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Abstract. In this paper, we study the sensitivity of discrete-time dynamic programs with non-
linear dynamics and objective to perturbations in the initial conditions and reference parameters.
Under uniform controllability and boundedness assumptions for the problem data, we prove that the
directional derivative of the optimal state and control at time k, x∗k and u∗k, with respect to the
reference signal at time i, di, will have exponential decay in terms of |k − i| with a decay rate ρ
independent of the temporal horizon length. The key technical step is to prove that a version of the
convexification approach proposed by Verschueren et al. can be applied to the KKT conditions and
results in a convex quadratic program with uniformly bounded data. In turn, Riccati techniques
can be further employed to obtain the sensitivity result, borne from the observation that the direc-
tional derivatives are solutions of quadratic programs with structure similar to the KKT conditions
themselves. We validate our findings with numerical experiments on a small nonlinear, nonconvex,
dynamic program.
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1. Introduction. We consider the following discrete-time nonlinear dynamic
programming (NLDP) problem with recursive equality constraints:

min
x,u

N−1∑
k=0

gk(xk,uk,dk) + gN (xN ),(1.1a)

s.t. xk+1 = fk(xk,uk,dk), k = 0, 1, . . . , N − 1,(1.1b)

x0 = x̄0.(1.1c)

Here xk ∈ Rnx is the state variable, uk ∈ Rnu is the control variable, and dk ∈ Rnd is
a reference variable which is externally provided data; gk : Rnx × Rnu × Rnd → R,
fk : Rnx × Rnu × Rnd → Rnx are the cost function and constraint function for stage
k, respectively; N is the temporal horizon length; and x̄0 is the initial state variable.
We also define d−1 = x̄0 for simplicity. In this paper, we let d = (d−1;d0; . . . ;dN−1)
and assume gk, fk are both twice continuously differentiable.

Problem (1.1) includes a wide range of classical dynamic programs (DPs) as spe-
cial cases. In our context, we call it quadratic dynamic programming (QDP) when-
ever, for any stage k, gk is quadratic and fk is affine. Since the reference vector is
a parameter to the problem, we treat it as the input and aim to (locally) analyze
the dependence of the optimal state and control variable on it. Specifically, we are
interested in answering the following question:

For any two stages k and i, how much do optimal xk and uk change
when we perturb di?

We can formulate this question using directional derivatives. Suppose we perturb d
along a parameterized path:

d(ε) = d0 + εl+ o(ε),(1.2)
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where ε is the parameter of the path, d0 is the unperturbed variable, and the unit vec-
tor l indicates the perturbation direction. Based on the path (1.2), we can define the
following two directional derivatives (if the limits exist):

pk = lim
ε↘0

x∗k(d(ε))− x∗k(d(0))

ε
, qk = lim

ε↘0

u∗k(d(ε))− u∗k(d(0))

ε
,(1.3)

where x∗k(d),u∗k(d) are the optimal solution of Problem (1.1) with specified input d.
For conciseness, we ignore the dependence of l in pk, qk in (1.3). Suppose eq, q =
1, 2, . . . , Nnd+nx, to be the qth canonical basis vector in Rnx+Nnd . Then, if we let l =
enx+i·nd+j , 0 ≤ i ≤ N − 1, 1 ≤ j ≤ nd, our perturbation occurs only at the temporal
stage i, in entry j; and, particularly, {ej}nx

j=1 corresponds to the perturbation at the
initial constraints. According to (1.3) we locally have ‖xk(d(ε))−xk(d(0))‖ ≈ ε‖pk‖
(the same for uk). With this perturbation structure, analyzing the magnitude of pk
and qk measures the effect on stage k caused by the perturbations at stage i.

Some results have been proposed before for this type of local sensitivity analy-
sis. For example, when gk(xk,uk,dk) = (xk − dk)TQk(xk − dk) + uTkRkuk with
Qk, Rk � 0, and fk is an affine function depending only on (xk,uk), Xu and An-
itescu [20] showed that the magnitude of pk and qk for this special case of QDP
decays exponentially in |k− i|. This observation was crucial for designing a temporal
decomposition approach for long-horizon linear-quadratic dynamic programming. A
similar property, asymptotic decay, was assumed for the nonlinear case in [15] and
also resulted in the ability to decompose long-horizon nonlinear dynamic programs
and enable parallel computation. It also played a critical role in the analysis of the
convergence of model predictive control and, in particular, characterizing its opera-
tional horizon [19]. The main objective of this research note is to extend these results
to the case of nonconvex QDP and, more generally, nonconvex NLDP.

Dealing with indefinite quadratic matrices in QPs is an important issue in general
NLP. Many high-performance solvers are built assuming the positive definiteness of
the Hessian matrix, such as the QP solvers HPMPC [7] and qpOASES [6] and the
NLP solver FORCES [4]. The usual way to accommodate the indefiniteness is to
perturb it to a positive matrix, to make sure the calculated step is indeed a descent
direction. For example, Levenberg and Marquardt added a multiple of the identity
matrix to the Hessian (see [10, 8]) and showed that under some conditions it can
achieve superlinear convergence for unconstrained NLP. Nocedal and Wright [11] de-
scribed several methods that directly modify the factors of the Cholesky factorization
or Bunch-Parlett-Kauffman factorization for indefinite Hessians. For the constrained
case, regularization approaches targeting the KKT matrix have been proposed and
applied in interior point methods such as IPOPT [18] and its variants [21, 2, 17].
Recently, targeting QDPs stemming from NLDP, Verschueren et al. proposed trans-
forming the indefinite Hessian to a positive definite matrix, at a point where the
second-order conditions hold, while keeping the reduced Hessian unchanged [16]. We
call this approach a convexification procedure. In [16] the researchers showed that
this convexification can be conducted independently of the solvers, preserve the block
sparsity structure of the problem, and have linear computational complexity with
respect to the horizon length.

The convexification procedure from [16] plays an important role in this work,
although for our ends we will need to enhance it in several directions. First, it de-
pends on a certain regularization parameter whose selection is unclear because the
analysis in [16] is centered on proving only its existence using a continuity argument.
Second, although not crucial for convexification itself, that analysis does not include
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linear terms in the objective. In the present paper, we enhance their convexification
procedure by addressing these limitations. In particular, we modify it to allow for
linear terms in the objective, and we connect the range of the regularization param-
eter to quantities characterizing the optimality of the primal vector. In turn these
enhancements allow us to prove that, when the system is controllable, the convexi-
fication results in the transformed data, including the linear terms, being bounded
independent of the horizon. As a result, as was also the goal in [16], we can now
apply a Riccati recursion to solve the QDP. Moreover, this recursion is exponentially
stable, and we can then extend some of the results in [20] to prove the exponential
decay of the sensitivity in the NLDP case, which is far more general than the QDP
case studied in [20].

Notations: Throughout the paper, we use bold symbols to denote column vectors.
We use I to denote the identity matrix whose dimension is always clear from the
context. Given an integer k, we define [k] = {0, 1, . . . , k} to be all integer indices
from 0 to k. We let i ∧ j = min(i, j) and i ∨ j = max(i, j) when i, j are two scalars.
For any vectors a and b, we use (a; b) to denote a long column vector that stacks
them together. We also have supp(a) to be the support set of a. Without subscript,
x,u,d,p, and q denote the corresponding variable for the entire horizon. We also
define z = (x0;u0; . . . ;xN−1;uN−1;xN ) to be the whole decision variable ordered
by stages. But we may also interpret z = (x,u) when connecting it to the state x
and control u vectors. Let nz = (N + 1)nx +Nnu be the dimension of z. Similarly,
we define w = (p0; q0; . . . ;pN−1; qN−1;pN ) ∈ Rnz . Given a sequence of matrices Ai,
we let diag(A1, A2, . . .) be the block diagonal matrix, whose blocks from upper left
to bottom right are specified by A1, A2, . . .. We also define

∏n
i=mAi = AnAn−1...Am

if n ≥ m and I otherwise. Similarly, we let
∑n
i=mAi = 0 if n < m. For a positive

definite matrix A and any vector x, we define ‖x‖A =
√
xTAx. We also use ‖ · ‖ to

denote the l2 norm for vector or operator norm for matrix. For the dynamics function
fk(xk,uk,dk), we let ∇uk

fk = ∂fk
∂uk
∈ Rnu×nx .

Structure of the paper: In section 2, we introduce some preliminaries and derive
the indefinite QP whose solution is the directional derivatives (p, q). In section 3, we
show the details of the convexification procedure and propose a method for setting the
regularization parameter. In section 4, we probe the properties of the outputs of the
algorithm, based on which in section 5 we then theoretically prove the exponential
decay. In section 6 we describe our numerical simulations. Conclusions plus some
potential future work are discussed in section 7.

2. Preliminaries. Define the Lagrange function of Problem (1.1) as

(2.1) L(x,u,λ;d) =

N−1∑
k=0

gk(xk,uk,dk) + gN (xN )

+

N−1∑
k=0

λTk (xk+1 − fk(xk,uk,dk)) + λT−1(x0 − d−1),

where λ = (λ−1;λ0; . . . ;λN−1) is the Lagrange multiplier with λk ∈ Rnx , k ∈
{−1}∪ [N −1]. An immediate but important observation we justify below is that any
feasible point of Problem (1.1) satisfies the linear independence constraint qualifica-
tion (LICQ). We now define several quantities of interest.

Definition 2.1. We introduce the notations f̃k(z,d) = xk+1−fk(xk,uk,dk),∀k ∈
3



[N − 1] and f̃−1(z,d) = x0 − d−1. For any prespecified d, we define the Jacobian
matrix as follows:

G(z;d) =
(
∇z f̃−1(z,d),∇z f̃0(z,d), . . . ,∇z f̃N−1(z,d)

)T ∈ R(N+1)nx×nz .

(Note that G(z;d) has full row rank because ∂f̃k
∂xk+1

= Inx
,∀ − 1 ≤ k ≤ N − 1 and

∂f̃k
∂xj

= 0,∀ − 1 ≤ k < j − 1 ≤ N − 1; this “staircase” structure ending with identity

matrices on each row implies the full row rank property of G(z;d) and, thus, LICQ
holds.) When z is a local solution of Problem (1.1), the critical cone1 at z is the
null space of G(z;d), denoted as C(z;d). We use Z(z;d) ∈ Rnz×Nnu to denote a full
column rank matrix whose columns are orthonormal and span the space C(z;d). We
denote the Hessian matrix of Lagrangian (2.1) by ∀k ∈ [N − 1]

Hk =

(
Qk STk
Sk Rk

)
=

(
∇2

xk
L ∇2

xkuk
L

∇2
ukxk
L ∇2

uk
L

)
, Dk = (Dk1, Dk2) = (∇2

dkxk
L,∇2

dkuk
L),

and HN = QN = ∇2
xN
gN (xN ). We let H = diag(H0, ...,HN ), D = diag(D0, ..., DN−1).

We now set the stage for the sensitivity analysis. Suppose the unperturbed ref-
erence variable is d0 and the unperturbed primal-dual optimal solution at d = d0 is
(z0,λ0;d0) = (x0,u0,λ0;d0). In what follows, all matrices from Definition 2.1 are
evaluated at this primal-dual solution, and their dependence on the primal-dual point
is suppressed. We require the following second-order sufficient condition (SOSC).

Assumption 2.2 (SOSC). At (x0,u0,λ0;d0), the reduced Hessian of Problem
(1.1) is positive definite. That is,

ZTHZ � 0.

We mention that Assumption 2.2 is standard in sensitivity analysis [3]. It implies
that z0 = (x0,u0) is a strict local solution and guarantees that directional derivatives
of the solution with respect to the parameter d are well defined. Under SOSC, we
have the following sensitivity analysis theorem.

Theorem 2.3 (Sensitivity analysis of Problem (1.1)). Suppose we perturb d along
the path in (1.2) for Problem (1.1). Then, under Assumption 2.2, the directional
derivative w = (p, q) of the solution

(
x∗(d(ε)),u∗(d(ε))

)
for positive ε at 0, defined

in (1.3), exists and is the solution of the following quadratic program:

QP : min
w

wTHw + 2lTDw,(2.2a)

s.t. Gw = y.(2.2b)

Here, we denote y = (y−1;y0; . . . ;yN−1) ∈ R(N+1)nx with y−1 = l−1 and yk =
(∇dk

fk)T lk for k ∈ [N − 1]. The matrices H, D, G are from Definition 2.1 and
evaluated at (z0,λ0;d0).

Proof. See Theorem 5.53 and Remark 5.55 in [3]. Note that Problem (1.1) satisfies
Gollan’s regularity condition at (z0,d0) in any direction (as implied by LICQ). See
also [12, 13, 14] and references therein for detailed introduction of sensitivity analysis
of nonlinear programming.

1The detailed definition is in [11]. See equation (12.53).
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Under Assumption 2.2, the quadratic program in (2.2) has a unique global min-
imizer. Note that constraints (2.2b) come from linearizing (1.1b)–(1.1c) whereas the
objective (2.2a) is a quadratic approximation of the Lagrange function (2.1). When
H is indefinite, solving (2.2) in the context of Problem (1.1) becomes difficult. For
example, Riccati-based approaches are not applicable since they all require positive-
ness of H. As shown in [16], however, we can convexify (2.2), without changing its
solution space, an endeavor we aim to refine in this work.

3. Convexification procedure with linear shifting. We write Problem (2.2)
in a way that explicitly connects it to (1.1). We use Ak, Bk, Ck to denote ∇Txk

fk,

∇Tuk
fk, ∇Tdk

fk evaluated at (z0;d0). Problem (2.2) can then be written as

min
p,q

N−1∑
k=0

pkqk
lk

T Qk STk DT
k1

Sk Rk DT
k2

Dk1 Dk2 0

pkqk
lk

+ pTNQNpN ,(3.1a)

s.t. pk+1 = Akpk +Bkqk + Cklk, ∀k ∈ [N − 1],(3.1b)

p0 = l−1.(3.1c)

If Ck = 0 andDk = 0, one can directly use the convexification procedure from [16].
Since those terms are nonzero in our work, we need to slightly extend that procedure.
To this end, we start by introducing the following uniform (in N) SOSC assumption.

Assumption 3.1 (Uniform SOSC). We assume there exists γ > 0 independent
from N such that the reduced Hessian of Problem (1.1), at its unperturbed solution
(z0,λ0;d0), satisfies

ZTHZ � γI.(3.2)

Comparing Assumption 3.1 with Assumption 2.2, we see that Assumption 3.1
requires the reduced Hessian matrix to have a positive lower bound uniformly with
horizon length N . While our convexification results will also hold under general
SOSC, this stronger SOSC will indicate that sensitivity to perturbation decays at a
rate independent of N , which offers a theoretical guarantee on sensitivity analysis
of long-horizon nonconvex NLDP. We note that Assumption 3.1 holds for a wide
range of dynamics because of the natural block structures in them. For example,
the QDP studied in [20], which assumed Hk = diag(Qk, Rk) � γI, satisfies (3.2). A
detailed discussion is provided in the next remark, and a concrete example is tested
in numerical experiments described in section 6.

We find it difficult to give a characterization of condition (3.2) that would con-
vincingly identify how likely it is to occur in practice (though for fixed N , being
equivalent to SOSC, it is a natural requirement). We give an example of a problem
class (in the sense of N being allowed to vary) that exhibits this property.

Remark 3.2. An example that satisfies Assumption 3.1. Suppose nx = nu = 1,
Ak = Bk = 1, ∀k ∈ [N − 1]. By Definition 2.1, we can formulate the Jacobian matrix
G ∈ R(N+1)×(2N+1), and one of matrices, Z̃ ∈ R(2N+1)×N , that spans its null space
can be written as

Z̃T =


0 1 1 −1

1 1 −1
. . .

. . .
. . .

1 1 −1 0
1 1

 .
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Note that Z̃T Z̃ is a tridiagonal matrix with diagonal entry 3 (the last one is 2) and
superdiagonal entry −1. Thus, by the Gershgorin circle theorem (see [1]), we know
Z̃T Z̃ can be upper bounded uniformly with its dimension N . In particular, we have
I � Z̃T Z̃ � 4I. Consider a simple Hessian matrix where Qk = ak, Rk = bk, Sk = 0,
for all stages k. Then one can easily see that Z̃THZ̃ is also a tridiagonal matrix, with
diagonal entry bk−1 +bk+ak (the last one is bN−1 +aN ) and superdiagonal entry −bk.
By the Gershgorin circle theorem again, we see that as long as ak ≥ 2|bk|+2|bk−1|+4γ,
∀k ∈ [1, N−1], and aN ≥ 2|bN−1|+4γ, we can get Z̃THZ̃ � 4γI, which further implies
(3.2), as can be seen from

Z̃THZ̃ � 4γI =⇒ Z̃THZ̃ � γZ̃T Z̃ = γZT2 Z2 =⇒ ZT1 HZ1 � γI,

where Z̃ = Z1Z2 is the QR decomposition. More generally, even if nx, nu > 1 and
Sk 6= 0, Z̃THZ̃ still has a block tridiagonal structure, and Assumption 3.1 holds
whenever Qk is sufficiently large. We point out that Rk can be indefinite or negative
definite under this setup. Thus, the problem is still nonconvex.

With Assumption 3.1, we now present our convexification procedure. While the
algebra is similar to the one in [16], we describe it here for self-consistency of the
presentation.

Definition 3.3. Given a sequence of matrices {Q̄k}Nk=0 ∈ Rnx×nx , we define the
quadratic cost sequence as r̄k(x) = xT Q̄kx, ∀k ∈ [N ]. Also, for k ∈ [N−1] we denote
the kth stage cost in objective (3.1a) as Lk(pk, qk), which is a quadratic plus linear
function of pk, qk, and LN (pN ) = pTNQNpN .

The following lemma will show how to recursively use constraints to modify the
objective matrices while keeping the primal solution of the QDP unchanged.

Lemma 3.4. Given any sequence of matrices {Q̄k}Nk=0 ∈ Rnx×nx , we define the
transformed cost function as L̄N (pN ) = LN (pN )− r̄N (pN ) and ∀k ∈ [N − 1]

L̄k(pk, qk) = Lk(pk, qk)− r̄k(pk) + r̄k+1(Akpk +Bkqk + Cklk).

Then replacing the objective Lk in (3.1a) with L̄k will result in the same solution.

Proof. The argument can be derived from the following observation:

N−1∑
k=0

L̄k(pk,qk) + L̄N (pN )

=
N−1∑
k=0

(
Lk(pk, qk)− r̄k(pk) + r̄k+1(Akpk +Bkqk + Cklk)

)
+ L̄N (pN )

=

N−1∑
k=0

(
Lk(pk, qk)− r̄k(pk) + r̄k+1(pk+1)

)
+ L̄N (pN )

=

N−1∑
k=0

Lk(pk, qk)− r̄0(p0) + r̄N (pN ) + L̄N (pN )

=

N−1∑
k=0

Lk(pk, qk) + LN (pN )− r̄0(l−1),

where the second and the last equalities are due to (3.1b) and (3.1c), respectively.
Since the objective after the replacement stays the same, the conclusion follows.
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Let us focus on the quadratic matrix in L̄k(pk, qk). It can be written as

 Q̃k S̃Tk D̃T
k1

S̃k R̃k D̃T
k2

D̃k1 D̃k2 ∗

 :=

Qk − Q̄k STk DT
k1

Sk Rk DT
k2

Dk1 Dk2 0

+

ATkBTk
CTk

 Q̄k+1

(
Ak Bk Ck

)
.

We use “∗” to denote the quadratic matrix for lk, which can be seen as constant.
Now, the problem of obtaining a convexification transformation translates to finding

{Q̄k}Nk=0 such that the corner matrix H̃k :=

(
Q̃k S̃Tk
S̃k R̃k

)
is positive definite. Our

convexification procedure is shown in Algorithm 3.1.

Algorithm 3.1 Convexification Procedure with Linear Shifting

1: Input: {Hk}Nk=0, {Ak, Bk, Ck, Dk}N−1
k=0 , a scalar δ;

2: H̃N = Q̃N = δI;
3: Q̄N = QN − Q̃N ;
4: for k = N − 1, . . . , 0 do

5:

 Q̂k S̃Tk D̃T
k1

S̃k R̃k D̃T
k2

D̃k1 D̃k2 ∗

 =

Qk STk DT
k1

Sk Rk DT
k2

Dk1 Dk2 0

+

ATkBTk
CTk

 Q̄k+1

(
Ak Bk Ck

)
;

6: Q̃k = S̃Tk R̃
−1
k S̃k + δI;

7: H̃k =

(
Q̃k S̃Tk
S̃k R̃k

)
;

8: Q̄k = Q̂k − Q̃k;
9: end for

10: Output: {H̃k}Nk=0, {D̃k}N−1
k=0 .

This algorithm is an easy extension of [16], and some of its features (e.g., pre-
serving sparsity structure) have been described in [16]. We will use H̃(δ) and D̃(δ) to
denote the output H̃, D̃ of the algorithm when choosing a specific δ.

From Lemma 3.4 we know that replacing Hk, Dk in (3.1a) with H̃k(δ), D̃k(δ) for
any δ will result in the same optimal solution; we subsequently aim to choose δ so
that H̃k(δ) is uniformly positive definite. In [16] such a δ was proved to exist but
not otherwise estimated in terms of other elements of the problem. Because of the
continuity argument used, it cannot be directly assessed whether H̃k(δ) would grow or
degrade its positive definiteness should N be increased. Since δ is of special interest in
our paper, we propose a finer analysis of it by combining Algorithm 3.1 with a Riccati
recursion. Further, as we later show, the uniform boundedness of H̃k(δ), D̃k(δ) with
feasible δ is implied by a controllability condition. In the remainder of this section,
we first determine a sufficient interval for δ. Here sufficient means ensuring the
positive definiteness (and thus, invertibility) of R̃(δ) and H̃k(δ); so that the recursion
in Algorithm 3.1 is well defined and the equivalent QDP is strongly convex.

The following two lemmas show the relationship between the convexification al-
gorithm and the solution of Problem (3.1).

Lemma 3.5 (Cost-to-go function for QDP with linear shifting). For Problem (3.1),
let KN = QN be the terminal cost-to-go matrix. For any k ∈ [N − 1], we define

7



Wk = Rk +BTk Kk+1Bk, kth cost-to-go matrix

Kk = Qk +ATkKk+1Ak − (BTk Kk+1Ak + Sk)TW−1
k (BTk Kk+1Ak + Sk),(3.3)

feedback matrix Pk = −W−1
k (BTk Kk+1Ak+Sk), and closed-loop state transition matrix

Ek = Ak + BkPk. Further, ∀i, k ∈ [N − 1], we let V ki = −Ki+1

∏i
j=k Ej and Mk

i =

−(Di1 +Di2Pi)
∏i−1
j=k Ej. Then under Assumption 2.2, we have the following:

(i) Wk � 0, ∀k ∈ [N − 1];
(ii) The optimal control variable at stage k for k ∈ [N − 1] is

(3.4) qk(pk) = Pkpk +W−1
k BTk

N−1∑
i=k+1

(Mk+1
i )T li +W−1

k BTk

N−1∑
i=k+1

(V k+1
i )TCili

−W−1
k BTk Kk+1Cklk −W−1

k DT
k2lk;

and (iii) the cost-to-go function is

Jk(pk) = pkKkpk − 2
N−1∑
i=k

lTi M
k
i pk − 2

N−1∑
i=k

lTi C
T
i V

k
i pk + Tk, ∀k ∈ [N ],(3.5)

where TN = 0 and Tk, depending on {li}i≥k, satisfies Tk = 0 if li = 0, ∀k ≤ i ≤ N−1.

Proof. We will use reverse induction to prove property (iii) and incidentally prove
(i) and (ii) together. We know JN (pN ) = pTNQNpN = pTNKNpN . Suppose Jk+1(pk+1)
satisfies equation (3.5). At stage k, by definition of the cost-to-go function, we have

Jk(pk) = min
qk

{
Lk(pk, qk) + Jk+1(Akpk +Bkqk + Cklk)

}
=pTkQkpk + 2lTkDk1pk + min

qk

{
qTkRkqk + 2pTk S

T
k qk + 2lTkDk2qk(3.6)

+ Jk+1(Akpk +Bkqk + Cklk)

}
.

Under Assumption 2.2, we know Problem (3.1) has a unique solution. So the mini-
mization in (3.6) has a unique minimizer, whereas the quadratic matrix of its objective
is Wk. Thus, we must have Wk � 0 (proving the induction step for (i)). In particular,
for (3.6) we plug in the formula of Jk+1(·), shown in (3.5) at k + 1, and have

Jk(pk) =pTkQkpk + (Akpk + Cklk)TKk+1(Akpk + Cklk) + 2lTkDk1pk

− 2
N−1∑
i=k+1

lTi M
k+1
i (Akpk + Cklk)− 2

N−1∑
i=k+1

lTi C
T
i V

k+1
i (Akpk + Cklk) + Tk+1

+ min
qk

{
qTkWkqk + 2pTk S

T
k qk + 2lTkDk2qk + 2(Akpk + Cklk)TKk+1Bkqk

− 2

N−1∑
i=k+1

lTi M
k+1
i Bkqk − 2

N−1∑
i=k+1

lTi C
T
i V

k+1
i Bkqk

}
= min

qk

{
qTkWkqk + 2aTk qk

}
+ pTk (Qk +ATkKk+1Ak)pk + 2bTk pk(3.7)

+ Tk+1 + lTkC
T
k Kk+1Cklk − 2

N−1∑
i=k+1

lTi M
k+1
i Cklk − 2

N−1∑
i=k+1

lTi C
T
i V

k+1
i Cklk︸ ︷︷ ︸

T ′k

,
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where bk = (ATkKk+1Ck +DT
k1)lk −

∑N−1
i=k+1A

T
k

(
(Mk+1

i )T + (V k+1
i )TCi

)
li and

ak = Skpk +DT
k2lk +BTk Kk+1(Akpk + Cklk)

−
N−1∑
i=k+1

BTk (Mk+1
i )T li −

N−1∑
i=k+1

BTk (V k+1
i )TCili.

From the definition of Pk, the unique solution qk of (3.7), at fixed pk, is then given by

qk(pk) =−W−1
k ak

=Pkpk +W−1
k BTk

N−1∑
i=k+1

(Mk+1
i )T li +W−1

k BTk

N−1∑
i=k+1

(V k+1
i )TCili(3.8)

−W−1
k (Dk2 + CTk Kk+1Bk)T lk.

This verifies the induction step for claim (ii). Plugging (3.8) into equation (3.7) and
noting that Mk+1

i Ek = Mk
i , V k+1

i Ek = V ki and the definitions in (3.3), by some
extended but straightforward calculations we get

Jk(pk) =pTkKkpk + 2

(
lTk (Dk1 +Dk2Pk) + lTkC

T
k Kk+1Ek −

N−1∑
i=k+1

lTi M
k
i

−
N−1∑
i=k+1

lTi C
T
i V

k
i

)
pk + Tk

=pTkKkpk − 2

N−1∑
i=k

lTi M
k
i pk − 2

N−1∑
i=k

lTi C
T
i V

k
i pk + Tk.(3.9)

Here, Tk = T ′k −
∥∥(DT

k2 + BTk Kk+1Ck)lk −
∑N−1
i=k+1B

T
k

(
Mk+1
i + CTi V

k+1
i

)T
li
∥∥2

W−1
k

.

We see that Tk depends only on {li}N−1
i=k ; and if li = 0,∀k ≤ i ≤ N − 1, we will have

that Tk = 0. So we have proved claim (iii) and, thus, the statement.

Lemma 3.5 gives the explicit form for the optimal control variable q for Prob-
lem (3.1). This lemma will also be useful in the next section when we analyze the
optimal state variable. The next lemma shows how the convexification transformation
relates to the cost-to-go matrices defined in the preceding lemma.

Lemma 3.6. When applying the convexification algorithm 3.1 with δ = 0, we will
have R̃k(0) = Wk, ∀k ∈ [N − 1], and Q̄k(0) = Kk, ∀k ∈ [N ].

Proof. We use reverse induction for Q̄k(0), and R̃k(0) can be proved in concert.
For the last stage N , we know that Q̄N (0) = QN = KN . Suppose Q̄k+1(0) = Kk+1.
Then using the definition of Wk and Kk in (3.3), we can get

R̃k(0) =Rk +BTk Q̄k+1(0)Bk = Rk +BTk Kk+1Bk = Wk,

Q̄k(0) =Q̂k(0)− Q̃k(0) = Qk +ATk Q̄k+1(0)Ak − Q̃k(0)

=Qk +ATk Q̄k+1(0)Ak − S̃Tk (0)R̃−1
k (0)S̃k(0)

=Qk +ATkKk+1Ak − (BTk Kk+1Ak + Sk)TW−1
k (BTk Kk+1Ak + Sk)

=Kk,

where the second equality from the end is due to the induction assumption and the
last equality is due to (3.3). This completes the proof.
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Corollary 3.7. Under Assumption 2.2, Algorithm 3.1 can be carried out suc-
cessfully by setting δ = 0. The output satisfies R̃k(0) � 0 and H̃k(0) � 0.

Proof. Without linear terms, Lemma 10 in [16] proved a similar result (with
a different approach). For self-consistency, we present a brief proof for our more
general convexification procedure. By Lemma 3.5 (i) and Lemma 3.6, we know that
R̃k(0) = Wk � 0 (and thus it is invertible) and

H̃k(0) =

(
S̃Tk (0)R̃−1

k (0)S̃k(0) S̃Tk (0)

S̃k(0) R̃k(0)

)
=

(
I S̃Tk (0)R̃−1

k (0)
0 I

)(
0 0

0 R̃k(0)

)(
I 0

R̃−1
k (0)S̃k(0) I

)
� 0.

Based on these two lemmas, we know that when increasing δ slightly, by continuity
of R̃k(δ), we still can get R̃k(δ) � 0. In this case, we can show H̃k(δ) � 0 because
the Schur complement of R̃k(δ) is δI � 0. However, since R̃k(δ) is algebraically
complicated, how large we can increase δ is not immediately clear. The following
theorem presents a sufficient interval for δ in the sense previously discussed.

Theorem 3.8 (Sufficient bound for δ). Under Assumption 3.1, executing Algo-
rithm 3.1 with δ ∈ (0, γ) will result in R̃k(δ) � 0 and H̃k(δ) � 0, where γ is defined
in (3.2).

Proof. For any δ ∈ (0, γ), we define Qδk = Qk − δI and Hδ
k =

(
Qδk STk
Sk Rk

)
and let

Hδ = diag(Hδ
0 , . . . ,H

δ
N ). Moreover, we define Iδ = (H−Hδ)/δ = diag(I,0, I,0, . . . , I).

Thus, we have I−Iδ = diag(0, I,0, I, . . . ,0) � 0 and ZT IδZ = ZTZ−ZT (I−Iδ)Z �
I, where the last inequality comes from the fact that ZTZ = I (note that Z has or-
thonormal columns). Furthermore, from Assumption 3.1 we can get

ZTHδZ = ZTHZ − δZT IδZ � (γ − δ)I � 0.(3.10)

Consider applying Algorithm 3.1 onHδ with the same input matrices {Ak, Bk, Ck, Dk}N−1
k=0

and shifting parameter δ̃ = 0. Its output is denoted as H̃δ
k(0) =

(
Q̃δk(0) S̃δTk (0)

S̃δk(0) R̃δk(0)

)
.

From (3.10) we know that SOSC stated in Assumption 2.2 is satisfied for Hδ. So,
from Corollary 3.7, we can get R̃δk(0) � 0. Furthermore, we have the following claims.

Claim 1: We have Q̄δk(0) = Q̄k(δ), ∀k ∈ [N ], and R̃δk(0) = R̃k(δ), ∀k ∈ [N − 1].
We prove the statement by reverse induction. For k = N , we know Q̄δN (0) = QδN =
QN − δI = Q̄N (δ). Suppose Q̄δk+1(0) = Q̄k+1(δ). Then we have

R̃δk(0) = Rk +BTk Q̄
δ
k+1(0)Bk = Rk +BTk Q̄k+1(δ)Bk = R̃k(δ),

Q̄δk(0) = Q̂δk(0)− Q̃δk(0)

=Qδk +ATk Q̄
δ
k+1(0)Ak − (Sk +BTk Q̄

δ
k+1(0)Ak)T

(
R̃δk(0)

)−1
(Sk +BTk Q̄

δ
k+1(0)Ak)

=Qk +ATk Q̄k+1(δ)Ak − (Sk +BTk Q̄k+1(δ)Ak)T R̃−1
k (δ)(Sk +BTk Q̄k+1(δ)Ak)− δI

=Q̄k(δ),

which proves Claim 1.
Claim 2: We have S̃δk(0) = S̃k(δ), ∀k ∈ [N − 1], and Q̃δk(0) = Q̃k(δ)− δI, ∀k ∈ [N ].
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From Claim 1, we know that ∀k ∈ [N − 1]

S̃δk(0) =Sk +BTk Q̄
δ
k+1(0)Ak = Sk +BTk Q̄k+1(δ)Ak = S̃k(δ),

Q̃δk(0) =
(
S̃δk(0)

)T (
R̃δk(0)

)−1
S̃δk(0) = S̃Tk (δ)R̃−1

k (δ)S̃k(δ) = Q̃k(δ)− δI.

For k = N we have Q̃δN (0) = 0 = Q̃N (δ)− δI. This completes the proof of Claim 2.
From these two claims and Corollary 3.7, we can get that R̃k(δ) = R̃δk(0) � 0 and

H̃k(δ) =

(
Q̃k(δ) S̃Tk (δ)

S̃k(δ) R̃k(δ)

)
=

(
S̃δTk (0)R̃δk(0)−1S̃δk(0) + δI S̃δTk (0)

S̃δk(0) R̃δk(0)

)
� 0.

To summarize, in this section we propose a convexification procedure with linear
shifting and derive a sufficient, explicit interval for the scalar δ that ensures that Al-
gorithm 3.1 is well defined and results in positive definite matrices of the transformed
quadratic program. In particular, we prove that under Assumption 3.1, δ can be set
as large as the minimum eigenvalue of the reduced Hessian matrix (i.e. γ).

In the next section, some detailed properties of the matrices appearing in the
transformed QDP are discussed in preparation for our main sensitivity analysis result.

4. Uniform boundedness of convexified QDP. We delve deeper into Algo-
rithm 3.1 and analyze some properties of H̃(δ), D̃(δ) that are critical for exponential
decay results. Basically, we are going to analyze properties for the lower bound H̃(δ)
and the upper bound D̃(δ) by some quantities independent of the time index that
depend on both the parameter δ and the bounds on the problem data at the un-
perturbed solution (z0,λ0;d0). Building on the boundedness results of this section,
we further derive the decay rate of sensitivity to perturbations on d0 in the next
section. We start by presenting boundedness assumptions for long-horizon dynamic
programming. Similar assumptions have been discussed in [20].

Definition 4.1 (Controllability matrix). For any starting stage k ∈ [N−1] and
evolution length t > 0 such that [k, k + t − 1] ⊂ [N − 1], we define the controllability

matrix to be Ξk,t =
[
Bk+t−1 Ak+t−1Bk+t−2 . . . ,

∏t−1
l=1 Ak+lBk

]
.

Assumption 4.2. We have following assumptions for Problem (3.1):
(i): There exists a constant Υ > 0 independent of N such that ‖Qk‖ ∨ ‖Rk‖ ∨ ‖Sk‖ ∨
‖Dk1‖ ∨ ‖Dk2‖ ∨ ‖Ak‖ ∨ ‖Bk‖ ∨ ‖Ck‖ ≤ Υ, for all k.
(ii): For any k ∈ [N − 1], there exists 1 ≤ tk ≤ N − k such that Ξk,tkΞTk,tk � λCI,
and there exists 1 ≤ t ≤ N such that tk ≤ t. Moreover, we assume that the positive
parameters λC and t are independent from k and N .

Similar to our uniform SOSC assumptions, the parameters Υ, λC , and t are
assumed independent of horizon length N . This setup will allow us to have the
sensitivity decay rate depend only on these parameters and not on N . Thus, as
N increases (i.e., we solve more and more stages), the sensitivity bounds remain
unchanged. We note that Assumption 4.2 (i) is also assumed in [20] (see Assumption
2.1), while the statement in Assumption 4.2 (ii) is slightly different from its analogue
(see Definition 2.2(b)), where the uniform controllability condition was borrowed from
[9] and considered a truncation of an infinite-horizon problem. In that case Ξk,t is well
defined even when k + t > N . To avoid defining the perturbation of infinite-horizon
problem, we define our controllability matrix Ξk,t only for k+ t ≤ N , since we do not
assume to have access to {Ak, Bk}∞k=N .
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From Assumption 4.2, we obtain that ∀k ∈ [N − 1] and ∀1 ≤ j ≤ tk,

(4.1) ‖Ξk,j‖ = ‖
[
Bk+j−1 . . .

j−1∏
l=1

Ak+lBk
]
‖

≤
j−1∑
i=0

‖
j−1∏
l=i+1

Ak+lBk+i‖ ≤
j−1∑
i=0

Υj−i ≤ Υ(1−Υt)

1−Υ
:= Ψ.

Now we are ready to present some properties for H̃(δ). Similar to the proof of
Theorem 3.8, we focus on H̃(0) and then make use of the relationship between H̃(δ)
and H̃δ(0).

Lemma 4.3. Under Assumptions 2.2 and 4.2, we have that ‖Q̄k(0)‖ ≤ ΥQ̄, ∀k ∈
[N ] for some parameter ΥQ̄ independent of N .

Proof. For any k ∈ [N − 1] and p̄k ∈ Rnx , let us consider the following QDP
without linear shift:

min
pk:N

qk:N−1

N−1∑
i=k

(
pi
qi

)T (
Qi STi
Si Ri

)(
pi
qi

)
+ pTNQNpN ,(4.2a)

s.t. pi+1 = Aipi +Biqi, i = k, k + 1, . . . , N − 1(4.2b)

pk = p̄k.(4.2c)

Comparing Problem (4.2) with Problem (3.1), we see that Dk and Ck vanish, but we
know that (4.2) still satisfies ZTHZ � 0. From (3.5) in Lemma 3.5 with lk:N−1 = 0,
we know that Problem (4.2) has minimum value p̄kKkp̄k, and by Lemma 3.6 we have
the cost-to-go matrix Kk = Q̄k(0). On the other hand, for i ≥ k, successively applying
pi+1 = Aipi +Biqi returns that

pk+j −
( j−1∏
l=0

Ak+l

)
p̄k = Ξk,j

qk+j−1
...
qk

 := Ξk,jqk:k+j−1, for j ≥ 0.(4.3)

We now consider a special feasible point defined as follows. Let

(4.4) q̄k:k+tk−1 = −ΞTk,tk(Ξk,tkΞTk,tk)−1
( tk−1∏
l=0

Ak+l

)
p̄k,

and p̄k:k+tk
is computed by using equation (4.3) for 1 ≤ j ≤ tk. Plugging (4.4) into

(4.3) with j = tk, we can get p̄k+tk
= 0. Further, we let q̄k+tk:N−1 = 0 and thus

have p̄k+tk+1:N = 0 from (4.3). Our special feasible point can be summarized (in the
reverse order) as

q̄k:N−1 :=

(
q̄k+tk:N−1

q̄k:k+tk−1

)
=

 0

−ΞTk,tk(Ξk,tkΞTk,tk)−1

(∏tk−1
l=0 Ak+l

)
p̄k

 ,(4.5a)

p̄k:N :=

(
p̄k+tk:N

p̄k:k+tk−1

)
=

(
0

p̄k:k+tk−1

)
.(4.5b)
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Combining equations (4.5, (4.3), and (4.1) and Assumption 4.2, we can get the fol-
lowing:

‖q̄k:N−1‖ ≤
ΨΥt

λC
‖p̄k‖, ‖p̄i‖ ≤ (Υi−k +

Ψ2Υt

λC
)‖p̄k‖, ∀i ∈ [k + 1, k + tk − 1].(4.6)

We then have

p̄Tk Q̄k(0)p̄k = min
(pk:N ,qk:N−1)

satisfy (4.2b)

N−1∑
i=k

(
pi
qi

)T (
Qi STi
Si Ri

)(
pi
qi

)
+ pTNQNpN

≤
N−1∑
i=k

(
p̄i
q̄i

)T (
Qi STi
Si Ri

)(
p̄i
q̄i

)
+ p̄NQN p̄N =

k+tk−1∑
i=k

(
p̄i
q̄i

)T (
Qi STi
Si Ri

)(
p̄i
q̄i

)
(1)

≤2Υ

k+tk−1∑
i=k

‖p̄i‖2 + 2Υ

k+tk−1∑
i=k

‖q̄i‖2

(2)

≤ 2Υ
(
1 +

Ψ2Υ2t

λ2
C

+

t−1∑
i=1

(Υi +
Ψ2Υt

λC
)2
)

︸ ︷︷ ︸
ΥQ̄

‖p̄k‖2 := ΥQ̄‖p̄k‖2.

Inequalities (1) and (2) hold by Assumptions 4.2 (i) and (4.6), respectively. Since p̄k
was chosen arbitrarily, we conclude the argument in the lemma by noting that ΥQ̄ >
Υ ≥ ‖QN‖ = ‖Q̄N (0)‖.

Note that the upper bound would be difficult to obtain from Algorithm 3.1,
because of the challenge of bounding the terms S̃Tk (0)R̃−1

k (0)S̃k(0). We resolve the
difficulty by making use of the controllability of the problem. A direct consequence of
Lemma 4.3 is the boundedness of the cost-to-go matrix Kk. By Lemma 3.6, we have

‖Kk‖ = ‖Q̄k(0)‖ ≤ ΥQ̄.(4.7)

Another consequence is the boundedness of H̃(0).

Corollary 4.4. Under Assumptions 2.2 and 4.2, the matrices Q̃k(0), R̃k(0),
and S̃k(0) have a global upper bound independent of N .

Proof. From Algorithm 3.1, Assumption 4.2, and Lemma 4.3, we obtain the fol-
lowing:

‖Q̂k(0)‖ =‖Qk +ATk Q̄k+1(0)Ak‖ ≤ Υ + Υ2ΥQ̄,

‖S̃k(0)‖ =‖Sk +BTk Q̄k+1(0)Ak‖ ≤ Υ + Υ2ΥQ̄,

‖R̃k(0)‖ =‖Rk +BTk Q̄k+1(0)Bk‖ ≤ Υ + Υ2ΥQ̄.

We also have ‖Q̃k(0)‖ = ‖Q̂k(0)− Q̄k(0)‖ ≤ Υ + ΥQ̄ + Υ2ΥQ̄.

Based on the preceding results, we are ready to present the upper-bound-preserving
property of Algorithm 3.1.

Theorem 4.5 (Upper-bound-preserving property). For Problem (3.1), if As-
sumptions 3.1 and 4.2 hold, the output of Algorithm 3.1 for δ ∈ (0, γ) satisfies

max
{
‖Q̃k(δ)‖, ‖R̃k(δ)‖, ‖S̃k(δ)‖, ‖D̃k1(δ)‖, ‖D̃k2(δ)‖

}
≤ Υ̃, ∀k,

for some constant Υ̃ independent of N . Consequently, H̃k(δ) is uniformly upper
bounded in k.

13



Proof. For any δ ∈ (0, γ), similar to Theorem 3.8, we define Qδk = Qk − δI and

Hδ
k =

(
Qδk STk
Sk Rk

)
. We focus only on Hδ for which Assumption 2.2 still holds. Apply-

ing Algorithm 3.1 on input matrices {Hδ
k , Ak, Bk, Ck, Dk}N−1

k=0 with shifting parameter

δ̃ = 0, we denote the output by H̃δ
k(0). Also note that Assumption 4.2 still holds for

Hδ. From Lemma 4.3 and Corollary 4.4 we thus have

max{‖Q̃δk(0)‖, ‖R̃δk(0)‖, ‖S̃δk(0)‖} ≤ Υ1,(4.8)

for some constant Υ1. By Theorem 3.8 (see Claim 1 and Claim 2 in its proof), we
know that

Q̃δk(0) = Q̃k(δ)− δI, R̃δk(0) = R̃k(δ), and S̃δk(0) = S̃k(δ).(4.9)

Combining (4.9) with (4.8), we obtain that Q̃k(δ), R̃k(δ), and S̃k(δ) are globally upper
bounded by Υ1 + δ, implying H̃k(δ) also has a global upper bound independent from
N . Further, by Lemma 4.3 and Assumption 4.2 (i), we can get

‖D̃k1(δ)‖ = ‖Dk1 + CTk Q̄k(δ)Ak‖ ≤ Υ + Υ2‖Q̄k(δ)‖ ≤ Υ + Υ2(Υ1 + δ),

‖D̃k2(δ)‖ = ‖Dk2 + CTk Q̄k(δ)Bk‖ ≤ Υ + Υ2‖Q̄k(δ)‖ ≤ Υ + Υ2(Υ1 + δ).

We have thus shown that D̃k1(δ) and D̃k2(δ) have an upper bound uniform in k. We
define Υ̃ = max(Υ1 + δ,Υ + Υ2(Υ1 + δ)), which completes the proof.

As a side note, we see that if we let δ ∈ (0, γ ∧ 1), the upper bound Υ̃ would be
independent of δ and γ by replacing δ by 1 in the last terms of the above sequences
of inequalities.

In the following, we will investigate the lower bound of the QDP obtained by
convexification, Algorithm 3.1. Here, by the lower bound of a positive definite matrix,
we mean its smallest eigenvalue. One can easily see that Q̃k(δ) = S̃Tk (δ)R̃−1

k (δ)S̃k(δ)+

δI � δI. On the other hand, there is no immediate guarantee that H̃k(δ) has global
lower bound away from 0 without some conditions on R̃k(δ). For example, if R̃k(δ) � 0
but R̃k(δ)→ 0 as k →∞ and S̃k(δ) = 0, then H̃k(δ) = diag(δI, R̃k(δ)) � 0 but does
not have a lower bound away from 0 independently of N . Nevertheless, this adverse
situation will not occur under our uniform SOSC (Assumption 3.1). We will illustrate
this fact through the next several theorems.

First, we present examples in the next two remarks to illustrate that (i) δ ∈ (0, γ)
is sufficient but not necessary and (ii) only SOSC cannot guarantee a lower bound for
H̃k(δ) uniformly in N .

Remark 4.6. Suppose Sk = 0, Qk = Rk = γI. Then we know Hk = diag(Qk, Rk) =
diag(γI, γI) and uniform SOSC holds with ZTHZ � γI for any {Ak, Bk, Ck, Dk}N−1

k=0 .

Let us apply Algorithm 3.1 on {Hk}Nk=0 with any matrices {Ak, Bk, Ck, Dk}N−1
k=0 and

set parameter δ = γ. Then we have the output H̃k(γ) = diag(γI, γI) � γI. Thus, we
see δ = γ is also feasible for this example although δ ∈ (0, γ) is crucial for us to prove
Theorem 3.8, because of (3.10).

Remark 4.7. Let nx = nu = 1. For k ∈ [N − 1], suppose Ak = Bk = Ck =
Sk = 0, Qk = 1, and Rk = 1/k. We then have that Hk = diag(Qk, Rk) =
diag(1, 1/k) � 0, and it satisfies SOSC with ZTHZ � 1/k · I (here Z = I2N+1).
By applying Algorithm 3.1 with any δ > 0, we get H̃k(δ) = diag(δ, 1/k). However,
we see λmin(H̃k(δ)) ≤ 1/k → 0. So we cannot find a lower bound independent of N
under only SOSC.
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To make the proofs concise, we state some algebra preliminaries in the next lemma.

Lemma 4.8. (i) For any matrix A ∈ Rm×n, suppose Ã = (Ãij) ∈ Rm̃×ñ, m̃ ≥ m,

ñ ≥ n is its zero-padded extension (i.e., ∀i ∈ [m̃]\[m] or j ∈ [ñ]\[n], Ãij = 0). Then

we have ‖Ã‖ = ‖A‖;

(ii) For a sequence of symmetric positive definite matrices Hk =

(
Ak BTk
Bk Ck

)
, k =

1, 2, . . ., where Ak, Ck are square matrices, suppose Ck � βCI � 0 and its Schur
complement Ak −BTk C

−1
k Bk � βSI � 0, and ‖Bk‖ ≤ βB. Then we have ∀k

Hk � λBCSI � 0, where λBCS =

(
βC

βC + βB

)2

·
(
βS ∧ βC

)
.

Proof. (i). Without loss of generality, we assume that Ã =

(
A 0
0 0

)
; otherwise

we just do permutations of Ã that preserve the operator norm. Let Ã = (B,0), where
BT = (AT ,0). We then have

‖Ã‖2 = λmax(ÃÃT ) = λmax(BBT ) = ‖B‖2 = λmax(BTB) = λmax(ATA) = ‖A‖2.

(ii) Note that if Hk is positive definite, Hk � λBCSI ⇔ ‖H−1
k ‖ ≤ 1/λBCS . Therefore,

we need only to find an upper bound on H−1
k . We know that

H−1
k =

(
I 0

−C−1
k Bk I

)(
(Ak −BTk C

−1
k Bk)−1 0

0 C−1
k

)(
I −BTk C

−1
k

0 I

)
:= I1I2IT1 .

Thus, we have ‖H−1
k ‖ ≤ ‖I1‖2‖I2‖. By part (i), we know

‖I1‖ =

∥∥∥∥(I 0
0 I

)
+

(
0 0

−C−1
k Bk 0

)∥∥∥∥ ≤ 1 + ‖C−1
k Bk‖ ≤ 1 + βB/βC .(4.10)

For ‖I2‖, we easily have that ‖I2‖ ≤ max( 1
βS
, 1
βC

). Using (4.10), we obtain that

‖H−1
k ‖ ≤ (1 +

βB
βC

)2 ·max(
1

βS
,

1

βC
) :=

1

λBCS
.

This completes the proof.

From Theorem 4.5 we know that ‖S̃k(δ)‖ ≤ Υ̃, and the Schur complement of the
bottom right matrix R̃k(δ) in H̃k(δ) in Algorithm 3.1 is δI. Thus, to show H̃k(δ)
is lower bounded, we need only a lower bound for R̃k(δ), which we provide in the
following lemma.

Lemma 4.9. Consider Problem (3.1). Under Assumption 3.1, we execute Algo-
rithm 3.1 with δ ∈ (0, γ). Then we have that R̃k(δ) � γI � 0, ∀k ∈ [N − 1].

Proof. We use a technique similar to that in the proof of Lemma 4.3 and Theorem
3.8. For any k ∈ [N − 1] and δ ∈ (0, γ), we define Qδi = Qi − δI, i ≥ k. For any
q̄k ∈ Rnu , consider the following QDP:

min
pk+1:N

qk+1:N−1

N−1∑
i=k+1

(
pi
qi

)T (
Qδi STi
Si Ri

)(
pi
qi

)
+ pTNQ

δ
NpN ,(4.11a)

s.t. pi+1 = Aipi +Biqi, for k + 1 ≤ i ≤ N − 1(4.11b)

pk+1 = Bkq̄k.(4.11c)
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The objective function (4.11a) can be rewritten as

(4.12)

N−1∑
i=k+1

(
pi
qi

)T (
Qδi STi
Si Ri

)(
pi
qi

)
+ pTNQ

δ
NpN

=

N−1∑
i=k+1

(
pi
qi

)T (
Qi STi
Si Ri

)(
pi
qi

)
+ pTNQNpN − δ‖pk+1:N‖2.

Let us define a special point (p̄, q̄) as follow: For i ∈ [k − 1], let (p̄i, q̄i) = (0,0); let
(p̄k, q̄k) = (0, q̄k); for i > k, let p̄i be computed recursively by using the constraint
pi = Ai−1pi−1 + Bi−1qi−1, and let q̄i = qi(p̄i), where qi(·) is defined in (3.4) in
Lemma 3.5 by replacing {Qi}Ni=0 by {Qδi }Ni=0. Note that qi(·) is well defined because
ZTHδZ � 0, shown in (3.10). By Assumption 3.1, we have

N−1∑
i=0

(
p̄i
q̄i

)T (
Qi STi
Si Ri

)(
p̄i
q̄i

)
+ p̄TNQN p̄N

=q̄TkRkq̄k +

N−1∑
i=k+1

(
p̄i
q̄i

)T (
Qi STi
Si Ri

)(
p̄i
q̄i

)
+ p̄TNQN p̄N

≥γ(‖p̄‖2 + ‖q̄‖2).(4.13)

On the other hand, under our setup for the special point (p̄, q̄) and from (3.5) in
Lemma 3.5 (at stage k+ 1 with li = 0, ∀i ≥ k+ 1), we know that (p̄k+1:N , q̄k+1:N−1)
has the objective value p̄Tk+1K

δ
k+1p̄k+1 for Problem (4.11), where Kδ

k+1 denotes Kk+1

that is calculated by replacing {Qi}Ni=k+1 with {Qδi }Ni=k+1. Further, from Lemma 3.6

and Claim 1 in Theorem 3.8, we have that Kδ
k+1 = Q̄δk+1(0) = Q̄k+1(δ). Therefore,

combining (4.12) and (4.13), we obtain the following:

γ(‖p̄‖2 + ‖q̄‖2)
(4.13)

≤ q̄TkRkq̄k +

N−1∑
i=k+1

(
p̄i
q̄i

)T (
Qi STi
Si Ri

)(
p̄i
q̄i

)
+ p̄TNQN p̄N

(4.12)
= q̄TkRkq̄k + δ‖p̄k+1:N‖2 +

N−1∑
i=k+1

(
p̄i
q̄i

)T (
Qδi STi
Si Ri

)(
p̄i
q̄i

)
+ p̄TNQ

δ
N p̄N

=q̄TkRkq̄k + δ‖p̄k+1:N‖2 + p̄Tk+1K
δ
k+1p̄k+1

=q̄TkRkq̄k + δ‖p̄k+1:N‖2 + p̄Tk+1Q̄k+1(δ)p̄k+1

=q̄TkRkq̄k + δ‖p̄k+1:N‖2 + q̄TkB
T
k Q̄k+1(δ)Bkq̄k

=q̄Tk R̃k(δ)q̄k + δ‖p̄k+1:N‖2

=q̄Tk R̃k(δ)q̄k + δ‖p̄‖2.

Thus, if δ ∈ (0, γ), we have

q̄Tk R̃k(δ)q̄k ≥ γ‖q̄‖2 + (γ − δ)‖p̄‖2 ≥ γ‖q̄‖2 ≥ γ‖q̄k‖2.

This concludes the proof.

We summarize the lower-boundedness property of H̃k in the next theorem.
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Theorem 4.10 (Lower-bound-preserving property). For Problem (3.1), if As-
sumptions 3.1 and 4.2 hold, we have, when executing Algorithm 3.1 with δ ∈ (0, γ),
that ∀k ∈ [N ]

H̃k(δ) � λHI � 0, where λH =

(
γ

γ + Υ̃

)2

· δ.(4.14)

Proof. For any k ∈ [N − 1], we know

H̃k(δ) =

(
Q̃k(δ) S̃Tk (δ)

S̃k(δ) R̃k(δ)

)
=

(
S̃Tk (δ)

(
R̃k(δ)

)−1
S̃k(δ) + δI S̃Tk (δ)

S̃k(δ) R̃k(δ)

)
.

Combining Theorem 4.5, Lemma 4.8 (ii), and Lemma 4.9 and using δ ∈ (0, γ), we have

λH =

(
γ

γ + Υ̃

)2

· δ.

Note that λH < δ. Thus, this bound also holds for k = N .

From Theorems 4.5 and 4.10, we obtained that Algorithm 3.1 has a uniform
boundedness-preserving property: when the problem is uniform upper bounded (i.e.,
Assumption 4.2 holds), the convexified problem is also uniform upper bounded. More-
over, if Assumption 3.1 holds even if Hessian matrices Hk are indefinite, not only are
the output Hessian matrices {H̃k(δ)}k∈[N ] positive definite, as shown in Theorem 3.8,
but they also have global lower bounds away from zero independent of N . This ob-
servation will have important consequences in sensitivity analysis in section 5. We
further note that λH , the lower bound of H̃(δ) in (4.14), increases with both γ and
δ. In section 5 we will see that the larger the lower bound, the faster the decay rate.

5. Exponential decay of NLDP sensitivities. In this section, we focus on
bounding the magnitude of pk and qk, the optimal solution of Problem (3.1). From
Lemma 3.4, we know that applying Algorithm 3.1 to convexify it will not change
the primal solution. For a concise notation, we assume that Algorithm 3.1 has been
applied and the resulting QDP is still denoted as (3.1); moreover, the quantities
defining it also satisfy the various bounds proved in section 3 and section 4. Thus
we will abuse the notation of Hk and Dk to truly indicate H̃k(δ) and D̃k(δ) for some
δ ∈ (0, γ).

The main result of this paper is that the components of the sensitivity have
exponential decay with respect to |k−i| when setting l ∈ Πi where ∀i ∈ {−1}∪ [N−1]

(5.1)
Π−1 ={l ∈ Rnx+Nnd : ‖l‖ = 1, supp(l) ⊆ [1, nx]},

Πi ={l ∈ Rnx+Nnd : ‖l‖ = 1, supp(l) ⊆ [nx + ind + 1, nx + (i+ 1)nd]}.

Recall the perturbation path in (1.2). We know l = (l−1; l0; . . . ; lN−1) ∈ Πi indicates
that the perturbation occurs only at stage i and, in particular, i = −1 indicates the
perturbation at initial conditions. The key tool is the explicit solution to Problem (3.1)
by combining (3.4) in Lemma 3.5 and the recursive (dynamics) constraints. Based on
its closed form, we further take advantage of the boundedness property analyzed in
section 4 to derive the decay rate. All matrices defined in Lemma 3.5 are computed
from the QDP convexified by Algorithm 3.1.

The following lemma provides the closed form of optimal p of Problem (3.1). We
also mention that earlier [20] (see Proposition 2.6) Xu and Anitescu proposed similar
results for the case that Dk = 0 and Ck = I. Our result is a straightforward extension.
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Lemma 5.1 (Closed form of p). Define Ok = BkW
−1
k BTk , ∀k ∈ [N − 1]. Then

the optimal solution p of Problem (3.1) at stage k ∈ [N ] is given (with notations from
Lemma 3.5) by

pk =

( k−1∏
i=0

Ei

)
l−1 +

N−1∑
i=0

Uki li +

N−1∑
i=0

F ki Cili,

where for ∀i ∈ [N − 1], k ∈ [N ],

Uki =

i∧k−1∑
s=0

( k−1∏
l=s+1

El

)
Os(M

s+1
i )T −

( k−1∏
l=i+1

El

)
BiW

−1
i DT

i2111i+1≤k,

F ki =

i∧k−1∑
s=0

( k−1∏
l=s+1

El

)
Os(V

s+1
i )T +

( k−1∏
l=i+1

El

)
(I −OiKi+1)111i+1≤k.

Proof. The argument holds for k = 0 trivially. For k = 1, using (3.4), we have

p1 =A0p0 +B0q0(p0) + C0l0

=A0p0 +B0

(
P0p0 +W−1

0 BT0

N−1∑
i=1

(M1
i )T li +W−1

0 BT0

N−1∑
i=1

(V 1
i )TCili

−W−1
0 BT0 K1C0l0 −W−1

0 DT
02l0

)
+ C0l0

=E0l−1 +O0

N−1∑
i=1

(M1
i )T li +O0

N−1∑
i=1

(V 1
i )TCili −B0W

−1
0 DT

02l0 + (I −O0K1)C0l0,

which is consistent with the argument at k = 1. Generally, we have

pk+1 =Akpk +Bkqk(pk) + Cklk

=Ekpk +Bk

(
W−1
k BTk

N−1∑
i=k+1

(Mk+1
i )T li +W−1

k BTk

N−1∑
i=k+1

(V k+1
i )TCili

−W−1
k BTk Kk+1Cklk −W−1

k DT
k2lk

)
+ Cklk

=Ekpk +Ok

N−1∑
i=k+1

(Mk+1
i )T li︸ ︷︷ ︸

α1
k

+Ok

N−1∑
i=k+1

(V k+1
i )TCili︸ ︷︷ ︸

α2
k

−BkW−1
k DT

k2lk︸ ︷︷ ︸
α3

k

+ (I −OkKk+1)Cklk︸ ︷︷ ︸
α4

k

=Ekpk + α1
k + α2

k + α3
k + α4

k = EkEk−1pk−1 +

4∑
j=1

(αjk + Ekα
j
k−1)

= · · · = (

k∏
i=0

Ei)p0 +

4∑
j=1

k∑
i=0

(

k∏
l=i+1

El)α
j
i := (

k∏
i=0

Ei)p0 +

4∑
j=1

Tj .(5.2)
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For the terms T3 and T4, we have

(5.3)

T3 =

k∑
i=0

(

k∏
l=i+1

El)α
3
i = −

k∑
i=0

(

k∏
l=i+1

El)B
T
i W

−1
i DT

i2li,

T4 =

k∑
i=0

(

k∏
l=i+1

El)α
4
i =

k∑
i=0

(

k∏
l=i+1

El)(I −OiKi+1)Cili.

The terms T1 and T2, can be simplified analogously. We take T1 as an example. We
have

T1 =

k∑
i=0

(

k∏
l=i+1

El)α
1
i = α1

k + Ekα
1
k−1 + ...+ EkEk−1...E1α

1
0

=Ok

N−1∑
i=k+1

(Mk+1
i )T li + EkOk−1

N−1∑
i=k

(Mk
i )T li + ...+ EkEk−1...E1O0

N−1∑
i=1

(M1
i )T li

=EkEk−1...E1O0(M1
1 )T l1 + EkEk−1...E1O0(M1

2 )T l2 + EkEk−1...E2O1(M2
2 )T l2

+ EkEk−1...E1O0(M1
3 )T l3 + EkEk−1...E2O1(M2

3 )T l3 + EkEk−1...E3O2(M3
3 )T l3

+ · · · :=
N−1∑
i=1

Zk+1
i li,

where Zk+1
i is defined as follows: Zk+1

i =
∑i−1
s=0

(∏k
l=s+1El

)
Os(M

s+1
i )T for 1 ≤ i ≤

k; Zk+1
i =

∑k
s=0

(∏k
l=s+1El

)
Os(M

s+1
i )T for k + 1 ≤ i ≤ N − 1. So we get

Zk+1
i =

i∧(k+1)−1∑
s=0

( k∏
l=s+1

El

)
Os(M

s+1
i )T , for 1 ≤ i ≤ N − 1.(5.4)

Similarly, we have T2 =
∑N−1
i=1 Nk+1

i Cili, where

Nk+1
i =

i∧(k+1)−1∑
s=0

( k∏
l=s+1

El
)
Os(V

s+1
i )T , for 1 ≤ i ≤ N − 1.

From (5.3) and (5.4), we get

T1 + T3 =

N−1∑
i=1

Zk+1
i li −

k∑
i=0

(

k∏
l=i+1

El)B
T
i W

−1
i DT

i2li

=

N−1∑
i=0

(
Zk+1
i −

( k∏
l=i+1

El
)
BTi W

−1
i DT

i2111i≤k

)
li :=

N−1∑
i=0

Uk+1
i li,(5.5)

and

T2 + T4 =

N−1∑
i=1

Nk+1
i Cili +

k∑
i=0

(

k∏
l=i+1

El)(I −OiKi+1)Cili

=

N−1∑
i=0

(
Nk+1
i +

( k∏
l=i+1

El
)
(I −OiKi+1)111i≤k

)
Cili :=

N−1∑
i=0

F k+1
i Cili.(5.6)
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Taking (5.5) and (5.6) together and plugging back into (5.2), we have

pk+1 = (

k∏
i=0

Ei)p0 +

N−1∑
i=0

Uk+1
i li +

N−1∑
i=0

F k+1
i Cili.

We replace k+ 1 with k and p0 with l−1 (initial conditions) and conclude the proof.

From this lemma, we see that pk, k ∈ [N ], is a linear combination of {li}i∈{−1}∪[N−1].

To get the bound, we seek for pk, we only need to analyze Uki and F ki . One of their

common terms is the product of the closed-loop state transition matrix,
∏j
l=iEl,

which we now bound. We first establish the relation of two consecutive cost-to-go
matrices in next lemma.

Lemma 5.2 (Riccati recursion). Following Definition (3.3) in Lemma 3.5, we
have ∀k ∈ [N − 1],

Kk = ETk Kk+1Ek +
(
I PTk

)
Hk

(
I
Pk

)
.

Proof. From (3.3), we have

Kk
(3.3)
= Qk +ATkKk+1Ak − (BTk Kk+1Ak + Sk)TW−1

k (BTk Kk+1Ak + Sk)

=Qk + (Ek −BkPk)TKk+1(Ek −BkPk) +ATkKk+1BkPk + STk Pk

=Qk + ETk Kk+1Ek − PTk BTk Kk+1Ek − ETk Kk+1BkPk

+ PTk B
T
k Kk+1BkPk +ATkKk+1BkPk + STk Pk

=Qk + ETk Kk+1Ek − PTk BTk Kk+1Ek + STk Pk

=Qk + ETk Kk+1Ek − PTk BTk Kk+1Ak − PTk BTk Kk+1BkPk + STk Pk

=Qk + ETk Kk+1Ek − PTk (−WkPk − Sk)− PTk BTk Kk+1BkPk + STk Pk

=Qk + ETk Kk+1Ek + PTk Sk + STk Pk + PTk (Wk −BTk Kk+1Bk)Pk

=Qk + ETk Kk+1Ek + PTk Sk + STk Pk + PTk RkPk

=ETk Kk+1Ek +
(
I PTk

)
Hk

(
I
Pk

)
.

Here the second, fifth, and sixth equalities are from the definition of Ek and Pk in
Lemma 3.5, and the eighth equality is from the definition of Wk.

From (4.7), we know that ‖Kk‖ ≤ Υ̃Q̄, ∀k ∈ [N ], for some constant Υ̃Q̄ inde-

pendent of N . Note that we distinguish Υ̃Q̄ from ΥQ̄ in (4.7) deliberately since our
cost-to-go matrix Kk in this section is calculated from the convexified problem, which
still satisfies Assumptions 2.2 and 4.2, as proved in Theorems 4.5 and 4.10. Thus
(4.7) holds for the convexified problem as well, although with a new bound. We use

this result to bound the term
∏j
l=iEl.

Lemma 5.3. For any 0 ≤ i ≤ j ≤ N − 1, we have that ‖
∏j
l=iEl‖ ≤ ΥEρ

j−i+1

for some ΥE and ρ ∈ (0, 1) independent from N .

Proof. For any p̄i ∈ Rnx , we recursively define p̄l+1 = Elp̄l for i ≤ l ≤ j. Based
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on Lemma 5.2, we have that

p̄Tj Kj p̄j =p̄Tj E
T
j Kj+1Ej p̄j + p̄Tj

(
I PTk

)
Hk

(
I
Pk

)
p̄j ≥ pTj

(
I PTk

)
Hk

(
I
Pk

)
pj

(1)

≥λH‖
(
I
Pk

)
pj‖2 ≥ λH‖pj‖2,(5.7)

where inequality (1) is due to Theorem 4.10 and λH is defined in (4.14). Further, by
Theorems 4.5, 4.10, we know the transformed QDP satisfies Assumptions 2.2 and 4.2.
So we can apply Lemma 4.3, and a consequently equation (4.7) holds for the trans-
formed QDP. Therefore, we know that the cost-to-go matrices Kk (for transformed
QDP) satisfy ‖Kk‖ ≤ Υ̃Q̄ for some constant Υ̃Q̄. In particular, from the comment
after the proof of Theorem 4.5 we know that the uniform upper bounds of the trans-
formed problem do not depend on the lower bound γ, and as a result, neither does
Υ̃Q̄. From this observation and Lemma 5.2, we have

(5.8) p̄Tj Kj p̄j = p̄Tj+1Kj+1p̄j+1 + p̄Tj
(
I PTk

)
Hk

(
I
Pk

)
p̄j

≥ p̄Tj+1Kj+1p̄j+1 + λH‖p̄j‖2 ≥ (1 +
λH

Υ̃Q̄

)p̄Tj+1Kj+1p̄j+1.

Note that in the last inequality we use the fact that p̄Tj Kj p̄j ≥ p̄Tj+1Kj+1p̄j+1. We
obtain

‖
j∏
l=i

Elp̄i‖2 =‖p̄j+1‖2
(5.7)

≤ 1

λH
p̄Tj+1Kj+1p̄j+1

(5.8)

≤ 1

λH(1 + λH/Υ̃Q̄)
p̄Tj Kj p̄j

≤ 1

λH

(
1

1 + λH/Υ̃Q̄

)j−i+1

pTi Kipi ≤
Υ̃Q̄

λH

(
1

1 + λH/Υ̃Q̄

)j−i+1

‖pi‖2.

Letting ΥE =
√

Υ̃Q̄/λH and ρ = 1/
√

1 + λH/Υ̃Q̄, we conclude the proof.

From Lemma 3.5 we can immediately see that Ek is the closed loop matrix; thus
the quantity in the preceding lemma is nothing but the relationship between pi and
pj at optimality. From the proof, we have that ρ can be

ΥE =

√
Υ̃Q̄
√
λH

, ρ =

√
Υ̃Q̄√

Υ̃Q̄ + λH

.(5.9)

Here λH is from Theorem 4.10 and Υ̃Q̄ is the upper bound of cost-to-go matrices
Kk for the transformed QP. Both of them are independent of the horizon length N .
According to the discussions after the proof of Theorem 4.10, we see that when γ
increases, the lower bound λH will also increase and ΥE and ρ will hence decrease,
which means that the larger the lower bound γ, the faster the decay. We will see this
argument can also be applied for pk and qk.

Remark 5.4. Under SOSC, setting γ = λmin(ZTHZ) > 0 works for finite hori-
zons but will result in a rate depending on N . In practice, if we want to use the
transformed QDP to solve the original Problem (3.1), we should make δ close to γ
as much as possible because the lower bound of transformed QDP, if γ is fixed, is
proportional to δ (see Theorem 4.10).
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Using Lemma 5.3, we can show the decay rate for Uki and F ki , defined in Lemma 5.1.

Lemma 5.5. For any i ∈ [N − 1], k ∈ [N ], we have

max(‖Uki ‖, ‖F ki ‖) ≤ Υufρ
|i−k|,

for some constant Υuf independent of N and ρ ∈ (0, 1) from Lemma 5.3.

Proof. We first bound some terms appeared in Uki and F ki . From Assumption 4.2,
equation (4.7), Theorem 4.5, and Lemma 4.9, we have ∀s ∈ [N − 1]

(5.10)

‖Os‖ =‖BsW−1
s BTs ‖ ≤ Υ2‖(Rs +BTs Ks+1Bs)

−1‖ ≤ Υ2‖R−1
s ‖ ≤ Υ2/γ,

‖Ps‖ =‖W−1
s (BTs Ks+1As + Ss)‖ ≤

1

γ
(Υ2Υ̃Q̄ + Υ̃) := ΥP .

Here all the matrices are calculated from the transformed problem as defined in Lemma
3.5, as stated in the beginning of this section. As with (5.9), we use Υ̃Q̄ to denote the
upper bound for Kk, to distinguish from the constant in (4.7). A direct result based
on the boundedness of Os and Ps is an upper bound for Ms

i and V si . We have

‖Ms
i ‖ ≤ (1 + ΥP )ΥΥEρ

i−s, ‖V si ‖ ≤ Υ̃Q̄ΥEρ
i−s+1 for i ≥ s.(5.11)

Here ΥE and ρ come from Lemma 5.3. So, by definition of Uki , F ki in Lemma 5.1, we
can get

‖Uki ‖ ≤
i∧k−1∑
s=0

(
ΥEρ

k−s−1 Υ2

γ
(1 + ΥP )ΥΥEρ

i−s−1

)
+ ΥEρ

k−i−1 Υ2

γ
111i+1≤k

=
(1 + ΥP )Υ2

EΥ3

γ

i∧k−1∑
s=0

ρk+i−2s−2 +
ΥEΥ2

γ
ρk−i−1111i+1≤k

=
(1 + ΥP )Υ2

EΥ3

γ
ρk+i−2 1− (1/ρ2)i∧k

1− 1/ρ2
+

ΥEΥ2

γ
ρk−i−1111i+1≤k.(5.12)

We separate equation (5.12) in different cases. If i+ 1 ≤ k, we know

‖Uki ‖ ≤
(1 + ΥP )Υ2

EΥ3

γ
ρk+i−2 1− (1/ρ2)i

1− 1/ρ2
+

ΥEΥ2

γ
ρk−i−1

=
(1 + ΥP )Υ2

EΥ3

γ
· ρ

k−i − ρk+i

1− ρ2
+

ΥEΥ2

γρ
ρk−i

≤
(

(1 + ΥP )Υ2
EΥ3

γ(1− ρ2)
+

ΥEΥ2

γρ

)
︸ ︷︷ ︸

Υu

ρk−i.(5.13)

If k ≤ i, we know

‖Uki ‖ ≤
(1 + ΥP )Υ2

EΥ3

γ
ρk+i−2 1− (1/ρ2)k

1− 1/ρ2
≤ Υuρ

i−k.(5.14)

Combining equation (5.13) with equation (5.14), we have

‖Uki ‖ ≤ Υuρ
|i−k|,∀i ∈ [N − 1], k ∈ [N ].(5.15)
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Analogously, for ‖F ki ‖, we have

‖F ki ‖ ≤
i∧k−1∑
s=0

(
ΥEρ

k−s−1 Υ2

γ
Υ̃Q̄ΥEρ

i−s
)

+ ΥEρ
k−i−1(1 +

Υ2

γ
Υ̃Q̄)111i+1≤k

=
Υ2Υ2

EΥ̃Q̄

γ
ρk+i−1

i∧k−1∑
s=0

(
1

ρ2
)s + (ΥE +

Υ2ΥEΥ̃Q̄

γ
)ρk−i−1111i+1≤k

=
Υ2Υ2

EΥ̃Q̄

γ
ρk+i−1 1− (1/ρ2)i∧k

1− 1/ρ2
+ (ΥE +

Υ2ΥEΥ̃Q̄

γ
)ρk−i−1111i+1≤k.

If i+ 1 ≤ k, we get

‖F ki ‖ ≤
Υ2Υ2

EΥ̃Q̄

γ
ρk+i−1 1− (1/ρ2)i

1− 1/ρ2
+ (ΥE +

Υ2ΥEΥ̃Q̄

γ
)ρk−i−1

≤
(

Υ2Υ2
EΥ̃Q̄ρ

γ(1− ρ2)
+

ΥE

ρ
+

Υ2ΥEΥ̃Q̄

γρ

)
︸ ︷︷ ︸

Υf

ρk−i.(5.16)

If k ≤ i, we know

‖F ki ‖ ≤
Υ2Υ2

EΥ̃Q̄

γ
ρk+i−1 1− (1/ρ2)k

1− 1/ρ2
=

Υ2Υ2
EΥ̃Q̄ρ

γ(1− ρ2)
(ρi−k − ρk+i) ≤ Υfρ

i−k.(5.17)

Combining (5.16) and (5.17), we have

‖F ki ‖ ≤ Υfρ
|i−k|,∀i ∈ [N − 1], k ∈ [N ].(5.18)

Thus, combining (5.15) and (5.18) and letting Υuf = max(Υu,Υf ), we complete
the proof.

The next remark discusses the dependence of constant Υuf and ρ on γ.

Remark 5.6. Let us use “↗” (“↘”) to denote the increase (decrease) of param-
eters. Combining the expression in (4.14), (5.9), (5.13) and (5.16), we have that

1
γ(1−ρ2) ,

ΥE

ρ ,
1
γρ all decrease when γ increases. Therefore, we know

γ ↗=⇒ λH ↗=⇒ ρ,ΥE ,Υu,Υf ,ΥP ↘=⇒ Υuf ↘ .

All other upper bounds such as Υ̃Q̄,Υ, Υ̃ are independent from γ.

Based on the previous analysis, we can show the exponential decay for directional
derivatives (pk, qk). We use their explicit form in Lemma 3.5 and Lemma 5.1 com-
bining with the upper bound in Lemma 5.3 and Lemma 5.5. We summarize our main
theoretical result in next theorem.

Theorem 5.7 (Exponential decay for directional derivatives). We consider the
NLDP with only equality constraints as shown in Problem (1.1). Suppose we perturb
the reference variable d along direction l as shown in (1.2), under Assumptions 3.1
and 4.2. Then there exist parameters Υpq, ρ ∈ (0, 1) independent from N such that ∀k

max(‖pk‖2, ‖qk‖2) ≤ Υpqρ
k, if l ∈ Π−1,
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and

max(‖pk‖2, ‖qk‖2) ≤ Υpqρ
|k−i|, if l ∈ Πi, ∀i ∈ [N − 1],

where set Πi is defined in (5.1). Moreover, as γ increases, Υpq and ρ will decrease.
Here pk, qk are directional derivatives of xk, uk, respectively, defined as in (1.3).

Proof. When l ∈ Π−1, by Lemma 5.1 and (3.4) in Lemma 3.5, we have

pk =

( k−1∏
i=0

Ei

)
l−1, qk = Pkpk.

Using Lemma 5.3 and (5.10) in Lemma 5.5, we have

‖pk‖ ≤ ΥEρ
k, ‖qk‖ ≤ ΥPΥEρ

k.

Without loss of generality, we assume ΥP > 1. So, we define Υpq,1 := ΥPΥE and
finish the first part of proof. When l ∈ Πi, ∀i ∈ [N − 1], by Lemma 5.1, we have

pk =Uki li + F ki Cili, ∀k ∈ [N ].

Then, from Lemma 5.5 and Assumption 4.2, we can get

‖pk‖ =‖Uki li + F ki Cili‖ ≤ ‖Uki ‖+ Υ‖F ki ‖ ≤ (1 + Υ)Υufρ
|k−i| := Υpρ

|k−i|.(5.19)

Moreover, we get the upper bound qk using (3.4) in Lemma 3.5. If i ≤ k− 1, we have

‖qk‖ = ‖Pkpk‖ ≤ ΥpΥP ρ
k−i.(5.20)

If i = k, we have

‖qk‖ =‖Pkpk −W−1
k (BTk Kk+1Ck +DT

k2)lk‖ ≤ ΥpΥP +
Υ2Υ̃Q̄ + Υ

γ
.(5.21)

where the inequality is due to the triangle inequality and ‖W−1
k ‖ ≤

1
γ . If i ≥ k+1, then

‖qk‖ =‖Pkpk +W−1
k BTk (Mk+1

i )T li +W−1
k BTk (V k+1

i )TCili‖
(5.11)

≤ ΥpΥP ρ
i−k +

Υ

γ

(
(1 + ΥP )ΥΥEρ

i−k−1 + ΥΥ̃Q̄ΥEρ
i−k
)

=

(
ΥpΥP +

(1 + ΥP + ρΥ̃Q̄)ΥEΥ2

γρ

)
ρi−k(5.22)

Combining (5.19), (5.20), (5.21), (5.22) and defining

Υpq,2 = ΥpΥP +
(1 + ΥP + ρΥ̃Q̄)ΥEΥ2

γρ
+

Υ2Υ̃Q̄ + Υ

γ
> Υp,(5.23)

we get

max(‖pk‖, ‖qk‖) ≤ Υpq,2ρ
|i−k|.

This finishes the proof of the second part. To summarize, we complete the proof by
defining Υpq = max(Υpq,1,Υpq,2). From Remark 5.6 and the definition of Υpq,1 and
Υpq,2, we can see that Υpq and ρ will decrease when γ increases.
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From the main theorem above, we see that the decay rate ρ is the same as the
one in Lemma 5.3. From (4.14) and (5.9), we know

ρ =

√
Υ̃Q̄√

Υ̃Q̄ +
(

γ

γ+Υ̃

)2 · δ .
To clarify, although the sensitivity decay rate of an NLDP should not depend on δ,
which is only a hyperparameter of the convexification algorithm, the above rate is
our provable rate, and δ is treated as a parameter. Throughout the proof, we rely
on setting δ ∈ (0, γ) to get uniform boundedness of the matrices. From a practical
perspective, the suggested value is δ ≈ γ.

6. Numerical experiment. We conducted a numerical experiment to verify
our theoretical result in Theorem 5.7. For simplicity, we chose a moderate temporal
length and set nx = nu = 1. In particular, we studied the following nonconvex QDP:

min
x,u

N−1∑
k=0

µ1(uk − dk)2 − µ2(xk − dk)2 − µ2x
2
N ,(6.1a)

s.t. xk+1 = uk + f(dk), ∀k ∈ [N − 1],(6.1b)

x0 = 0.(6.1c)

Here we assume that f is any function such that f(0) = 0. Note that we still have
coupled KKT conditions for our toy example. Suppose the unperturbed reference
variable is d0 = (d0, ..., dN−1) = 0. Then the unperturbed problem has a unique
minimizer that is xk = uk = 0, ∀k, provided µ1 > µ2 > 0. Furthermore, we can check
that Assumption 3.1 holds with γ = µ1 − µ2 and that Assumption 4.2 (i) holds with
Υ = max(1, µ1, µ2, f

′(0)), and therefore the controllability condition in Assumption
4.2 (ii) holds with tk = t = λC = 1.
Simulation setting: We set N = 40, 60, µ = (µ1, µ2) = (10, 1), (50, 10), (100, 15),
and we let f(x) = x or exp(x) − 1. We perturb only d at the middle stage but with
three different scales: ε = 1, 0.1, 0.01. Note that only if ε → 0 can we approximate
the directional derivatives. Because the unperturbed solution is all zeros, we plot
log(|x∗k(ε)|/ε) v.s. k, for which we expect to observe a linear decay. All optimization
problems are solved by using the JuMP package [5] in Julia 0.6.4.1.

Simulation results are shown in Figure 1. We see that the results all have an
obvious linear decay trend, which is consistent with Theorem 5.7.

7. Conclusion and future work. In this paper, we study the sensitivity anal-
ysis for nonlinear dynamic programming with equality constraints. From the theo-
retical foundation for sensitivity analysis in [3] we derive a QDP whose solution is
the sensitivity vector but for which the quadratic objective matrix may be indefinite.
Dealing with indefinite quadratic matrices has intrinsic difficulties in both practice
and theory, which we address through the convexification procedure in [16]. To fit that
procedure in our setup, we extend the procedure to a QDP with linear shift, and we
delve deeper into this algorithm and propose a feasible interval for the regularization
hyperparameter δ. Then we show that the algorithm can preserve the boundedness
of the data as long as controllability holds, based on which we prove the exponential
decay property of sensitivity. That is, we show that under mild Assumptions 3.1
and 4.2, when we perturb the reference variable at stage i along any direction, the
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(a) N = 40, µ = (10, 1) (b) N = 40, µ = (50, 10) (c) N = 40, µ = (100, 15)

(d) N = 60, µ = (10, 1) (e) N = 60, µ = (50, 10) (f) N = 60, µ = (100, 15)

Fig. 1. Sensitivity Plot. Each plot corresponds to a combination of N and µ = (µ1, µ2).
Within each plot, the upper part corresponds to f(x) = x while the bottom part corresponds to
f(x) = exp(x) − 1. We truncate the y-axis from below -500. Except for some fluctuations, we do
observe obvious linear decay trends in all settings, which is consistent with our theoretical result.

magnitude of the directional derivative for the state and the control variable at stage
k (i.e. pk and qk) will have exponential decay in terms of |i− k|. We also study the
dependence of the decay rate with the minimum eigenvalue of the reduced Hessian
matrix. We prove that as γ gets larger, our bounds modify to the ones of faster decay.
Throughout our analysis, we assume a class of NLDP problems, which satisfy uniform
SOSC: γ = λmin(ZTHZ) > 0 independent of N ; and we discuss the likelihood of this
setup. Because of this uniform SOSC, all of the quantities in the theorems including
decay rate are independent of N . By analogy with the importance of the exponential
decay of the sensitivity in our previous work on convex QDP [20], we anticipate that
this result will allow us prove the exponential convergence of temporal decomposi-
tion techniques for solving long-horizon NLDP, as was already demonstrated on an
instance in [15], as well as allowing us to prove exponential convergence of nonlinear
model predictive control, an extension of [19].

But we also point out that the analytical setup here may be useful in a general
setting in the following sense. Our technique of proof relies on the observation that
the sensitivity of the parameter-to-solution mapping of an NLDP, (x∗(d),u∗(d)), and
thus, its approximate local behavior, is the same as of a nonconvex QDP (2.2). Under
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data boundedness, uniform SOSC, and uniform controllability, we proved that this
nonconvex QDP is equivalent (in the sense of having identical parameter-to-solution
mappings, which is a feature of this class of convexification approaches [16], stemming
from Lemma 3.4) to a convex QDP built by the convexification Algorithm 3.1 whose
data are now uniformly bounded above and objective matrices are bounded below.
Therefore classical Riccati techniques can be applied to produce approximate solutions
of the NLDP even if the horizon extends to infinity and bring with them stability
and robustness-to-uncertainty features. This closes an important gap between the
optimization point of view and control point of view of NLDP and may benefit other
extensions and design objectives, such as the treatment of uncertainty.
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