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Abstract. This paper provides new theoretical connections between multi-time Hamilton-Jacobi partial

differential equations and variational image decomposition models in imaging sciences. We show that the
minimal values of these optimization problems are governed by multi-time Hamilton-Jacobi partial differ-

ential equations. The minimizers of these optimization problems can be represented using the momentum

in the corresponding Hamilton-Jacobi partial differential equation. Moreover, variational behaviors of both
the minimizers and the momentum are investigated as the regularization parameters approach zero. In

addition, we provide a new perspective from convex analysis to prove the uniqueness of convex solutions to

Hamilton-Jacobi equations. Finally, we consider image decomposition models that do not have unique min-
imizers and we propose a regularization approach to perform the analysis using multi-time Hamilton-Jacobi

partial differential equations.

1. Introduction

In the late 20th century, the Hamilton-Jacobi (HJ) equation was widely studied in the field of partial
differential equations (PDEs). To be specific, the solution S(x, t) defined for x ∈ Rn, t ≥ 0 satisfies the
following Cauchy problem{

∂S(x,t)
∂t +H(x, t, S(x, t),∇xS(x, t)) = 0, x ∈ Rn, t > 0;

S(x, 0) = J(x), x ∈ Rn,

where H is the Hamiltonian and J is the initial data. When the Hamiltonian only depends on the spatial
gradient ∇xS(x, t), under some regularity and convexity assumptions, the solution is given by the Hopf
formula or Lax formula [18, 68]

S(x, t) = sup
p∈Rn

〈p, x〉 − J∗(p)− tH(p) (Hopf formula)

= inf
u∈Rn

J(u) + tH∗
(
x− u
t

)
(Lax formula)

where J∗ and H∗ are the Legendre transform of the functions J and H, respectively. From the physics point
of view, HJ PDE describes the movement of a particle in a physics model whose energy function is given by
the Hamiltonian H. To be specific, the variables x and t are the current position and time of the particle.
The characteristic line of the PDE gives the trajectory of the particle. The momentum is given by the spatial
gradient ∇xS(x, t) which coincides with the maximizer in the Hopf formula. The velocity is given by x−u

t
where u is the minimizer in the Lax formula.

We refer the readers to the review paper [48] for thorough details and [49, 69] for connections between
convex analysis and HJ equations. An extension of this PDE is to consider the time variable t in a higher
dimensional space RN , in which case the PDE system is called the multi-time Hamilton-Jacobi equation,
first discussed by Rochet from an economic point of view [80]. Later, Lions and Rochet [71] considered the
multi-time HJ equations when the Hamiltonians are convex functions which only depend on the momentum.
They proposed the generalized Hopf formula by writing it as the composition of several semigroups of
the corresponding single-time HJ operators. Following their work, several existence and uniqueness results
[20, 32, 73, 78, 88] were provided in more general cases, for example, when the Hamiltonians have spatial or
time dependence.

It is well known that the HJ equation has a deep relationship with optimal control [26] and differential
games [57, 84]. Later, Darbon [49] provided a representation formula for the minimizers of a specific kind
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of optimization problem, which relates the minimizers to the spatial gradients of the solutions to the HJ
equations. As we will see below, many models in imaging sciences can be viewed from a perspective of
HJ PDEs. Following that work, we generalize the results to multi-time HJ equations and a larger set of
optimization problems, including the decomposition models in image processing.

In the past few decades, many decomposition models have been proposed in image processing. These
models are applied to different practical problems, such as inpainting [23, 56], image classification [12], and
road detection [62]. Here, we give a brief overview of convex variational models in this area. There are many
models that cannot be fully listed here, for which we refer the readers to [44, 61].

The basic idea of image decomposition is to regard an image x as a summation of several components
{uj}, and solve the following minimization problem:

(1) arg min
u0+···+uN=x

f0(u0) +

N∑
j=1

λjfj(uj).

Here, each function fj is designed to characterize the corresponding component uj . One may tune the
parameters {λj} to put emphasis on different components. There are many celebrated decomposition models
in the literature of imaging sciences. In the introduction we mention the continuous versions of the models,
while later in the main part of this paper we will work with their discrete versions. The first widely used
decomposition model is the Rudin-Osher-Fatemi (ROF) model, proposed in [83], which applies the total
variation (TV) semi-norm and ‖ · ‖2L2 to recognize the geometry and noise in an image, respectively. In the
continuous setting, for any function u ∈ L1(Ω) and Ω ⊂ R2, the TV semi-norm of u is defined by

‖u‖TV := sup

{∫
Ω

u(x)divφ(x)dx : φ ∈ C1
c (Ω,R2), ‖φ‖L∞ ≤ 1

}
.

Here and after in the introduction, the derivatives and divergence are in the distribution sense. The space
BV (Ω) is the space containing all functions of bounded variation, defined by

BV (Ω) = {u ∈ L1(Ω): ‖u‖TV < +∞}.

Under these settings, the ROF model solves the following problem

arg min
u∈BV (Ω)

‖u‖TV +
1

2λ
‖x− u‖2L2 .

The mathematical analysis for the ROF model is provided in [1, 2, 3, 4, 7, 28, 29, 33, 34, 35, 36, 38, 40,
41, 46, 47, 51, 63, 64, 76, 79, 89, 91]. Later, Meyer [72] pointed out the disadvantage of ‖ · ‖2L2 in capturing
oscillating patterns. In order to overcome this disadvantage, he suggested using the norm in either of the
three spaces E,F,G to replace it, where these three spaces are defined as follows. We use the notations of
Meyer to describe these spaces [72]. First, define the space of functions of bounded mean oscillation (BMO)
by

BMO :=

{
f ∈ L1

loc(Rn) : sup

{
1

|Q|

∫
Q

|f(x)− fQ| dx : Q is any ball in Rn
}
< +∞

}
where the symbol fQ is defined by fQ :=

1

|Q|

∫
Q

f(x)dx,

and the homogeneous Besov space Ḃ1,1
1 by

Ḃ1,1
1 :=

{
f ∈ L

n
n−1 (Rn) :

∑
j∈Z

∑
k∈Zn

|c(j, k)|2j(1−n/2) < +∞,

where {c(j, k)} are the wavelet coefficients of f
}
.

Let Ḃ−1,∞
∞ be the dual space of Ḃ1,1

1 . Then, define E,F,G by E := Ḃ−1,∞
∞ , F := div(BMO) and G :=

div(L∞). To be specific, the space G and G−norm are defined as follows

G := {f = ∂1g1 + ∂2g2 : g1, g2 ∈ L∞(R2)},

‖f‖G := inf{‖(g2
1 + g2

2)1/2‖L∞ : f = ∂1g1 + ∂2g2}.
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The space F is similarly defined by replacing the space L∞ in the above definition with the BMO space.
The corresponding models proposed by Meyer are stated as follows

arg min
u∈BV (Ω)

‖u‖TV + λ‖x− u‖X , where the space X can be E, F or G.(2)

For mathematical analysis of these models, we refer the readers to [59, 62, 70]. In [59], the space E is also

generalized to any homogeneous Besov space Ḃα−2,q
p , where p, q ∈ [1,+∞] and α ∈ (0, 2). However, Meyer’s

models are hard to solve numerically. There are mainly two approaches to numerically solve the model with
G−norm. The first approach is approximating L∞ in the definition of G by Lp [90]. Osher et al. [77]
proposed an equivalent formulation called OSV when p = 2. In a word, OSV uses the square of H−1−norm
instead of G−norm. To be specific, the OSV model solves

arg min
u∈BV (Ω)

‖u‖TV + λ

∫
Ω

∣∣∇(∆)−1(x− u)
∣∣2 dxdy.

The other approach called A2BC model is proposed by Aujol et al. [9, 10], replacing the G−norm with the
indicator function of balls in the space G. In other words, it solves the following problem

(3) arg min
u∈BV (Ω)

‖u‖TV + I{‖x− u‖G ≤ µ},

where I{·} denotes the indicator function whose definition will be given in section 2. It is shown that this
A2BC model gives the solution to Meyer’s model eq. (2) with X = G when the parameter µ is appropriately
chosen. In practice, they use a Moreau-Yosida type approximation and solve the following problem instead

(4) arg min
u∈BV (Ω), v∈G

‖u‖TV + I{‖v‖G ≤ µ}+
1

2λ
‖x− u− v‖2L2 ,

This regularized model converges to eq. (3) as the parameter λ approaches zero. Moreover, it is easy to
implement using Chambolle’s projection method [37]. Similarly, in [11], the indicator function of the E−ball
is used to replace the E−norm, which provides a similar numerical implementation approach to the Meyer’s
model eq. (2) with X = E.

In the above models, an image is decomposed into a geometrical part and an oscillating part. However,
for a noisy image, the oscillating part may contain both the texture in the original image and the noise. To
split these two parts, a u + v + w model is proposed in [11], which constrains the G−norm of the texture
part and the E−norm of the noisy part. Later, Gilles [60] modified the u + v + w model with a coefficient
assigned to each pixel to smoothly indicate whether it is in texture or noise. He also modified the A2BC
model by requiring the G−norm of the noise to be much smaller than the G−norm of the texture. In
[15, 53, 54], the authors extended some of the abovementioned models, which are originally proposed for
gray-scale images, to color images. Besides, there are many other functions used in image decomposition.
For example, the L1−norm [5, 14, 42, 75] is used to promote sparsity or remove salt and pepper noise. In
[13, 14], the quadratic form 〈·,K·〉, where K is a linear symmetric positive operator, is used for adaptive
kernel selection of the texture component. Note that this quadratic form generalizes the L2 term in ROF
and the H−1 term in OSV.

The previous work [49] clarifies the relationship between single-time HJ equations and decomposition
models with two terms (i.e. N = 1 in eq. (1)), such as the ROF model, Meyer’s models and some of their
variations. However, as mentioned above, there are many other models handling three or more components.
Also, in practice, one may modify a model by adding a quadratic term for numerical consideration, such
as in eq. (4). This kind of modification is applied to most of the above models. As a result, the objective
function in the numerical implementation actually contains three or more terms. On the other hand, new
models can be constructed by regarding the functions mentioned above as building blocks and combining
them together. For instance, the morphological component analysis [58, 85, 86] combines ROF model and
L1 minimization for the coefficients with respect to two sets of dictionaries chosen for the representation of
texture and geometry. Another example is [45], which adds a higher order term α‖∆v‖2L2 to the models
introduced above, in order to reduce the staircase effect. Actually, the higher order terms in image processing
are widely studied in the literature. Two important models are the TV-TV2 infimal convolution model [41]
and the Total Generalized Variation (TGV) model [25]. In fact, after discretization, the higher order linear
operators are discretized using some matrices. In other words, the results in this paper can be applied to
the discrete models with higher order terms by regarding them as matrix multiplication. In conclusion, it is
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valuable to generalize the previous work [49] and provide a framework to analyze the models involving more
than two components. Also, our proposed framework is suitable for a large class of discrete decomposition
models in imaging sciences, even including some models containing higher order terms.

Now, we briefly introduce the intuition and the basic setup for our framework and demonstrate the idea
using some experimental results of the discrete A2BC model. In general, for a discrete decomposition model
eq. (1), an image is regarded as a vector x ∈ Rn, where n is the number of pixels. If we can relate each fj ,
j ≥ 1, to a Hamiltonian and f0 to an initial function, then the minimal value, regarded as a function of the
input data x and the parameters {λj}, relates to the solution of the corresponding multi-time HJ equation.
Here, the parameters {λj} are regarded as time variables.

Image x
1

(a)

Geometrical part for Image 1

(b)

Texture part v for Image 1

(c)

Mixed image 0.3x
1
+0.7x

2

(d)

Geometrical part for mixed image

(e)

Texture part v for mixed image

(f)

Figure 1. The A2BC model is applied to an artificial image. The original image x1 and the
corresponding minimizers u, v are shown in (a)-(c). The convex combination 0.3x1 + 0.7x2

of x1 and its rotation x2 is shown in (d), whose minimizers are shown in (e)-(f).

For example, the discrete A2BC model solves the following optimization problem:

(5) S(x, µ, λ) := min
u,v∈Rn

J(u) + J∗
(
v

µ

)
+

1

2λ
‖x− u− v‖22.

The desired quantities are the minimizers, denoted as u(x, µ, λ) and v(x, µ, λ). Here, the discrete total
variation semi-norm J : Rm1×m2 → R is defined as follows

(6) J(u) :=

m1−1∑
i=1

m2−1∑
j=1

|ui+1,j − ui,j |+ |ui,j+1 − ui,j |.

In this paper, we identify the space Rm1×m2 containing all matrices with m1 rows and m2 columns with
the Euclidean space Rn where n = m1m2. The discrete total variation J defined above is the anisotropic
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version, which will be used in this paper. Its Legendre transform J∗ is the indicator function of the unit ball
in the dual space. To be specific, let ‖ · ‖G be the dual norm of J , which is given by

‖v‖G = inf

{
sup

1≤i≤m1
1≤j≤m2

√
(gi,j)2 + (hi,j)2 : vi,j = gi,j − gi−1,j + hi,j − hi,j−1,

g0,j = gm1,j = hi,0 = hi,m2
= 0, gi,j , hi,j ∈ R ∀ 1 ≤ i ≤ m1, 1 ≤ j ≤ m2

}
.

Then, we have J∗(p) = I{‖p‖G ≤ 1} for any p ∈ Rn where I{·} denotes the indicator function. Notice that
any indicator function is invariant under multiplication with a positive constant, then we have µJ∗ = J∗.
Hence, the above optimization problem is equivalent to

S(x, µ, λ) = min
u,v∈Rn

J(u) + µJ∗
(
v

µ

)
+
λ

2

∥∥∥∥x− u− vλ

∥∥∥∥2

2

.

We shall see that such a representation for S will allow us to show that S satisfies the following multi-time
HJ equation 

∂S(x,µ,λ)
∂µ + J(∇xS(x, µ, λ)) = 0, x ∈ Rn, µ > 0, λ > 0;

∂S(x,µ,λ)
∂λ + 1

2‖∇xS(x, µ, λ)‖22 = 0, x ∈ Rn, µ > 0, λ > 0;

S(x, 0, 0) = J(x), x ∈ Rn.
In figs. 1 to 6, the minimizers u, v and the minimal values S for the corresponding input images are

shown. To compute the minimizers, we apply a splitting algorithm to convert the optimization problem
(5) to two subproblems involving computing the proximal point of λJ and computing the projection to a
µ−ball of Meyer’s norm. The second subproblem is the dual problem to the first one. As a result, for both
subproblems, we can apply the algorithm in [39, 50, 67] to obtain the exact minimizers.

In the first example, the test image x1 is shown in fig. 1a. We consider the following parameters µ1 =
1, λ1 = 0.01. The corresponding minimizers u and v are shown in figs. 1b and 1c. When x = x1, λ = λ1 are
fixed, the minimal values S(x1, µ, λ1) can be regarded as a function of µ, whose graph is plotted in fig. 2b.
Similarly, the graph of S(x1, µ1, λ) is plotted in fig. 2c. To illustrate the variation of S with respect to x,
we choose another image x2 with corresponding suitable parameters µ2, λ2, and plot the function values
f : α 7→ S(αx1 + (1− α)x2, αµ1 + (1− α)µ2, αλ1 + (1− α)λ2) with α ∈ [0, 1]. In this example, x2 is chosen
to be a rotation of x1, and the parameters remain the same: µ2 = µ1, λ2 = λ1. The graph of f is plotted in
fig. 2a. We also show an example of the mixed image x = αx1 + (1−α)x2 for α = 0.3 and the corresponding
minimizers u, v in figs. 1d to 1f. In addition, the A2BC model (with parameters µ = 0.06, λ = 0.01) is
applied to a noisy image shown in fig. 3a, whose minimizers are shown in figs. 3b and 3c.

The test image “Barbara” is used in the second example. The original image and the corresponding
minimizers u, v in the A2BC model with parameters µ = 30, λ = 8 are shown in fig. 4. To demonstrate the
variations of the minimal values, we choose two parts x1, x2 of the image, shown in figs. 5a and 5d, and repeat
the experiment in the first example. Setting µ1 = 16, µ2 = 24, λ1 = 8, and λ2 = 12, the corresponding
minimizers u, v are shown in figs. 5b, 5c, 5e, and 5f. The mixed image (α = 0.5) and minimizers are shown
in figs. 5g to 5i, and the dependence of S on x, µ, λ is shown in figs. 6a to 6c.

It can be seen from figs. 2 and 6 that S is a convex function with respect to the input image x and the
parameters. This can be proved with a similar argument as in the proof of proposition 3.1. In this paper,
more properties about S and the minimizers u, v are revealed.

Our contribution. The contribution of this paper is the theoretical results connecting the multi-time
HJ equation and some optimization models such as decomposition models in imaging sciences. There are
three parts in this paper. In the first part, we consider the decomposition models and the corresponding
dual problems, and investigate the properties of their optimizers and optimal values. To be specific, for some
optimization problems, the minimal value coincides with the solution S(x, t1, · · · , tN ) to a corresponding
multi-time HJ equation. This relationship in the case of single-time HJ equations has been studied in [49].
We generalize the representation formula for the minimizer uj and the variational analysis results of S and
∇xS in [49] to the case of multi-time HJ equations. Moreover, we present a new variational analysis of
the scaled minimizer

uj

tj
. In the variational analysis, we consider a sequence {(xk, t1,k, · · · , tN,k)}k, whose
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Figure 2. The graphs of the minimal values S with respect to the variables α, µ and
λ in the first example are shown in (a)-(c), respectively. To be specific, (a) shows the
function α 7→ S(αx1 + (1− α)x2, αµ1 + (1− α)µ2, αλ1 + (1− α)λ2), (b) shows the function
µ 7→ S(x1, µ, λ1), and (c) shows the function λ 7→ S(x1, µ1, λ).

elements are perturbed variables near the point (x, 0, · · · , 0) and the perturbation becomes smaller when k
is larger. We show that the limits of the corresponding spatial gradients ∇xS and the scaled minimizers

uj

tj

solve two optimization problems which are dual to each other. In the second part, we prove the uniqueness
of the convex solution to the multi-time HJ equation under some specific assumptions. In the field of PDEs,
the uniqueness of the viscosity solution has been widely studied, for which we refer the readers to [48] and
the references listed there. Here, our contribution is to provide a new perspective from convex analysis and
use the duality technique to prove the uniqueness of the convex solution. At last, we propose a regularization
method for the decomposition problems which may have non-unique minimizers or non-differentiable minimal
values. The regularization method is used to select a unique minimizer uλ,µ and a unique gradient pλ,µ of
the minimal function where λ and µ are some positive parameters. In fact, the gradient pλ,µ coincides
with the maximizer in the corresponding dual problem. This regularization method can be regarded as a
generalization of the Moreau-Yosida approximation, which is introduced, for example, in [8, 27]. Instead
of only considering the primal problem as in the Moreau-Yosida approximation, our contribution here is to
consider both the primal problem and the dual problem at the same time. Then, we apply the variational
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Noisy image (with variance 0.09)

(a)

Restored image u

(b)

Noisy part (v+0.5)

(c)

Figure 3. The A2BC model is applied to the noisy test image shown in (a). The corre-
sponding minimizers u and v are shown in (b) and (c), respectively.

Test image

(a)

Geometrical part u

(b)

Texture part (v+128)

(c)

Figure 4. The A2BC model is applied to the test image “Barbara”. The original image is
shown in (a). The corresponding minimizers u and v are shown in (b) and (c), respectively.

analysis result in the first part to prove the convergence of uλ,µ and pλ,µ. We show that they converge
to the l2-projection of zero onto the corresponding sets of the original problems, when the regularization
parameters λ and µ approach zero in a comparable rate.

Organization of the paper. The paper is organized as follows. Section 2 gives a brief review of the
convex optimization theorems which are used in the later proofs. The main results are stated in sections 3
to 5. In section 3, the connection between some decomposition models and the multi-time HJ equation is
shown. Proposition 3.2 provides the representation formula for the minimizers uj of some decomposition
models. Also, we investigate the variational behaviors of the minimal value S, the momentum ∇xS and the
velocities

uj

tj
in proposition 3.4. Section 4 is devoted to the proof of the uniqueness of the convex solution to

the multi-time HJ equation. In section 5, we present a regularization method for the degenerate cases which
do not satisfy the assumptions in section 3. The method is demonstrated using a specific example but the
analysis can be easily applied to other models. Finally, some conclusions are drawn in section 6.

2. Mathematical Background

In this section, several basic definitions and theorems in convex analysis are reviewed. All the results and
notations can be found in [65, 66]. We also refer the readers to [22, 24, 81].

First, a set C in Rn is convex if αx+ (1−α)y ∈ C whenever x, y ∈ C and α ∈ [0, 1]. The relative interior
of C, denoted as ri C, is the interior of C with respect to the minimal hyperplane containing C in Rn. For
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Image x
1

(a)

Geometrical part for Image 1

(b)

Texture part (v + 128) for Image 1

(c)

Image x
2

(d)

Geometrical part for Image 2

(e)

Texture part (v + 128) for Image 2

(f)

Mixed image 0.5x
1
+0.5x

2

(g)

Geometrical part for mixed image

(h)

Texture part (v + 128) for mixed image

(i)

Figure 5. The A2BC model is applied to two parts of the image “Barbara”. The original
image x1, x2 and corresponding minimizers u, v are shown in (a)-(f). The convex combina-
tion 0.5x1 + 0.5x2 and its minimizers are shown in (g)-(i).

any convex set C, the normal cone of C at x ∈ C, denoted by NC(x), can be characterized by

(7) q ∈ NC(x) if and only if 〈q, y − x〉 ≤ 0 for any y ∈ C.

Here, we use the angle bracket 〈·, ·〉 to denote the inner product operator in any Euclidean space Rn. For
any closed convex set C and any point x ∈ C, one can define the asymptotic cone of C, denoted as C∞(x),
by

(8) C∞(x) = {d ∈ Rn : x+ td ∈ C for all t > 0}.
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Figure 6. The graphs of the minimal values S with respect to the variables α, µ and λ in
the second example are plotted in (a)-(c), respectively.

In fact, the asymptotic cone is independent of x, as stated in the following result.

Proposition 2.1. [65, Prop.III.2.2.1] Let C be a closed convex set and x, y ∈ C. Then C∞(x) = C∞(y).
In other words, for any d ∈ C∞(x), y + td ∈ C for any t > 0.

A function f : Rn → R ∪ {+∞} is said to be convex if for any α ∈ (0, 1) and any x, y ∈ Rn,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

The function f is called proper if it is not identically equal to +∞. The domain of f , denoted by dom f , is
defined to be the set where f does not take the value +∞. The epigraph of f , denoted as epi f , is defined
by:

epi f := {(x, t) : x ∈ dom f, t ≥ f(x)}.

Then, f is convex (proper, or lower semi-continuous, respectively) if and only if epi f is convex (non-
empty, or closed, respectively). We denote Γ0(Rn) to be the set of proper, convex and lower semi-continuous
(l.s.c) functions from Rn to R ∪ {+∞}. In this section, we only consider the functions in Γ0(Rn). These
functions have good continuity properties, which are stated below.
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Table 1. Notations used in this paper. Here, we use C to denote a set, f to denote a
function and x, d to denote vectors in Rn.

Notation Meaning Definition
dom f domain of f {x ∈ Rn : f(x) ∈ R}
ri C relative interior of C the interior of C with respect to the minimal hyper-

plane containing C in Rn
NC(x) normal cone of C at x {q ∈ Rn : 〈q, y − x〉 ≤ 0 for any y ∈ C}
C∞(x) asymptotic cone of C {d ∈ Rn : x+ td ∈ C for all t > 0}
epi f epigraph of f {(x, t) ∈ Rn × R : x ∈ dom f, t ≥ f(x)}
Γ0(Rn) a useful and standard class of

convex functions
the set containing all proper, convex, l.s.c. functions
from Rn to R ∪ {+∞}

f ′(x, d) directional derivative of f at x
along the direction d

limh→0+
1
h (f(x+ hd)− f(x))

∂f(x) subdifferential of f at x {p ∈ Rn : f(y) ≥ f(x) + 〈p, y − x〉 ∀y ∈ Rn}
IC the indicator function of C If x ∈ C, then define IC(x) := 0. Otherwise, define

IC(x) := +∞.
f∗ Legendre transform of f f∗(p) := supx∈Rn〈p, x〉 − f(x)
f�g inf-convolution of f and g (f�g)(x) := infu∈Rn f(u) + g(x− u)

Proposition 2.2. [65, Lem.IV.3.1.1 and Chap.I.3.1 - 3.2] Let f ∈ Γ0(Rn). If x ∈ ri dom f , then f is
continuous at x in dom f . If x ∈ dom f \ ri dom f , then for any y ∈ ri dom f ,

f(x) = lim
t→0+

f(x+ t(y − x)).

For any f ∈ Γ0(Rn) and x ∈ dom f , the directional derivative at x along any direction d, denoted as
f ′(x, d), is well-defined in R∪{±∞}. When f is differentiable at x, f ′(x, ·) = 〈∇f(x), ·〉 is a linear function.
In general, when f is not differentiable, f ′(x, ·) is only sublinear, in which case we can consider the linear
functions dominated by it. Each normal vector of such linear functions gives a subgradient of f at x, whose
formal definition is given below. Also, the rigorous statement about the relation we described above between
the directional derivatives and subgradients is given in proposition 2.6.

A vector p is called a subgradient of f at x if it satisfies

f(y) ≥ f(x) + 〈p, y − x〉, for any y ∈ Rn.

The collection of all such subgradients is called the subdifferential of f at x, denoted as ∂f(x). It is easy to
check that 0 ∈ ∂f(x) if and only if x is a minimizer of f . As a result, one can check whether x is a minimizer
by computing the subdifferential.

As is well known, the subdifferential operator is a (maximal) monotone operator. To be specific,

(9) 〈p− q, x− y〉 ≥ 0 for any p ∈ ∂f(x) and q ∈ ∂f(y).

Moreover, in most cases, the subdifferential operator commutes with summation.

Proposition 2.3. [66, Cor.XI.3.1.2] Let f, g ∈ Γ0(Rn). Assume ri dom f∩ri dom g 6= ∅. Then ∂(f+g)(x) =
∂f(x) + ∂g(x) for any x ∈ dom f ∩ dom g.

Here, we give one simple example. For any convex set C, the indicator function IC is defined by

IC(x) :=

{
0, x ∈ C;

+∞, x 6∈ C.

In this paper, we also use the notation I{·} to denote the indicator function if the set C is given in the
form of some constraints. By definition, the indicator function IC remains the same after multiplying by a
positive constant, i.e. we have αIC = IC for any α > 0. One can compute the subdifferential of the indicator
function and obtain

(10) ∂IC(x) = NC(x).
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Next, we introduce one important transform in convex analysis called Legendre transform. For any
function f ∈ Γ0(Rn), the Legendre transform of f , denoted as f∗, is defined by

(11) f∗(p) := sup
x∈Rn

〈p, x〉 − f(x).

Legendre transform gives a duality relationship between f and f∗. In other words, if f ∈ Γ0(Rn), then f∗ ∈
Γ0(Rn) and f∗∗ = f . Similarly, along with this duality relationship, some properties are dual to others, as
stated in the following proposition. (Here and after, a function g is called 1-coercive if lim‖x‖→+∞ g(x)/‖x‖ =
+∞.)

Proposition 2.4. [66, Chap.X.4.1] Let f ∈ Γ0(Rn). Then f is finite-valued if and only if f∗ is 1-coercive.
Also, f is differentiable if and only if f∗ is strictly convex.

In particular, the subgradients can be characterized by the maximizers in eq. (11).

Proposition 2.5. [66, Cor.X.1.4.4] Let f ∈ Γ0(Rn) and p, x ∈ Rn. Then p ∈ ∂f(x) if and only if
x ∈ ∂f∗(p), if and only if f(x) + f∗(p) = 〈p, x〉.

The concepts we introduced above, including directional derivatives, subgradients and Legendre transform,
can be linked all together by the following proposition.

Proposition 2.6. [66, Example X.2.4.3] Let f ∈ Γ0(Rn) and x ∈ dom f such that ∂f(x) is nonempty, then
(f ′(x, ·))∗ = I∂f(x). Moreover, if x ∈ ri dom f , then f ′(x, ·) ∈ Γ0(Rn), hence f ′(x, ·) = I∗∂f(x).

Except from Legendre transform, there is another operator to construct convex functions called inf-
convolution. Given two functions f, g ∈ Γ0(Rn), assume there exists an affine function l such that f(x) ≥ l(x)
and g(x) ≥ l(x) for any x ∈ Rn. Then, the inf-convolution between f and g, denoted as f�g, is a convex
function taking values in R ∪ {+∞}. The definition of the inf-convolution f�g is given by

(12) (f�g)(x) := inf
u∈Rn

f(u) + g(x− u).

In the following proposition, the relation between Legendre transform and inf-convolution is stated. Actually,
the Hopf formula and Lax formula introduced in the next section are formulated using Legendre transform
and inf-convolution operator, respectively. As a result, these two operators play a significant role in our
analysis in this paper.

Proposition 2.7. [66, Thm.X.2.3.2 and Thm.XI.3.4.1] Let f, g ∈ Γ0(Rn). Assume the intersection of
ri dom f∗ and ri dom g∗ is non-empty. Then f�g ∈ Γ0(Rn) and f�g = (f∗ + g∗)∗. Moreover, for any x ∈
dom f�g, the optimization problem eq. (12) has at least one minimizer, and ∂(f�g)(x) = ∂f(u)∩∂g(x−u)
for any minimizer u.

3. Properties of the Solutions to the Multi-time Hamilton-Jacobi Equations

In this section, we provide a representation formula for the minimizers in the Lax formula and highlight
the relation of the minimizers and the momentum in the multi-time HJ equation. Also, we investigate the
variational behaviors of both the solution to the multi-time HJ equation and the corresponding momentum
when time variables approach zero. Moreover, we also present a new result stating the variational behaviors
of the velocities, which has not been developed before, even for the single-time case. Similar to the duality
relation of the Hopf and Lax formulas, the cluster points of the minimizers and momentum solve two
optimization problems, which are also dual to each other. An illustration is given in the upper part of fig. 7.

We consider the solution S(x, t1, · · · , tN ) to the following multi-time HJ equation

(13)

{
∂S
∂tj

+Hj(∇xS) = 0 for any j ∈ {1, · · · , N}, x ∈ Rn, t1, · · · , tN > 0;

S(x, 0, · · · , 0) = J(x), x ∈ Rn.
Here, we only consider the multi-time HJ equations whose Hamiltonians only depend on the momentum
∇xS. Several conditions are imposed on the Hamiltonians {Hj} and the initial data J in this section. To
be specific, we assume

(H1) Hj : Rn → R, is convex and 1-coercive for any j = 1, · · · , N . Moreover, at least one of them is
strictly convex;

(H2) J ∈ Γ0(Rn).
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From the assumption (H1), by proposition 2.4, it is known that H∗j is also finite-valued, convex and 1-coercive
for any j = 1, · · · , N . Moreover, at least one H∗j is differentiable.

It is well known that in this case the unique classical solution is given by the Hopf formula [71, 88] stated
as follows

(14) SH(x, t1, · · · , tN ) :=

J∗ +

N∑
j=1

tjHj

∗ (x) = sup
p∈Rn

〈p, x〉 − J∗(p)− N∑
j=1

tjHj(p)

 ,

and the Lax formula [88] stated as follows

SL(x, t1, · · · , tN ) := (J�(t1H1)∗� · · ·�(tNHN )∗) (x)

= inf
u1,··· ,uN∈Rn

uj=0 whenever tj=0

J
x− N∑

j=1

uj

+

N∑
j=1
tj 6=0

tjH
∗
j

(
uj
tj

) ,
(15)

for any x ∈ Rn and t1, · · · , tN ≥ 0. We extend SH and SL to the whole domain by simply setting the
function values to +∞ whenever the function value is not defined. There are some physical interpretations
of the HJ PDEs and the optimizers in the above two formulas. Given suitable Hamiltonians {Hj} and a
suitable initial condition J , the HJ PDE eq. (13) describes the movement of a particle. Roughly speaking,
in a time interval with length tj , a particle moves along the characteristic line of the j−th equation in the
PDE system. The velocity in this time interval equals

uj

tj
where (u1, · · · , uN ) denotes the minimizer in the

Lax formula eq. (15). On the other hand, the maximizer in the Hopf formula eq. (14) gives the momentum
of the particle, which coincides with the spatial gradient ∇xS(x, t1, · · · , tN ). We refer the reader to [21] for
details about HJ PDEs and variational principles in physics.

Under the assumptions (H1) and (H2), SH = SL, and the value is finite if there exists some tj > 0. In
addition, the minimizers in the Lax formula eq. (15) exist whenever the minimal value is finite. This result can
be proved using proposition 2.7. Also, by proposition 2.5, it is not hard to check SH ∈ C1(Rn × (0,+∞)N )
and satisfies HJ equation eq. (13). Moreover, the spatial gradient is the unique maximizer in the Hopf
formula eq. (14). To conclude, the Hopf and Lax formulas express the classical solution to the multi-time
HJ equation as two optimization problems. The Hopf formula provides a physical interpretation and has the
momentum ∇xS as the maximizer, while its dual problem in the Lax formula is in the same form as some
decomposition models in imaging sciences.

The following proposition states that the solution is actually a convex function, hence the techniques in
convex analysis can be applied to analyze the solution. The results hold even under weaker assumptions.
Actually, a part of the proposition can be further generalized to the case when J,Hj ∈ Γ0(Rn) and dom J∗ ⊆
dom Hj for any j.

Proposition 3.1. Let J,Hj ∈ Γ0(Rn) and dom Hj = Rn for any j. Then, SH ∈ Γ0(Rn+N ), whose Legendre
transform is given by

S∗H(p,E−) = J∗(p) +

N∑
j=1

I{E−j +Hj(p) ≤ 0},

for any p ∈ Rn and E− = (E−1 , · · · , E
−
N ) ∈ RN . Here, I{·} denotes the indicator function. Moreover, if

the assumptions (H1)-(H2) are satisfied, then SH(x, t1, · · · , tN ) is finite for any x ∈ Rn and t1, · · · , tN ≥ 0
which are not all zero.

Proof. First, we prove that SH is the Legendre transform of F , where F is defined by

F (p,E−) := J∗(p) +

N∑
j=1

I{E−j +Hj(p) ≤ 0},

for any p ∈ Rn and any E− = (E−1 , · · · , E
−
N ) ∈ RN . It is easy to check F ∈ Γ0(Rn+N ).
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By definition, for any x ∈ Rn and t = (t1, · · · , tN ) ∈ RN ,

F ∗(x, t) = sup
p∈Rn,E−∈RN

〈x, p〉+

N∑
j=1

tjE
−
j − J

∗(p)−
N∑
j=1

I{E−j +Hj(p) ≤ 0}

 .(16)

First, we consider the case when there exists k such that tk < 0. Take p ∈ dom J∗. For any j 6= k, take
E−j = −Hj(p), which is a finite value. From the above equation,

F ∗(x, t) ≥ 〈x, p〉+
∑
j 6=k

tjE
−
j − J

∗(p) + lim sup
E−k ≤−Hk(p)

E−k →−∞

tkE
−
k = +∞.

Hence F ∗(x, t) = +∞ = SH(x, t) if tk < 0 for some k.
Then, consider the case when t1, · · · , tN ≥ 0. Let x ∈ Rn, from eq. (16), we obtain

F ∗(x, t) = sup
p∈Rn

E−j ≤−Hj(p) ∀j

〈x, p〉+
∑

j: tj>0

tjE
−
j − J

∗(p)



= sup
p∈Rn

 sup
E−j ≤−Hj(p) ∀j

〈x, p〉+
∑

j: tj>0

tjE
−
j − J

∗(p)


= sup
p∈Rn

〈x, p〉 − ∑
j: tj>0

tjHj(p)− J∗(p)

 = SH(x, t).

(17)

Therefore, SH = F ∗, which implies SH is a convex lower semi-continuous function and F = S∗H . Moreover,
if there exists some k such that tk > 0 and tj ≥ 0 for any j 6= k, then, by assumption (H1), we deduce that
J∗+

∑
j tjHj is 1-coercive, which, by proposition 2.4, implies its Legendre transform SH(·, t1, · · · , tN ) (with

respect to x) is finite-valued. �

By investigating SH on the boundary of the domain, the solution to a lower time dimensional equation
is embedded in the solution to the higher time dimensional equation, in the sense that the restriction of SH
on the subspace {(x, t1, · · · , tN ) : tj = 0 ∀j ∈ J} for any index set J ⊂ {1, · · · , N} is the solution to the
corresponding lower time dimensional HJ equation with Hamiltonians {Hj}j 6∈J .

The following proposition states a representation formula for the minimizers in the Lax formula. In the
decomposition model eq. (15), a given image x is decomposed into different components including u1, · · · , uN
and the residual x−

∑N
j=1 uj . However, sometimes the primal minimization problem is difficult to solve, then

the following proposition can be applied to compute (u1, · · · , uN ) using the momentum ∇xSL(x, t1, · · · , tN ).
In fact, the momentum is the maximizer of the dual problem in the Hopf formula eq. (14). In other words,
the following proposition gives the relation of the optimizers in the primal decomposition problem and the
dual problem.

Proposition 3.2. Suppose the assumptions (H1)-(H2) hold. Let x ∈ Rn, t1, · · · , tN ≥ 0 and assume the
time variables {tj} are not all zero. Denote (u1, · · · , uN ) to be any minimizer of the minimization problem
in eq. (15) with parameters x and t1, · · · , tN . Here, each uj can be regarded as a function of (x, t1, · · · , tN ).
Then, for any j,

(18) uj(x, t1, · · · , tN ) ∈ tj∂Hj (∇xSL(x, t1, · · · , tN )) .

Specifically, if a stronger assumption is imposed, say, all the Hamiltonians are differentiable, then the
minimizer (u1, · · · , uN ) is unique and satisfies

uj(x, t1, · · · , tN ) = tj∇Hj (∇xSL(x, t1, · · · , tN )) for any j.



ON DECOMPOSITION MODELS IN IMAGING SCIENCES AND MULTI-TIME HAMILTON-JACOBI PARTIAL DIFFERENTIAL EQUATIONS15

Proof. Since domHj = Rn for each j, by proposition 2.7 and induction, the minimizers uj exist if SL(x, t1, · · · , tN ) <
+∞, and

∂xSL(x, t1, · · · , tN ) = ∂J

x− N∑
j=1

uj

⋂ N⋂
j=1

∂

(
tjH

∗
j

(
·
tj

))
(uj)


= ∂J

x− N∑
j=1

uj

⋂ N⋂
j=1

∂H∗j

(
uj
tj

) .

(19)

From the assumption (H1), there exists some j such that H∗j is differentiable, hence the intersection above
contains at most one element. On the other hand, ∂xSL is non-empty in the interior of the domain of
SL(·, t1, · · · , tN ), which is the whole space Rn because SL = SH is finite-valued when the time variables
are not all zero. Therefore, the above intersection contains exactly one element. In other words, SL is
differentiable with respect to x for any t1, · · · , tN ≥ 0 which are not all zero and x ∈ Rn. Moreover, by
eq. (19), ∇xSL ∈ ∂H∗j (uj/tj), which implies uj/tj ∈ ∂Hj(∇xSL(x, t1, · · · , tN )) for any j. �

In the remaining part of this section, we investigate the multi-time HJ equation eq. (13) and the mini-
mization problem eq. (15) in a variational point of view. To be specific, let vj,k ∈ Rn and tj,k > 0 for any
j ∈ {1, · · · , N} and k ∈ N such that they satisfy limk→+∞ tj,k = 0 and limk→+∞ vj,k = vj,∞ for any j. Let

x ∈ Rn and xk = x+
∑N
j=1 tj,kvj,k for any k. We are interested in the convergence behavior of the momen-

tum ∇xSH and the minimizers uj evaluated at (xk, t1,k, · · · , tN,k). We will demonstrate one application in
section 5.

Among all the sequences {tj,k}k, j = 1, · · · , N , by taking subsequences, we can assume there is a sequence
with the lowest convergence rate. According to the symmetry of the time variables, without loss of generality,
we can assume {t1,k}k is the slowest sequence converging to zero compared to {tj,k}k for any j > 1, i.e., we

assume that
{
tj,k
t1,k

}
k

has a finite limit denoted as αj,∞ ∈ R for any j. In summary, the following notations

and assumptions are adopted:

(20)



xk = x+

N∑
j=1

tj,kvj,k, where tj,k > 0, x, vj,k ∈ Rn for any j ∈ {1, · · · , N} and k ∈ N;

lim
k→+∞

tj,k = 0 and lim
k→+∞

vj,k = vj,∞;

lim
k→+∞

tj,k
t1,k

= αj,∞ ∈ R.

In the decomposition models, {xk} is given by a sequence of observed images. In each xk there is a constant
component denoted by x and several other components denoted by tj,kvj,k for j = 1, · · · , N . In the remaining
part of this section, we investigate the behavior of the minimizers of the decomposition model in eq. (15)
when the components tj,kvj,k converge to zero and the parameters tj,k in the model vanish.

First, we show the convergence of uj to zero, which is stated in (i) in the following proposition. In other
words, the decomposition model recovers the constant component x when the other components tj,kvj,k
and the parameters tj,k in the model converge to zero. Then, (ii) and (iii) in the following proposition are
technical results about the convergence rate, which will be used in later proofs.

Proposition 3.3. Assume (H1)-(H2) and eq. (20) hold. Let (u1, · · · , uN ) be any minimizer of the mini-
mization problem in eq. (15). Let x ∈ dom J . Then,

(i) For any j = 1, · · · , N ,

(21) lim
k→+∞

uj(xk, t1,k, · · · , tN,k) = 0.

(ii) If ∂J(x) 6= ∅ and αj,∞ = 0, then

lim
k→+∞

1

t1,k
uj(xk, t1,k, · · · , tN,k) = 0.

(iii) If ∂J(x) 6= ∅ and αj,∞ 6= 0, then the sequence
{

1
tj,k

uj(xk, t1,k, · · · , tN,k)
}
k

is bounded.
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Proof. Denote ūj,k := uj(xk, t1,k, · · · , tN,k) for any j = 1, · · · , N , and ū0,k := xk −
∑N
j=1 ūj,k. Define I :=

{j : {‖ūj,k‖/tj,k}k is not bounded}. Recall that for each j = 1, · · · , N , {vj,k}k ⊂ Rn and {tj,k}k ⊂ (0,+∞)
are two sequences satisfying limk→+∞ vj,k = vj,∞ and limk→+∞ tj,k = 0, respectively. And the k− th spatial

variable xk is defined to be x+
∑N
j=1 tj,kvj,k.

Proof of (i): By Lax formula eq. (15),

J(ū0,k) +

N∑
j=1

tj,kH
∗
j

(
ūj,k
tj,k

)
≤ J

xk − N∑
j=1

tj,kvj,k

+

N∑
j=1

tj,kH
∗
j (vj,k)

= J(x) +

N∑
j=1

tj,kH
∗
j (vj,k).

(22)

Since J is a convex function, there exists z ∈ dom J such that ∂J(z) 6= ∅. Let q ∈ ∂J(z). Then, using the
convexity of J and Cauchy-Schwarz inequality, we get

(23) J(ū0,k) ≥ J(z) + 〈q, ū0,k − z〉 ≥ J(z)− ‖q‖
N∑
j=1

‖ūj,k‖ − ‖q‖‖xk − z‖.

Combining eq. (22) and eq. (23), we get

(24)

N∑
j=1

tj,kH
∗
j

(
ūj,k
tj,k

)
≤ J(x)− J(z) +

N∑
j=1

tj,kH
∗
j (vj,k) + ‖q‖

N∑
j=1

‖ūj,k‖+ ‖q‖‖xk − z‖.

For any j ∈ I, since ‖ūj,k‖/tj,k is not bounded, without loss of generality, by taking subsequences, we can
assume ‖ūj,k‖/tj,k increases to infinity. Since H∗j is 1-coercive, for any M > 0, there exists K such that for
any k > K, H∗j (ūj,k/tj,k) ≥M‖ūj,k‖/tj,k. Together with eq. (24), we get∑

j∈I
(M − ‖q‖)‖ūj,k‖ ≤

∑
j∈I

(
tj,kH

∗
j

(
ūj,k
tj,k

)
− ‖q‖‖ūj,k‖

)

≤ J(x)− J(z) + ‖q‖‖xk − z‖+

N∑
j=1

tj,kH
∗
j (vj,k) +

∑
j 6∈I

(
‖q‖‖ūj,k‖ − tj,kH∗j

(
ūj,k
tj,k

))
.

(25)

Since {tj,k}k and {vj,k}k are bounded, and H∗j is continuous in Rn for any j, then the right hand side is
bounded. However, M can be arbitrarily large, then the boundedness of left hand side (deduced by the
boundedness of the right hand side) implies ‖ūj,k‖ → 0 for any j ∈ I. If j 6∈ I, then ‖ūj,k‖/tj,k is bounded
by the definition of I, hence ūj,k also converges to zero.

Proof of (ii): We can apply the same argument as above and set z = x, because ∂J(x) 6= ∅. From eq. (25),
using the definition of xk in eq. (20) and triangle inequality, we have∑

j∈I
(M − ‖q‖)‖ūj,k‖ ≤ ‖q‖‖xk − x‖+

N∑
j=1

tj,kH
∗
j (vj,k) +

∑
j 6∈I

(
‖q‖‖ūj,k‖ − tj,kH∗j

(
ūj,k
tj,k

))

≤
N∑
j=1

tj,k
(
H∗j (vj,k) + ‖q‖‖vj,k‖

)
+
∑
j 6∈I

tj,k

(
‖q‖

∥∥∥∥ ūj,ktj,k

∥∥∥∥−H∗j ( ūj,ktj,k

))
.

Dividing both sides by t1,k, we can obtain

(M − ‖q‖)
∑
j∈I

‖ūj,k‖
t1,k

≤
N∑
j=1

tj,k
t1,k

(
H∗j (vj,k) + ‖q‖‖vj,k‖

)
+
∑
j 6∈I

tj,k
t1,k

(
‖q‖

∥∥∥∥ ūj,ktj,k

∥∥∥∥−H∗j ( ūj,ktj,k

))
.

With the same argument as in the proof of (i), we deduce that the right hand side is bounded, while M can
be arbitrarily large. Therefore, ‖ūj,k‖/t1,k converges to zero for any j ∈ I. If j 6∈ I and αj,∞ = 0, then
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‖ūj,k‖/tj,k is bounded by the definition of I and tj,k/t1,k converges to zero by the definition of αj,∞, hence
‖ūj,k‖/t1,k also converges to zero.

Proof of (iii): It suffices to prove the contrapositive statement. To be specific, let j ∈ I, i.e. ‖ūj,k‖/tj,k
is unbounded, it suffices to prove αj,∞ = 0. In the proof of (ii), we know that ‖ūj,k‖/t1,k converges to zero
if j ∈ I. Then, the unboundedness of {ūj,k/tj,k}k implies that tj,k/t1,k converges to 0, hence αj,∞ = 0 and
(iii) is proved. �

Similarly, we also consider the maximizers ∇xSH in the dual problem eq. (14) with the observed data xk
and the parameters {tj,k}Nj=1. The following lemma states the boundedness of the maximizers {∇xSH(xk, t1,k, · · · , tN,k)}k
which will be used in the later proofs.

Lemma 3.1. Under the assumptions (H1)-(H2) and eq. (20), for any x ∈ dom J such that ∂J(x) 6= ∅, the
sequence {∇xSH(xk, t1,k, · · · , tN,k)}k is bounded and any cluster point p is in ∂J(x).

Proof. Recall that for each j ∈ {1, · · · , N}, {vj,k}k ⊂ Rn and {tj,k}k ⊂ (0,+∞) are two sequences satis-
fying the assumptions in eq. (20). Denote pk := ∇xSH(xk, t1,k, · · · , tN,k). Then, pk is a maximizer of the
maximization problem in eq. (14). Hence, for any q in ∂J(x),

〈xk, pk〉 − J∗(pk)−
N∑
j=1

tj,kHj(pk) ≥ 〈xk, q〉 − J∗(q)−
N∑
j=1

tj,kHj(q).

Since q ∈ ∂J(x), we have x ∈ ∂J∗(q), hence J∗(pk) ≥ J∗(q) + 〈x, pk − q〉. Combining this inequality and the
above one we can obtain

N∑
j=1

tj,kHj(pk)−
N∑
j=1

tj,kHj(q) ≤ 〈xk − x, pk − q〉 ≤
N∑
j=1

tj,k‖vj,k‖(‖pk‖+ ‖q‖).

Here, for the second inequality above, we used the definition of xk in eq. (20) and Cauchy-Schwarz inequality.
Then, rearranging the terms and dividing by t1,k, we get

(26)

N∑
j=1

tj,k
t1,k

(Hj(pk)− ‖vj,k‖‖pk‖) ≤
N∑
j=1

tj,k
t1,k

(Hj(q) + ‖vj,k‖‖q‖).

If {pk}k is not bounded, without loss of generality, we can assume ‖pk‖ increases to infinity. Since Hj is
1-coercive for all j, then for any M > 0, there exists K such that Hj(pk) ≥ M‖pk‖ for any k > K and any
j = 1, · · · , N . Then, from eq. (26), for any k > K, we obtain

N∑
j=1

tj,k
t1,k

(M − ‖vj,k‖)‖pk‖ ≤
N∑
j=1

tj,k
t1,k

(Hj(q) + ‖vj,k‖‖q‖).

The right hand side is bounded. However, since ‖pk‖ goes to infinity, the term for j = 1 on the left hand side
is unbounded, while the terms for j > 1 is non-negative. As a result, the left hand side can be arbitrarily
large, which leads to a contradiction. Therefore, we can conclude that {pk}k is bounded.

For the remaining part, let p be a cluster point, then there exists a subsequence converging to p, still
denoted as pk. Since SH solves the multi-time HJ equation eq. (13) and Hj is continuous for any j, then we
have

lim
k→+∞

∇SH(xk, t1,k, · · · , tN,k) = lim
k→+∞

(pk,−H1(pk), · · · ,−HN (pk))

= (p,−H1(p), · · · ,−HN (p)).

By the continuity property [66, Prop.XI.4.1.1] of the subdifferential operator ∂SH of the convex lower semi-
continuous function SH , we can conclude that

(p,−H1(p), · · · ,−HN (p)) ∈ ∂SH(x, 0, · · · , 0),

which implies p ∈ ∂J(x). �
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The variational behaviors of the momentum ∇xS and the velocities uj/tj are presented in the following
proposition. To be specific, the cluster points of the momenta and the velocities solve two optimization
problems, respectively, and the two problems are dual to each other. An illustration of this result is given
in fig. 7.

Proposition 3.4. Assume (H1)-(H2) and eq. (20) hold. Let x ∈ dom J and ∂J(x) 6= ∅. Then,

(i) the directional derivative of SH corresponds to a maximization problem:

(27) lim
k→+∞

SH(xk, t1,k, · · · , tN,k)− SH(x, 0, · · · , 0)

t1,k
= max
q∈∂J(x)

N∑
j=1

αj,∞ (〈q, vj,∞〉 −Hj(q)) .

Moreover, let p be any cluster point of {∇xSH(xk, t1,k, · · · , tN,k)}k, then,

(28) p ∈ arg max
q∈∂J(x)

N∑
j=1

αj,∞ (〈q, vj,∞〉 −Hj(q)) .

(ii) the directional derivative of SL corresponds to the dual minimization problem:

lim
k→+∞

SL(xk, t1,k, · · · , tN,k)− SL(x, 0, · · · , 0)

t1,k

= min
wj∈Rn

N∑
j=1

αj,∞(I∗∂J(x)(vj,∞ − wj) +H∗j (wj)).

(29)

Moreover, if w̄j is a cluster point of {uj(xk, t1,k, · · · , tN,k)/tj,k}k for any j satisfying αj,∞ 6= 0, then

(30) w̄j ∈ arg min
wj∈Rn

(
I∗∂J(x)(vj,∞ − wj) +H∗j (wj)

)
.

Specially, if Hj is strictly convex and αj,∞ 6= 0 for some j, then the maximizer in eq. (28) is unique, which
implies the convergence of ∇xSH(xk, t1,k, · · · , tN,k) to the unique maximizer. Similarly, for any j such that
Hj is differentiable and αj,∞ 6= 0, we can conclude that uj(xk, t1,k, · · · , tN,k)/tj,k converges to the unique
minimizer in eq. (30).

Remark 3.1. It is straightforward to obtain limk→+∞
SH(xk,t1,k,··· ,tN,k)−SH(x,0,··· ,0)

‖(t1,k,··· ,tN,k)‖2 using the following com-

putation

lim
k→+∞

SH(xk, t1,k, · · · , tN,k)− SH(x, 0, · · · , 0)

‖(t1,k, . . . , tN,k)‖2

= lim
k→+∞

SH(xk, t1,k, · · · , tN,k)− SH(x, 0, · · · , 0)

t1,k
· t1,k
‖(t1,k, . . . , tN,k)‖2

= lim
k→+∞

SH(xk, t1,k, · · · , tN,k)− SH(x, 0, · · · , 0)

t1,k
· 1

‖(α1,∞, . . . , αN,∞)‖2
,

where the last equality follows from the assumption that αj,∞ = limk→+∞ tj,k/t1,k for any j = 1, · · · , N .

Proof. Recall that the k − th spatial variable xk is defined to be x +
∑N
j=1 tj,kvj,k, where {vj,k}k ⊂

Rn and {tj,k}k ⊂ (0,+∞) are two sequences satisfying the assumptions in eq. (20). Denote ∆Sk :=
SH(xk, t1,k, · · · , tN,k)− SH(x, 0, · · · , 0).

Proof of (i): For any q ∈ ∂J(x), by Hopf formula eq. (14), we obtain

∆Sk =

J∗ +

N∑
j=1

tj,kHj

∗ (xk)− J(x) ≥ 〈q, xk〉 − J∗(q)−
N∑
j=1

tj,kHj(q)− J(x).

Since q ∈ ∂J(x), we have J∗(q) + J(x) = 〈q, x〉. Hence, together with the definition of xk in eq. (20), we get

∆Sk ≥ 〈q, xk − x〉 −
N∑
j=1

tj,kHj(q) =

N∑
j=1

tj,k(〈q, vj,k〉 −Hj(q)).
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Therefore, we have

lim inf
k→+∞

∆Sk
t1,k

≥ lim inf
k→+∞

N∑
j=1

tj,k
t1,k

(〈q, vj,k〉 −Hj(q)) =

N∑
j=1

αj,∞(〈q, vj,∞〉 −Hj(q)),

where we recall that limk→+∞ vj,k = vj,∞ and limk→+∞ tj,k/t1,k = αj,∞ by eq. (20). Here, q is an arbitrary
element in ∂J(x), hence we obtain

(31) lim inf
k→+∞

∆Sk
t1,k

≥ sup
q∈∂J(x)

N∑
j=1

αj,∞(〈q, vj,∞〉 −Hj(q)).

On the other hand, for any k, consider the function φk : [0,+∞)→ R defined by φk(t) := SH

(
x+

∑N
j=1 tαj,kvj,k, α1,kt, · · · , αN,kt

)
,

where αj,k := tj,k/t1,k. Since SH is a convex function and φk is its restriction on a line, then φk ∈ Γ0(R)
with dom φk = [0,+∞). Also, φk is differentiable in (0,+∞) since SH is differentiable. The derivative of φk
at t1,k is given by the chain rule:

φ′k(t1,k) =

N∑
j=1

αj,k

(
〈∇xSH(xk, t1,k, · · · , tN,k), vj,k〉+

∂SH
∂tj

(xk, t1,k, · · · , tN,k)

)
.

Since SH satisfies the multi-time HJ equation eq. (13), we obtain

φ′k(t1,k) =

N∑
j=1

αj,k (〈∇xSH(xk, t1,k, · · · , tN,k), vj,k〉 −Hj(∇xSH(xk, t1,k, · · · , tN,k))) .

From straightforward computation and the convexity of φk, we get

(32)
∆Sk
t1,k

=
φk(t1,k)− φk(0)

t1,k
≤ φ′k(t1,k) =

N∑
j=1

αj,k (〈pk, vj,k〉 −Hj(pk)) ,

where pk := ∇xSH(xk, t1,k, · · · , tN,k).
Let p be a cluster point of {pk}. Take a subsequence converging to p and still denote it as {pk}. Since

p ∈ ∂J(x) by lemma 3.1 and Hj is continuous for any j, we have

lim sup
k→+∞

∆Sk
t1,k

≤
N∑
j=1

αj,∞ (〈p, vj,∞〉 −Hj(p)) ≤ sup
q∈∂J(x)

N∑
j=1

αj,∞(〈q, vj,∞〉 −Hj(q)).

Together with eq. (31), the equation eq. (27) is proved. Moreover, any cluster point p is a maximizer.

Proof of (ii): Here, we adopt the notations ūj,k and ū0,k defined in the proof of proposition 3.3 to
represent the minimizers in the Lax formula. According to the Lax formula eq. (15) evaluated at the point
(xk, t1,k, · · · , tN,k) and by the convexity of J we deduce that

SL = J(ū0,k) +

N∑
j=1

tj,kH
∗
j

(
ūj,k
tj,k

)
≥ J(x) + 〈q, ū0,k − x〉+

N∑
j=1

tj,kH
∗
j

(
ūj,k
tj,k

)
,

for any q ∈ ∂J(x). Since SL = SH , we have SL(xk, t1,k, · · · , tN,k)−SL(x, 0, · · · , 0) = ∆Sk. By the definition
of xk and ū0,k, we can compute ū0,k − x = xk − x−

∑
j ūj,k =

∑
j(tj,kvj,k − ūj,k), hence we have

∆Sk
t1,k

≥
N∑
j=1

(
αj,k〈q, vj,k〉 −

〈
q,
ūj,k
t1,k

〉
+ αj,kH

∗
j

(
ūj,k
tj,k

))
,

where αj,k := tj,k/t1,k. According to proposition 3.2 we have ūj,k/tj,k ∈ ∂Hj(pk). Therefore we get

αj,kH
∗
j

(
ūj,k
tj,k

)
= αj,k

(〈
ūj,k
tj,k

, pk

〉
−Hj(pk)

)
=

〈
ūj,k
t1,k

, pk

〉
− αj,kHj(pk).
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Combining the above two equations we obtain

∆Sk
t1,k

≥
N∑
j=1

αj,∞=0

(
αj,k〈q, vj,k〉+

〈
pk − q,

ūj,k
t1,k

〉
− αj,kHj(pk)

)

+

N∑
j=1

αj,∞ 6=0

(
αj,k

〈
q, vj,k −

ūj,k
tj,k

〉
+ αj,kH

∗
j

(
ūj,k
tj,k

))
.

(33)

From proposition 3.3 (ii), ‖ūj,k‖/t1,k converges to zero if αj,∞ = 0. Also, pk are bounded by lemma 3.1,
hence the first sum in the right hand side of eq. (33) converges to zero as k approaches infinity. On the other
hand, for j such that αj,∞ 6= 0, ūj,k/tj,k is bounded by proposition 3.3 (iii). Taking a subsequence, we can
assume that ūj,k/tj,k converges to some vector, denoted as w̄j . In conclusion, as k approaches infinity in
eq. (33), we have

(34) lim
k→+∞

∆Sk
t1,k

≥
N∑
j=1

αj,∞ 6=0

αj,∞
(
〈q, vj,∞ − w̄j〉+H∗j (w̄j)

)
≥

N∑
j=1

αj,∞(〈q, vj,∞〉 −Hj(q)),

where the second inequality holds by the definition of Legendre transform eq. (11). From eq. (27), for any
maximizer p in eq. (28),

(35) lim
k→+∞

∆Sk
t1,k

=

N∑
j=1

αj,∞(〈p, vj,∞〉 −Hj(p)).

Taking q = p in eq. (34) and comparing it with eq. (35), we can conclude that the inequalities in eq. (34)
become equalities when q = p. As a result, when αj,∞ 6= 0 we have 〈p, w̄j〉 = H∗j (w̄j) +Hj(p), which implies
that p ∈ ∂H∗j (w̄j). Then, we deduce that

(36) lim
k→+∞

∆Sk
t1,k

=

N∑
j=1

αj,∞ 6=0

αj,∞
(
〈p, vj,∞ − w̄j〉+H∗j (w̄j)

)
.

On the other hand, for an arbitrary q ∈ ∂J(x), by eq. (34) and eq. (36), we have

N∑
j=1

αj,∞ 6=0

αj,∞
(
〈p, vj,∞ − w̄j〉+H∗j (w̄j)

)
= lim
k→+∞

∆Sk
t1,k

≥
N∑
j=1

αj,∞ 6=0

αj,∞
(
〈q, vj,∞ − w̄j〉+H∗j (w̄j)

)
,

which implies that 〈p − q, vj,∞ − w̄j〉 ≥ 0 for any q ∈ ∂J(x), when αj,∞ 6= 0. By eq. (7) and eq. (10), we
can deduce that vj,∞ − w̄j ∈ N∂J(x)(p) = ∂I∂J(x)(p). proposition 2.5 gives the equality 〈p, vj,∞ − w̄j〉 =
I∗∂J(x)(vj,∞ − w̄j). Then, eq. (29) follows from this equality and eq. (36).

It remains to prove eq. (30). Consider any j such that αj,∞ 6= 0. Define f : Rn → R by f(w) :=
I∗∂J(x)(vj,∞ − w) + H∗j (w). Then it suffices to prove 0 ∈ ∂f(w̄j). So far, we have proved p ∈ ∂H∗j (w̄j)

and vj,∞ − w̄j ∈ ∂I∂J(x)(p), which implies p ∈ ∂I∗∂J(x)(vj,∞ − w̄j). By straightforward computation and

proposition 2.3,
∂f(w̄j) = −∂I∗∂J(x)(vj,∞ − w̄j) +H∗j (w̄j) 3 −p+ p = 0.

Therefore, w̄j is a minimizer of f , which concludes the proof. �

The above proposition provides the explicit formulas for the variations of S, ∇xS and
uj

tj
where uj denotes

the j-th component of the minimizer of the decomposition model in the form of eq. (15). Specifically, the
limits of these quantities are related to the two optimization problems given by eqs. (28) and (30). From the
perspective of image processing, given an observed image xk which is a summation of a constant component
x and other components tj,kvj,k, the decomposition model eq. (15) gives N + 1 components. In these N + 1
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components, one component converges to the constant component x and the other components uj vanish as
the parameters tj,k approach zero, by proposition 3.3. Then, proposition 3.4(ii) states that the component
uj converges to 0 from a direction w̄j [82, p. 197]. On the other hand, proposition 3.4(i) provides a
representation formula for the cluster point of the maximizers of the dual problem in the form of eq. (14).

4. Uniqueness of the Convex Solutions to the Multi-time Hamilton-Jacobi Equations

In the previous section, we have discussed the relation of the optimization problems in the Hopf formula
and Lax formula with the classical solution of the multi-time HJ equation. In fact, some results can be
generalized to weaker assumptions in which case the solution provided by Hopf and Lax formulas is not
classical. In this section, we prove that the only convex solution is given by the two formulas.

In the field of PDEs, a type of solution called viscosity solution is considered for solving the HJ equation
when no classical solution exists. The uniqueness of the viscosity solution has been widely studied under
different assumptions [17, 19]. However, the functions in convex analysis and optimization may take the
value +∞, which is an unusual condition in the field of PDEs. Therefore, to maintain the connection of the
HJ equations and convex optimization problems, we consider the convex solution which may be infinity in
some area and prove the uniqueness using the techniques in convex analysis.

We start with the proof for the classical convex solution, in order to demonstrate the idea of utilizing the
convexity assumptions. After that, we state the uniqueness of nonsmooth convex solution under more general
assumptions in corollary 4.1. When proving the uniqueness of the classical convex solution, we assume the
properties (H1) and (H2) hold. Moreover, the solution S satisfies:

(S1) S ∈ Γ0

(
Rn × [0,+∞)N

)
∩ C1(Rn × (0,+∞)N );

(S2) S solves the multi-time Hamilton-Jacobi equation eq. (13).

As it is discussed in section 3, SH defined in the Hopf formula eq. (14) is a solution satisfying the
assumptions (S1) and (S2). Hence, we just need to prove S = SH for any S satisfying (S1)-(S2). First,
we consider the single-time case when the time dimension N = 1, and formulate its Legendre transform
S∗(p,E−) for p ∈ Rn and E− ∈ R in the following lemma.

Lemma 4.1. Assume (H1)-(H2) hold and S satisfies (S1)-(S2). Let N = 1. Then there exists a convex

function H̃ : Rn → R ∪ {+∞}, such that S∗(p,E−) = J∗(p) + IV (p,E−), where V := {(p,E−) : E− ≤
−H̃(p)}.

(a) (b) (c)

Figure 8. Illustrations for different steps in the proof of lemma 4.1.

Proof. In this proof, we only consider the single-time HJ equation. For the single-time case, H is used to
denote the Hamiltonian, instead of H1, for simplicity. First, consider the domain of S∗. For each p ∈ Rn,
define

(37) H̃(p) := inf{−E− : (p,E−) ∈ dom S∗} ∈ R̄ := R ∪ {±∞}.
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For the illustration of this definition, see fig. 8a. The function H̃ defined here is an extended-valued function
taking values in R̄. In the last step of this proof, we will show the convexity and specify the range of this
function. From this definition, it is obvious that dom S∗ ⊆ V , where V = {(p,E−) : E− ≤ −H̃(p)}, as

defined in the statement of this lemma. Moreover, denote V1 = {(p,E−) : E− < −H̃(p)}, then we prove

V1 ⊆ dom S∗ by using the monotonicity of S∗(p, ·). To be specific, let p ∈ Rn and −∞ < Ẽ− ≤ E− < +∞,
then, we have

(38) S∗(p, Ẽ−) = sup
x∈Rn,t≥0

〈p, x〉+ tẼ− − S(x, t) ≤ sup
x∈Rn,t≥0

〈p, x〉+ tE− − S(x, t) = S∗(p,E−).

Hence, S∗(p,E−) is non-decreasing with respect to E−. As a result, (p,E−) ∈ dom S∗ implies {p} ×
(−∞, E−] ⊆ dom S∗. Therefore we obtain V1 ⊆ dom S∗ ⊆ V .

In the next step, we prove dom S∗ = V .
Denote U := {p ∈ Rn : H̃(p) < +∞} (see fig. 8a). Here and after in this section, we use the bold

character 0 to denote the zero vector in Rn. Since U is the projection of dom S∗ along the direction (0, 1),

U is a convex set. Let p ∈ ri U . Take E− < −H̃(p), then ∂S∗(p,E−) 6= ∅ because (p,E−) ∈ ri dom S∗.
Let (x, t) ∈ ∂S∗(p,E−), which implies (p,E−) ∈ ∂S(x, t). If t > 0, then E− = ∂S

∂t (x, t) and p = ∇xS(x, t).
Since S satisfies the HJ equation eq. (13), E− + H(p) = 0. In other words, if (x, t) ∈ ∂S∗(p,E−) with

E− 6= −H(p), then we can conclude that t = 0. Therefore, for any E− < −H̃(p) and E− 6= −H(p), by
proposition 2.6, the directional derivative of S∗ in the direction (0, 1) is:

(S∗)′((p,E−), (0, 1)) = sup
(x,t)∈∂S∗(p,E−)

〈(x, t), (0, 1)〉 = sup
(x,t)∈∂S∗(p,E−)

〈(x, 0), (0, 1)〉 = 0.

As a result, S∗(p, ·) is a constant function in its domain. Denote this value as f(p). By the continuity of S∗

when restricting to the straight line {p} × R, the value S∗(p,−H̃(p)) is also f(p) if H̃(p) is finite. Hence,

S∗(p,E−) = f(p) for any p ∈ ri U and E− ≤ −H̃(p).

Now, we consider the case when p ∈ U \ ri U . For the illustration, see fig. 8b. Let E− < −H̃(p). Take

q ∈ ri U and Ẽ− < −H̃(q), then by proposition 2.2,

(39) S∗(p,E−) = lim
α→0+

S∗(p+ α(q − p), E− + α(Ẽ− − E−)) = lim
α→0+

f(p+ α(q − p)).

Hence, the value of S∗(p,E−) does not depend on E− if E− < −H̃(p). Denote this value as f(p). By

continuity, S∗(p,−H̃(p)) = f(p) if H̃(p) is finite. Therefore, we have proved that the domain of S∗ coincides
with the set V and S∗(p,E−) = f(p) in the domain of S∗.

Then, we prove f = J∗ when restricting to dom f . By setting f(p) = +∞ if p 6∈ U , we can regard f
as a function from Rn to R ∪ {+∞}. It is not hard to check the convexity of f . To be specific, for any

p1, p2 ∈ dom f and α ∈ (0, 1), choose E− < −H̃(p1) and Ẽ− < −H̃(p2) (see fig. 8c), then we have

f(αp1 + (1− α)p2) = S∗(αp1 + (1− α)p2, αE
− + (1− α)Ẽ−)

≤ αS∗(p1, E
−) + (1− α)S∗(p2, Ẽ

−)

= αf(p1) + (1− α)f(p2).

Hence f is a convex function taking values in R ∪ {+∞}. Also, for each x ∈ Rn, we have

J(x) = S(x, 0) = sup
(p,E−)∈V

〈x, p〉 − S∗(p,E−)

= sup
p∈Rn

∃E− | (p,E−)∈V

〈x, p〉 − f(p) = sup
p∈dom f

〈x, p〉 − f(p) = f∗(x).

Therefore, f∗∗ = J∗, which implies ri dom f = ri dom J∗ and f(p) = J∗(p) if p ∈ ri dom f . Moreover,
according to proposition 2.2 and eq. (39), we deduce that

f(p) = lim
α→0+

f(p+ α(q − p)) = lim
α→0+

J∗(p+ α(q − p)) = J∗(p),

for any p ∈ dom f \ ri dom f and q ∈ ri dom f . As a result we have f = J∗ in the domain of definition. In
conclusion, we get the following formula for S∗

(40) S∗(p,E−) = J∗(p) + IV (p,E−).
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The final part is to prove that H̃ is a convex function taking values in R ∪ {+∞}.
First, we prove that H̃ cannot take the value −∞ by contradiction. Suppose there exists p ∈ Rn such

that H̃(p) equals −∞. Then, by definition of H̃ we have {p} × R ⊆ dom S∗. Together with the formula of
S∗ in eq. (40), we derive

{p} × R× {J∗(p)} ⊆ epi S∗.

Therefore, (0, 1, 0) and (0,−1, 0) are in the asymptotic cone of epi S∗ by definition eq. (8). Then, by
proposition 2.1, for any q ∈ U , we obtain

{q} × R× {J∗(q)} ⊆ epi S∗,

which implies {q} × R ⊆ dom S∗. Since q is an arbitrary vector in U , we deduce that dom S∗ = U × R.
Moreover, according to eq. (40), the function S∗ is a constant on the line {q} × R for any q ∈ U , which
implies that the directional derivative of S∗ in the direction (0, 1) is zero. In other words, we have

(41) (S∗)′((p,E−), (0, 1)) = 0 for any p ∈ U and E− ∈ R.

On the other hand, consider any y ∈ Rn and s > 0 such that ∂S(y, s) is nonempty. Let (p,E−) ∈ ∂S(y, s).
This implies (y, s) ∈ ∂S∗(p,E−). Hence, according to proposition 2.6, we get

(S∗)′((p,E−), (0, 1)) ≥ sup
(x,t)∈∂S∗(p,E−)

〈(x, t), (0, 1)〉 ≥ 〈(y, s), (0, 1)〉 = s > 0,

which contradicts eq. (41). Therefore, H̃ cannot take the value −∞.

At last, the convexity of H̃ follows from the convexity of dom S∗. In fact, epi H̃ = {(p,−E−) : (p,E−) ∈
dom S∗}, which is a reflection of the convex set dom S∗, hence it is also convex. Therefore, H̃ is a convex
function from Rn to R ∪ {+∞}. �

Based on this lemma, the following proposition states the uniqueness result. It can be easily seen in the
above lemma that the Legendre transform of S has a similar form as S∗H . Actually, the following proposition
is proved by equating the two functions S∗ and S∗H .

Proposition 4.1. The solution to the multi-time Hamilton-Jacobi equation is unique. Specifically, under
the assumptions (H1) and (H2), if S satisfies (S1)-(S2), then S = SH .

Proof. In the proof of this proposition, we first consider the case of single-time. Let N = 1, and H be the
Hamiltonian.

From lemma 4.1, it is proved that S∗(p,E−) = J∗(p) + IV (p,E−), where V = {(p,E−) : E− ≤ −H̃(p)}
and H̃ is a convex function whose domain is the projection of dom S∗ along (0, 1). Moreover, ri dom J∗ =

ri dom H̃ (note that the domains of H̃ and f are the same).

First, we prove that H̃(p) = H(p) for any p ∈ ri dom H̃ by contradiction. Assume there exists p ∈
ri dom H̃ such that H̃(p) 6= H(p). Let E− = −H̃(p). Then, by proposition 2.3 and eq. (10), we deduce that

(42) ∂S∗(p,E−) = ∂J∗(p)× {0}+NV (p,E−) = ∂J∗(p)× {0}+ {t(v, 1) : v ∈ ∂H̃(p), t ≥ 0},

where the last equality holds because V is the reflection of epi H̃. Here NV (p,E−) denotes the normal cone

of the set V at (p,E−). Let x0 ∈ ∂J∗(p), t > 0 and v ∈ ∂H̃(p). Denote x = x0 + tv. Then, by eq. (42)

we have (x, t) ∈ ∂S∗(p,E−), which implies (p,E−) ∈ ∂S(x, t). However, E− + H(p) = −H̃(p) + H(p) 6= 0,

hence the HJ equation eq. (13) does not hold at (x, t), which is a contradiction. Therefore, H̃ = H when

restricting to the relative interior of the domain of H̃, which implies

S∗(p,E−) = J∗(p) + I{E− ≤ −H̃(p)} = J∗(p) + I{E− ≤ −H(p)} = S∗H(p,E−),

for any p ∈ ri dom H̃.
Actually, the values of any convex lower semi-continuous function on the relative boundary of its domain

is fully determined by the values in the relative interior. It is not hard to check that

ri dom S∗ = ri dom S∗H = {(p,E−) : p ∈ ri dom J∗, E− < −H(p)}.

Hence, we have proved that S∗ and S∗H agree in the relative interior of the domain. Therefore, S∗ = S∗H in
the whole domain, which implies S = SH and gives the uniqueness of the convex solution to the single-time
HJ equation.
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Then, we can consider the case of multi-time. Now, we assume N > 1. It suffices to prove S and
SH coincide for any x ∈ Rn and any t1, · · · , tN > 0. Let α1, · · · , αN be arbitrary positive real numbers
and denote α := (α1, · · · , αN ). Define T (x, s) := S(x, sα1, · · · , sαN ) for any x ∈ Rn and s ≥ 0. Then
T ∈ Γ0(Rn+1). We can compute the gradient of T with respect to s for any x ∈ Rn and s > 0 using chain
rule and the assumption that S satisfies the multi-time HJ equation eq. (13) to obtain

∂T (x, s)

∂s
=

N∑
j=1

αj
∂S(x, sα)

∂tj
= −

N∑
j=1

αjHj(∇xS(x, sα)) = −
N∑
j=1

αjHj(∇xT (x, s)).

It is easy to check that T satisfies the initial condition given by J , i.e. T (x, 0) = J(x) for any x ∈ Rn. Hence,

T is a solution to the single-time HJ equation with Hamiltonian H =
∑N
j=1 αjHj , which is finite-valued,

1-coercive and strictly convex. Therefore, for the single-time HJ equation, the conditions (H1)-(H2) and
(S1)-(S2) are satisfied. Then, the solution T is unique and equal to the Hopf formula with respect to the
Hamiltonian H. Hence, for any x ∈ Rn, s > 0 and any α1, · · · , αN > 0, we have

S(x, sα1, · · · , sαN ) = (J∗ + sH)∗(x) =

J∗ +

N∑
j=1

sαjHj

∗ (x) = SH(x, sα1, · · · , sαN ).

Therefore, S = SH in the relative interior of the domain, which implies S = SH in the whole space, because
of the lower semi-continuity of S and SH . The uniqueness of the solution to the multi-time HJ equation
follows. �

One can actually apply the above arguments to weaker assumptions and obtain a generalized result,
which is stated in the following corollary. In this generalized result, it is possible that the solution S is not
a classical solution, hence the subgradients of S, instead of the gradients, are assumed to satisfy the HJ
equation, which is a natural generalization of the classical solution when we want to consider the solution
which is convex and lower semi-continuous.

Corollary 4.1. Let J ∈ Γ0(Rn), and H1, H2, · · · , HN be arbitrary extended-valued functions defined on Rn.
Assume there exists a function S ∈ Γ0(Rn × [0,+∞)N ) satisfying:

(i) If p ∈ Rn and E−1 , · · · , E
−
N ∈ R satisfy (p,E−1 , · · · , E

−
N ) ∈ ∂S(x, t1, · · · , tN ) for some x ∈ Rn and

t1, · · · , tN > 0, then E−j +Hj(p) = 0 for any j = 1, · · · , N .

(ii) S(x, 0, · · · , 0) = J(x) for any x ∈ Rn.

Then, the following statements hold:

1. For the case of single time, i.e. N = 1, denote H = H1 to be the Hamiltonian. If there exists x ∈ Rn,
t > 0 such that S(x, t) 6= +∞, then S is unique and S = F ∗, where F is defined by

(43) F (p,E−) := J∗(p) + I{E− ≤ −H(p)}+ I{p ∈ ri dom J∗},
for any p ∈ Rn and E− ∈ R. Moreover, the restriction of H on ri dom J∗ is finite-valued and convex.

2. For the multi-time case, i.e. N > 1, if S̃ is another function satisfying the assumptions (i)-(ii) with

ri dom S̃ = ri dom S, then S̃ = S. In other words, the solution is unique when the relative interior of
the domain is given.

Proof. The proof of this corollary is similar to the proof of proposition 4.1, so we just give a brief sketch
here. First, we adjust the proof of lemma 4.1 by changing the gradients of S to the subgradients of S. The
argument still holds because we assume in (i) that the subgradients of S satisfy the HJ equation. Then, we

draw the same conclusion as in lemma 4.1. In other words, with the function H̃ defined in eq. (37), we have

(44) S∗(p,E−) = J∗(p) + I{E− ≤ −H̃(p)}.

Also, the part of N = 1 in the proof of proposition 4.1 still holds. So we derive that the two functions H̃
and H coincide in the relative interior of dom J∗. Together with eq. (44), we derive eq. (43), and hence the
first statement in this corollary follows.

For the case when N > 1, it suffices to prove that S and S̃ coincide in the relative interior of the domain.
Let (y, t1, · · · , tN ) be an arbitrary point in ri dom S. It remains to prove that S and S̃ are equal at the point
(y, t1, · · · , tN ). Notice that we have ti > 0 for any i = 1, · · · , N , then we can choose the positive number αi
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in the proof of proposition 4.1 to be ti for any i. As in the proof of proposition 4.1, we define the functions
T and T̃ by

T (x, s) := S(x, sα1, · · · , sαN ), and T̃ (x, s) := S̃(x, sα1, · · · , sαN ),

for any x ∈ Rn and s ≥ 0. Since there exists a point (y, t1, · · · , tN ) in the relative interior of dom S, one can
easily check that the assumptions in [66, Thm.XI.3.2.1] hold. Then, by [66, Thm.XI.3.2.1], the chain rule

for the subgradients of S holds. Similarly, the chain rule also holds for the subgradients of S̃. Therefore, the
argument in the proof of proposition 4.1 in the multi-time case remains valid by changing the gradients to
the subgradients. As a result, we conclude that both T and T̃ solve the single-time HJ equation with the

Hamiltonian
∑N
j=1 αjHj . Then, by the first statement in this corollary, we have T ≡ T̃ , which implies that

S and S̃ coincide at the point (y, t1, · · · , tN ), and the proof is complete. �

5. A Regularization Method for the Degenerate Cases

In the previous two sections, we discussed the relation between some optimization problems and the multi-
time HJ equations under the assumptions (H1) and (H2). In general, if those assumptions are not satisfied,
some results may collapse. For example, if there is no strictly convex Hamiltonian, then the solution may
be non-differentiable, which leads to the non-uniqueness of the maximizer p (called momentum) in the Hopf
formula eq. (14). Also, the minimizer u in the Lax formula eq. (15) may be non-unique if the Hamiltonians
are not differentiable. However, these are two common situations for optimization problems such as the
decomposition models. In fact, any norm or indicator function is neither strictly convex nor differentiable.
As a result, it is an important problem to select a meaningful momentum p or minimizer u in the solution
set when it contains more than one element.

In this section, we propose a regularization method to select a unique momentum p and a unique minimizer
u simultaneously, and provide the representation formulas for both selected quantities by using the results
stated in the previous sections. Intuitively, to select a minimizer u, we modify the degenerate term by
adding λH to it where λ is a positive parameter and H is a differentiable function satisfying (H1). When
λ approaches zero, the minimizer of the modified problem will converge to the unique minimizer ū in the
solution set of the original problem which minimizes the function H. The procedure to select p is the same
except performing the inf-convolution with λH∗(·/λ) to the degenerate term instead of the addition of λH.

In the literature, the special case selecting the momentum p using inf-convolution with ‖ · ‖2/(2λ) is
well-known as Moreau-Yosida approximation, which is introduced, for instance, in [8, Thm.2, p.144] and [27,
Thm.3.1, p.54]. Generally, a Moreau-Yosida based regularization method usually selects a unique minimizer
u only or a momentum p only, but not both. Our contribution here is that we consider the primal problem
and the dual problem simultaneously. In other words, one can select the momentum p and the minimizer u
at the same time using our method. This analysis can be adapted easily to other decomposition models with
more degenerate terms. Moreover, one can also use the same procedure with other function H or even use
two different functions in the two added terms. One alternative choice is ‖ · ‖αα/α for any α > 1, for example.
In fact, if H is chosen to be any non-negative, finite-valued, 1-coercive, differentiable and strictly convex
function, the statements in this section still hold. To be specific, the proofs of lemma 5.1, lemma 5.3 and
proposition 5.1 hold after subtle adjustment, and one can use subdifferential calculus to prove lemma 5.2. In
this paper, for simplicity, we mainly focus on the quadratic regularization terms, which are usually preferred
in practice because of the simplicity and efficiency of numerical implementation.

Now, we focus on a specific decomposition model, and the regularization function H is chosen to be
‖ · ‖22/2. Some other models can be analyzed using similar arguments. Let ‖ · ‖ and |||·||| be two arbitrary
norms whose dual norms are denoted as ‖ · ‖∗ and |||·|||∗. In fact, all the results remain valid if ‖ · ‖ and |||·|||
are two semi-norms, in which case the corresponding dual norms ‖ · ‖∗ and |||·|||∗ are finite in some subspaces
and equal to +∞ otherwise. The set of minimizers is defined as follows

U(x, t) := arg min
u∈Rn

‖u‖+ I{|||x− u|||∗ ≤ t}.
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We can regard the minimal value as a solution to the HJ equation given by the Lax formula with spatial
variable x ∈ Rn and time variable t > 0 and define

S(x, t) := min
u∈Rn

‖u‖+ I{|||x− u|||∗ ≤ t}.

Note that in the corresponding HJ equation, the initial function is ‖·‖ and the Hamiltonian is |||·|||, hence the
assumption (H1) is not satisfied. As a result, we need to apply the regularization method in this example.
For simplicity we also use F1, F2 to denote these two norms, then F ∗2 (y) = I{|||y|||∗ ≤ t}. We assume t = 1
and drop the variable t in the remainder of this section because the variation of t is not considered in this
problem. Then, we can rewrite the problem as the following

U(x) = arg min
u∈Rn

F1(u) + F ∗2 (x− u),

S(x) = min
u∈Rn

F1(u) + F ∗2 (x− u).
(45)

In fact, there are in practice some useful models in the literature which can fit in this form. Now, we give two
examples. In what follows, we use ‖ · ‖TV , ‖ · ‖E and ‖ · ‖G to denote the discrete total variation semi-norm,
the discrete E−norm and the discrete G−norm, respectively. First, in [9, 10], it is shown that the Meyer’s
model in the following form

arg min
u∈Rn

‖u‖TV + α‖x− u‖G

is equivalent to
arg min
u∈Rn

‖u‖TV + I{‖x− u‖G ≤ β},

for some suitable positive parameter β. In this example, both F1 and F2 are the discrete total variation
because the discrete G−norm is the dual norm of ‖ · ‖TV . Similarly, another Meyer’s model stated as follows

arg min
u∈Rn

‖u‖TV + α‖x− u‖E

is equivalent to
arg min
u∈Rn

‖u‖TV + I{‖x− u‖E ≤ β},

for some suitable positive parameter β [11]. In this example, the functions F1 and F2 are the discrete total
variation and the dual norm of the discrete E−norm, respectively.

As mentioned above, we apply two operators to the function F1 and obtain its approximation

(46) F1,λ,µ :=

(
F1 +

λ

2
‖ · ‖22

)
�

1

2µ
‖ · ‖22,

where λ, µ > 0 are small regularization parameters. Here, we choose to modify the function F1, but one may
instead apply the operators to the function F2 and the analysis is similar. Then, the problem reads

uλ,µ(x) = arg min
u∈Rn

F1,λ,µ(u) + F ∗2 (x− u),

Sλ,µ(x) = min
u∈Rn

F1,λ,µ(u) + F ∗2 (x− u).
(47)

We expand the inf-convolution to get

uλ,µ = x− wλ,µ,

(vλ,µ, wλ,µ) := arg min
v,w∈Rn

F1(v) +
λ

2
‖v‖22 + F ∗2 (w) +

1

2µ
‖x− v − w‖22,

Sλ,µ := min
v,w∈Rn

F1(v) +
λ

2
‖v‖22 + F ∗2 (w) +

1

2µ
‖x− v − w‖22.

(48)

Here and later in this section, we omit the variable x when there is no ambiguity.
By introducing the quadratic terms, the uniqueness of (vλ,µ, wλ,µ) and the differentiability of Sλ,µ are

guaranteed. When the parameters λ and µ converge to zero in a comparable rate, the reasonable minimizer
u and momentum p are selected. In fact, they are the elements with the minimal l2 norms in the target sets
U(x) and ∂S(x). The detailed statements are listed as follows.

Lemma 5.1. For any λ, µ > 0, there is a unique minimizer (vλ,µ, wλ,µ) to the problem eq. (48). Moreover,
for any positive constant K, the sets {vλ,µ : λ, µ ∈ (0,K)} and {wλ,µ : λ, µ ∈ (0,K)} are bounded.
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Proof. It is easy to check that the objective function in eq. (48) is 1-coercive and strictly convex, because
of the 1-coercivity and strict convexity of the quadratic terms. Therefore, there exists a unique minimizer
(vλ,µ, wλ,µ).

Setting w = x− v and v ∈ U(x) in eq. (48) and comparing it with eq. (45), we obtain

Sλ,µ(x) ≤ min
v∈U(x)

F1(v) +
λ

2
‖v‖22 + F ∗2 (x− v) = S(x) + λ min

v∈U(x)

1

2
‖v‖22.

Denote C := S(x) + minv∈U(x)
K
2 ‖v‖

2
2, where K is an arbitrary positive number as defined in the statement.

Then C is independent of λ and µ, and Sλ,µ(x) ≤ C when 0 < λ < K. From this inequality and the
definition of Sλ,µ(x) in eq. (48), we can derive a bound for x− vλ,µ − wλ,µ that reads

(49) ‖x− vλ,µ − wλ,µ‖22 ≤ 2µSλ,µ(x) ≤ 2Cµ≤ 2CK whenever µ < K.

Therefore, vλ,µ + wλ,µ is bounded by the constant ‖x‖2 +
√

2CK when we assume λ, µ ∈ (0,K).
Then, from the constraint given by the indicator function F ∗2 in the minimization problem eq. (48), we

have |||wλ,µ|||∗ ≤ 1, which implies the boundedness of wλ,µ because all the norms are equivalent in the
finite-dimensional space Rn. As a result, vλ,µ is also bounded whenever λ, µ ∈ (0,K). Then the conclusion
follows. �

Lemma 5.2. Let vλ,µ and wλ,µ be defined by eq. (48). Then, we have limλ,µ→0+ vλ,µ+wλ,µ = x. Any cluster
point of vλ,µ is also a cluster point of uλ,µ and vice versa. Moreover, any cluster point of uλ,µ and vλ,µ is
in U(x).

Proof. The convergence of vλ,µ + wλ,µ to x follows from eq. (49). Since uλ,µ = x − wλ,µ, any cluster point
of uλ,µ is also a cluster point of vλ,µ and vice versa. It remains to show that any cluster point of vλ,µ is in
U(x).

By the definition of (vλ,µ, wλ,µ), we have

(vλ,µ, wλ,µ) = arg min
v,w∈Rn

F1(v) +
λ

2
‖v‖22 + I{|||w|||∗ ≤ 1}+

1

2µ
‖x− v − w‖22

= arg min
v,w∈Rn

µF1(v) +
λµ

2
‖v‖22 + I{|||w|||∗ ≤ 1}+

1

2
‖x− v − w‖22

= arg max
v,w∈Rn

〈x, v〉+ 〈x,w〉 −
(

1

2
‖v + w‖22 + F ∗2 (w) + µF1(v) +

λµ

2
‖v‖22

)
,

(50)

where we first multiply the objective function by µ and then expand the quadratic term. Recall that any
indicator function is invariant under multiplication with a positive constant, hence we obtain I{|||w|||∗ ≤
1} = µI{|||w|||∗ ≤ 1} and the second equality in eq. (50) follows. The last maximization problem in eq. (50)
is in the form of Hopf formula. The corresponding multi-time HJ equation with time variables µ and ν = λµ
is given by

(51)


∂
∂µ S̃(y, z, µ, ν) + F1(∇yS̃(y, z, µ, ν)) = 0, y, z ∈ Rn;µ, ν > 0;
∂
∂ν S̃(y, z, µ, ν) + 1

2‖∇yS̃(y, z, µ, ν)‖22 = 0, y, z ∈ Rn;µ, ν > 0;

S̃(y, z, 0, 0) = J(y, z), y, z ∈ Rn.

Here, J is the l.s.c. convex function such that J∗(v, w) = 1
2‖v + w‖22 + F ∗2 (w). Although the assumption

(H1) is not satisfied, by eq. (50) and lemma 5.1, we know that the Hopf formula is well-defined in Rn×Rn×
[0,+∞)× [0,+∞). Moreover, the solution S̃ is the classical solution to the multi-time HJ equation eq. (51)
and its spatial gradient equals (vλ,µ, wλ,µ). To be specific, we have

(52) (vλ,µ, wλ,µ) = ∇y,zS̃(x, x, µ, λµ).

Then, we want to apply the results in proposition 3.4 (i) to prove that any cluster point of vλ,µ is in U(x).
In fact, under the basic assumptions that Hj , J ∈ Γ0(Rn) and the Hopf formula is well-defined, the proof of
proposition 3.4 (i) only requires the following statements:

(a) ∂J(x, x) is non-empty;
(b) the Hamiltonians are finite-valued;

(c) S̃ is differentiable;
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(d) the spatial gradient ∇y,zS̃(x, x, µ, λµ) is bounded with all limit points in ∂J(x, x).

The statements (b) and (c) are obvious satisfied. It is straightforward to check ∂J(x, x) 6= ∅. Specifically,
(v, w) ∈ ∂J(x, x) iff (x, x) ∈ ∂J∗(v, w). By simple computation, ∂J∗(v, w) = (v+w, v+w+ ∂F ∗2 (w)). Then
we obtain

(53) (v, w) ∈ ∂J(x, x) iff v + w = x and |||w|||∗ ≤ 1.

Such v and w always exist, hence ∂J(x, x) 6= ∅. As for the statement (d), the boundedness of∇y,zS̃(x, x, µ, λµ)
follows from eq. (52) and lemma 5.1. By eq. (49), vλ,µ +wλ,µ converges to x. Also, |||wλ,µ|||∗ ≤ 1 is given by
the constraint imposed by F ∗2 in the minimization problem eq. (48). Together with eq. (52), we can conclude

that any limit point of ∇y,zS̃(x, x, µ, λµ), denoted as (v, w), satisfies v + w = x and |||w|||∗ ≤ 1. Hence,
(v, w) ∈ ∂J(x, x) by eq. (53) and the statement (d) is proved.

Therefore, the conclusion of proposition 3.4 (i) still holds although the assumption (H1) is not satisfied.
As a result, for any cluster point (v̄, w̄) of (vλ,µ, wλ,µ),

(v̄, w̄) ∈ arg max
(v,w)∈∂J(x,x)

−F1(v) = arg min
v+w=x, |||w|||∗≤1

F1(v) = {(v, w) : v ∈ U(x), w = x− v},

where the last two equalities follow from eq. (53) and the definition of U(x) in eq. (45). In conclusion, any
cluster point v̄ of vλ,µ is in U(x). �

Lemma 5.3. For any λ, µ > 0, the function Sλ,µ defined in eq. (47) is differentiable. Let x ∈ Rn and define
pλ,µ := ∇Sλ,µ(x). Then for any positive constant K, the set of gradients {pλ,µ : λ, µ ∈ (0,K)} is bounded.
Moreover, as λ and µ approach zero, any cluster point of pλ,µ is in ∂S(x).

Proof. Rewriting the formula of Sλ,µ in eq. (48), we get

Sλ,µ =

(
F1 +

λ

2
‖ · ‖22

)
�F ∗2 �

(
1

2µ
‖ · ‖22

)
.

From straightforward computation, by proposition 2.7 and the definition of (vλ,µ, wλ,µ) in eq. (48), we obtain

∂Sλ,µ(x) = ∂

(
F1 +

λ

2
‖ · ‖22

)
(vλ,µ)

⋂
∂F ∗2 (wλ,µ)

⋂{
1

µ
(x− vλ,µ − wλ,µ)

}
= (∂F1(vλ,µ) + λvλ,µ)

⋂
∂F ∗2 (wλ,µ)

⋂{
1

µ
(x− vλ,µ − wλ,µ)

}
.

(54)

As a result, ∂Sλ,µ(x) contains at most one element. On the other hand, Sλ,µ is convex and finite-valued,
which implies the subdifferential of Sλ,µ is non-empty. Hence, Sλ,µ is differentiable and its gradient is given
by

(55) pλ,µ := ∇Sλ,µ(x) =
1

µ
(x− vλ,µ − wλ,µ).

Let K be an arbitrary positive number. Now, we prove that there exists a constant C such that ‖pλ,µ‖2 ≤
C whenever λ, µ ∈ (0,K). By eqs. (54) and (55), pλ,µ is in the set ∂F1(vλ,µ) + λvλ,µ. On the one hand,
the subdifferential of the norm F1 is always bounded. In other words, there exists a constant C1 such that
‖s‖2 ≤ C1 whenever s ∈ ∂F1(z) for some z ∈ Rn. Then, we deduce that the set ∂F1(vλ,µ) is bounded by C1.
On the other hand, according to lemma 5.1, there exists a constant C2 such that ‖vλ,µ‖2 ≤ C2 whenever
λ, µ ∈ (0,K). Therefore, {pλ,µ : λ, µ ∈ (0,K)} is bounded by C1 + C2K.

Let p be a cluster point of {pλ,µ}. By taking a subsequence we can assume λk and µk converge to zero
and pk := pλk,µk

converges to p. By lemma 5.1, vk := vλk,µk
is bounded, hence we can assume vk converges

to a point u by taking a subsequence. Then, wk := wλk,µk
converges to x− u by lemma 5.2. From eq. (54),

we have
pk ∈ (∂F1(vk) + λkvk) ∩ ∂F ∗2 (wk).

Since the subdifferential operators ∂F1 and ∂F ∗2 are continuous [66, Prop.XI.4.1.1], when k goes to infinity,
the above inclusion becomes

(56) p ∈ (∂F1(u) + 0 · u) ∩ ∂F ∗2 (x− u) = ∂F1(u) ∩ ∂F ∗2 (x− u).

On the other hand, by proposition 2.7 and the definition of S(x) and U(x) in eq. (45), we have

(57) ∂S(x) = ∂F1(ũ) ∩ ∂F ∗2 (x− ũ),
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for any ũ ∈ U(x). Moreover, by lemma 5.2, since u is a cluster point of vk, we can conclude that u ∈ U(x).
As a result, we can choose ũ = u in eq. (57) and compare it with eq. (56) to conclude that p ∈ ∂S(x). �

Proposition 5.1. Assume {λk} ⊂ (0,+∞) and {µk} ⊂ (0,+∞) converge to zero and limk→+∞
λk

µk
= c ∈

(0,+∞). Then, the minimizer uk := uλk,µk
and the gradient pk := ∇Sλk,µk

(x) converge to the l2 projections
of zero onto the sets U(x) and ∂S(x), respectively. To be specific,

lim
k→+∞

uk = arg min
u∈U(x)

‖u‖2, and lim
k→+∞

pk = arg min
p∈∂S(x)

‖p‖2.

Proof. Define H(·) := ‖ · ‖22/2. We will use the general symbol H to replace the quadratic function because
this proof holds for a general finite-valued, 1-coercive, differentiable and strictly convex function H. Note
that the limit of uk is the same as the limit of vk, hence we just need to prove the result for vk and pk.
Denote

(58) ū := arg min
u∈U(x)

H(u), and p̄ := arg min
p∈∂S(x)

H(p).

Since vk and pk are bounded, we can assume that vk converges to u and pk converges to p by taking a
subsequence. Then it suffices to prove u = ū, p = p̄.

By eq. (54) and eq. (55), we have

(59) pk ∈ (∂F1(vk) + λk∇H(vk))
⋂
∂F ∗2 (wk)

⋂{
∇H∗

(
x− vk − wk

µk

)}
.

By proposition 2.5, we deduce that wk ∈ ∂F2(pk) and x− vk −wk = µk∇H(pk). Together with eq. (59), we
obtain

pk − λk∇H(vk) ∈ ∂F1(vk);

x− µk∇H(pk)− vk = wk ∈ ∂F2(pk).
(60)

On the other hand, since ū and p̄ are the minimizer and momentum of the original problem eq. (45), we have

(61) p̄ ∈ ∂F1(ū) ∩ ∂F ∗2 (x− ū).

Combining eq. (60) and eq. (61), we obtain{
pk − λk∇H(vk) ∈ ∂F1(vk); and p̄ ∈ ∂F1(ū).

x− µk∇H(pk)− vk ∈ ∂F2(pk); and x− ū ∈ ∂F2(p̄).

Since the subdifferential operators ∂F1 and ∂F2 are monotone, by eq. (9), we obtain{
〈pk − λk∇H(vk)− p̄, vk − ū〉 ≥ 0;

〈x− µk∇H(pk)− vk − (x− ū), pk − p̄〉 ≥ 0.

We sum up the two inequalities to get

0 ≥ −〈pk − λk∇H(vk)− p̄, vk − ū〉 − 〈x− µk∇H(pk)− vk − (x− ū), pk − p̄〉
= λk〈∇H(vk), vk − ū〉+ µk〈∇H(pk), pk − p̄〉.

We divide the above inequality by µk and take the limit k → +∞ to obtain

(62) 0 ≥ c〈∇H(u), u− ū〉+ 〈∇H(p), p− p̄〉,

where the positive constant c is defined in the statement of this proposition to be c := limk→+∞ λk/µk.
From lemma 5.2 and lemma 5.3, we know that u ∈ U(x) and p ∈ ∂S(x), hence we have H(u) ≥ H(ū) and
H(p) ≥ H(p̄) by eq. (58). Taken together with eq. (62), we obtain

(63) 0 ≥ c(H(ū)−H(u)) +H(p̄)−H(p) ≥ c〈∇H(u), ū− u〉+ 〈∇H(p), p̄− p〉 ≥ 0.

As a result, the inequalities in eq. (63) become equalities, which implies H(u) = H(ū) and H(p) = H(p̄)
because c is positive by assumption. Therefore, we conclude that u = ū and p = p̄, since the minimizers in
eq. (62) are unique. �
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In practice, if a model has non-unique minimizers, then some existing optimization algorithms may fail to
converge, in which case one may consider this modification procedure and perform the optimization algorithm
to the modified problem to obtain a sequence converging to the selected minimizer. Here, for simplicity, we
only demonstrate the method on a specific optimization problem whose objective function contains two parts
including one norm and one constraint. In fact, this method works for more general cases, such as some other
decomposition models with more degenerate parts. Now, we give a numerical illustration for this proposed
regularization method on the celebrated TVL1 model [5, 6, 14, 42, 43, 52, 74, 75].

Example 1 Example 2 Example 3 Example 4

Original
Image

v
Component

Table 2. Numerical results of the TVL1 model with the proposed regularization method.

To be specific, the TVL1 model solves the following optimization problem

(64) UTV L1(x) := arg min
u∈Rn

α‖u‖TV + ‖x− u‖1,

where ‖ · ‖TV denotes the discrete total variation semi-norm defined in eq. (6). However, it is well-known
that this minimization problem may have non-unique minimizers [42, 50]. For instance, let Ω be the domain
of an image and Ω1 be any small rectangle in Ω such that 2|Ω1| < |Ω|. Let I be the set of indices whose
corresponding pixels are in Ω1. Let m1,m2 be the numbers of pixels on the two adjacent sides of the small
rectangle Ω1. In other words, there are m1m2 pixels in Ω1 and 2(m1 + m2) pixels on the boundary of Ω1.
Let a and b be two different real numbers in [0, 1] and set the discretized image x as follows

xi,j :=

{
a, if (i, j) ∈ I;

b, if (i, j) 6∈ I.

Then, the minimizers of the TVL1 model eq. (64) with α = (m1m2)/(2m1 +2m2) are not unique. Moreover,
we have

UTV L1(x) = {βu1 + (1− β)u2 : β ∈ [0, 1]},
where u1 and u2 are defined by

(u1)i,j :=

{
min{a, b}, if (i, j) ∈ I;

b, if (i, j) 6∈ I,
and (u2)i,j :=

{
max{a, b}, if (i, j) ∈ I;

b, if (i, j) 6∈ I.

By applying the proposed regularization method, a unique minimizer is selected in this set of minimizers.
To be specific, we solve the following problem

(65)
(
vTV L1
λ,µ (x), wTV L1

λ,µ (x)
)

:= arg min
v,w∈Rn

α‖v‖TV + ‖w‖1 +
λ

2
‖v‖22 +

1

2µ
‖x− v − w‖22.

Note that the above model is related to models incorporating infinal convolution of L1 and L2 fidelity terms,
which are used for mixed Gaussian and Salt & Pepper noise image restoration, as proposed in [30, 31] for
instance. Although this model is different from the example we give in eq. (45), one can adjust the arguments
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to prove the same statements for this model. In other words, when the two parameters λ and µ converge to
zero in a comparable rate, the v-component vTV L1

λ,µ (x) converges to the element ūTV L1(x) defined by

ūTV L1(x) := arg min
u∈UTV L1(x)

‖u‖2 = u1,

and the w-component converges to the residual x − u1. Numerically, we use a splitting method and the
algorithm in [39, 50, 67] to solve the minimizer in eq. (65) when λ = µ = 0.01. We test the regularization
method on the four images shown in the first row in table 2, and the corresponding v-components are shown
in the second row.

6. Conclusion

In this paper, we provide connections between multi-time Hamilton-Jacobi equations and some optimiza-
tion problems such as the decomposition models in image processing. To be specific, we show a representation
formula for the minimizers uj and clarify the connection between the minimizers uj and the spatial gradient
p of the minimal values. Moreover, we also study the variational behaviors of the momentum p and the
velocities

uj

tj
. It turns out that their limits solve two optimization problems which are dual to each other. In

addition, we provide a new perspective from convex analysis to prove the uniqueness of the convex solution
to the multi-time Hamilton-Jacobi equation, taking advantage of the convexity assumptions to overcome the
difficulty that the functions can take the value +∞. At last, we demonstrate a regularization method to
modify the decomposition models which have non-unique minimizers.

In this work, we consider the optimization problems which can be written in the form of Lax formula
eq. (15). Hence, we assume the observed data x is the summation of different components {uj}. We do not
consider non-additive perturbation models such as [16, 55, 87]. However, our analysis actually covers a wide
range of decomposition models with additive noise and the results can be easily extended to vector-valued
images such as color images.
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[18] M. Bardi and L. Evans, On Hopf’s formulas for solutions of Hamilton-Jacobi equations, Nonlinear
Analysis: Theory, Methods & Applications, 8 (1984), pp. 1373 – 1381.
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