‖

2 − f . In fact, it will be shown in Theorem 4.1 that this is still true even
for the proximal-gradient operator with arbitrary Bregman metrics. In other words,
from a theoretical standpoint the proximal-gradient scheme offers no advantage in
generality over the proximal point algorithm in the Bregman setting.

This awareness emphasizes the importance of studying the Bregman proximal
mapping in full generality. Nonetheless, in the nonconvex setting, there is a big dis-
crepancy between the well-studied Euclidean setting and the less mature Bregman
generalization. In an attempt to partially fill this gap, this section complements
the analysis of [42, 45] for the proximal mapping and the Moreau envelope in the
Bregman setting. The extension—or better, the “translation”—of the results for the
proximal gradient will then be derived as simple byproducts in the following section.
As the translation entails a change of Bregman metric, in order to avoid confusion
we use the hat version ĥ in this section and reserve the notation h for the distance-
generating function involved in the proximal-gradient mapping. We begin by introduc-
ing the notion of Bregman-type prox-boundedness, which is a technical requirement
ensuring the well definedness of the proximal map and the properness of the Moreau
envelope.

Definition 3.1 (ĥ-prox-boundedness). Given a Legendre kernel ĥ, a function
ϕ : Rn → R is said to be ĥ-prox-bounded if there exists γ > 0 such that ϕĥ/γ(x) > −∞
for some x ∈ Rn. The supremum of the set of all such γ is the threshold γĥϕ of ĥ-
prox-boundedness.
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Note that whenever a proper and lsc function ϕ is lower bounded by an affine
function on dom ĥ (as is the case when ϕ is convex or lower bounded on dom ĥ) then
it is ĥ-prox-bounded with threshold γĥϕ =∞. For more general functions, instead, the
threshold plays a central role in dictating the range of feasible stepsizes γ.

Fact 3.2 (regularity properties of proxĥγϕ and ϕĥ/γ [42, Thm. 2.2, 2.3, and 2.4]).

Let ĥ be a Legendre kernel, ϕ : Rn → R be proper, lsc, and ĥ-prox-bounded, and let
γ ∈ (0, γĥϕ). Then,

(i) domϕĥ/γ = dom proxĥγϕ = int dom ĥ;

(ii) range proxĥγϕ ⊆ domϕ ∩ dom ĥ;

(iii) proxĥγϕ is locally bounded, compact-valued, and outer semicontinuous (osc;
cf. [73, Def. 5.4]) on int dom ĥ;

(iv) ϕĥ/γ is real-valued and continuous on int dom ĥ; in fact, it is locally Lipschitz
if so is ∇ĥ.

Next, we furnish some elementary connections between ϕ and its envelope ϕĥ/γ .

Proposition 3.3 (relation between ϕ and ϕĥ/γ). Let ĥ be a Legendre kernel and
ϕ : Rn → R be proper, lsc, and ĥ-prox-bounded. Then, for every γ ∈ (0, γĥϕ)

(i) ϕ(x̄) + 1
γ Dĥ(x̄, x) = ϕĥ/γ(x) ≤ ϕ(x) for x ∈ int dom ĥ and x̄ ∈ proxĥγϕ(x),

with ϕĥ/γ(x) = ϕ(x) iff x ∈ proxĥγϕ(x).

Moreover, if range proxĥγϕ ⊆ int dom ĥ, then the following also hold:

(ii) inf ϕĥ/γ = inf int dom ĥ ϕ and arg minϕĥ/γ = arg minint dom ĥ ϕ;
(iii) ϕĥ/γ is level bounded iff ϕ is level bounded on int dom ĥ.

Proof.
Proposition 3.3(i). The first equality is the definition of the Bregman proximal

map and Moreau envelope; the inequality follows by considering z = x in the subprob-
lem (3.1) defining ϕĥ/γ . In turn, the “iff” condition owes to the fact that Dĥ(z, x) = 0
iff z = x for all x, z ∈ int dom ĥ.

Proposition 3.3(ii). It follows from assertion 3.3(i) that inf ϕĥ/γ ≤ inf int dom ĥ ϕ.
Let a sequence (xk)k∈N be such that ϕĥ/γ(xk) → inf ϕĥ/γ as k → ∞. Then, taking
x̄k ∈ proxĥγϕ(xk) ⊆ int dom ĥ, assertion 3.3(i) ensures that lim infk→∞ ϕ(x̄k) ≤
inf int dom ĥ ϕ, hence the claimed equivalence of infima. If x ∈ arg minϕĥ/γ , neces-
sarily x ∈ domϕĥ/γ = int dom ĥ and there thus exists x̄ ∈ proxĥγϕ(x) (cf. Fact 3.2),
which satisfies x̄ ∈ int dom ĥ by assumption. Then,

ϕ(x̄) ≤ ϕĥ/γ(x)− 1
γ Dĥ(x̄, x) = inf ϕ

ĥ/γ − 1
γ Dĥ(x̄, x) = inf

int dom ĥ
ϕ− 1

γ Dĥ(x̄, x),

where the inequality follows from assertion 3.3(i). Therefore, Dĥ(x̄, x) = 0 or, equiv-
alently, x = x̄ ∈ arg minint dom ĥ ϕ. Similarly, for x ∈ arg minint dom ĥ ϕ it follows
from assertion 3.3(i) that ϕĥ/γ(x) ≤ ϕ(x) = inf int dom ĥ ϕ = inf ϕĥ/γ , proving that
x ∈ arg minϕĥ/γ .

Proposition 3.3(iii). It follows from Proposition 3.3(i) that if ϕĥ/γ is level bounded,
then so is ϕ on int dom ĥ. Conversely, suppose that there exists α ∈ R together with
an unbounded sequence (xk)k∈N ⊆ [ϕĥ/γ ≤ α]. Then, it follows from Fact 3.2 that
xk ∈ int dom ĥ for all k and in turn that for any k there exists x̄k ∈ proxĥγϕ(xk)

which satisfies ϕ(x̄k) ≤ α −Dĥ(x̄k, xk) by Proposition 3.3(i). Local boundedness of
Dh with respect to the second variable (Fact 2.3) then ensures that (x̄k)k∈N ⊂ dom ĥ

is not bounded, hence that ϕĥ/γ is not level bounded.
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It is apparent from Fact 3.2 that the assertions of Proposition 3.3 cannot be ex-
tended outside of int dom ĥ. This hindrance is also at the base of the requirement
range proxĥγϕ ⊆ int dom ĥ; while guaranteed in case ϕ is either a convex function
or if it is strictly continuous on domϕ ∩ dom ĥ ∩ bdry dom ĥ,2 to the best of our
knowledge it always stands as a blanket assumption in nonconvex Bregman optimiza-
tion. It is also common in practice that ĥ is twice continuously differentiable, in which
case we can easily derive subdifferential properties of the Bregman–Moreau envelope
similarly to what was done in [42, sect. 3].

Proposition 3.4 (subdifferential properties of the Bregman–Moreau envelope).
Let ĥ be a Legendre kernel with ĥ ∈ C2(int dom ĥ) and let ϕ : Rn → R be proper,
lsc, and ĥ-prox-bounded. Then, for every γ ∈ (0, γĥϕ) the envelope ϕĥ/γ is strictly
differentiable wherever it is differentiable. Moreover, for every x ∈ int dom ĥ

(i) lipϕĥ/γ(x) = maxx̄∈proxĥγϕ(x)

∥∥ 1
γ∇

2ĥ(x)(x− x̄)
∥∥;

(ii) ∂ϕĥ/γ(x) = ∂Bϕ
ĥ/γ(x) ⊆ 1

γ∇
2ĥ(x)

(
x− proxĥγϕ(x)

)
.

Proof. We pattern the proof after [73, Ex. 10.32]. Let U ⊂ U ⊂ int dom ĥ be a
bounded open set containing x, and observe that by osc of proxĥγϕ (Fact 3.2) there

exists a compact set V ⊆ dom ĥ such that −ϕĥ(u) = maxv∈V Φ(u, v) for all u ∈ U ,
where Φ(u, v) := −ϕ(v)− 1

γ Dĥ(v, u) is C1 in u, its derivatives depending continuously

on (u, v) with ∇uΦ(u, v) = 1
γ∇

2ĥ(u)(v − u). In fact, the maxima are attained for

v ∈ proxĥγϕ(u). Function −ϕĥ is thus lower-C1 in the sense of [73, Def. 10.29], and
all claims then follow from [73, Thm. 10.31].

3.1. Fixed points. Similarly to the Euclidean setting, being a fixed point of
the Bregman proximal mapping is an intermediate property between stationarity and
global minimality, the three conditions being equivalent under convexity. As we will
see in later subsections, single-valuedness of the proximal mapping at fixed points is
of paramount importance for local regularity properties and thus deserves a dedicated
definition.

Definition 3.5 (nondegenerate fixed point). We say that x ∈ Rn is a fixed point
of the set-valued mapping T : Rn ⇒ Rn if x ∈ T (x). We say that x is nondegenerate
if T (x) = {x}.

Fortunately, degenerate fixed points are rarely encountered; in fact, any fixed
point x of proxĥγϕ is also a nondegenerate fixed point of proxĥγ′ϕ for every γ′ ∈ (0, γ).
As such, out of a continuous set of favorable stepsizes γ′ there exists at most one such
that {x} $ proxĥγϕ(x). In this sense, we may consider nondegeneracy as a negligible
condition. These claims are validated in the following result.

Lemma 3.6. Let ĥ : Rn → R be a Legendre kernel and ϕ : Rn → R be proper,
lsc, and ĥ-prox-bounded. If x ∈ int dom ĥ is a fixed point of proxĥγϕ, then it is a

nondegenerate fixed point of proxĥ+ĥ′

γϕ for every strictly convex function ĥ′ : Rn → R
differentiable on int dom ĥ′ ⊇ int dom ĥ. In particular, x is a nondegenerate fixed
point of proxĥγ′ϕ for every γ′ ∈ (0, γ).

Proof. By definition, x ∈ proxĥγϕ iff ϕ(z) + 1
γ Dĥ(z, x) ≥ ϕ(x) holds for any

z ∈ Rn. Since ĥ+ ĥ′ is a Legendre kernel, Dĥ+ĥ′ = Dĥ + Dĥ′ on dom ĥ× int dom ĥ,

2The convex case is discussed in the proof of [11, Lem. 2]; the other case can use the same argu-
ments therein owing to the subdifferential calculus rule of [73, Ex. 10.10]. An easy counterexample
is given by ĥ(x) = x lnx − x and ϕ(x) = x2 + x − ĥ(x), having proxĥϕ(x) = {0} 6⊆ int domh for
x ≤ exp(1).
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and Dĥ′(z, x) = 0 iff z = x, apparently x is also a fixed point of proxĥ+ĥ′

γϕ , with

ϕ(z) + 1
γ Dĥ+ĥ′(z, x) > ϕ(x) for all z 6= x. Thus, if contrary to the claim there exists

x′ ∈ proxĥ+ĥ′

γϕ (x) \ {x}, then

ϕ(x′) + 1
γ Dĥ+ĥ′(x

′, x) > ϕ(x) = ϕ
(ĥ+ĥ′)/γ(x) = ϕ(x′) + 1

γ Dĥ+ĥ′(x
′, x),

which is a contradiction.

The following result shows that being a fixed point for the proximal map (for some
stepsize γ) is actually a necessary condition for local minimality in the interior of the
domain of the Legendre kernel ĥ. An equivalence of local minimality for function ϕ
and its envelope ϕĥ/γ at fixed points is also shown, in which nondegeneracy plays a
key role. We remark that this condition is necessary even in the Euclidean setting,
as can be verified from the counterexample ϕ = 1

2‖ · ‖
2 + δ{0,1} (see [80, Fig. 3.1] and

discussion therein).

Theorem 3.7 (equivalence of local minimality). The following hold for a Le-
gendre kernel ĥ : Rn → R and a proper, lsc, ĥ-prox-bounded function ϕ : Rn → R:

(i) If x? ∈ int dom ĥ is a local minimum for ϕ, then it is a nondegenerate fixed
point of proxĥγϕ for any γ small enough.

(ii) Conversely, any nondegenerate fixed point x? of proxĥγϕ is a local minimum

for ϕ iff it is a local minimum for ϕĥ/γ. Moreover, equivalence of strong local
minimality also holds provided that ĥ is strongly convex in a neighborhood of
x?.

Proof.
Theorem 3.7(i). For γ ∈ (0, γĥϕ), let xγ ∈ proxĥγϕ(x?). It is easy to see that

xγ → x? as γ ↘ 0 (cf. proof of [42, Thm. 2.5]). Local minimality of x? thus implies
that ϕ(xγ) ≥ ϕ(x?) holds for γ small enough. Combined with Proposition 3.3(i) we
obtain that ϕ(xγ) + 1

γ Dĥ(xγ , x?) ≤ ϕ(x?) ≤ ϕ(xγ) holds for γ small enough, hence

that Dĥ(xγ , x?) = 0 or, equivalently, xγ = x?.

Theorem 3.7(ii). That (strong) local minimality for ϕĥ/γ implies that for ϕ follows
from the fact that ϕĥ/γ “supports” ϕ at x?, namely that ϕĥ/γ ≤ ϕ and ϕĥ/γ(x?) =
ϕ(x?) (Proposition 3.3(i)). Conversely, suppose that ĥ is σĥ,U -strongly convex in a
neighborhood U of x? for some σĥ,U ≥ 0 and that there exists µ ≥ 0 such that ϕ(x) ≥
ϕ(x?)+ µ

2 ‖x−x?‖
2 for x ∈ U . Notice that in allowing σĥ,U = 0 and µ = 0 we also cover

nonstrong minimality and nonstrong convexity. Let δ := 1
2 min{µ, σĥ,U2γ } ≥ 0, and

note that δ = 0 iff either σĥ,U or µ is zero. To arrive to a contradiction, suppose that
for all k ≥ 1 there exists xk ∈ B(x?; 1/k) such that ϕĥ/γ(xk) < ϕĥ/γ(x?)+ δ

2‖x
k−x?‖2 =

ϕ(x?) + δ
2‖x

k − x?‖2. Let x̄k ∈ proxĥγϕ(xk); since proxĥγϕ is osc on int dom ĥ 3 x?
(cf. Fact 3.2) and proxĥγϕ(x?) = {x?}, necessarily x̄k → x? as k →∞. We have

ϕ(x̄k)
3.3(i)

= ϕ
ĥ/γ(xk)− 1

γ
Dĥ(x̄k, xk)

2.3
≤ ϕĥ/γ(xk)−σĥ,U

2γ
‖xk−x̄k‖2 < ϕ(x?)+ δ

2
‖xk−x?‖2−

σĥ,U
2γ
‖xk−x̄k‖2.

By using the inequality 1
2‖a− c‖

2 ≤ ‖a− b‖2 + ‖b− c‖2 holding for any a, b, c ∈ Rn,
we have

ϕ(x̄k) < ϕ(x?) + δ‖x̄k − x?‖2 +
(
δ − σĥ,U

2γ

)
‖xk − x̄k‖2 ≤ ϕ(x?) + µ

2 ‖x̄
k − x?‖2,

where the last inequality follows from the definition of δ. Thus, ϕ(x̄k) < ϕ(x?) +
µ
2 ‖x̄

k − x?‖2 for all k ∈ N, which contradicts (µ-strong) local minimality of x? for ϕ
(since x̄k → x?).
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3.2. Local Euclidean reparametrization. While the Euclidean proximal
mapping and Moreau envelope are special instances of the more general Bregman
variants, the converse is not true even locally and in the convex case. To see this,
observe that while the Euclidean Moreau envelope preserves convexity, this is not at
all the case for more general Legendre kernels ĥ even if strongly convex and Lipschitz
smooth on the entire space. Nevertheless, under a local strong convexity and Lipschitz
differentiability assumption on ĥ, yet with no requirement on its domain, it is possi-
ble to locally identify the Bregman proximal mapping and its Moreau envelope with
Euclidean objects, namely the forward-backward mapping and the corresponding FBE
function [68, 83]. This result complements what was first observed in [51], namely
that the Euclidean FBE is, in fact, a Bregman–Moreau envelope. The advantage of
this identification will be revealed in the next subsections, where local differentiability
results will be deduced with virtually no effort based on already established results in
the Euclidean setting.

We remind the reader that given a decomposition ϕ = f̃ + g̃ with f̃ continuously
differentiable, the (Euclidean) forward-backward operator with stepsize γ̃ > 0 is

proxγ̃g̃ (x− γ̃∇f̃(x)) = arg min
w∈Rn

{
f̃(x) + 〈∇f̃(x), w − x〉+ g̃(w) + 1

2γ̃ ‖w − x‖
2
}
,

while the FBE is the associated value function, namely

ϕf̃ ,g̃1/γ̃ (x) = inf
w∈Rn

{
f̃(x) + 〈∇f̃(x), w − x〉+ g̃(w) + 1

2γ̃ ‖w − x‖
2
}
.(3.3)

Theorem 3.8 (local equivalence of Bregman–Moreau envelope and FBE). Let
ĥ : Rn → R be a Legendre kernel, let ϕ : Rn → R be proper, lsc, and ĥ-prox-bounded,
and let γ ∈ (0, γĥϕ) be fixed. Suppose further that ĥ is locally Lipschitz differentiable
and locally strongly convex on int dom ĥ (as is the case when ĥ ∈ C2 with ∇2ĥ � 0
on int dom ĥ) and that range proxĥγϕ ⊆ int dom ĥ. Then, for every compact set
U ⊂ int dom ĥ there exist γ̄ > 0 and a convex compact set V with U ⊆ V ⊂ int dom ĥ
such that for all γ̃ ∈ (0, γ̄) it holds that

ϕ
ĥ/γ = ϕf̃ ,g̃1/γ̃ and proxĥγϕ = proxγ̃g̃ (id− γ̃∇f̃) on U ,(3.4)

where

f̃ := − 1
γ ĥ+ 1

2γ̃ ‖ · ‖
2 and g̃ := ϕ+ 1

γ ĥ−
1

2γ̃ ‖ · ‖
2 + δV .(3.5)

Moreover, g̃ is proper, lsc, and prox-bounded (in the Euclidean sense) with γg̃ = ∞,

and f̃ is Lf̃ -Lipschitz-differentiable on V with γ̃ < 1/Lf̃ .

Proof. Let V := conv(U ∪ proxĥγϕ(U)) and observe that V is a convex compact

subset of int dom ĥ, as it follows from osc and local boundedness of proxĥγϕ (Fact 3.2)
and the fact that compactness is preserved by the convex hull. It follows from the
assumptions that there exist Lĥ,V ≥ σĥ,V > 0 such that ĥ is Lĥ,V -smooth and σĥ,V -

strongly convex on V. Define γ̄ := 2γ
Lĥ,V

, let γ̃ ∈ (0, γ̄) be fixed, and let f̃ and g̃ be as

in (3.5). Clearly, ϕ = f̃ + g̃ on V. Moreover,

ϕ(z)+ 1
γ Dĥ(z, x)+δV(z) = f̃(x)+〈∇f̃(x), z−x〉+ g̃(z)+ 1

2γ̃ ‖z−x‖
2 ∀x ∈ U , z ∈ Rn.

Since proxĥγϕ(U) ⊆ V,

ϕ
ĥ/γ(x) = min

z∈V

{
ϕ(z) + 1

γ Dĥ(z, x)
}

= min
z∈Rn

{
f̃(x) + 〈∇f̃(x), z − x〉+ g̃(z) + 1

2γ̃ ‖z − x‖
2
}

= ϕf̃ ,g̃1/γ̃ (x).
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Similarly, considering the minimizers it is apparent proxĥγϕ(x) = proxγ̃g̃ (x− γ̃∇f̃(x))
for any x ∈ U . Notice that g̃ is proper, lsc, and with bounded domain, hence its
claimed prox-boundedness follows. Moreover,(

1
γ̃ −

Lĥ,V
γ

)
‖x− y‖2 ≤ 〈∇f̃(x)−∇f̃(y), x− y〉 ≤

(
1
γ̃ −

σĥ,V
γ

)
‖x− y‖2

for every x, y ∈ V. Therefore f̃ is Lf̃ -smooth on V with Lf̃ = max{| 1γ̃ −
Lĥ,V
γ |, |

1
γ̃ −

σĥ,V
γ |}. Since γ < γ̄ = 2γ

Lĥ,V
, it follows that − 1

γ̃ <
1
γ̃ −

Lĥ,V
γ ≤ 1

γ̃ −
σĥ,V
γ < 1

γ̃ , proving

that γ̃ < 1/Lf̃ .

3.3. First- and second-order properties. Although strict continuity ensures
almost everywhere differentiability, with mild additional assumptions the Bregman–
Moreau envelope can be shown to be continuously differentiable around fixed points.
Thanks to the local equivalence shown in Theorem 3.8, these requirements are the
same as those ensuring similar properties in the Euclidean case. These amount to
prox-regularity, a condition which was first proposed in [71] and which has been
recently extended to its ĥ-relative version in [45].

Definition 3.9 (prox-regularity). A function ϕ : Rn → R is prox-regular at x̄
for v̄ ∈ ∂ϕ(x̄) if it is locally lsc at x̄ and there exist r, ε > 0 such that

(3.6) ϕ(x′) ≥ ϕ(x) + 〈v, x′ − x〉 − r
2‖x
′ − x‖2

holds for all x, x′ ∈ B(x̄; ε) and (x, v) ∈ gph ∂ϕ with v ∈ B(v̄; ε) and ϕ(x) ≤ ϕ(x̄)+ε.

Differentiability properties of the Bregman–Moreau envelope have been studied
in [78, 13] for jointly convex Bregman distances in the convex setting, and a similar
analysis for the “right” envelope is provided in [15]. For a nonconvex function ϕ, [42]
shows global continuous differentiability of ϕĥ/γ under a global convexity assumption
on ĥ+γϕ. What we provide next is instead a local result that requires local properties
of ϕ around nondegenerate fixed points of the proximal map. We remark that after
the first submission of our paper a similar result appeared in [45] in a more general
setting. We, however, offer our alternative proof as a means of emphasizing the
favorable theoretical implications of the Euclidean equivalence stated in Theorem 3.8,
which, ultimately, will lead us to the second-order result of Theorem 3.11 which is
instead novel.

Theorem 3.10 (continuous differentiability of the Bregman–Moreau envelope).
Suppose that the assumptions of Theorem 3.8 hold, and let x? be a nondegenerate fixed
point of proxĥγϕ. If ϕ is prox-regular at x? for v = 0, then there exists a neighborhood
U of x? on which the following statements are true:

(i) proxĥγϕ is Lipschitz continuous (hence single-valued);

(ii) ϕĥ/γ ∈ C1 with ∇ϕĥ/γ(x) = 1
γ∇

2ĥ(x)
(
x− proxĥγϕ(x)

)
.

Proof. For any compact neighborhood U ⊂ int dom ĥ of x? we may invoke The-

orem 3.8 and identify ϕĥ/γ with the Euclidean FBE ϕf̃ ,g̃1/γ̃ on U and proxĥγϕ with

T := proxγ̃g̃ (id− γ̃∇f̃) for some γ̃ > 0 and f̃ and g̃ as in (3.5). It follows from [73,
Ex. 13.35] and the continuous differentiability of ĥ that g̃ is prox-regular at x? for
−∇f̃(x?). Since f̃ is C2 around x? and T (x?) = proxĥγϕ(x?) = {x?} by assumption,
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the setting of [83, Thm. 4.7] is satisfied3 and thus T is Lipschitz continuous around

x? and the Euclidean FBE ϕf̃ ,g̃1/γ̃ is C1 around x? with

(3.7)

∇ϕĥ/γ(x) = ∇ϕf̃ ,g̃1/γ̃ (x) = γ̃−1
[
I− γ̃∇2f̃(x)

](
x− T (x)

)
= 1

γ∇
2ĥ(x)

(
x− proxĥγϕ(x)

)
,

which completes the proof.

We conclude the section with a second-order analysis at (as opposed to around)
fixed points. In the spirit of Theorem 3.10, thanks to the local identities assessed in
Theorem 4.1 we will simply invoke known generalized differentiability properties; we
refer the interested reader to [69, 73] for an extensive discussion.

Theorem 3.11 (twice differentiability of the Bregman–Moreau envelope). Addi-
tionally to the assumptions of Theorem 3.10, suppose that ϕ is (strictly) twice epi-
differentiable at x? for v = 0, with generalized quadratic second-order epi-derivative.
Then,

(i) proxĥγϕ is (strictly) differentiable at x?;

(ii) proxĥγϕ ◦∇ĥ∗ is (strictly) differentiable at ∇ĥ(x?) with symmetric and positive
semidefinite Jacobian;

(iii) ϕĥ/γ is (strictly) twice differentiable at x? with symmetric Hessian

∇2ϕ
ĥ/γ(x?) = 1

γ∇
2ĥ(x?)

(
I− J proxĥγϕ(x?)

)
.

Proof. As shown in the proof of Theorem 3.10, for some γ̃ > 0 and with f̃ and g̃

as in (3.5) we may identify ϕĥ/γ with the Euclidean FBE ϕf̃ ,g̃1/γ̃ around x? and proxĥγϕ
with the Euclidean proximal-gradient operator proxγ̃g̃ (id− γ̃∇f̃). It follows from
[73, Ex. 13.18 and 13.25] and the continuous differentiability of ĥ that g̃ is prox-
regular and (strictly) twice epi-differentiable at x? for −∇f̃(x?), with generalized
quadratic second-order epi-derivative. The setting of [83, Thm. 4.10] is thus satisfied
(cf. footnote 3) and therefore

• proxγ̃g̃ (id− γ̃∇f̃) = proxĥγϕ is (strictly) differentiable at x?, which is asser-
tion 3.11(i);

• ϕf̃ ,g̃1/γ̃ = ϕĥ/γ is (strictly) twice differentiable at x? with symmetric Hessian

1
γ̃

[
I−̃γ∇2f̃(x?)

](
I−J

(
proxγ̃g̃ (x? − γ̃∇f̃(x?))

))
= 1
γ∇

2ĥ(x?)
(
I−J proxĥγϕ(x?)

)
,

which is assertion 3.11(iii);
• proxγ̃g̃ is (strictly) differentiable at x? − γ̃∇f̃(x?) with symmetric Jacobian.

We have

proxγ̃g̃(s) = arg min
w∈V

{
ϕ(w) + 1

γ ĥ(w)− 1
2γ̃ ‖w‖

2 + 1
2γ̃ ‖w − s‖

2
}

= arg min
w∈V

{
ϕ(w) + 1

γ ĥ(w)− 1
γ 〈

γ
γ̃ s,w〉

}
= arg min

w∈V

{
ϕ(w) + 1

γ Dĥ

(
w,∇ĥ∗(γγ̃ s)

)}
.

3The requirement γ ∈ (0,Γ(x?)) in [83, Thm. 4.7] is needed only for ensuring that T (x?) = {x?}
is a singleton (which here follows by assumption), and consequently that strict inequality in (4.4)
therein holds for x 6= x?. In fact, the notion of criticality in [83] corresponds to that of being a fixed
point (cf. [83, Def. 3.1]), and the bound γ ∈ (0,Γ(x?)) therein guarantees the nondegeneracy as
defined in Definition 3.5 (cf. [83, Thm. 3.4(iii)]).
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A SUPERLINEAR BREGMAN FORWARD-BACKWARD SPLITTING 665

Since proxĥγϕ(x) is contained in V for all points close to x?, as apparent from
the definition of V in the proof of Theorem 3.8, for all points s such that
γ
γ̃ s is close to ∇ĥ(x?) the above formula coincides with proxγϕ ◦∇ĥ∗(

γ
γ̃ s).

The proof of assertion 3.11(ii) now follows by observing that x?− γ̃∇f̃(x?) =
γ̃
γ∇ĥ(x?).

4. Bregman forward-backward mapping and forward-backward enve-
lope. As a last step toward the algorithm presented in the next section, we here
analyze its main building block, the Bregman forward-backward operator. We thus
go back to the composite minimization setting of the investigated problem, stated
again here for the reader’s convenience,

(P) minimizeϕ(x) ≡ f(x) + g(x) subject tox ∈ C,

and which will be addressed under the following assumptions.

Assumption 1 (requirements for the composite minimization (P)). The following
hold:

a1. h : Rn → R := R ∪ {∞} is a Legendre kernel with int domh = C;
a2. f : Rn → R is Lf -smooth relative to h;
a3. g : Rn → R is proper and lower semicontinuous (lsc);
a4. arg min

{
ϕ(x) | x ∈ C

}
6= ∅;

a5. range Tf,g
h/γ ⊆ C for γ ∈ (0, 1/Lf), where

(4.1) Tf,g
h/γ(x) := arg min

z∈Rn

{
f(x) + 〈∇f(x), z − x〉+ g(z) + 1

γ Dh(z, x)
}

is the Bregman forward-backward mapping.

Similarly to what was noted in the previous section, special care is needed when
dealing with boundary points. Although some of the results would hold in a more
general setting, including requirement 1.a5 among the blanket assumptions consider-
ably simplifies the analysis. Moreover, the range inclusion ensures that any output
of Tf,g

h/γ can again be fed to Tf,g
h/γ—having dom Tf,g

h/γ = C; cf. Proposition 4.2—and is

essential for the well definedness of the Bella algorithm that will be presented in the
next section.

Our approach hinges on two analogies, one based on the local equivalence of the
Bregman proximal map and the Euclidean forward-backward mapping given in The-
orem 3.8 and particularly useful for asymptotic analyses, and the other one based on
the equivalence of forward-backward and proximal mappings in the Bregman setting.
The latter identity, which we show next in Theorem 4.1, leads to a simpler analysis
of the Bregman forward-backward mapping in allowing us to disregard the decom-
position f + g to solely focus on the cost function ϕ. Most importantly, it enables
the possibility of making use of the Bregman–Moreau envelope in the algorithmic
analysis, whence the thorough study carried out in the previous section will be heav-
ily exploited. In this perspective, in the spirit of the Bregman–Moreau envelope and
its relation with the Bregman proximal mapping, we construct an “envelope” for the
Bregman forward-backward operator by considering the value function associated to
the minimization problem (4.1) defining Tf,g

h/γ : we define the BFBE as the function

ϕf,gh/γ : Rn → R given by

(4.2) ϕf,gh/γ(x) := inf
z∈Rn

{
f(x) + 〈∇f(x), z − x〉+ g(z) + 1

γ Dh(z, x)
}
.
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666 M. AHOOKHOSH, A. THEMELIS, AND P. PATRINOS

The BFBE is the value function of the majorization-minimization (MM) problem
(4.1) defining the Bregman proximal mapping and serves as the Lyapunov function
for the iterates generated by the linesearch algorithm discussed in the next section.
Differently from other works that also employ value functions in the convergence
analysis of MM-type algorithms (see, e.g., [56, 22]), our analysis makes extensive use
of the continuity of the BFBE, which is shown in Proposition 4.2. This property
will fall as a simple corollary of Fact 3.2 once the equivalence between the Bregman–
Moreau envelope and BFBE is established in the next result.

Theorem 4.1 (equivalence of forward-backward and proximal point mappings).
Suppose that f is Lf -relatively smooth with respect to a Legendre kernel h. Then, for

every γ ∈ (0, 1/Lf) the function ĥ := h
γ − f (with the convention ∞−∞ = ∞) is a

Legendre kernel. Moreover,

ϕ(z) + Dĥ(z, x) = f(x) + 〈∇f(x), z − x〉+ g(z) + 1
γ Dh(z, x)(4.3)

holds for any (z, x) ∈ Rn × int domh, and in particular

Tf,g
h/γ(x) = prox

h/γ−f
ϕ (x) = proxh−γfγϕ (x)(4.4)

and

ϕf,gh/γ(x) = ϕ
h/γ−f (x).(4.5)

Proof. Let C = int domh. Observe that ĥ =
1−γLf
γ h + Lfh − f on dom ĥ =

domh; since Lfh−f is convex on C by assumption, 1-coercivity and strict convexity

on C of ĥ follow from the similar properties of h. We now show essential smoothness;
clearly, ĥ is differentiable on C with ∇ĥ = 1

γ∇h − ∇f . To arrive to a contradiction,

suppose that there exists a sequence (xk)k∈N ⊂ C converging to a boundary point x?
of C and such that supk∈N ‖∇ĥ(xk)‖ <∞. By possibly extracting a subsequence, we
may assume that ∇h(xk)/‖∇h(xk)‖ → v for some unitary vector v. For every y ∈ C,

since ∇(Lfh− f)(xk) = ∇ĥ(xk)− 1−γLf
γ ∇h(xk), it holds that

(4.6) 〈∇(Lfh−f)(xk)−∇(Lfh−f)(y), xk−y〉 ≤ cy− 1−γLf
γ 〈∇h(xk)−∇h(y), xk−y〉,

where cy := supk∈N〈∇ĥ(xk) − ∇ĥ(y), xk − y〉 is a finite quantity. Moreover, since
‖∇h(xk)‖ → ∞,

0 ≤ 1
‖∇h(xk)‖ 〈∇h(xk)−∇h(y), xk − y〉 → 〈v, x? − y〉 as k →∞,

and from the arbitrarity of y ∈ C we conclude that v ∈ {u | 〈u, x? − y〉 ≥ 0 ∀y ∈ C}.
Since C is open, B(x?; ε) ∩ C 6= ∅ for any ε > 0, and in particular there exists y ∈ C
such that 〈v, x? − y〉 	 0. Plugging this y into (4.6) yields

〈∇(Lfh−f)(xk)−∇(Lfh−f)(y), xk−y〉 ≤ cy−
1−γLf
γ
‖∇h(xk)‖〈∇h(x

k)−∇h(y)
‖∇h(xk)‖ , xk−y〉 → −∞,

contradicting convexity of Lfh− f on C. Therefore, 1
γh− f is a Legendre kernel, and

in particular the right-hand side in (4.3) is well defined, with equality therein and
consequent validity of (4.4) and (4.5) of immediate verification.

In light of the equivalence of Theorem 4.1, properties of the Bregman proximal
mapping and Bregman–Moreau envelope can directly be imported.
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Proposition 4.2. Suppose that Assumption 1 holds and let γ ∈ (0, 1/Lf). Then,

(i) Tf,g
h/γ(x) = prox

h/γ−f
ϕ (x) = proxhγg

(
∇h∗(∇h(x)− γ∇f(x))

)
for every x ∈ C;

(ii) domϕf,gh/γ = dom Tf,g
h/γ = C;

(iii) range Tf,g
h/γ ⊆ domϕ ∩ C;

(iv) Tf,g
h/γ is locally bounded, compact-valued, and osc on C;

(v) ϕf,gh/γ is continuous on C, in fact, locally Lipschitz if so is ∇h;

(vi) if x ∈ Tf,g
h/γ(x), then Tf,g

h/γ′(x) = {x} for every γ′ ∈ (0, γ).

Proof. It suffices to show the second equality in Proposition 4.2(i), while all
other claims follow from the similar properties of the Bregman proximal mapping
and Bregman–Moreau envelope in light of the equivalence of Theorem 4.1. By ex-
panding the Bregman distance and discarding constant terms in (4.1), one has

Tf,g
h/γ(x) = arg min

z

{
g(z) + 1

γ

[
h(z)− 〈∇h(x)− γ∇f(x), z − x〉

]}
= arg min

z

{
g(z) + 1

γ Dh(z, z̄)
}

for z̄ = ∇h∗(∇h(x) − γ∇f(x)), owing to the identity ∇h(x) − γ∇f(x) = ∇h(z̄) (cf.
Fact 2.3), hence the claim.

The next two results characterize the fundamental relationship between the BFBE
ϕf,gh/γ and the original function ϕ that are essential to analyze the convergence of the

Bregman forward-backward scheme that will be given in section 5.

Proposition 4.3 (relation between ϕ and ϕf,gh/γ). Suppose that Assumption 1

holds and let γ ∈ (0, 1/Lf) be fixed. Then,

(i) ϕf,gh/γ(x) ≤ ϕ(x) for all x ∈ C, with equality holding iff x ∈ Tf,g
h/γ(x);

(ii)
1−γLf
γ Dh(x̄, x) ≤ ϕf,gh/γ(x) − ϕ(x̄) ≤ 1+γLf

γ Dh(x̄, x) for all x ∈ C and x̄ ∈
Tf,g
h/γ(x);

(iii) inf ϕf,gh/γ = infC ϕ and arg minϕf,gh/γ = arg minC ϕ;

(iv) ϕf,gh/γ is level bounded iff ϕ is level bounded on C.

Proof. All the claims follow from Theorem 4.1 and Proposition 3.3 together with
the fact that

1−γLf
γ Dh ≤ Dĥ ≤

1+γLf
γ Dh for ĥ = 1

γh − f (owing to convexity of

Lfh± f).

Theorem 4.4 (equivalence of local minimality). Suppose that Assumption 1 holds.
Then,

(i) if x? ∈ C is a local minimum for ϕ, then it is a nondegenerate fixed point of

the proximal-gradient mapping Tf,g
h/γ for any γ small enough;

(ii) conversely, any nondegenerate fixed point x? of Tf,g
h/γ is a local minimum for

ϕ iff it is a local minimum for ϕh/γ. Moreover, equivalence of strong local
minimality also holds provided that h−γf is strongly convex in a neighborhood
of x?.

Proof. The assertion of Theorem 4.4 directly follows from Theorem 3.7(ii) in light
of the equivalence of Theorem 4.1. Suppose now that x? ∈ C is a local minimum for

ϕ. Then, there exists γ̄ > 0 such that prox
h/γ′
ϕ (x?) = {x?} for all γ′ ∈ (0, γ̄), as

shown in Theorem 3.7(i). We now claim that x? is a nondegenerate fixed point of
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Tf,g
h/γ for γ ∈ (0, γ̄

1+γ̄Lf
). To see this, recall that Tf,g

h/γ = prox
1
γ h−f
ϕ and observe that

1
γh− f = 1

γ′h+ (Lfh− f) for γ′ = γ
1−γLf . By invoking Lemma 3.6 we conclude that

x? is a nondegenerate fixed point of Tf,g
h/γ whenever γ is such that γ′ ∈ (0, γ̄), that is,

for γ ∈ (0, γ̄
1+γ̄Lf

) as claimed.

Theorem 4.1 also implies through Theorem 3.8 and Proposition 2.5(ii) that the
BFBE (3.3) is locally equivalent to its Euclidean version (4.2).

Theorem 4.5 (local equivalence of Bregman and Euclidean FBE). Suppose that
Assumption 1 holds and let γ < 1/Lf be fixed. Suppose further that h is locally Lipschitz
differentiable and locally strongly convex on C (as is the case when h ∈ C2 with
∇2h � 0 on C). Then, for every compact set U ⊂ C there exist γ̄ > 0 and a compact
convex set V ⊂ C such that for all γ̃ ∈ (0, γ̄) it holds that

ϕf,gh/γ = ϕf̃ ,g̃1/γ̃ and Tf,g
h/γ = Tf̃ ,g̃

1/γ̃ on U ,(4.7)

where

f̃ := f − 1
γh+ 1

2γ̃ ‖ · ‖
2 and g̃ := g + 1

γh−
1

2γ̃ ‖ · ‖
2 + δV .(4.8)

Moreover, g̃ is proper, lsc, and prox-bounded (in the Euclidean sense) with γg̃ = ∞,

and f̃ is Lf̃ -Lipschitz-differentiable on V with γ̃ < 1/Lf̃ .

We remark that, differently from the case of Theorem 3.8, it is strong convexity
of h − γf that is required, while that of h is sufficient but not necessary for the
purpose. For instance, local strong convexity of −f would waive the need for a
similar requirement on h.

4.1. First- and second-order properties. Here we list some (sub)differential
properties of the BFBE and the Bregman forward-backward operator. All the results
fall as a direct consequence of similar ones derived in the previous section. We remind
the reader that this passage hinges on the key equivalence assessed in Theorem 4.1,
namely Tf,g

h/γ = proxĥϕ and ϕf,gh/γ = ϕĥ for ĥ = 1
γh − f . In particular, the following

result is a direct consequence of Proposition 3.4. For the sake of a lighter notation,
it is convenient to introduce the matrix-valued mapping (defined wherever it makes
sense)

(4.9) Qfh/γ(x) := 1
γ∇

2h(x)−∇2f(x).

Proposition 4.6 (subdifferential properties of the BFBE). Additionally to As-

sumption 1, suppose that f, h ∈ C2(C). For every γ ∈ (0, 1/Lf) the BFBE ϕf,gh/γ is

strictly differentiable wherever it is differentiable. Moreover, for every x ∈ C and
with Qfh/γ as in (4.9)

(i) lipϕf,gh/γ(x) = maxx̄∈Tf,gh/γ(x)

∥∥Qfh/γ(x)(x− x̄)
∥∥;

(ii) ∂ϕf,gh/γ(x) = ∂Bϕ
f,g
h/γ(x) ⊆ Qfh/γ(x)

(
x−Tf,g

h/γ(x)
)
.

Theorem 4.7 (continuous differentiability of the BFBE). Suppose that Assump-
tion 1 holds and that f, h ∈ C2 with ∇2h � 0 on C. Suppose further that g is prox-
regular at a nondegenerate fixed point x? of Tf,g

h/γ for −∇f(x?). Then, there exists a

neighborhood U of x? on which the following statements are true:
(i) Tf,g

h/γ is Lipschitz continuous (hence single-valued);

(ii) ϕf,gh/γ ∈ C
1(U) with ∇ϕf,gh/γ(x) = Qfh/γ(x)(x−Tf,g

h/γ(x)), where Qfh/γ is as in (4.9).
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Proof. We may invoke [73, Ex. 13.35] to infer that ϕ is prox-regular at x? for
v = 0. The assumptions of Theorem 3.10 are thus satisfied for the Legendre kernel
ĥ = 1

γh− f = (Lfh− f) + ( 1
γ − Lf )h, and the proof then follows from Theorem 3.10

in light of Theorem 4.1.

Twice differentiability of the BFBE will play a key role in the asymptotic analy-
sis of the Bella algorithm discussed in the next section, when directions of quasi-
Newton type are considered (cf. Theorem 5.13). The following result offers sufficient
conditions ensuring this property at a fixed point of the Bregman forward-backward
mapping Tf,g

h/γ .

Theorem 4.8 (twice differentiability of ϕf,gh/γ). Additionally to Assumption 1, sup-

pose that
a1. f ∈ C2(C) and ∇2f is (strictly) continuous around a nondegenerate fixed

point x? of Tf,g
h/γ;

a2. h ∈ C2(C) with ∇2h � 0;
a3. g is prox-regular and (strictly) twice epi-differentiable at x? for −∇f(x?), with

its second-order epi-derivative being generalized quadratic.
Then, with Qfh/γ as in (4.9), Tf,g

h/γ is (strictly) differentiable at x?, and ϕf,gh/γ is (strictly)

twice differentiable at x? with symmetric Hessian

∇2ϕf,gh/γ(x?) = Qfh/γ(x?)
[
I− J Tf,g

h/γ(x?)].

Proof. It follows from [73, Ex. 13.18 and 13.25] that ϕ is prox-regular and
(strictly) twice epi-differentiable at x? for−∇f̃(x?), with generalized quadratic second-
order epi-derivative. The assumptions of Theorem 3.11 are thus satisfied for ĥ =
1
γh − f = (Lfh − f) + ( 1

γ − Lf )h, and the proof then follows from Theorem 3.11 in
light of Theorem 4.1.

5. The Bella algorithm. Having completed an in-depth analysis of the Breg-
man forward backward mapping and its envelope, we are now ready to introduce a
new algorithm based on these building blocks. The purpose of the algorithm is to
globalize the convergence of a fast local method for solving problem (P), exclusively

by means of calls to the Bregman forward-backward operator Tf,g
h/γ . Some meth-

ods have been proposed that adopt Armijo-type linesearch strategies for nonsmooth
problems [84, 25, 66], which, however, operate along “directions of descent” and thus
require some directional differentiability properties on the cost function. In response
to this limitation, the Bella algorithm proposed here offers a viable alternative that
is suited to problem (P) in its full generality and, in fact, can cope with arbitrary
update directions.

Having assessed, under Assumption 1, the continuity property of the BFBE and
the inequality ϕf,gh/γ(x̄) ≤ ϕf,gh/γ(x)− 1−γLf

γ Dh(x̄, x) holding for any x̄ ∈ Tf,g
h/γ(x), the al-

gorithmic rationale is quite self-explanatory. At each iteration, once a direction d has
been selected according to a user-defined criterion (ideally a “fast” direction, but vir-
tually any choice works regardless), the candidate update direction x+ d is “pushed”
toward the forward-backward step x̄ until a descent inequality is satisfied on the
BFBE, which serves as a continuous and real-valued Lyapunov function for the algo-
rithm. This well definedness aspect will be better detailed in the dedicated subsection
5.1, where a qualitative measure of stationarity of the output point x̂ is also given.

The oracle complexity of one iteration of Bella is dictated by three operations:
a Bregman forward-backward call at step 1, the computation of a direction dk at
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Algorithm 5.1 Bella.

Require with Assumption 1 holding, select stepsize γ ∈ (0, 1/Lf), initial point

x0 ∈ C, σ ∈ (0,
1−γLf
γ ), tolerance ε > 0, max number of backtrackings

imax ∈ N ∪ {∞}
Initialize k = 0

1: choose x̄k ∈ Tf,g
h/γ(x

k)

2: if Dh(x̄k, xk) ≤ ε then return x̂ := x̄k end if

3: choose a direction dk ∈ Rn and set τk = 1 and ik = 0

4: xk+1 = (1− τk)x̄k + τk(xk + dk)

5: if ϕf,gh/γ(x
k+1) ≤ ϕf,gh/γ(x

k)− σDh(x̄k, xk) then . Linesearch passed

6: k ← k + 1 and go to step 1

7: else if ik = imax then . Max #backtrackings: do plain BFBS step

8: xk+1 = x̄k, k ← k + 1 and go to step 1

9: else . Linesearch failed: backtrack and retry

10: τk ← τk/2, ik ← ik + 1 and go to step 4

step 3, and the evaluation of the BFBE at step 5. As discussed in subsection 5.4, for
instance, directions of quasi-Newton type involve only direct linear algebra operations
on already available quantities. Moreover, the evaluation of ϕf,gh/γ(x

k+1) requires only

one call to Tf,g
h/γ(x

k+1) (which can be stored and reused at step 1), and consequently,

apart from the freedom in choosing suitably inexpensive directions, each iteration
requires one call to the Bregman forward-backward operator per backtracking trial
at step 5. A bound on the number of these calls can be imposed by selecting a finite
threshold imax, which, however, makes no difference from a theoretical standpoint. We
also remark that Bella includes known methods as special cases; by setting dk = x̄k−
xk it reduces to the Bregman forward-backward algorithm given in [24] (the linesearch
condition (5.1) is satisfied regardless of the stepsize τk owing to Proposition 4.3(i) and
(ii)), while for h = 1

2‖ · ‖
2 one obtains the PANOC algorithm given in [75]. It is also

worth remarking that by considering f = 0 and suitably choosing h, Bella offers a
linesearch extension to any algorithm that can be interpreted as a Bregman proximal
point scheme.

5.1. Well definedness and finite termination. As discussed in the beginning
of the section, the rationale of the linesearch involved in Bella is a simple consequence
of basic properties of the BFBE. The next result validates this claim.

Lemma 5.1 (well definedness of Bella). Let Assumption 1 hold, and let γ ∈
(0, 1/Lf) and σ ∈ (0,

1−γLf
γ ) be fixed. Then, for any x ∈ C, x̄ ∈ Tf,g

h/γ(x)\{x}, and d ∈
Rn there exists τ̄ ∈ (0, 1] such that for any τ ∈ [0, τ̄ ] the point x+

τ := (1−τ)x̄+τ(x+d)
satisfies

ϕf,gh/γ(x
+
τ ) ≤ ϕf,gh/γ(x)− σDh(x̄, x).

In particular, since x+
τ ∈ C, the iterates of Bella are well defined with linesearch

at step 5 terminating after a finite number of backtrackings regardless of the choice
of (dk)k∈N and whether or not a finite maximum number of backtrackings imax is
imposed.
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Proof. It follows from Proposition 4.3(i) and (ii) that the strict inequality

ϕf,gh/γ(x
′) < ϕf,gh/γ(x)− σDh(x̄, x)

holds for x′ = x̄ ∈ C. Continuity of the envelope ϕf,gh/γ and openness of its domain as

asserted in Proposition 4.2 then ensure that there exists a neighborhood U of x̄ such
that the inequality remains valid for any x′ ∈ U . The proof now follows by observing
that x+

τ → x̄ as τ ↘ 0 for any d ∈ Rn, i.e., x+
τ ∈ U for small enough τ . Therefore,

the claimed inequality will be satisfied after a finite number of backtrackings, which
is our desired result.

Next, we offer an explicit bound on the number of iterations needed to satisfy
the termination criterion at step 2 and provide a qualitative measure of stationarity
of the output vector x̂. We recall that the number of calls to the Bregman forward-
backward operator Tf,g

h/γ (corresponding to the number of backtrackings at step 9) can

artificially be bounded by means of selecting a finite parameter imax at initialization.
By doing so, one obtains that Bella terminates with at most imax times the number
of iterations many calls to Tf,g

h/γ (although this is likely a massively loose estimate

when sensible directions are employed).

Theorem 5.2 (iteration complexity of Bella). Suppose that Assumption 1 holds.
Then,

(i) Bella terminates within k ≤ ϕ(x0)−inf ϕ
σε iterations;

(ii) if domh = Rn and h is σh,U -strongly convex and Lh,U -Lipschitz differentiable
on an open convex set U that contains all the iterates xk and x̄k (this being
true if h ∈ C2 with ∇2h � 0), then the point x̂ returned by Bella satisfies

dist(0, ∂̂ϕ(x̂)) ≤ 1+γLf
γ

√
2L2

h,U
σh,U

ε.

Proof. We begin by observing that for every k ∈ N it holds that

(5.1) ϕf,gh/γ(x̄
k+1) ≤ ϕf,gh/γ(x

k+1) ≤ ϕf,gh/γ(x
k)− σDh(x̄k, xk).

The first inequality owes to Proposition 4.3(i) and (ii), whereas the second one is
apparent when the condition at step 5 is satisfied and follows from Proposition 4.3(i)

and (ii) together with the fact that σ <
1−γLf
γ otherwise (that is, when the maximum

number of backtrackings is reached and the nominal step xk+1 = x̄k is taken).
Theorem 5.2(i). By telescoping the inequality (5.1) over the first K > 0 iterations

we have
(5.2)

σ

K−1∑
k=0

Dh(x̄k, xk) ≤
K−1∑
k=0

(
ϕf,gh/γ(x

k)−ϕf,gh/γ(x
k+1)

)
= ϕf,gh/γ(x

0)−ϕf,gh/γ(x
K) ≤ ϕ(x0)−inf ϕ,

where the last inequality follows from Proposition 4.3(i) and (iii). Since all the iterates

up to the (K − 1)th satisfy Dh(x̄k, xk) > ε, if ε > 0 necessarily K ≤ ϕ(x0)−inf ϕ
σε as

claimed.
Theorem 5.2(ii). LetM(z, x) := f(x) + 〈∇f(x), z−x〉+ g(z) + 1

γ Dh(z, x) be the

function in the minimization problem (4.1) defining the proximal-gradient operator

Tf,g
h/γ . For any x ∈ U it holds that the difference δx(w) :=M(w, x)− ϕ(w) satisfies

∇δx(w) = ∇( 1
γh− f)(w)−∇( 1

γh− f)(x).
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By using convexity of Lfh±f as in the proof of Proposition 2.5(ii), it is easy to verify

that the gradient of the (convex) function 1
γh− f is

1+γLf
γ Lh,U -Lipschitz continuous

on U , hence so is ∇δx independently of x. The proof can now trace that of [80, Lem.

2.15]. Since ∇δx(x) = 0, for any x̄ ∈ U one has ‖∇δx(x̄)‖ ≤ 1+γLf
γ Lh,U‖x − x̄‖. In

particular, for x̄ ∈ Tf,g
h/γ(x) ∩ U one has

0 ∈ ∂̂[M( · , x)](x̄) = ∂̂ϕ(x̄) +∇δx(x̄),

that is, −∇δx(x̄) ∈ ∂̂ϕ(x̄). Thus, for x̂ = x̄k as in the last iteration of Bella one has

dist(0, ∂̂ϕ(x̄k)) ≤ ‖∇δxk(x̄k)‖ ≤ 1+γLf
γ Lh,U‖xk − x̄k‖

≤ 1+γLf
γ

√
2L2

h,U
σh,U

Dh(x̄k, xk) ≤ 1+γLf
γ

√
2L2

h,U
σh,U

ε

as claimed.

We remark that although the proof of Theorem 5.2(ii) still works even when
h does not have full domain, the result is not very informative in the constrained
case C 6= Rn, owing to the fact that 0 ∈ ∂ϕ(x?) is not a necessary condition for
optimality when x? is on the boundary of C. That the result holds regardless is not
a contradiction, since the Lipschitz constant Lh,U involved in the proof grows bigger
and bigger as the boundary is approached.

5.2. Subsequential convergence. The rest of the paper is devoted to asymp-
totic analyses of Bella, corresponding to a null tolerance ε = 0. To rule out trivial-
ities, we will implicitly assume x̄k 6= xk for every k ∈ N, so that the algorithm runs
infinitely many iterations.

Theorem 5.3 (asymptotic analysis). Suppose that Assumption 1 holds and con-
sider the iterates generated by Bella with tolerance ε = 0. Then,

(i)
∑
k∈N Dh(x̄k, xk) is finite;

(ii) the real-valued sequences (ϕ(x̄k))k∈N and (ϕf,gh/γ(x
k))k∈N converge to a finite

value ϕ?, the latter monotonically decreasing;
(iii) if ϕ+ δC is level bounded, then (xk)k∈N and (x̄k)k∈N are bounded;
(iv) if (xk)k∈N and (x̄k)k∈N are bounded and either h is locally strongly convex

or domh = Rn, then (xk)k∈N and (x̄k)k∈N have the same set of limit points
ω, which is compact and such that dist(xk, ω) → 0 and dist(x̄k, ω) → 0 as
k →∞.

Proof.
Theorem 5.3(i). This readily follows from the fact that the partial sums in (5.2)

are bounded by the same finite constant for any K ∈ N.
Theorem 5.3(ii). It follows from (5.1) that (ϕf,gh/γ(x

k))k∈N is decreasing, hence it

admits a limit, be it ϕ?, which due to Proposition 4.3(iii) is lower bounded by infC ϕ
and is thus finite. In turn, also ϕ(x̄k)→ ϕ? (although not necessarily monotonically),
as it follows from Proposition 4.3(ii) and the fact that Dh(x̄k, xk)→ 0.

Theorem 5.3(iii). Follows from Proposition 4.3(iv) together with the observation

that both sequences are contained both in C and in the sublevel set [ϕf,gh/γ ≤ ϕ
f,g
h/γ(x

0)],

as is apparent from (5.1).
Theorem 5.3(iv). If domh = Rn, continuity of Dh on Rn × Rn implies through

assertion 5.3(i) that a subsequence (xk)k∈K converges to a point x? iff so does (x̄k)k∈K .
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The same holds if h is locally strongly convex, owing to the inequality
σh,U

2 ‖x
k−x̄k‖2 ≤

Dh(x̄k, xk) where σh,U is a strong convexity modulus for h on a (convex) compact set
U ⊆ domh that contains (xk)k∈N and (x̄k)k∈N. In particular, (xk)k∈N and (x̄k)k∈N
have same set of limit points, be it ω. The claimed properties on ω hold generally for
any limit set of a bounded sequence.

In the rest of the paper we will need to work under the assumption that h has
full domain. To the best of our knowledge, no work in the literature dealing with a
fully nonconvex setup as that of problem (P) can circumvent this requirement even for
proving stationarity of the limit points. For the sake of maintaining the full generality
of our problem setup we will not include a separate analysis for a (hypo)convex setting
and will thus stick to this assumption, which we formulate next for future reference.

Assumption 2. The Legendre kernel h has full domain, i.e., domh = Rn.

Theorem 5.4 (subsequential convergence). Suppose that Assumptions 1 and 2
hold and that ϕ is level bounded. Then, additionally to all the claims of Theorem 5.3,
any point in the set ω satisfies the fixed-point inclusion x? ∈ Tf,g

h/γ(x?) and in particular

is stationary for ϕ. Moreover, ϕ is constant on ω and equals ϕ? as in Theorem 5.3(ii).

Proof. It follows from Theorem 5.3(iii) and (iv) that (xk)k∈N and (x̄k)k∈N are
bounded and with same set of limit points, be it ω. More precisely, as shown in the
proof of Theorem 5.3(iv), for any infinite set K ⊂ N it holds that (xk)k∈K → x?
iff (x̄k)k∈K → x?, which implies through Proposition 4.2 that any x? ∈ ω satisfies

x? ∈ Tf,g
h/γ(x?). Let x? ∈ ω be fixed, and let K ⊆ N be such that xk, x̄k → x? as

K 3 k →∞. We have

ϕ(x?) ≤ lim
K3k→∞

ϕ(x̄k)
5.3(ii)

= lim
K3k→∞

ϕf,gh/γ(x
k)

4.2

= ϕf,gh/γ(x?)
4.3(i)

≤ ϕ(x?),

where the first inequality owes to the fact that ϕ is lsc. The arbitrarity of x? ∈ ω
and the fact that limk→∞ ϕ(x̄k) = ϕ? imply that ϕ(x?) = ϕ? for all x? ∈ ω. Let now
ĥ := 1

γh− f so that x̄k ∈ proxĥϕ; cf. Theorem 4.1. The optimality conditions for x̄k

read

(5.3) 0 ∈ ∂ϕ(x̄k) + ĥ(x̄k)−∇ĥ(xk),

owing to [73, Ex. 8.8(c)]. Continuity of ∇ĥ implies that ĥ(x̄k) − ∇ĥ(xk) → 0 as
K 3 k → ∞, and since ϕ(x̄k) → ϕ(x?) from ϕ-attentive osc of ∂ϕ we conclude that
0 ∈ ∂ϕ(x?).

Remark 5.5 (adaptive variant of Bella for unknown Lf ). If the constant Lf is
not available, then it can be retrieved adaptively by initializing it with an estimate
L > 0 and by adding the following instruction after step 1:

1bis: if f(x̄k) > f(xk) + 〈∇f(xk), x̄k − xk〉+ LDh(x̄k, xk) then
γ ← γ/2, L← 2L, σ ← 2σ, and go to step 1.

Whenever L exceeds the actual value Lf , this procedure will terminate and L will
be constant starting from that iteration; consequently, L will be increased only a
finite number of times. Whether or not the final constant L exceeds the actual value
Lf , all the claims of Theorem 5.4 remain valid. In order to replicate the proof of

Theorem 5.4, it suffices to show that (ϕf,gh/γ(x
k))k∈N converges to a finite value ϕ?,

which here cannot be inferred from the lower boundedness of ϕf,gh/γ , being ensured only

for γ < 1/Lf (Proposition 4.3(iii)). Nevertheless,
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inf ϕ ≤ f(x̄k) + g(x̄k) ≤ f(xk) + 〈∇f(xk), x̄k − xk〉+ LDh(x̄k, xk) + g(x̄k)

= ϕf,gh/γ(x
k)− 1−γL

γ Dh(x̄k, xk),

proving that ϕ? ≥ inf ϕ.

5.3. Global and linear convergence. Similarly to the descent algorithms
studied in [8], Bella exhibits global (as opposed to subsequential) convergence when
the cost function ϕ satisfies the so-called KL property, a mild requirement enjoyed by
a large class of functions.

Definition 5.6 (KL property). A proper lsc function F : Rn → R is said to have
the KL property at u? ∈ domF if there exist a continuous concave desingularizing
function ψ : [0, η]→ [0,∞) (for some η > 0) and an ε > 0 such that

p1. ψ(0) = 0;
p2. ψ is of class C1 on (0, η);
p3. for all u ∈ B(u?; ε) such that F (u?) < F (u) < F (u?) + η it holds that

ψ′(F (u)− F (u?)) dist(0, ∂F (u)) ≥ 1.(5.4)

The first inequality of this type is given in the seminal work of  Lojasiewicz [53,
54] for analytic functions, which we nowadays call  Lojasiewicz’s gradient inequality.
Kurdyka [44] showed that this inequality is valid for C1 functions whose graph belongs
to an o-minimal structure [87, 86], a result which was later extended in [18, 19,
20] for lsc tame functions, a wide category including semialgebraic functions as a
special case. In the following result we adapt the convergence analysis of [7, 8, 65] to
our framework, showing that Bella converges to a (unique) limit point under a KL
property assumption.

Theorem 5.7 (global convergence). Let Assumptions 1 and 2 hold and consider
the iterates generated by Bella with tolerance ε = 0. Suppose further that

a1. ϕ is level bounded;
a2. f, h ∈ C2 with ∇2h � 0;
a3. either (‖dk‖)k∈N has finite sum, or there exists D ≥ 0 such that ‖dk‖ ≤

D‖xk − x̄k‖ for all k;
a4. f, g, h are tame functions [87, 86] (e.g., semialgebraic).

Then, (‖xk− x̄k‖)k∈N has finite sum (in fact, regardless of whether or not requirement
5.7.a3 holds), and (xk)k∈N and (x̄k)k∈N converge to a stationary point x?.

Proof. Let ĥ := 1
γh − f so that x̄k = proxĥϕ(xk) = arg minwM(w, x), where

M(w, x) := ϕ(w) + Dĥ(w, x) (cf. Theorem 4.1). It follows from Theorem 5.3(ii) that

ϕf,gh/γ(x
k) = M(x̄k, xk) converges strictly decreasing to ϕ?. Since tame functions are

closed under derivation and basic algebraic operations [87, sect. 2.1], M is a tame
function and consequently satisfies the KL property [19, Thm. 14]. Moreover, M is
constant (and equals ϕ?) on Ω := {(x?, x?) | x? ∈ ω}. The properties of the set of ac-
cumulation points ω of the sequences (xk)k∈N and (x̄k)k∈N asserted in Theorem 5.3(iv)
ensure through [23, Lem. 6] the existence of a uniformized KL function on Ω, namely
a function ψ satisfying properties 5.6.p1, 5.6.p2 and 5.6.p3 with F =M for all u? ∈ Ω
and u ∈ Rn × Rn such that dist(u,Ω) < ε and ϕ? <M(u) < ϕ? + η. Up to possibly
discarding the first iterates, we may assume that u = (x̄k, xk) satisfies these conditions

for all k ∈ N. Let ∆k := ψ(M(x̄k, xk)− ϕ?) = ψ(ϕf,gh/γ(x
k)− ϕ?), and observe that

∂M(w, x) =

(
∂ϕ(w) +∇ĥ(w)−∇ĥ(x)

∇2ĥ(x)(x− w)

)
, hence

(
0

∇2ĥ(xk)(xk − x̄k)

)
∈ ∂M(x̄k, xk)

(5.5)
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as follows from (5.3). We have

1 ≤ ψ′(M(x̄k, xk)− ϕ?) dist(0, ∂M(x̄k, xk)) KL inequality (5.4)

≤ ψ′(M(x̄k, xk)− ϕ?)‖∇2ĥ(xk)‖‖xk − x̄k‖ inclusion (5.5)

(5.6)

≤ ∆k −∆k+1

M(x̄k, xk)−M(x̄k+1, xk+1)
‖∇2ĥ(xk)‖‖xk − x̄k‖ concavity of ψ

≤ ∆k −∆k+1

σDh(x̄k, xk)
‖∇2ĥ(xk)‖‖xk − x̄k‖ M(x̄j , xj) = ϕf,g

h/γ
(xj) and (5.1)

≤ 2Lĥ,U
σσĥ,U

∆k −∆k+1

‖xk − x̄k‖
,

(5.7)

where Lĥ,U and σĥ,U are, respectively, smoothness and strong convexity moduli of ĥ
on a (convex) compact set U that contains all the iterates xk and x̄k. Therefore,

(5.8)
∑
k∈N
‖xk − x̄k‖ ≤ 2Lĥ,U

σσĥ,U

∑
k∈N

(∆k −∆k+1) ≤ 2Lĥ,U
σσĥ,U

∆0 <∞,

where the last inequality follows from the fact that ψ ≥ 0. Therefore,∑
k∈N
‖xk+1 − xk‖ =

∑
k∈N
‖(1− τk)(x̄k − xk) + τkd

k‖ ≤
∑
k∈N
‖x̄k − xk‖+

∑
k∈N
‖dk‖

(5.8)

<∞

as ensured by either conditions in requirement 5.7.a3. In particular, (xk)k∈N is a
Cauchy sequence and thus has a limit x?, which is also the limit of (x̄k)k∈N and is
stationary for ϕ as it follows from Theorem 5.4.

Requirement 5.7.a3 imposes a mild and reasonable consistency criterion on the
directions dk being used (which, however, is not needed for subsequential convergence;
cf. Theorem 5.4). It simply reflects the idea that shorter steps should be taken when
close to solutions and uses the fixed-point residual ‖xk − x̄k‖ to quantify the proxim-
ity. Though apparently quite abstract a requirement, in the next subsection a more
practical understanding of this condition will be given when showing its connection
to standard theory of quasi-Newton schemes.

When f, g, h are semialgebraic (and thus so is the model M in the proof of
Theorem 5.7 as a byproduct), then the desingularizing function for M can be taken
of the form ψ(s) = %sϑ for some % > 0 and ϑ ∈ (0, 1) [7], in which case we say that
it satisfies the KL property with exponent 1 − ϑ. Such exponent has a cardinal role
in determining asymptotic rates of convergence; in particular, when ϑ ≥ 1/2 linear
convergence rates can be easily shown. We remark that our approach based on the
model M (both in Theorem 5.7 and in Theorem 5.8 that follows) is largely inspired
by the similar approach in [49] for the global and linear convergence of the Douglas–
Rachford algorithm in the nonconvex setting.

Theorem 5.8 (linear convergence). Let Assumptions 1 and 2 hold and consider
the iterates generated by Bella with tolerance ε = 0. Suppose further that

a1. ϕ is level bounded;
a2. f, h ∈ C2 with ∇2h � 0;
a3. either (‖dk‖)k∈N converges R-linearly to 0 or there exists D ≥ 0 such that
‖dk‖ ≤ D‖xk − x̄k‖ for all k;

D
ow

nl
oa

de
d 

02
/2

4/
21

 to
 1

33
.5

.3
6.

93
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

676 M. AHOOKHOSH, A. THEMELIS, AND P. PATRINOS

a4. f, g, h are semialgebraic, and the KL exponent ofM(w, x) := ϕ(w)+Dĥ(w, x)
with ĥ := 1

γh− f is 1− ϑ ≤ 1/2.

Then, (xk)k∈N and (x̄k)k∈N generated by Bella converge at R-linear rate to a station-
ary point.

Proof. As shown in Theorem 5.7, the sequences converge to a stationary point
x?. Since xk+1 − xk = (1 − τk)(x̄k − xk) + τkd

k, if ‖dk‖ ≤ D‖xk − x̄k‖ for all k,
then defining Bk :=

∑
i≥k ‖x̄i − xi‖ one has ‖xk − x?‖ ≤ (1 + D)Bk, and similarly

‖x̄k − x?‖ ≤ (3 +D)Bk owing to the inequality

‖x̄k+1−x̄k‖≤‖x̄k+1−xk+1‖+‖x̄k−xk‖+‖xk+1−xk‖≤‖x̄k+1−xk+1‖+(2+D)‖x̄k−xk‖.

If, instead, there exist c′ > 0 and ρ ∈ (0, 1) such that ‖dk‖ ≤ c′ρk for all k ∈ N, then
‖xk − x?‖ ≤ Bk + c′ρk and ‖x̄k − x?‖ ≤ 3Bk + c′ρk. Either way, it suffices to show
that the sequence (Bk)k∈N converges with asymptotic linear rate. Let ∆k, Lĥ,U , and
σĥ,U be as in the proof of Theorem 5.7. The KL inequality (5.4) with ψ(s) = %sϑ

reads

1 ≤ %ϑLĥ,U (M(x̄k, xk)− ϕ?)ϑ−1‖xk − x̄k‖ = %ϑLĥ,U (ϕf,gh/γ(x
k)− ϕ?)ϑ−1‖xk − x̄k‖.

Since ‖xk − x̄k‖ → 0, up to discarding the first iterates we may assume that this

quantity is smaller than 1. Therefore, ∆k = ψ(ϕf,gh/γ(x
k)− ϕ?) satisfies

(5.9)

∆k = %(ϕf,gh/γ(x
k)− ϕ?)ϑ ≤ %(%ϑLĥ,U )

ϑ
1−ϑ ‖xk − x̄k‖

ϑ
1−ϑ ≤ %

1
1−ϑ (ϑLĥ,U )

ϑ
1−ϑ ‖xk − x̄k‖,

where the last inequality uses the fact that ϑ
1−ϑ ≥ 1 and that ‖xk − x̄k‖ ≤ 1. Hence,

Bk =
∑
i≥k

‖xi − x̄i‖
(5.7)

≤ 2Lĥ,U
σσĥ,U

∑
i≥k

(∆i −∆i+1)
∆i≥0

≤ 2Lĥ,U
σσĥ,U

∆k

(5.9)

≤ c‖xk − x̄k‖

for some constant c > 0. Therefore, Bk ≤ c‖xk − x̄k‖ = c(Bk −Bk+1), leading to the
sought asymptotic linear rate Bk+1 ≤ (1− 1/c)Bk.

5.4. Superlinear convergence. Although Bella is “robust” to any choice of
directions, a suitable selection stemming, for instance, from Newton-type methods
can cause a remarkable speed-up. As already discussed in Theorem 4.8, the Bregman
forward-backward mapping Tf,g

h/γ behaves nicely around nondegenerate fixed points

under some regularity assumptions. This motivates the quest to derive the direction
dk in Bella by a Newton-type scheme for solving the inclusion x ∈ Tf,g

h/γ(x) or, equiv-

alently, the nonlinear (generalized) equation 0 ∈ Rf,g
h/γ(x) where Rf,g

h/γ
:= id − Tf,g

h/γ is

the fixed-point residual mapping. Newton-type methods for such a nonlinear equation
prescribe updates of the form

(5.10) x+ = x−H(x) Rf,g
h/γ(x),

where ideally H(x) should well approximate the Jacobian of Rf,g
h/γ(x). In particular,

starting with an invertible matrix H0, quasi-Newton schemes emulate higher-order
information by performing low-rank updates satisfying a so-called secant equation,

(5.11) H+y = s, where s = x+ − x, y ∈ Rf,g
h/γ(x

+)−Rf,g
h/γ(x).
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In these scenarios, the condition ‖dk‖ ≤ D‖xk−x̄k‖ appearing in requirement 5.7.a3 is
verified when the operators H are bounded, a frequent assumption in the convergence
analysis of quasi-Newton methods. A well-known result characterizing the superlinear
convergence of this type of scheme is based on the Dennis–Moré condition [31, 32],

which amounts to differentiability of Rf,g
h/γ at the limit point together with the limit

‖Rf,g
h/γ(x

k) + J Rf,g
h/γ(x?)d

k‖/‖dk‖ → 0; see also [33] for the extension to generalized

equations. In Theorem 5.13 we will see that, in fact, directions satisfying this condition
trigger asymptotic superlinear rates in Bella. To this end, we first characterize the
quality of the update directions with the next definition and prove an intermediate
result showing how they fit into Bella. We will make use of the notion of nonisolated
superlinear directions, extending the similar definition of Facchinei and Pang [35, eq.
(7.5.2)].

Definition 5.9 (nonisolated superlinear directions). Relative to the iterates gen-
erated by Bella, we say that (dk)k∈N is a sequence of superlinear directions with
order q ≥ 1 if

lim
k→∞

dist(xk + dk,X?)
dist(xk,X?)q

= 0

with X? := {x∈Rn |x∈Tf,g
h/γ(x)} the set of fixed points of the forward-backward oper-

ator Tf,g
h/γ.

The set X? in the definition above corresponds to the possible limit points of
the sequences (xk)k∈N and (x̄k)k∈N generated by Bella when h has full domain,
as shown in Theorem 5.4. In fact, our notion of superlinear directions extends the
one given in [35, eq. (7.5.2)] to cases in which X? is not a singleton. Despite the
importance of nonisolated critical points in nonsmooth nonconvex optimization, there
has been little attention to superlinear directions for such problems. In the convex
setting, some studies have shown the potential of variants of regularized Newton
[48, 81] and semismooth Newton methods [50, 82] under a local error bound. In the
smooth nonconvex setting, there are many works relying on Levenberg–Marquardt
[3, 4, 36, 89], cubic regularization [91], and regularized Newton [85] methods under
variants of local error bounds and Hölder metric subregularity.

5.4.1. A nonlinear error bound. Our result hinges on three key ingredients:
(i) the differentiability of the BFBE around a limit point of Bella, (ii) the KL property
(with exponent) on the BFBE, and (iii) a nonlinear error bound relating the KL
function to the distance appearing in Definition 5.9. Sufficient conditions ensuring
the first ingredient have already been discussed in Theorem 4.7. As to the second one,
it has been shown in [90] that whenever the Legendre kernel h is twice continuously
differentiable and (locally) strongly convex, if the function ϕ satisfies the KL property
with exponent ϑ ≥ 1/2, then so does the Bregman envelope ϕh. Clearly, the lower the
ϑ the stronger the property, in the sense that whenever ϕ admits a desingularizing
function with exponent ϑ ∈ (0, 1), then it also admits a desingularizing function with
exponent ϑ′ ∈ [ϑ, 1). Combined with the relation existing among the BFBE and the
Bregman–Moreau envelope shown in Theorem 4.1, the following is obtained.

Lemma 5.10 (equivalence of  Lojasiewicz property [90, Thm. 5.2]). Additionally
to Assumption 1, suppose that f, h ∈ C2(int domh) with ∇2h � 0. If ϕ has the KL

property with exponent ϑ ∈ (0, 1), then so does ϕf,gh/γ with exponent ϑ′ = max {1/2, ϑ}.
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The last ingredient involves a desingularizing property stronger than the KL in-
equality which is investigated in [9], namely with dist(0, ∂F (u)) being replaced by

the strong slope |∇F |(u) := lim supu6=z→u
F (u)−F (z)
‖u−z‖ in (5.4). Of particular interest

to our scope is [9, Thm. 4.1], which connects this property to a nonlinear growth
condition of the form ψ(F (u)− F (u?)) ≥ dist(u, [F ≤ F (u?)]). The key observation
is that whenever F is continuously differentiable around u?, both the strong slope
|∇F |(u) and the minimum norm subgradient dist(0, ∂F (u)) coincide and are equal
to ‖∇F (u)‖. The combination of [9, Thm. 4.1] with Theorem 4.7 thus leads to the
following milestone of our analysis.

Lemma 5.11 (nonlinear error bound [9, Thm. 4.1]). Suppose that Assumption 1

holds and let x? be a nondegenerate fixed point of Tf,g
h/γ at which g is prox-regular for

−∇f(x?). Suppose further that f, h ∈ C2(int domh) with ∇2h � 0 and that ϕf,gh/γ has

the KL property at x? with desingularizing function ψ. Then, denoting ϕ? := ϕf,gh/γ(x?)

there exist ε, η > 0 such that

ψ
(
ϕf,gh/γ(x)−ϕ?

)
≥dist

(
x, [ϕf,gh/γ ≤ ϕ?]

)
∀x ∈ B(x?; ε) such that ϕ? < ϕf,gh/γ(x) < ϕ?+η.

5.4.2. Superlinear convergence to nonisolated local minima. We now
have all the ingredients to address the superlinear convergence analysis of Bella to
nonisolated local minima. The next is a cardinal result of our methodology, as it shows
that Bella does not suffer from the Maratos effect [57], a well-known obstacle for fast
local methods that inhibits the acceptance of the unit stepsize. On the contrary,
we will show that under mild assumptions whenever the directions (dk)k∈N in Bella

are superlinear, then unit stepsize is eventually always accepted and the algorithm
converges superlinearly even if the limit point belongs to a flat region of local minima.
As detailed in the proof, local minimality (as opposed to the more general property

of being a fixed point of the forward-backward mapping Tf,g
h/γ) enables the identity

dist
(
x, [ϕf,gh/γ ≤ ϕ?]

)
= dist(x,X?) in a neighborhood of the limit point, which in

turns allows us to connect the notion of superlinear directions of Definition 5.9 to the
nonlinear error bound of Lemma 5.11.

Theorem 5.12 (acceptance of the unit stepsize and superlinear convergence).
Consider the iterates generated by Bella, and additionally to Assumptions 1 and 2
suppose that the following requirements hold:

a1. ϕ is level bounded;
a2. f, h ∈ C2(Rn) with ∇2h � 0;

a3. either ϕ or ϕf,gh/γ has the KL property with exponent 1 − ϑ ∈ (0, 1) (as is the

case when f, g, h are semialgebraic);
a4. dk are superlinear directions with order q ≥max {1, 1/2ϑ} (cf. Definition 5.9);

a5. the sequence (xk)k∈N converges to a nondegenerate fixed point x? of Tf,g
h/γ,

which is a (not necessarily isolated) local minimum for ϕ, and at which g is
prox-regular for −∇f(x?).

Then, there exists k0 ∈ N such that

ϕf,gh/γ(x
k + dk) ≤ ϕf,gh/γ(x

k)− σDh(x̄k, xk) ∀k ≥ k0.

In particular,
(i) eventually stepsize τ = 1 is always accepted at step 5 (that is, no backtrackings

eventually occur) and the iterates reduce to xk+1 = xk + dk;
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(ii) dist(xk,X?)→ 0 at superlinear rate, where X? is as in Definition 5.9.

Proof. First, in either cases of requirement 5.12.a3, Lemma 5.10 ensures that
ψ(s) := %smin {ϑ,1/2} for some % > 0 is a desingularizing function for ϕf,gh/γ at x?.

Denoting ϕ? := ϕ(x?) = ϕf,gh/γ(x?), the equivalence of local minimality asserted in

Theorem 4.4 ensures that for small enough ε > 0 it holds that
(5.12)

ϕf,gh/γ(x) ≥ ϕ? and dist
(
x, [ϕf,gh/γ ≤ ϕ?]

)
= dist

(
x, [ϕf,gh/γ = ϕ?]

)
∀x ∈ B(x?; ε).

Moreover, since ϕf,gh/γ(x
k) converges strictly decreasing to ϕ? (cf. Theorem 5.3(ii)),

up to possibly discarding the first iterates and restricting ε we may assume that
ϕf,gh/γ(x

k) ≤ ϕ? + η, with η, ε > 0 as in Definition 5.6 of the KL function. Notice

further that any point x ∈ B(x?; ε) and such that ϕf,gh/γ(x) = ϕ? necessarily satisfies

x ∈ X? owing to Proposition 4.3(i) and local minimality of x?. Conversely, it follows

from Theorem 4.7 that ϕf,gh/γ is C1 around x? with ∇ϕf,gh/γ(x) = Qfh/γ(x)(x − Tf,g
h/γ(x)),

where Qfh/γ � 0 is as in (4.9), and in particular ∇ϕf,gh/γ(x) = 0 for any x ∈ X? close to

x?. Combined with the KL inequality (5.4), we conclude that close to x? a point x

belongs to X? iff ϕ(x) = ϕf,gh/γ(x) = ϕ?. Thus, up to possibly further restricting ε,

(5.13) dist
(
x, [ϕf,gh/γ ≤ ϕ?]

)(5.12)

= dist
(
x, [ϕf,gh/γ = ϕ?]

)
= dist

(
x,X?

)
∀x ∈ B(x?; ε).

Combined with the error bound in Lemma 5.11 with ψ(s) = %smin {ϑ,1/2}, we obtain

(5.14) ϕf,gh/γ(x
k)− ϕ? ≥

(
%−1 dist(xk,X?)

)max {2,1/ϑ} ∀k ∈ N.

Since, as discussed above, X? coincides with a (closed) sublevel set of ϕf,gh/γ close to

x?, for every k there exists a projection point xk? ∈ ProjX?(xk + dk), hence such that
ϕ(xk?) = ϕ? as motivated before. In particular,

ϕf,gh/γ(x
k + dk) ≤ ϕ(x?k) + Dĥ(x?k, x

k + dk) ≤ ϕ? +
Lĥ,U

2 dist(xk + dk,X?)2,

where ĥ := 1
γh− f ∈ C

2(Rn), Lĥ,U is a Lipschitz modulus of ∇ĥ on U = B(x?; ε), and

the first inequality follows from Theorem 4.1. Together with (5.14), this implies
(5.15)

εk :=
ϕf,gh/γ(x

k + dk)− ϕ?
ϕf,gh/γ(x

k)− ϕ?
≤ Lĥ,U

2

(
dist(xk + dk,X?)(

%−1/2 dist(xk,X?)
)max {1,1/2ϑ}

)2

→ 0 as k →∞.

Thus, for large enough k so that εk ≤ 1, we have

ϕf,gh/γ(x
k + dk)− ϕf,gh/γ(x

k) =
(
ϕf,gh/γ(x

k + dk)− ϕ?
)
−
(
ϕf,gh/γ(x

k)− ϕ?
)

= (εk − 1)
(
ϕf,gh/γ(x

k)− ϕ?
)

(since εk ≤ 1, ϕ(x̄k) ≥ ϕ?) ≤ (εk − 1)
(
ϕf,gh/γ(x

k)− ϕ(x̄k)
)

(use Proposition 4.3) ≤ (εk − 1)
1−γLf
γ Dh(x̄k, xk) ≤ − σDh(x̄k, xk)

for large enough k, where the last inequality holds since σ <
1−γLf
γ and εk → 0.
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5.4.3. Superlinear convergence to strong minima under the Dennis–
Moré condition. Quasi-Newton methods constitute an important class of directions
widely used in optimization. Superlinear convergence of this type of direction is
typically assessed by means of the Dennis–Moré condition. We next show that under
regularity assumptions at the limit point the same condition ensures acceptance of unit
stepsize in our framework, albeit provided the algorithm converges to an (isolated)
strong local minimum.

Theorem 5.13 (superlinear convergence under Dennis–Moré condition). Con-
sider the iterates generated by Bella. Additionally to Assumptions 1 and 2, suppose
that the following requirements are satisfied:

a1. (xk)k∈N converges to a strong local minimum x? of ϕ;
a2. f, h ∈ C2(Rn) with ∇2h � 0;

a3. Rf,g
h/γ(x) := x − Tf,g

h/γ(x) is strictly differentiable at x? (see Theorem 4.8 for

sufficient conditions) with J Rf,g
h/γ(x?) nonsingular;

a4. (dk)k∈N satisfy the Dennis–Moré condition

(5.16) lim
k→∞

Rf,g
h/γ(x

k) + J Rf,g
h/γ(x?)d

k

‖dk‖
= 0.

Then, (dk)k∈N are superlinear directions with order q = 1, and all the claims of
Theorem 5.12 hold.

Proof. Since Rf,g
h/γ(x?) = 0 as it follows from Theorem 5.4, the Dennis–Moré

condition (5.16) and strict differentiability at x? imply that

lim
k→∞

Rf,g
h/γ

(xk + dk)

‖dk‖
= lim

k→∞

Rf,g
h/γ

(xk) + J Rf,g
h/γ

(x?)dk −Rf,g
h/γ

(xk + dk)

‖dk‖
+

Rf,g
h/γ

(xk + dk)

‖dk‖

 = 0.

Moreover, nonsingularity of J Rf,g
h/γ(x?) entails the existence of α > 0 such that

‖Rf,g
h/γ(x)‖ = ‖Rf,g

h/γ(x)−Rf,g
h/γ(x?)‖ ≥ α‖x− x?‖

holds for all x close enough to x?. We thus have

0←
‖Rf,g

h/γ
(xk + dk)‖

‖dk‖
≥ α
‖xk + dk − x?‖

‖dk‖
≥ α

‖xk + dk − x?‖
‖xk + dk − x?‖+ ‖xk − x?‖

= α

‖xk+dk−x?‖
‖xk−x?‖

1 +
‖xk+dk−x?‖
‖xk−x?‖

,

as k → ∞, and in particular ‖x
k+dk−x?‖
‖xk−x?‖ → 0, as claimed. To conclude, observe

that ϕf,gh/γ is twice differentiable at x? (with Hessian Qfh/γ(x?)J Rf,g
h/γ(x?) owing to

Theorem 4.7 and [74, Prop. 6.2]), hence with ∇2ϕf,gh/γ(x?) positive definite at its

strong local minimum x? (Theorem 4.4). Any such function satisfies the KL property
at x? with exponent 1− ϑ = 1/2 (cf. proof of [83, Lem. B.3]), hence all the assertions
of Theorem 5.12 hold.

6. Final remarks. We proposed Bella, a Bregman-forward-backward-splitting-
based algorithm for minimizing the sum of two nonconvex functions, where the first
one is relatively smooth and the second one is possibly nonsmooth. Bella is a line-
search algorithm on the Bregman forward-backward envelope (BFBE), a Bregman
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extension of the forward-backward envelope, and globalizes convergence of fast local
methods for finding zeros of the forward-backward residual. Furthermore, thanks to
a nonlinear local error bound holding for the BFBE under prox-regularity and the
KL property, the algorithm enables acceptance of unit stepsize when the fast local
method yields directions that are superlinear with respect to the set of solutions, thus
triggering superlinear convergence even when the limit point belongs to a flat region
of local minima.

In future work we plan to address the following issues: (i) reducing the working as-
sumptions by also accounting for boundary points, (ii) extending existing superlinear
direction schemes such as those proposed in [48, 85, 3, 81] for either convex or smooth
problems to the more general setting of this paper, (iii) assessing the performance
of such schemes in the Bella framework with numerical simulations on nonconvex
nonsmooth problems such as low-rank matrix completion, sparse nonnegative matrix
factorization, phase retrieval, and deep learning, and (iv) guaranteeing saddle point
avoidance, in the spirit of [67, 46, 52].

Acknowledgments. The authors are grateful to the associate editor and to the
three anonymous referees for their helpful comments and suggestions that substan-
tially improved the quality of the paper.

REFERENCES

[1] M. Ahookhosh, Optimal subgradient methods: Computational properties for large-scale lin-
ear inverse problems, Optim. Eng., 19 (2018), pp. 815–844, https://doi.org/10.1007/
s11081-018-9378-5.

[2] M. Ahookhosh, Accelerated first-order methods for large-scale convex optimization: Nearly
optimal complexity under strong convexity, Math. Methods Oper. Res., 89 (2019), pp. 319–
353, https://doi.org/10.1007/s00186-019-00674-w.

[3] M. Ahookhosh, F. J. A. Artacho, R. M. Fleming, and P. T. Vuong, Local convergence of
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