
PARAMETER RECONSTRUCTION FOR GENERAL TRANSPORT

EQUATION
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Abstract. We consider the inverse problem for the general transport equation with external
field, source term and absorption coefficient. We show that the source and the absorption
coefficients can be uniquely reconstructed from the boundary measurement, in a Lipschitz
stable manner. Specifically, the uniqueness and stability are obtained by using the Carleman
estimate in which a special weight function is designed to pick up information on the desired
parameter.
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1. Introduction

Kinetic theory is a full body of theory that characterizes the behavior of a large number of
particles that follow the same physical laws. In particular, the generalized transport equation
is one classical model in kinetic theory. Let u(t, x, v) denote the density of particles at time t
and position x with velocity v. The generalized transport equation characterizes the evolution
of u, and in a general form, the equation read as

∂tu+ v · ∇xu+ E · ∇vu = −qu+ S for (t, x, v) ∈ (0, T )× Ω× R3 ,(1.1)

where Ω is an open bounded and convex domain in R3 with smooth boundary ∂Ω. The three
terms on the left of (1.1) characterize the trajectory of particles which satisfies the ODE system

ẋ = v , v̇ = E(x) .

Here E(x) is the external force. For electrons in semi-conductors, for example, E(x) can be
regarded as the electric field. In some situations, E is a self-consistent field generated by
charged particles, and the field is induced through the Poisson equation. The two terms on
the right of (1.1) are the damping term and the source term, respectively. We term q = q(x, v)
the absorption coefficient which reflects the rate of particles being absorbed by the media, and
S = S(t, x, v) the source term which reflects the rate of new particles introduced into the domain
from the external source. In some cases, q and S are also functionals of u, possibly making
the full equation nonlinear. In this paper, we take E(x) as a deterministic given function that
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2 LAI AND LI

only depends on x, and moreover, we take q and S as functions independent of u. We note
that with zero source and zero damping, the equation is known as the Vlasov equation which
is the collision-less Boltzmann equation.

The equation (1.1) has a unique solution when the initial condition

(1.2) u(t = 0, x, v) = g(x, v)

and the boundary condition are suitably imposed. For the incoming flow, the boundary con-
dition is imposed at the incoming coordinates. More specifically, we define

Γ± = {(x, v) ∈ ∂Ω× R3 : ± n(x) · v > 0} ,(1.3)

where n(x) is the unit outer normal to ∂Ω at the point x ∈ ∂Ω. This means Γ− collects all
coordinates on the boundary with the corresponding velocity pointing into the domain, while
Γ+ collects the outgoing particle coordinates. Then the incoming flow is imposed on Γ−, that
is,

(1.4) u|Γ− = h(t, x, v) .

The boundary and initial conditions are required to be compatible, which means

g|Γ− = h(0, x, v) .

The forward problem for the transport equation is to find the solution u(t, x, v) to (1.1)
with the initial and boundary conditions given in (1.2) and (1.4). On the other hand, for the
inverse problem for the transport equation (1.1), one seeks to recover the unknown terms from
some measurable data. More precisely, suppose that the absorption coefficient q or the source
term S is unknown, can one adjust the initial and boundary condition, and utilize certain
measurements taken on the boundary to uniquely and stably determine q or S? In particular,
one widely used boundary measurement is the albedo operator which is defined by

A : (h, g)→ u|Γ+ .

Then one seeks for good choice of (h, g) to trigger the information embedded in A for recon-
structing q and S.

The inverse transport problem finds its wide applications in optical imaging, remote sens-
ing, semi-conductor designing, to name a few. On the numerical and engineering sides, many
algorithms that are rooted in Baye’s theory, or optimization have been developed and exten-
sively studied. These methods provide some reconstructions of the parameters using the data
collected in experiments. To some extent, one can argue these methods provide the best recon-
struction based on the provided information numerically. However, the theoretical studies are
largely in lack. Even the most basic question, is the information from the albedo operator truly
enough to uniquely and stably identify the parameters, is unknown. The only exception is the
study of the radiative transfer equation (RTE), a classical kinetic model for photon particles.
Since photon particles do not accelerate/decelerate, in the RTE model, one sets E = 0, and
this makes the trajectory of particles much easier to analyze. The uniqueness results are found
in [10, 11, 12, 13, 25] and stability estimates have been derived in [3, 4, 5, 27]. Moreover, the
transport equation in the diffusion scaling are studied in [18, 28]. The major technique used
in most of these results is the singular decomposition of the Schwartz kernel for the albedo
operators A, developed in [11, 13, 23]. Based on this technique, one can decompose the mea-
surements into multiple components according to their different types of singularities and then
these different components are used in various ways for the reconstruction. Interested readers
are referred to some nicely written review papers [1, 2, 21, 23] for this particular kind of inverse
kinetic models.
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The main goal of this paper is to fill the theoretical gap for a larger class of kinetic equations,
the general transport equation (1.1), where non-trivial external force E presents. We study in
this scenario, if and how either q or S can be reconstructed. The major difference between this
problem and the widely investigated RTE is that our non-trivial E significantly complicates
the trajectory of particles, which makes the classical singular decomposition technique invalid.
Therefore, we rely on the Carleman estimate which will be discussed in Section 3.

The Carleman estimate is a technique initiated by Bukhgeim and Klibanov in [7]. It is
an important tool for proving uniqueness and stability in reconstructing coefficients in partial
differential equations, especially transport type equations, as seen in [14, 15, 16, 17, 19]. The
applications of Carleman estimates to inverse problems for hyperbolic systems are largely sum-
marized in [6]. One key feature of the Carleman estimate is that, depending on a particular
equation being investigated, some special weight functions are designed to extract the desired
property from the estimate. These weights, when multiplied on the original equation, enlarge
certain parts of information in the solution while suppressing the rest, and if strong enough,
the deviation in the coefficients can be upper bounded by the deviation in the measurements,
leading to the uniqueness and the Lipschitz stability. It is a rather general strategy and per-
mits the recovery with one single measurement, and thus serves as a powerful tool in inverse
problem, especially for wave and non-stationary transport type of equations. We want to point
out that in [15], the inverse transport problem with a variable velocity was studied, and the
setup is relatively similar to the setting we have here.

1.1. Main results. We will be mainly working on the L2 space, and to unify the notation, we
denote

‖F‖2L2(Ω×R3) :=

∫
R3

∫
Ω
|F |2dxdv , ‖F‖2L2([0,T ]×Γ+) :=

∫ T

0

∫
Γ+

|F |2dσdt,

where dσ = |n(x) · v|dµ(x)dv is the surface measure and dµ(x) is the measure on ∂Ω.
Throughout the paper, let PU denote

PU = {f : ‖f(0, x, v)‖L∞(Ω×U) ≤ C1, ‖∂tf‖L∞([0,T ]×Ω×U) ≤ C1,

and inf
Ω×U
|f(0, x, v)| ≥ C2}(1.5)

for some given constants C1 and C2 > 0, where U ⊂ R3 is a subset in the velocity space. We
also denote the support of a function q by supp(q).

The reconstruction of q and S are summarized in the following two separate theorems.

1.1.1. Reconstruction of absorption coefficient. We first assume that the external field E and
the source S are known. Then the inverse problem is to reconstruct q from the measurement on
Γ+. In particular, we want to show that the difference in q would be visible from this boundary
measurement.

Let g be the initial condition and h be the incoming function on Γ−. Suppose that uj are
the solutions to the problem ∂tuj + v · ∇xuj + E · ∇vuj + qjuj = S in (0, T )× Ω× R3,

uj(0, x, v) = g(x, v) in Ω× R3,
uj = h in (0, T )× Γ−,

(1.6)

with absorption coefficients qj for j = 1, 2, respectively. Then we have the following theorem
for estimating the discrepancy in q.



4 LAI AND LI

Theorem 1.1. Let E, S, qj, h, and g satisfy certain assumptions (to be specified in Theorem
2.1). Suppose u2 ∈ PU , and qj ∈ L∞(Ω× R3) have compact supports in v such that

supp(q1 − q2)(x, ·) ⊂ U for any x ∈ Ω .

Then there exist positive constants c and C depending on Ω, E, S, T , U , and Cj defined in
(1.5) such that

c‖∂tu1 − ∂tu2‖L2([0,T ]×Γ+) ≤ ‖q1 − q2‖L2(Ω×R3) ≤ C‖∂tu1 − ∂tu2‖L2([0,T ]×Γ+) .(1.7)

This theorem indicates that we not only have uniqueness in the reconstruction of q, but also
obtain the Lipschitz stability as shown in (1.7).

We would like to note that in Theorem 1.1 we utilize the nontrivial initial data g, the
incoming data and the outgoing data. When we take ∂tu1 = ∂tu2 on [0, T ] × Γ+, it implies
that anisotropic absorption coefficients q1(x, v) = q2(x, v) from (1.7). While in general, for the
anisotropic media with q depending on v, the unique determination of q is not always valid by
relying solely on the albedo operator A without the information on initial data. To see this,
let’s consider the case E = S = 0 in (1.1). Thus, the most one can recover from the albedo
operator A : u|Γ− → u|Γ+ are the integrals∫

R
q(x+ sv, v)ds,(1.8)

see [11, 13, 24]. This is not sufficient to determine q(x, v) since one can always change the
x-variable in the direction v in (1.8), the integral still preserves the same value. Moreover, in
[24], it was shown that such anisotropic absorption coefficient can only be recovered up to a
gauge transformation, namely,

q2(x, v) = q1(x, v)− v · ∇x log φ,

with φ = 1 on ∂Ω provided that their albedo operators are identical for both q1 and q2 in the
stationary RTE problem. This implies the non-uniqueness of q. Even for the time-dependent
transport equation in [11], this non-unique result for q was also observed when the albedo
operator on the boundary is the only given data. In our setting, however, we additionally
assume that the nontrivial g is given, which prevents the occurrence of the gauge transformation
in the transport equation (1.1). Hence, the uniqueness of q(x, v) is valid and, moreover, the
stability estimate holds by using a single measurement.

1.1.2. Reconstruction of source. The other scenario we consider is the reconstruction of S when
E and q are known. Let uj , j = 1, 2, be the solution to the problem ∂tuj + v · ∇xuj + E · ∇vuj + quj = Sj in (0, T )× Ω× R3 ,

uj(0, x, v) = g(x, v) in Ω× R3 ,
uj = h in (0, T )× Γ− ,

(1.9)

with the source Sj , respectively. Following a similar argument as in the proof of Theorem 1.1,
the source term can also be reconstructed from the given boundary data ∂tu on Γ+, as stated
in the following theorem.

Theorem 1.2. Under certain conditions on E, Sj, q, h, and g (to be specified in Theorem
2.1), suppose that the sources are of the form

Sj(t, x, v) = S̃j(x, v)S0(t, x, v) ,

where S0 ∈ PU and

supp(S̃1 − S̃2)(x, ·) ⊂ U for any x ∈ Ω .
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Then one has

c‖∂tu1 − ∂tu2‖L2([0,T ]×Γ+) ≤ ‖S̃1 − S̃2‖L2(Ω×R3) ≤ C‖∂tu1 − ∂tu2‖L2([0,T ]×Γ+) ,(1.10)

where c and C are positive constants depending on Ω, E, q, T , U , and Cj defined in (1.5).

Similarly, the second inequality in (1.10) indicates the uniqueness and the Lipschitz stability

in the reconstruction of S̃.
We should emphasize that in this paper we only determine one unknown at a time while

assuming the others are known. In practice, however, it is more interesting to simultaneously
reconstruct both functions q and S based on the boundary measurement on Γ+, but the task
is beyond what we study in this paper. A major difficulty there is that it is not clear if the
Carleman estimate could be extended to treat the situation. We leave this problem for future
studies.

To make our approach more clear, we briefly summarize the strategy for the derivation of
stability estimates (1.7) and (1.10) in the following steps:

1. We first establish the energy estimate for initial boundary value problem for the equa-
tion (1.1), and it will be stated in Lemma 3.2.

2. We then design a suitable weight function φ for the Carleman estimate to carry through,
and the result will be stated in Lemma 3.7. This estimate plays a key role in controlling
the solution on parts of the boundary.

3. We then introduce a smooth cut-off function χ in time t and a smooth cut-off function
ψ in velocity v to pick up the information in ∂tu.

4. We derive the equation for χψ∂tu and then apply the Carleman estimate on this equa-
tion. When the initial condition is trivial, meaning u(0, x, v) = 0, the initial flux
∂tu(0, x, v) contains the inhomogeneous term (q or S) of the transport equation. Such
result is stated in Lemma 4.1, where some assumption on the solution is imposed, and
in Lemma 4.2 we eliminate this assumptions by incorporating the energy estimate from
Lemma 3.2.

5. These results are finally used on the equation for u1 − u2 to reconstruct q1 − q2 or

S̃1 − S̃2, which leads to the two main theorems above. Their proof can be found in
Section 4.

1.2. Outline. The rest of the paper is organized as follows. We first summarize in Section 2
the well-posedness for the forward problem (2.1) and introduce some notations. In Section 3,
we derive the energy estimate and the Carleman estimate for the transport equation (1.1). In
Section 4, these estimates are used to treat the solution with cut-off functions in the proof of
the main theorems. Numerical evidences are presented in Section 5, and the numerical results
confirm the linear dependence of the discrepancy in the measurement and the discrepancy in
the coefficient.

2. Preliminary Results and Notations

Some prior estimates and the well-posed condition could be useful for the later analysis.
We briefly review them in this section. We recall the transport equation with initial condition
g(x, v) and boundary condition h(t, x, v): ∂tu+ v · ∇xu+ E · ∇vu+ qu = S in (0, T )× Ω× R3 ,

u(0, x, v) = g(x, v) in Ω× R3 ,
u = h in (0, T )× Γ− .

(2.1)
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It is clear from the equation (2.1) that the trajectories of particles are determined by the first
three terms on the left hand side (LHS) of (2.1). Along the trajectory, q serves as a damping
coefficient while S is a source term. We define the two transport operators as follows:

(2.2) P0 = ∂t + v · ∇x + E · ∇v , P = ∂t + v · ∇x + E · ∇v + q .

Suppose at time t, a particle is placed at the initial position x with the initial velocity v.
We denote X(s; t, x, v) and V (s; t, x, v) the position and velocity of this particle at time s, with
the initial condition set as

(X(t; t, x, v), V (t; t, x, v)) := (x, v) .

We have the trajectory determined by the Hamiltonian ODE system

Ẋ(s; t, x, v) = V (s; t, x, v) , V̇ (s; t, x, v) = E(X(s; t, x, v)) ,(2.3)

for 0 < s, t <∞, where Ẋ and V̇ represent their derivatives with respect to time s.
The particles, tracing backwards in time, either pick up information from boundary h(t, x, v)

or from the initial data g(x, v). For the particles picking up information from the boundary,
we define the backward exiting time t−, position x− and velocity v− as follows:

Definition 2.1. For (t, x, v) ∈ R× Ω× Rn, we define the backward exit time t−(t, x, v) by

t−(t, x, v) := sup{s ≥ 0 : X(τ ; t, x, v) ∈ Ω, for all τ ∈ (t− s, t)} ,(2.4)

and define the backward exit position x− and the backward exit velocity v− by

x−(t, x, v) := X(t− t−(t, x, v); t, x, v) , v−(t, x, v) := V (t− t−(t, x, v); t, x, v) .

Figure 1. The picture illustrates the particle travels along the characteristic in a
bounded domain Ω and hits the boundary at the backward exit point x− and velocity
v− at time t−.

With these definitions, assuming the initial and boundary conditions are compatible, we
have the following well-posed result for the problem (2.1):

Theorem 2.1 ([9], Proposition 2). Let η ∈ (0, 1/4). Assume that the compatibility condition

g(x, v) = h(0, x, v) for (x, v) ∈ Γ−(2.5)

and (2.12) hold. Suppose that q ≥ 0 and

(1) ∇xg, ∇vg ∈ L2(Ω× R3) ,
(2) ∇xS, ∇vS ∈ L2([0, T ]× Ω× R3) ,

(3) e−η|v|
2∇xq, e−η|v|

2∇vq ∈ L2([0, T ]× Ω× Rn) ,

(4) eη|v|
2
g ∈ L∞(Ω× R3), eη|v|

2
h ∈ L∞([0, T ]× Γ−) ,

(5) eη|v|
2
S ∈ L∞([0, T ]× Ω× R3) ,
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(6) ∇x,vt−∂th, ∇x,vv−∇vh, ∇x,vx−∇xh, ∇x,vt−(qh) ∈ L2([0, T ]× Γ−) .

Then for any T > 0, there exists a unique solution u to (2.1) such that

∇x,vu ∈ C([0, T ];L2(Ω× R3)) ∩ L1([0, T ];L2(∂Ω)) .

We emphasize that all these assumptions are rather loose in the sense that the initial and

boundary condition g and h can have roughly e|v|
2

growth. However, the conclusion is strong
in the sense that ∇x,vu ∈ L2(Ω × R3), despite having singularities, are still square integrable.
In the remaining of this section, we provide certain discussions about the singular behavior
for the completeness of the paper and refer the interested readers to [8, 9] and the references
therein for details.

In fact, one can trace the dynamics of the particles around the boundary and make the
singular behavior rather explicit. Since the trajectory is dominated by the operator P0, we
take the Vlasov equation as an example:

P0u = 0 .(2.6)

Suppose the boundary condition is determined by some given function h so that

u(t, x, v) = h(t, x, v) for (t, x, v) ∈ R+ × Γ− ,(2.7)

then the explicit solution to the Vlasov equation (2.6) with (2.7), according to [26] is

u(t, x, v) = h(t− t−(t, x, v), x−(t, x, v), v−(t, x, v)) for t ≥ t−(t, x, v) .(2.8)

Differentiating the equation (2.8) in x, we have the following lemma.

Lemma 2.2. Let u be the solution to the Vlasov equation. For (t, x, v) ∈ R × Ω × R3, if
n(x−(t, x, v)) · v−(t, x, v) is sufficiently small, then

∇xu(t, x, v) ∼ 1

n(x−(t, x, v)) · v−(t, x, v)
,

where n(x−(t, x, v)) is the unit outer normal at the point x−(t, x, v) on ∂Ω.

Proof. For (x−(t, x, v), v−(t, x, v)) ∈ Γ−, the partial derivative of x− is parallel to the tangential
direction, thus one has ∂xi [x−(t, x, v)] · n(x−(t, x, v)) = 0. To reveal the singularities, we rely
on the identities

∂xi [x−(t, x, v)] = ∂xi [X(t− t−(t, x, v); t, x, v)]

= −∂xit−(t, x, v)Ẋ(t− t−(t, x, v); t, x, v) + ∂xiX(t− t−(t, x, v); t, x, v)(2.9)

and

∂xi [v−(t, x, v)] = ∂xi [V (t− t−(t, x, v); t, x, v)]

= −∂xit−(t, x, v)V̇ (t− t−(t, x, v); t, x, v) + ∂xiV (t− t−(t, x, v); t, x, v)(2.10)

for all 1 ≤ i ≤ 3. To see the singularity, we perform the inner product of (2.9) and the normal
vector, then we have

0 = n(x−(t, x, v)) · ∂xi [x−(t, x, v)]

= −∂xit−(t, x, v)(v−(t, x, v) · n(x−(t, x, v)) + ∂xiX(t− t−(t, x, v); t, x, v) · n(x−(t, x, v)) ,

which leads to

∂xit−(t, x, v) =
∂xiX(t− t−(t, x, v); t, x, v) · n(x−(t, x, v))

v−(t, x, v) · n(x−(t, x, v))
.(2.11)

Taking partial derivatives on (2.8), we obtain

∂xiu(t, x, v) = −∂xit−(t, x, v)∂th+ ∂xi [x−(t, x, v)]∂xih+ ∂xi [v−(t, x, v)]∂vih .
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We then substitute (2.9), (2.10), and (2.11) into ∂xiu. Thus, it can be seen that the function
∇xu has singularities when n(x−(t, x, v)) · v−(t, x, v) = 0. �

Under the following assumptions on E, the singular behavior at the boundary can be avoided
and then the H1 estimate on the solution can be obtained, see for example [8, 9].

Lemma 2.3 ([9], Lemma 1). Let Ω be a convex domain. Suppose that ‖E(x)‖C1(Ω) <∞ and

n(x) ·E(x) = 0 for x ∈ ∂Ω ,(2.12)

where n(x) is the unit outer normal vector at x ∈ ∂Ω. Then for x ∈ ∂Ω and n(x) · v > 0, we
have

n(x−(t, x, v)) · v−(t, x, v) < 0

provided that t+ 1 ≥ t−(t, x, v).

Assume that E satisfies the assumptions in Lemma 2.3, thanks to both Lemma 2.2 and
Lemma 2.3, one can control the singularities of ∇x,vu on the boundary, and this serves as
one of the main components in showing the well-posedness in Theorem 2.1. We refer the
interested readers to [9] for the proof of Theorem 2.1 and Lemma 2.3, and [8] for the case when
E(x) · n(x) > CE > 0.

3. Energy and Carleman Estimates

In this section we prepare the main ingredients for the proofs of Theorem 1.1 and 1.2. In
particular, we will derive the energy estimate and the Carleman estimate for equation (2.1).
The application of these estimates will be explored in Section 4.

To a large extent, the energy estimate mainly follows from the integration by parts and
some standard inequalities (Grönwall and Cauchy-Schwarz). Moreover, we derive the Carleman
estimate by designing a special weight function that enlarges/suppresses the information of the
solution in time.

3.1. Energy estimates. We first state the Green’s identity on the phase space:

Lemma 3.1 ([9], Lemma 5). Suppose that u ∈ L2([0, T ];L2(Ω×R3)) ∩L2([0, T ];L2(Γ−)) and

F (t, x, v) := ∂tu+ v · ∇xu+ E · ∇vu ∈ L2([0, T ];L2(Ω× R3)) .

Then
u ∈ L2([0, T ];L2(Γ+)) ∩ C([0, T ];L2(Ω× R3)) .

Moreover, the following identity holds∫
Ω×R3

|u(s, x, v)|2dxdv +

∫ s

0

∫
Γ+

|u|2dσdt

=

∫
Ω×R3

|u(0, x, v)|2dxdv +

∫ s

0

∫
Γ−

|u|2dσdt+

∫ s

0

∫
Ω×R3

F (t, x, v)udxdvdt(3.1)

for almost every s ∈ [0, T ].

This Green’s identity, combined with Grönwall’s inequality, allows us to obtain an energy
estimate:

Lemma 3.2. Suppose that W ∈ L2([0, T ]×Ω×R3), q ∈ L∞(Ω×R3), and h ∈ L2([0, T ];L2(Γ−)).
Let u ∈ L2([0, T ];L2(Ω× R3)) be the solution to the following problem{

∂tu+ v · ∇xu+ E · ∇vu+ qu = 2W in (0, T )× Ω× R3 ,

u = h in (0, T )× Γ− .
(3.2)
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Then there exists a constant C > 0, depending on T and ‖q‖L∞, so that for every 0 ≤ s ≤ T ,
one has ∫

Ω×R3

|u(s, x, v)|2dxdv +

∫ T

0

∫
Γ+

|u|2dσdt

≤ CeCT
(∫

Ω×R3

|u(0, x, v)|2dxdv +

∫ T

0

∫
Γ−

|u|2dσdt+

∫ T

0

∫
Ω×R3

|W |2dxdvdt
)
.(3.3)

Proof. We first apply (3.1) for any 0 ≤ s ≤ T and obtain∫
Ω×R3

|u(s, x, v)|2dxdv +

∫ s

0

∫
Γ+

|u|2dσdt

=

∫
Ω×R3

|u(0, x, v)|2dxdv +

∫ s

0

∫
Γ−

|u|2dσdt

+

∫ s

0

∫
Ω×R3

(∂tu+ v · ∇xu+ E(x) · ∇vu)udxdvdt .(3.4)

We then multiply the equation (3.2) by u and integrate both sides so that∫ s

0

∫
Ω×R3

(∂tu+ v · ∇xu+ E · ∇vu)u+ q|u|2dxdvdt =

∫ s

0

∫
Ω×R3

2Wudxdvdt .(3.5)

Replacing the third term on the right hand side (RHS) of (3.4) by identity (3.5), then one
obtain ∫

Ω×R3

|u(s, x, v)|2dxdv +

∫ s

0

∫
Γ+

|u|2dσdt

=

∫
Ω×R3

|u(0, x, v)|2dxdv +

∫ s

0

∫
Γ−

|u|2dσdt

−
∫ s

0

∫
Ω×R3

q|u|2dxdvdt+

∫ s

0

∫
Ω×R3

2Wudxdvdt(3.6)

for any 0 ≤ s ≤ T . We denote the energy K at time s by

K(s) :=

∫
Ω×R3

|u(s, x, v)|2dxdv, 0 ≤ s ≤ T .

Applying the following inequality

2

∫ s

0

∫
Ω×R3

Wudxdvdt ≤
∫ s

0

∫
Ω×R3

|W |2dxdvdt+

∫ s

0

∫
Ω×R3

|u|2dxdvdt ,

and the identity (3.6), it leads to

K(s) +

∫ s

0

∫
Γ+

|u|2dσdt ≤ α(s) + (1 + ‖q‖L∞)

∫ s

0
K(t)dt ,(3.7)

where

α(s) := K(0) +

∫ s

0

∫
Γ−

|u|2dσdt+

∫ s

0

∫
Ω×R3

|W |2dxdvdt, 0 ≤ s ≤ T .

To apply Grönwall’s inequality, we temporarily drop the second term on the LHS of (3.7).
Since α is nondecreasing, we obtain

K(s) ≤ α(s)eT (1+‖q‖L∞ ) ≤ α(T )eT (1+‖q‖L∞ ) , 0 ≤ s ≤ T .
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Substituting it back to the RHS of (3.7) and using the fact again that α is nondecreasing, then
we have

K(s) +

∫ s

0

∫
Γ+

|u|2dσdt ≤ α(T ) + (1 + ‖q‖L∞)Tα(T )eT (1+‖q‖L∞ ), 0 ≤ s ≤ T ,

which completes the proof. �

The following corollary follows immediately from the lemma above.

Corollary 3.3. Suppose q ∈ L∞(Ω×R3) and k(t, x, v) = k0(x, v)k1(t, x, v) with k0 ∈ L2(Ω×R3)
and

‖k1‖L∞([0,T ]×Ω×R3) ≤ C3 ,(3.8)

where C3 is a positive constant. Let u be the solution to the problem (3.2) with W replaced by
k. Then the following estimate holds:

‖u‖2L2([0,T ]×Ω×R3) + ‖u‖2L2([0,T ]×Γ+)

≤ C
(
‖u(0, ·, ·)‖2L2(Ω×R3) + ‖u‖2L2([0,T ]×Γ−) + ‖k0‖2L2(Ω×R3)

)
,(3.9)

where the constant C > depends on T , ‖q‖L∞, and C3.

The proof is a direct application of Lemma 3.2, where one integrates both sides of (3.3) over
the interval [0, T ]. Another straightforward result is the following theorem which we omit the
proof.

Theorem 3.4. Suppose that ‖k1‖L∞([0,T ]×Ω×R3) ≤ C3 and k0 ∈ L2(Ω×R3). Let u ∈ L2([0, T ]×
Ω× R3) be the solution to ∂tu+ v · ∇xu+ E · ∇vu+ qu = k0(x, v)k1(t, x, v) in (0, T )× Ω× R3 ,

u(0, x, v) = 0 in Ω× R3 ,
u = 0 in (0, T )× Γ− .

(3.10)

Then

c‖u‖L2([0,T ]×Γ+) ≤ ‖k0‖L2(Ω×R3) and c‖u‖L2([0,T ]×Ω×R3) ≤ ‖k0‖L2(Ω×R3) ,

where c > 0 is a constant depending on Cj , Ω, E, q, and T .

Remark 3.1. If we further assume that

‖u2‖L∞([0,T ]×Ω×U) ≤ C3 , ‖S0‖L∞([0,T ]×Ω×U) ≤ C3

in Theorem 1.1 and Theorem 1.2, then from Theorem 3.4, the first estimate in (1.7) and (1.10)
can be replaced by

c‖u1 − u2‖L2([0,T ]×Ω×R3) ≤ ‖q1 − q2‖L2(Ω×R3) ,

and

c‖u1 − u2‖L2([0,T ]×Ω×R3) ≤ ‖S̃1 − S̃2‖L2(Ω×R3) ,

respectively.

Carleman estimates typically rely on a good design of a “weight function”. Before presenting
it, as a preparation, we here introduce the following related identity. The following lemma holds
true for a certain function Ψ related to the weight function, and its specific form will be designed
in a later section. We note that the proof here is similar to that of Lemma 5 in [9], but we do
need adjustments to fit our setting.
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Lemma 3.5. Suppose Ψ(x, v) satisfies

‖Ψ‖L∞(Ω×R3) ≤M0 , ‖v · ∇xΨ + E · ∇vΨ‖L∞(Ω×R3) ≤M1

for some positive constants M0 and M1. Denote

F (t, x, v) := (∂tw + v · ∇xw + E · ∇vw)w .

Under the assumption that

w ∈ L2([0, T ];L2(Ω× R3)) ∩ L2([0, T ];L2(Γ−)) ,

and that

∂tw + v · ∇xw + E · ∇vw ∈ L2([0, T ];L2(Ω× R3)) ,

we have

2

∫ T

0

∫
Ω×R3

ΨFdxdvdt

= −
∫ T

0

∫
Ω×R3

[v · ∇xΨ + E · ∇vΨ]|w|2(t, x, v)dxdvdt+

∫ T

0

∫
Γ+

Ψ|w|2dσdt

+

∫
Ω×R3

Ψ|w|2(T, x, v)dxdv −
∫

Ω×R3

Ψ|w|2(0, x, v)dxdv −
∫ T

0

∫
Γ−

Ψ|w|2dσdt .(3.11)

Proof. We denote the function H by

H(t, x, v) = [v · ∇xΨ + E · ∇vΨ]|w|2 + 2ΨF

and observe that

H(t+ s,X(t+ s; t, x, v), V (t+ s; t, x, v))

=
d

ds
Ψ(X(t+ s; t, x, v), V (t+ s; t, x, v))|w(t+ s,X(t+ s; t, x, v), V (t+ s; t, x, v))|2 .

Thus, the function H is in L1([0, T ]×Ω×R3) which can be deduced from the hypothesis. Since
H satisfies the condition in Lemma 4 in [9] whose proof relies on the change of variables to the
function H, we immediately obtain the following identity∫ T

0

∫
Ω×R3

H(t, x, v)dxdvdt

=

∫
Ω×R3

∫ 0

−T∧t−(T,x,v)

d

ds
Ψ|w|2(T + s,X(T + s;T, x, v), V (T + s;T, x, v))dsdvdx

+

∫ T

0

∫
Γ+

∫ 0

−t∧t−(t,x,v)

d

ds
Ψ|w|2(t+ s,X(t+ s; t, x, v), V (t+ s; t, x, v))dsdσdt

=: J1 + J2 ,(3.12)

where we used the notation a ∧ b = min{a, b}. Let us first consider J1. From a direct compu-
tation on J1, we can derive

J1 =

∫
Ω×R3

∫ 0

−T∧t−(T,x,v)

d

ds
Ψ|w|2(T + s,X(T + s;T, x, v), V (T + s;T, x, v))dsdvdx

=

∫
Ω×R3

Ψ(x, v)|w(T, x, v)|2dxdv −K1 −K2 ,
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where

K1 =

∫
Ω×R3

1T≥t−(T,x,v)Ψ(x−, v−)|w(T − t−, x−, v−)|2dxdv ,

K2 =

∫
Ω×R3

1T<t−(T,x,v)Ψ(X(0;T, x, v), V (0;T, x, v))|w(0, X(0;T, x, v), V (0;T, x, v))|2dxdv .

In addition, we can also obtain an identity of J2 as follows:

J2 =

∫ T

0

∫
Γ+

∫ 0

−t∧t−(t,x,v)

d

ds
Ψ|w|2(t+ s,X(t+ s; t, x, v), V (t+ s; t, x, v))dsdσdt

=

∫ T

0

∫
Γ+

Ψ(x, v)|w(t, x, v)|2dσdt−K3 −K4 ,

where

K3 =

∫ T

0

∫
Γ+

1t≥t−(t,x,v)Ψ(x−, v−)|w(t− t−, x−, v−)|2dσdt ,

K4 =

∫ T

0

∫
Γ+

1t<t−(t,x,v)Ψ(X(0; t, x, v), V (0; t, x, v))|w(0, X(0; t, x, v), V (0; t, x, v))|2dσdt .

It is indicated in the proof of Lemma 5 in [9] that

K2 +K4 =

∫
Ω×R3

Ψ(x, v)|w(0, x, v)|2dxdv

and

K1 +K3 =

∫ T

0

∫
Γ−

Ψ(x, v)|w(t, x, v)|2dσdt .

Therefore, the proof is complete by putting J1 + J2 back to (3.12). �

3.2. Carleman estimates. The key to deriving the Carleman estimates is to find a suitable
weight function, and we discuss it in this section. We also refer to [6] for the application of
Carleman estimates to inverse problems in different settings.

We first choose a weight function ϕ ∈ C2([0, T ]× Ω× R3) of the following form

ϕ(t, x, v) = −βt+ ϕ0(x, v) , with β > 0 and ϕ0 ∈ C2(Ω× R3) ,(3.13)

and then we define the function Ψ by acting the transport operator P0 (defined in (2.2)) on ϕ,
namely,

Ψ := P0ϕ = ∂tϕ+ v · ∇xϕ+ E · ∇vϕ = −β + v · ∇xϕ0 + E · ∇vϕ0 .(3.14)

We now impose some assumptions on ϕ and Ψ, and they are needed for the stability estimate,
to be presented later in Section 4, to be carried through.

Hypothesis 1. For an open subset V ⊂ R3, there exists a function b(x) such that E(x) =
−∇xb(x) and the following statements hold:

(1) One has R > r > 0 with

R = sup
Ω×V

ϕ0(x, v) > 0, r = inf
Ω×V

ϕ0(x, v) > 0 .

(2) Let T > (R− r)/β. If ε > 0 is sufficiently small, then there exist constants α0, α1 such
that 0 < α0 < α1 < r,

sup
Ω×V

ϕ(t, x, v) ≤ α0 for T − 2ε ≤ t ≤ T(3.15)



13

and
sup
Ω×V

ϕ(t, x, v) ≥ α1 for 0 ≤ t ≤ ε .

(3) For some constant γ0 > 0, the function Ψ satisfies

Ψ(x, v) ≥ γ0 > 0 for any (x, v) ∈ Ω× V .
(4) Moreover, the function Ψ satisfies

sup
Ω×V
|Ψ(x, v)| ≤M0

and
sup
Ω×V
|(v · ∇x + E · ∇v)Ψ(x, v)| ≤M1

for some positive constants M0 and M1.

We argue there exist pairs of (ϕ,Ψ) that satisfy the hypothesis. In fact, to make ϕ satisfying
Hypothesis 1, it is crucial to choose ϕ0 properly so that

inf
Ω×V

(v · ∇xϕ0 + E · ∇vϕ0) = µ > 0 .

In addition, by choosing β with 0 < β < µ, it implies that

Ψ(x, v) = −β + v · ∇xϕ0 + E · ∇vϕ0 ≥ −β + µ > 0 for all (x, v) ∈ Ω× V .(3.16)

In the following lemma, we design one particular example of ϕ and Ψ so that they fulfill all
conditions in this hypothesis. This is simply to demonstrate that the set is not empty. There
are other possible examples, but we do not discuss them in the paper.

Lemma 3.6. Suppose that ‖E‖C1(Ω) ≤ m for some constant m > 0. Suppose that diam(Ω) ≤ δ
and for any x = (x1, x2, x3) ∈ Ω, x satisfies x1 > d > 0. Let 0 < a < b <∞ with β+ 2δm < a.
We choose the set

V = {v = (v1, v2, v3) ∈ R3 : a ≤ v2
1 ≤ b, v1 > 0} .(3.17)

Then the function

ϕ(t, x, v) = −βt+ x1v1

satisfies Hypothesis 1.

Proof. It is clear that

R = sup
Ω×V

(x1v1) > 0 and r = inf
Ω×V

(x1v1) > 0 .

One chooses the observed time T satisfying

T >
R− r
β

.

Therefore, it leads to for any (x, v), (x′, v′) ∈ Ω× V:

ϕ(T, x, v) = −βT + x1v1 ≤ −βT +R < r ≤ ϕ(0, x′, v′) .

Since ϕ is continuous in t, there exists constants ε > 0, α0, and α1 such that

0 < α0 < α1 < r ,

then one has

sup
Ω×V

ϕ(t, ·, ·) ≤ α0, for T − 2ε ≤ t ≤ T ,
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and
sup
Ω×V

ϕ(t, ·, ·) ≥ α1, for 0 ≤ t ≤ ε .

By the definition of Ψ, we have

Ψ(x, v) = −β + v2
1 + E · (x1, 0, 0) ≥ 2δm− |x|‖E‖L∞(Ω) ≥ δm for (x, v) ∈ Ω× V ,

and |Ψ| ≤ M0 for some constant M0 > 0. In addition, we denote E = (E1, E2, E3) and then
we obtain

v · ∇xΨ + E · ∇vΨ = v · ∇x(E1x1) + 2v1E1 ≤ m
√
b+mδ

√
b+ 2bm <∞ .

Therefore all conditions in Hypothesis 1 hold true. �

Recall the definition of the transport operator P0 in (2.2). We define the function w by

w(t, x, v) := esϕ(t,x,v)u(t, x, v)

and the operator L by

(3.18) L(·) := esϕ(t,x,v)P0(e−sϕ(t,x,v)·)
for s > 0. Then it is clear that

Lw = esϕ(t,x,v)P0u .(3.19)

We are now ready to present the Carleman estimates.

Lemma 3.7. Suppose that q = q(x, v) ∈ L∞(Ω × R3) satisfies ‖q‖L∞ ≤ C0 for some positive
constant C0. Suppose that the hypotheses in Lemma 3.5 and the Hypothesis 1 with V = Rn
hold for the functions w, ϕ and Ψ. Then for sufficiently large s > 0, we have

s

∫
Ω×R3

Ψ|u|2(0, x, v)e2sϕ(0,x,v)dxdv + s2

∫ T

0

∫
Ω×R3

|Ψ|2|u|2e2sϕdxdvdt

≤ s

∫ T

0

∫
Ω×R3

|v · ∇xΨ + E · ∇vΨ||u|2e2sϕdxdvdt

+ s

∫
Ω×R3

Ψ|u|2(T, x, v)e2sϕdxdv + s

∫ T

0

∫
Γ+

Ψ|u|2e2sϕdσdt

− s
∫ T

0

∫
Γ−

Ψ|u|2e2sϕdσdt+

∫ T

0

∫
Ω×R3

|P0u|2e2sϕdxdvdt .(3.20)

Moreover, when s is sufficiently large, for some constant c0 > 0 independent of s, we have

s

∫
Ω×R3

Ψ|u|2(0, x, v)e2sϕ(0,x,v)dxdv + c0s

∫ T

0

∫
Ω×R3

|u|2e2sϕdxdvdt

≤ s

∫
Ω×R3

Ψ|u|2(T, x, v)e2sϕdxdv + s

∫ T

0

∫
Γ+

Ψ|u|2e2sϕdσdt

− s
∫ T

0

∫
Γ−

Ψ|u|2e2sϕdσdt+ 2

∫ T

0

∫
Ω×R3

|Pu|2e2sϕdxdvdt .(3.21)

Proof. We first note that, according to the definition of L in (3.18), the following equation
holds:

Lw = esϕ(t,x,v)P0(e−sϕ(t,x,v)w)

= P0w − s(∂tϕ+ v · ∇xϕ+ E · ∇vϕ)w

= P0w − sΨw .
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We perform the integration by parts and then obtain the following estimate:∫ T

0

∫
Ω×R3

|P0u|2e2sϕdxdvdt =

∫ T

0

∫
Ω×R3

|Lw|2dxdvdt

=

∫ T

0

∫
Ω×R3

|∂tw + v · ∇xw + E · ∇vw|2dxdvdt+ s2

∫ T

0

∫
Ω×R3

|Ψ|2w2dxdvdt

− 2s

∫ T

0

∫
Ω×R3

Ψw(∂tw + v · ∇xw + E · ∇vw)dxdvdt

≥ − 2s

∫ T

0

∫
Ω×R3

Ψw(∂tw + v · ∇xw + E · ∇vw)dxdvdt

+ s2

∫ T

0

∫
Ω×R3

|Ψ|2w2dxdvdt .(3.22)

Moreover, applying Lemma 3.5, we rewrite the first term on the RHS of (3.22) as

− 2s

∫ T

0

∫
Ω×R3

Ψw(∂tw + v · ∇xw + E · ∇vw)dxdvdt

= s

∫ T

0

∫
Ω×R3

(v · ∇xΨ + E · ∇vΨ)|w|2dxdvdt− s
∫ T

0

∫
Γ+

Ψ|w|2dσdt

− s
∫

Ω×R3

Ψ|w|2(T, x, v)dxdv + s

∫
Ω×R3

Ψ|w|2(0, x, v)dxdv + s

∫ T

0

∫
Γ−

Ψ|w|2dσdt .(3.23)

Substituting (3.23) and w = esϕu into (3.22), we obtain

s

∫
Ω×R3

Ψ|u|2(0, x, v)e2sϕ(0,x,v)dxdv + s2

∫ T

0

∫
Ω×R3

|Ψ|2|u|2e2sϕdxdvdt

≤ s

∫ T

0

∫
Ω×R3

|v · ∇xΨ + E · ∇vΨ||u|2e2sϕdxdvdt+ s

∫
Ω×R3

Ψ|u|2(T, x, v)e2sϕdxdv

+ s

∫ T

0

∫
Γ+

Ψ|u|2e2sϕdσdt− s
∫ T

0

∫
Γ−

Ψ|u|2e2sϕdσdt+

∫ T

0

∫
Ω×R3

|P0u|2e2sϕdxdvdt ,

which gives (3.20).
To obtain the second estimate (3.21), we first replace P0u by

|P0u|2 ≤ 2|Pu|2 + 2|qu|2

in the RHS of (3.20), where P is defined in (2.2). From the Hypothesis 1, Ψ satisfies

|v · ∇xΨ + E · ∇vΨ| ≤M1 in Ω× R3

and Ψ ≥ γ0 > 0 in Ω× R3. Thus, for a large s, we can absorb the following two terms

s

∫ T

0

∫
Ω×R3

|v · ∇xΨ + E · ∇vΨ||u|2e2sϕdxdvdt and

∫ T

0

∫
Ω×R3

|qu|2e2sϕdxdvdt
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in the RHS of (3.20) into the LHS of (3.20). Thus, we have∫ T

0

∫
Ω×R3

(
s2|Ψ|2 − sM1 − 2|q|2

)
|u|2e2sϕdxdvdt

≥ (s2γ2
0 − sM1 − 2‖q‖2L∞)

∫ T

0

∫
Ω×R3

|u|2e2sϕdxdvdt

≥ c0s

∫ T

0

∫
Ω×R3

|u|2e2sϕdxdvdt

for some constant c0 > 0, independent of s, provided that s is sufficiently large. This completes
the proof of (3.21). �

From the proof above, we see that the lower order term does not affect the Carleman esti-
mates if the coefficient q is bounded, and that the inequality (3.21) holds valid uniformly for
any sufficiently large s > 0.

4. Reconstruction of Parameters

The energy estimates and the Carleman estimates from the previous section enable us to
demonstrate stability of the reconstruction of the source and the absorption coefficient. Before
presenting the proofs of the main theorems in Section 4.2, assuming ϕ and Ψ satisfy Hypoth-
esis 1 for an open set V in the velocity field, in Section 4.1, we first provide two key lemmas
which give the control of the parameter k0 by utilizing the boundary measurement only.

4.1. Key lemmas. We start with a special case where the force field E has the form: E(x) =
(0, E2, E3). This is a pseudo 3D case in which there is no acceleration in the v1 direction. It is
a standard practice when the plasma particles are confined in a 3D system with symmetry in
1D [20, 22].

Lemma 4.1. Let q = q(x, v) ∈ L∞(Ω×R3) satisfy ‖q‖L∞ ≤ C0 for some positive constant C0.
Suppose that

k(t, x, v) := k0(x, v)k1(t, x, v) ,

with k0 ∈ L2(Ω× R3) satisfying

supp k0(x, ·) ⊂ U for any x ∈ Ω ,

and k1 satisfying

‖k1(0, x, v)‖L∞(Ω×U) ≤ C1, ‖∂tk1‖L∞([0,T ]×Ω×U) ≤ C1, and inf
Ω×U
|k1(0, x, v)| ≥ C2(4.1)

for some constants C1, C2 > 0.
Furthermore, assuming u ∈ L2([0, T ] × Ω × R3) is the solution to the pseudo 3D transport

equation

(4.2)


∂tu+ v · ∇xu+ E · ∇vu+ qu = k in (0, T )× Ω× R3 ,

u(0, x, v) = 0 in Ω× R3 ,

u = h in ∈ R+ × Γ− ,

with h, ∂tu ∈ L2([0, T ];L2(Γ−)). If

‖∂tu‖L2([0,T ]×Ω×R3) ≤M <∞(4.3)
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for some fixed constant M > 0, then there exists an upper bound of k0 in the L2 norm:∫
Ω×R3

|k0|2dxdv ≤ CM2−2θ

(∫ T

0

∫
Γ+∪Γ−

|∂tu|2dσdt
)θ

(4.4)

for some θ ∈ (0, 1) and some constant C > 0.

Proof. In the pseudo 3D case, E = (0, E2, E3). We denote v = (v1, v2, v3) and then choose a
smooth cut-off function ψ(v) ≡ ψ(v1) in v1 ∈ R3 direction satisfying ψ = 1 in U , supp(ψ) ⊂ V
and that |ψ| ≤ 1 in R3. Thus, it is clear that ∇vψ is orthogonal to the force E, namely,

E · ∇vψ = 0 .

From the help of the compact support of ψ on the direction v1, one can find a suitable weight
function ϕ, for example, the one in Lemma 3.6, such that ϕ satisfies the Hypothesis 1.

We choose, moreover, smooth cut-off function χ in time t so that

χ(t) =

{
1, 0 ≤ t ≤ T − 2ε ,
0, T − ε ≤ t ≤ T .

We consider the function

ũ = χ(t)ψ(v)∂tu .

Then ũ satisfies the equation

P (ũ) = χψP (∂tu) + ψ∂tχ∂tu+ χ(E · ∇vψ)∂tu

= χψ∂tk + ψ∂tχ∂tu ,

where we used the fact that E · ∇vψ = 0.
Due to the cut-off function χ in time, one has ũ(T, x, v) = 0. Furthermore, since u(0, x, v) =

0, it implies from the equation (4.2) that ∂tu(0, x, v) = k0(x, v)k1(0, x, v) which leads to the
initial data of ũ, that is,

ũ(0, x, v) = ψ∂tu(0, x, v) = ψk0(x, v)k1(0, x, v) .

Applying the estimate (3.21) to the function ũ and the lower bound (3) of Ψ in Hypothesis
1, we obtain

sγ0

∫
Ω×R3

|ψ∂tu(0, x, v)|2e2sϕ(0,x,v)dxdv

≤ Cs

∫ T

0

∫
Γ+

Ψ|χψ∂tu|2e2sϕdσdt− Cs
∫ T

0

∫
Γ−

Ψ|χψ∂tu|2e2sϕdσdt

+ C

∫ T

0

∫
Ω×R3

(|χψ∂tk|2 + |ψ∂tχ∂tu|2)e2sϕdxdvdt(4.5)

for some constant C > 0 independent of s. We will give an estimate for the RHS of (4.5). We
first denote

N 2 :=

∫ T

0

(∫
Γ+

+

∫
Γ−

)
|ψ∂tu|2dσdt ,

then the first and the second terms can be bounded by

Cs

∫ T

0

(∫
Γ+

−
∫

Γ−

)
Ψ|χψ∂tu|2e2sϕdσdt ≤ Ce2smN 2 ,(4.6)

where we applied ‖ϕ‖L∞(Γ±) ≤ m in the support of ψ and ‖Ψ‖L∞(Ω×V) ≤ M0, according to

Hypothesis bound (4), provided that s is sufficiently large.
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To estimate the fourth term on the right of (4.5), we use the upper bound (3.15) for ϕ and
the fact that ∂tχ = 0 on 0 ≤ t ≤ T − 2ε and T − ε ≤ t ≤ T . Thus, we obtain∫ T

0

∫
Ω×R3

|ψ∂tχ∂tu|2e2sϕdxdvdt ≤ C
∫ T−ε

T−2ε

∫
Ω×R3

|ψ∂tu|2e2sα0dxdvdt

≤ Ce2sα0‖ψ∂tu‖2L2([0,T ]×Ω×R3)(4.7)

for sufficiently large s > 0.
For the third term in the RHS of (4.5), we have the estimate∫ T

0

∫
Ω×R3

|χψ∂tk|2e2sϕdxdvdt ≤
∫ T

0

∫
Ω×R3

|ψk0(x, v)|2|∂tk1(t, x, v)|2e2sϕdxdvdt

≤ C2
1T

∫
Ω×R3

|ψk0(x, v)|2e2sϕ(0,x,v)dxdv ,(4.8)

where we use the fact that ϕ(t, x, v) ≤ ϕ(0, x, v) for all 0 ≤ t ≤ T and also (4.1) in the last
inequality. From (4.5)-(4.8), and (4.1), we can derive

s

∫
Ω×R3

|ψk0|2e2sϕ(0,x,v)dxdv

≤ CT

∫
Ω×R3

|ψk0|2e2sϕ(0,x,v)dxdv + Ce2sα0‖ψ∂tu‖2L2([0,T ]×Ω×R3) + Ce2smN 2 .

This implies that

(s− CT )

∫
Ω×R3

|ψk0|2e2sϕ(0,x,v)dxdv ≤ Ce2sα0‖ψ∂tu‖2L2([0,T ]×Ω×R3) + Ce2smN 2

for large s > CT . Moreover, since ϕ(0, x, v) ≥ α1 and ψ = 1 in U , we can further get∫
Ω×R3

|k0|2dxdv ≤ Ce2sα0−2sα1‖∂tu‖2L2([0,T ]×Ω×R3) + Ce2sm−2sα1N 2

= Ce−sα
∗M2 + Cesβ

∗N 2 ,(4.9)

where α∗ := 2α1 − 2α0 > 0 and β∗ := 2m− 2α1 > 0.
We consider the following two cases:

(1) M≤ N ,
(2) M > N .

For case (1), we can derive from (4.9) that∫
Ω×R3

|k0|2dxdv ≤ C(e−sα
∗

+ esβ
∗
)N 2 .(4.10)

As for case (2), we balance two terms by letting e−sα
∗M2 = esβ

∗N 2, then we have

s =
2 ln MN
α∗ + β∗

,

which leads (4.9) to ∫
Ω×R3

|k0|2dxdv ≤ 2CM2−2θN 2θ ,

where θ = α∗

α∗+β∗ ∈ (0, 1). This completes the proof of Lemma 4.1. �

Remark 4.1. Several comments are in line:
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• Note that in Lemma 4.1, to obtain the Carleman estimate, we used the technique bor-
rowed from [15], and introduced the cut-off functions. In [15], only cut-off function
χ is utilized since the integrals of the Carleman estimate are over a bounded domain.
However, in our case the integrals are over the whole space R3 for v in (3.21), thus we
introduce two cut-off functions χ in time and ψ in velocity to control the integral in the
velocity field. This is motivated by the average lemma.
• In the proof of Lemma 4.1, we do require a pseudo 3D case where E has one component

that is trivial. Similar argument can be applied if the electric field is either E(x) =
(E1, 0, E3) or E(x) = (E1, E2, 0) with the corresponding adjusted domain Ω in {x ∈
R3 : xj > d} for j = 2, 3, but one also needs to adjust the cut-off function ψ = ψ(vj)
so that E · ∇vψ = 0. Following the proof of Lemma 4.1, we conclude with the same
stability estimate for k0 in (4.4).
• We would like to note that in the most general case, one considers the field E does

not have a trivial component. As long as for such E, there exists a weight function ϕ
satisfying Hypothesis 1 for the case V = Rn, then one can still derive the same estimate
(4.4) as well as (4.13) without introducing the cut-off function ψ.

In Lemma 4.1, we assume the boundedness of ∂tu in (4.3). However, this is an unnecessary
assumption. In the lemma below we apply the energy estimate in Section 3 aiming at elimi-
nating this assumption, see also [15]. This lemma will be the key component in showing the
main theorems.

Lemma 4.2. Let q and k satisfy the assumption in Lemma 4.1, and let u ∈ L2([0, T ];L2(Ω×
R3)) satisfy the problem{

∂tu+ v · ∇xu+ E · ∇vu+ qu = k in (0, T )× Ω× R3,

u(0, x, v) = 0 in Ω× R3.
(4.11)

In the pseudo 3D case, assuming u and ∂tu ∈ L2([0, T ];L2(Γ−)). Then one has∫
Ω×R3

|k0|2dxdv ≤ 2C

∫ T

0

∫
Γ+∪Γ−

|∂tu|2dσdt(4.12)

for some constant C > 0. Moreover, if u also vanishes on (0, T )× Γ−, then

c

∫ T

0

∫
Γ+

|∂tu|2dσdt ≤
∫

Ω×R3

|k0|2dxdv ≤ C
∫ T

0

∫
Γ+

|∂tu|2dσdt(4.13)

for some constants c > 0 and C > 0.

Proof. We first take the operator ∂t on equation (4.11), then we have

∂t(∂tu) + v · ∇x(∂tu) + E · ∇v(∂tu) + q(∂tu) = k0∂tk1 ,(4.14)

with the initial condition
∂tu(0, x, v) = k0(x, v)k1(0, x, v) .

Applying (3.3) in Lemma 3.2 to (4.14), we get∫
Ω×R3

|∂tu|2dxdv +

∫ T

0

∫
Γ+

|∂tu|2dσdt

≤ C

(∫
Ω×R3

|∂tu(0, x, v)|2dxdv +

∫ T

0

∫
Γ−

|∂tu|2dσdt+

∫ T

0

∫
Ω×R3

|k0∂tk1|2dxdvdt
)

≤ C

(∫
Ω×R3

|k0|2dxdv +

∫ T

0

∫
Γ−

|∂tu|2dσdt
)

(4.15)
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for all 0 ≤ t ≤ T , where we used (4.1) and combined the first and the third terms. In particular,
from (4.15), we have

‖∂tu‖2L2([0,T ]×Ω×R3) ≤ C
(∫

Ω×R3

|k0|2dxdv +

∫ T

0

∫
Γ−

|∂tu|2dσdt
)
.

Using the above inequality to replace ‖∂tu‖2L2([0,T ]×Ω×R3) in the RHS of the first inequality in

(4.9), one follows a similar argument as in the proof of Lemma 4.1 to deduce that∫
Ω×R3

|k0|2dxdv ≤ 2CeCs
∫ T

0

∫
Γ+∪Γ−

|∂tu|2dσdt .(4.16)

Furthermore, assuming u = 0 on (0, T )× Γ−, one further deduces from (4.15) that∫ T

0

∫
Γ+

|∂tu|2dσdt ≤ C
∫

Ω×R3

|k0|2dxdv ,

and from (4.16) that ∫
Ω×R3

|k0|2dxdv ≤ 2CeCs
∫ T

0

∫
Γ+

|∂tu|2dσdt .(4.17)

This completes the proof. �

We note the main difference between Lemma 4.1 and Lemma 4.2 lies in the fact that the
latter one does not require the assumption on the boundedness of ‖∂tu‖L2([0,T ]×Ω×R3), a term
that we do not have a-priori knowledge about. These two lemmas allow us to finally show the
two main theorems.

4.2. Stability estimates in the reconstruction. We first show the uniqueness and the
stability in the reconstruction of q in Theorem 1.1.

Proof of Theorem 1.1. We denote uj the solution to equation (1.6) with the associated qj for
j = 1, 2. Let U = u1 − u2. Then U satisfies the equation

∂tU + v · ∇xU + E · ∇vU + q1U = (q2 − q1)u2(4.18)

with trivial initial condition and trivial boundary condition

U(0, x, v) = 0 , U(t, x, v)|(0,T )×Γ− = 0 .

Since u2(0, x, v) = g, we have

∂tu2(0, x, v) = −v · ∇xg −E · ∇vg − q2g + S .

Moreover, according to the assumption in the theorem, there exist positive constants C1 and
C2 such that u2 ∈ PU , that is,

‖u2(0, x, v)‖L∞(Ω×U) ≤ C1 , ‖∂tu2‖L∞([0,T ]×Ω×U) ≤ C1, and inf
Ω×U
|u2(0, x, v)| ≥ C2 .

By applying Lemma 4.2, one has

c

∫ T

0

∫
Γ+

|∂tU |2dσdt ≤
∫

Ω×R3

|q1 − q2|2dxdv ≤ C
∫ T

0

∫
Γ+

|∂tU |2dσdt ,(4.19)

which completes the proof. �
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To show the reconstruction of S, one follows the same strategy. Assuming the source has

the form Sj(t, x, v) = S̃j(x, v)S0(t, x, v). Let uj be the solution to (1.9) with the associated Sj .
Suppose that S0(t, x, v) ∈ PU satisfies

‖S0(0, x, v)‖L∞(Ω×U) ≤ C1 , ‖∂tS0‖L∞([0,T ]×Ω×U) ≤ C1, and inf
Ω×U
|S0(0, x, v)| ≥ C2 .(4.20)

Proof of Theorem 1.2. Let U = u1 − u2, then U satisfies

∂tU + v · ∇xU + E · ∇vU + qU = (S̃1 − S̃2)S0

with trivial boundary and initial data. The stabilities (1.10) hold by using Lemma 4.2 again. �

We finally comment that the reconstruction of the force E is expected to be different from
the one of q or S. Since E is involved in the definition of the trajectory, the weight function ϕ
defined in (3.13) to reconstruct q or S cannot be applied directly. In particular, Ψ defined in
(3.14) consists the information of the force E, and it is unclear at this point how to eliminate
the effects contributed from E. This issue will be investigated in the future project.

5. Numerical Experiments

In this section we present the numerical evidence of Theorem 1.1 and Theorem 1.2. In
particular, we will demonstrate that the L2 norm of the difference between ∂tu1 and ∂tu2

indeed is proportional to the discrepancy in q and in S.
Numerically, we choose the domain in 2D, with (x, y) ∈ [0, 1]2. Velocity space is truncated

with (vx, vy) ∈ [−6, 6]2. In time we use simple forward Euler method, with upwinding to deal
with both advection terms, ∇xu and ∇vu. Final time is set as T = 0.5, and the CFL coefficient
is set to be 1.2, namely ∆t = ∆x

1.2vmax
, so that CFL condition is satisfied.

We emphasize in this section that we do not design some variation of PDE-constraint mini-
mization problem or utilize the Bayesian formulation as the numerical tool for the reconstruc-
tion, but to demonstrate that the discrepancy in q and in S indeed gets linearly reflected in
the measurements.

5.1. Reconstructions of q. To reconstruct q, we set the electric field to be

E = [0.3 + 0.1 cos (2πx) sin (4πy) , 0.2 + 0.15 sin (2πx) cos (4πy)]> .

We compute the solution with six different absorption coefficients:

qη = η(0.3 sin (2πx) cos (4πy) + 0.4) ,

where η = 1 , · · · , 6. Moreover, the source term S is set to be 0 and the boundary measurement
∂tuη|Γ+ is computed. We then plot the discrepancy

‖∂tuη − ∂tu1‖L2([0,T ]×Γ+) and ‖qη − q1‖L2(Ω×R3) for η = 2, · · · , 6 ,
where we treat the case η = 1 as a reference. From Figure 2 we can see the discrepancy in the
measurement is roughly linear fit to the discrepancy in the absorption coefficient q.

5.2. Reconstructions of S. To reconstruct S, we use the same electric field

E = [0.3 + 0.1 cos (2πx) sin (4πy) , 0.2 + 0.15 sin (2πx) cos (4πy)]> ,

and we compute the solution with six different source terms:

Sη = η(0.3 sin (2πx) cos (4πy) + 0.4) ,

where η = 1 , · · · , 6. In addition, the absorption coefficient q is set to be 0. We compute the
solution on the outgoing coordinates, that is, ∂tuη|Γ+ . Thus, we plot the discrepancy

‖∂tuη − ∂tu1‖L2([0,T ]×Γ+) and ‖Sη − S1‖L2(Ω×R3) for η = 2, · · · , 6 .
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Figure 2. The difference of the coefficient ‖qη−q1‖L2 and that of the boundary data
‖∂tuη − ∂tu1‖L2 are calculated for η = 2, · · · , 6. These 5 points are placed as shown.

We also observe, from Figure 3, that the discrepancy in the measurement and that in the source
S are almost linear.
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Figure 3. The difference of the coefficient ‖Sη − S1‖L2 and that of the boundary
data ‖∂tuη − ∂tu1‖L2 are calculated for η = 2, · · · , 6. These 5 points are placed as

shown.
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