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ABSTRACT. The game of best choice (also known as the secretary problem) is a model for sequential de-
cision making with a long history and many variations. The classical setup assumes that the sequence of
candidate rankings are uniformly distributed. Given a statistic on the symmetric group, one can instead
weight each permutation according to an exponential function in the statistic. We play the game of best
choice on the Ewens and Mallows distributions that are obtained in this way from the number of left-to-
right maxima and number of inversions in the permutation, respectively. For each of these, we give the
optimal strategy and probability of winning. Moreover, we introduce a general class of permutation sta-
tistics that always produces games of best choice whose optimal strategies are positional, which simplifies
their analysis considerably.

1. INTRODUCTION

The game of best choice (or secretary problem) is a model for sequential decision making, popularized
in a Scientific American column of Martin Gardner reprinted in [Gar95]. In the simplest variant, an
interviewer evaluates N candidates one by one. After each interview, the interviewer ranks the current
candidate against all of the candidates interviewed so far, and decides whether to accept the current
candidate (ending the game) or to reject the current candidate (in which case, they cannot be recalled
later). The goal of the game is to hire the best candidate out of N . It turns out that the optimal strategy
is to reject an initial set of candidates, of size N/e when N is large, and use them as a training set by
hiring the next candidate who is better than all of them (or the last candidate if no subsequent candidate
is better). The probability of hiring the best candidate out of N with this strategy approaches 1/e. This
result has been generalized in several directions by [GM66]; see also [Fer89] and [Fre83] for historical
surveys. Recently, researchers (e.g. [BIKR08]) have begun applying the best-choice framework to online
auctions where the “candidate rankings” are bids (that may arrive and expire at different times) and the
player must choose which bid to accept, ending the auction.

Most models assume that all N ! interview rank orders are equally likely, which we believe is mathe-
matically expedient but unrealistic. There may exist extrinsic trends in the candidate pool due to changes
in general economic conditions over the period that the player is conducting the N interviews. Also, as
the interviewer compares and ranks the candidates at each step, they are forced to find distinctions that
may simultaneously be used to hone the pool by filtering out irrelevant candidates. Overall, this intrinsic
learning about the candidate pool would tend to result in candidate ranks that are improving over time
rather than uniform.

Towards understanding such mechanisms, we are interested in how assumptions about the distribution
of interview rank orders change the optimal strategy and probability of success in the game of best choice.
While many authors have investigated a “full-information” version of the game in which the interviewer
observes values from a known distribution, only a few papers from the literature (e.g. [Pfe89, RF88])
have previously considered such nonuniform rank distributions for the secretary problem. Continuing
work from [FJ19] and [Jon19], we establish in this paper a class of weighted models that generalize the
classical game in a natural way.
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We model interview orderings as permutations. The permutation π of N is expressed in one-line
notation as [π1π2 · · ·πN ] where the πi consist of the elements 1, 2, . . . , N (so each element appears
exactly once). In the best choice game, πi is the rank of the ith candidate interviewed in reality, where
rank N is best and 1 is worst. What the interviewer sees at each step, however, are relative rankings.
For example, corresponding to the interview order π = [2516374], the interviewer sees the sequence of
permutations 1, 12, 231, 2314, 24153, 241536, 2516374 and must use only this information to determine
when to accept a candidate, ending the game. The left-to-right maxima of π consist of the elements πj
that are larger in value than all elements πi lying to the left. It is never optimal to accept a candidate that
is not a left-to-right maximum because N is always a left-to-right maximum in any permutation. The
inversions of π consist of pairs πi > πj where i < j.

Now, let c : SN → N be some statistic on the symmetric group of permutations of size N . Then
we can weight the permutation π ∈ SN by θc(π), where θ is a positive real number, to obtain a discrete
probability distribution on SN . Distributions of this form were introduced by Mallows where c(π)
represents some measure of distance from a fixed permutation, typically the identity. More recently,
these distributions have been used by researchers in combinatorics; see [CDE18, ABNP16, ABT03] for
example.

The weighted game of best choice selects a permutation π ∈ SN with probability proportional to
θc(π) and then proceeds just as in the classical model: relative rankings are presented to the interviewer
sequentially and the game is won if the best candidate is accepted. When θ = 1, we recover the uniform
distribution so our model includes the classical game as a specialization. Also, we remark that for a
given statistic, c(π), the probability of winning the weighted game of best choice under the non-uniform
distribution we defined is the same (up to rescaling by a constant involving θ and N ) as the expected
value of a random variable representing the non-uniform payoff θc(π) for the classical game played
on a uniform distribution. So the weight can be interpreted as determining the underlying probability
distribution (with uniform payoff) or as determining a payoff (with uniform probability).

In our first result, Theorem 3.8, we show that for a large class of statistics the optimal strategy in
the weighted game of best choice has the same form as that for the classical game: to reject an initial
set of candidates and accept the next left-to-right maximum thereafter. We refer to this as a positional
strategy because the strategy accepts or rejects a candidate (that is a left-to-right maximum) based solely
on its position, even though the full history of relative rankings containing more refined information is
available.

Next, we present an analysis of the weighted game of best choice for two specific statistics. The
first model uses the Ewens distribution where c(π) is the number of left-to-right maxima in π. Setting
θ > 1 is a concise way of obtaining candidate ranks that tend to be improving over time, consistent with
intrinsic learning. The second model is based on what has become known as the Mallows distribution
where c(π) is the number of inversions in π. Setting θ < 1 dampens the probability of (or imposes a cost
for) experiencing “disappointing pairs,” where an earlier candidate ranks higher than a later candidate.
In terms of permutation patterns, the Mallows model weights each permutation π by the number of
21-instances in π, which facilitates comparison with results in [FJ19] and [Jon19] for the 321-avoiding
model.

Once we know by Theorem 3.8 that some positional strategy is optimal for each value of θ, we can
define the strategy function κN (θ) : R>0 → {0, 1, · · · , N − 1} for a weighted game of best choice to
be the number of candidates that we initially reject in the optimal strategy for value θ. In Corollary 4.6,
we describe this function precisely for the Ewens model. As N becomes large, we find that the optimal
strategy depends on θ with the optimal number of initial rejections being k = N/e1/θ. Remarkably
though, the probability of success is always 1/e, independent of θ, neither better nor worse than the
classical case.
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The Mallows model is more subtle. When θ < 1 and N → ∞, the optimal strategy is to reject all
but the last j = max(−1/(ln θ), 1) candidates and select the next left-to-right maximum thereafter. This
“right-justified” strategy succeeds with probability jθj−1(1 − θ). When θ > 1, the optimal strategy
is “left-justified,” rejecting the first k candidates for some k depending on θ but independent of N .
Consequently, this shows that the classical model (as embedded in the Mallows model) is highly unstable!
Even an infinitesimal change away from θ = 1, where the asymptotic optimal strategy rejects about
37% of the candidates, results in an optimal strategy that asymptotically rejects either 0% or 100% of
the candidates. This shows that “policy advice” derived from the classical model (e.g. [SV99]) has
limited durability, a point which does not seem to have been appreciated in popular accounts of the
secretary problem. In the future, it would be interesting to find (or better understand obstructions to) best
choice models where the asymptotic optimal strategy varies continuously with parameterizations of the
underlying distribution.

We now outline the rest of the paper. In Section 2 we review the form of the optimal strategy for
games of best choice, and show in Section 3 that any sufficiently local statistic will generate a game with
an optimal strategy having the same form as the classical model. In Sections 4 and 5, we obtain precise
and asymptotic results for the Ewens model. The Mallows model is treated in Section 6.

2. STRATEGIES FOR THE WEIGHTED GAME OF BEST CHOICE

In this section, we give precise notation for the various strategies that can be employed in the weighted
game of best choice, and compute their probabilities of winning.

Fix a discrete probability distribution on the symmetric group SN where f(π) is the probability of
the permutation π ∈ SN . In this work, we are primarily interested in probability distributions obtained
from weighting by some statistic c : SN → N and a positive real number θ via

f(π) =
θc(π)∑

π∈SN θ
c(π)

.

For example, we may take c(π) to be the number of left-to-right maxima in π, obtaining the Ewens
distribution; if c(π) is the number of inversions then we obtain the Mallows distribution. When θ = 1,
we recover the complete uniform distribution.

Definition 2.1. Given a permutation π, define the ith prefix flattening, denoted π|[i], to be the unique
permutation in Si having the same relative order as the sequence of entries π1, π2, . . . , πi. For brevity,
we also refer to these permutations as prefixes of π.

The set of all possible prefixes from
⋃N
i=1 Si are partially ordered by containment, where a permu-

tation of smaller size occurs as the prefix flattening of a permutation of larger size. At the start of the
game, some π is chosen randomly with probability f(π). During each move, the ith prefix flattening
of π is presented to the interviewer, and they must use only this information to determine whether to
accept or reject candidate i. Therefore, we can represent any strategy (including the optimal strategy) as
a complete list of the prefixes that will immediately trigger an acceptance by the interviewer. We refer to
such a list as a strike set. If, during the game, a prefix flattening from π does not appear in the strike set
then the current candidate is rejected and the game continues.

Since the set of prefixes represent all possible positions in the game, and cover relations in the con-
tainment partial order represent “reject” moves by the interviewer, we can view this structure as a com-
binatorial game tree that we refer to as prefix tree. See Figure 1 for a small example. The prefix tree can
be solved to obtain the optimal strategy via backwards induction as we will see below.

Definition 2.2. Given p ∈
⋃N
i=1 Si, we say that π ∈ SN is p-prefixed if one of its prefix flattenings is

p. We say π ∈ SN is p-winnable if accepting the prefix flattening p would win the game with interview



4 BRANT JONES

1

6θ
θ4+6θ3+11θ2+6θ

12

6θ2

θ4+5θ3+6θ2

123

3θ3

θ4+3θ3

1234

θ4

θ4

1243 1342 2341

132

1324

θ3

θ3

1423 1432 2431

231

2314

θ3

θ3

2413 3412 3421

21

213

3θ2

θ3+3θ2

2134

θ3

θ3

2143 3142 3241

312

3124

θ2

θ2

4123 4132 4231

321

3214

θ2

θ2

4213 4312 4321

FIGURE 1. Prefix tree for N = 4 with strike probabilities for the Ewens distribution

order π. Explicitly for p = p1p2 · · · pk, we have that π is p-winnable if π is p-prefixed and πk = N . For
each prefix p, we define the strike probability S(p) to be

P[win the game π under the strategy “accept prefix p” | π is p-prefixed],

i.e. the probability of winning the game if the strike set contained p (and no other prefixes of p) and we
restricted the game to those interview rank orders π having p as a prefix.

Since each denominator of f(π) is just a normalizing constant, we may cancel it obtaining the formula

S(p) =

 ∑
p-winnable π∈SN

θc(π)

/ ∑
p-prefixed π∈SN

θc(π)

 .

Definition 2.3. We say that a prefix p is eligible if it ends in a left-to-right maximum or has size N . A
strike set is valid if it

(1) consists of prefixes that are eligible, and
(2) has no pair of elements such that one contains the other as a prefix, and
(3) every permutation in SN contains some element of the strike set as a prefix.

In Figure 1 we have illustrated the prefix tree with ineligible prefixes shown in gray and strike proba-
bilities given below each eligible prefix. It follows immediately from the definitions that any strategy for
the weighted game of best choice can be represented by a valid strike set.

Finally, we determine the optimal strategy in the form of a strike set.

Definition 2.4. Let S◦(p) be the open probability of a win if we play optimally, using any strike set
consisting of prefixes that contain (but are not equal to) p. Similarly, let S̄(p) be the closed probability
of a win if we play optimally, using any strike set consisting of prefixes that contain (and may include)
p. That is,

S◦(p) = P[win the game π under the best strategy available after rejecting p | π is p-prefixed],

S̄(p) = P

[
win the game π under the best strategy available after rejecting the
largest proper prefix of p

∣∣∣ π is p-prefixed
]
,

We define each of these to be conditional probabilities, restricting to those interview orders π having p
as a prefix, with standard denominator

∑
p-prefixed π∈SN θ

c(π).

Then, it follows directly from the definitions that

S̄(p) = max(S(p),S◦(p)).
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This formula can be used to recursively determine S̄(1), the globally optimal probability of a win. To
also keep track of the optimal strategy, let us say that a prefix p is positive if S(p) ≥ S◦(p) and negative
otherwise.

Example 2.5. Suppose N = 4 as illustrated in Figure 1 and θ = 1. Consider the prefix p = 123, so the
first three candidates have increasing ranks. The best we can do after rejecting them is to accept the last
candidate. This succeeds in winning the game with probability S◦(123) = 1/4. If, by contrast, we were
also allowed to accept the third candidate, then we should do so as our probability of winning becomes
S̄(123) = 3/4.

Theorem 2.6. With the setup given above, a globally optimal strike set for a weighted game of best
choice consists of the subset A of positive prefixes that are minimal when partially ordered by prefix-
containment. The probability of winning is

⊕
p∈A S(p) where we define a

b ⊕
c
d = a+c

b+d and use the
standard denominator for all strike probabilities.

Proof. We first explain how to determine all of the strike probabilities in the prefix tree using the formu-
las. The prefixes of size N are positive, which serves as a base case for induction on the size of a prefix.
Given the probabilities for prefixes of sizes greater than i, the S◦(p) probabilities for each prefix of size
i can be obtained as

⊕
p-prefixed q of size i+1 S̄(q), and then the S̄(p) probabilities can be determined from

the max formula. (The ⊕ operation represents the probability of winning on a disjoint union of sample
spaces.) This process is essentially a combinatorial version of “backwards induction.”

The positive prefixes p are locally optimal (for the collection of p-prefixed π ∈ SN ) by definition. If
a prefix p has no proper prefix flattenings that are positive, then p must be part of the globally optimal
strike set as well. �

Example 2.7. Consider the tree shown in Figure 1 for N = 4 at θ = 1. The strike probabilities S(p)
are illustrated in the figure. Since S(123) = 3/4 ≥ 1/4 = S◦(123), we have that 123 is a positive
prefix. Similarly, S(12) = 6/12 ≥ 5/12 = S◦(12) so 12 is also a positive prefix. On the other
hand, S(1) = 6/24 < 11/24 = S◦(1) so 1 is a negative prefix. The optimal strike set consists of
12 (contributing 6/12), 213 (contributing 3/4), 3124 (contributing 1/1), and 3214 (contributing 1/1),
together with the six prefixes of size 4 that aren’t already related to one of these, each contributing a
strike probability of 0/1. The optimal probability is the ⊕-sum of these contributions, namely 11/24.

3. PREFIX EQUIVARIANCE AND POSITIONAL STRATEGIES

While any game of best choice has an optimal strike strategy, the classical game (where f(π) = 1/N !
uniformly) is optimized by a positional strategy in which the player rejects the first k candidates and
accepts the next left-to-right maximum thereafter. In this section, we give a concrete explanation for this
and generalize it to a class of weighted games. The key idea is to use a fundamental bijection in order to
transport structure around the prefix tree.

Definition 3.1. Let T ◦(p) be the open subforest of prefixes containing (but not equal to) p, and let T̄ (p)
be the closed subtree of prefixes containing p, including p itself.

Definition 3.2. Suppose that p = [12 · · · k] and let σq be the permutation action that rearranges the
prefix p to give some other prefix q of size k. We can extend this to an action on T̄ (p), denoted σq · π,
by similarly permuting the first k entries and fixing the last m − k entries of π, where m is the size of
π ∈ T̄ (p). Then σq is a bijection from T̄ (p) to T̄ (q).

Definition 3.3. Suppose that the statistic c satisfies c(π)− c(σq · π) = c(12 · · · k)− c(q) for all prefixes
q and all π ∈ T̄ (12 · · · k). Here, k is the size of q. Then, we say that c is a prefix equivariant statistic.
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This condition essentially says that the change in the statistic c(π) that results from permuting the
first k entries of π is the same as the change that would result if we restricted c to k entries. That is,
the action of permuting a prefix does not create or destroy any structure being counted by c, beyond the
entries of the prefix. Hence, statistics that count sufficiently local phenomena in permutations will be
prefix equivariant.

Example 3.4. It is straightforward to check that c(π) = # left-to-right maxima in π and c(π) = # in-
versions in π are each prefix equivariant statistics. Explicitly, if π = π1π2 · · ·πk|πk+1πk+2 · · ·πm has
the form of an increasing block of size k followed by an arbitrary block, then we may observe that re-
arranging the first block may change the number of left-to-right maxima within that block, but it cannot
change the left-to-right maximal status of any entry in the second block. Similarly, rearranging the first
block may change the number of inversions within that block, but it cannot add or remove an inversion
pair where the smaller entry lies in the second block. On the other hand, c(π) = #321-instances in π (i.e.
triples of entries that are decreasing) is not prefix equivariant because, for example, c(2468|1357) = 0
yet c(4268|1357) = 1 even though c(2468) = 0 = c(4268).

The following results are illustrated in Figure 1.

Theorem 3.5. Suppose c(π) is a prefix equivariant statistic. For all prefixes q, the strike probabilities
are preserved under the restricted bijection σq : T ◦(12 · · · k) → T ◦(q), where k is the size of q. If q is
eligible then these probabilities are also preserved under σq : T̄ (12 · · · k)→ T̄ (q).

Consequently, for p ∈ T ◦(12 · · · k) (and additionally for p = [12 · · · k] if q is eligible), we have that

• the S◦(p) probabilities are preserved by σq, and
• the S̄(p) probabilities are preserved by σq, and
• if p and q are eligible, we have p is positive if and only if σq · p is positive.

Proof. Fix q to be any prefix of size k, and let p ∈ T̄ (12 · · · k) with sizem. Then, S(p) =

∑
p-winnable π∈SN

θc(π)∑
p-prefixed π∈SN

θc(π)
.

Since the weights satisfy c(π)− c(σq · π) = c(12 · · · k)− c(q) for all π ∈ T̄ (12 · · · k), we have

S(σq · p) =

∑
(σq ·p)-winnable π∈SN θ

c(π)∑
(σq ·p)-prefixed π∈SN θ

c(π)
=

∑
p-winnable π∈SN θ

c(σq ·π)∑
p-prefixed π∈SN θ

c(σq ·π)

which is θc(q)−c(12···k)

θc(q)−c(12···k)
S(p) unless q happens to be ineligible and p = [12 · · · k] in which case σq · p = q

and so S(q) = 0.
The probability S◦(p) is an ⊕-sum of strike probabilities, say S◦(p) = S(r1)⊕S(r2)⊕ · · · ⊕ S(rn),

for some prefixes ri ∈
⋃N
j=m+1 Sj . Then,

S◦(σq · p) = S(σq · r1)⊕ S(σq · r2)⊕ · · · ⊕ S(σq · rn)

=
θc(q)−c(12···k)

θc(q)−c(12···k)
S(r1)⊕ θc(q)−c(12···k)

θc(q)−c(12···k)
S(r2)⊕ · · · ⊕ θc(q)−c(12···k)

θc(q)−c(12···k)
S(rn)

which is θc(q)−c(12···k)

θc(q)−c(12···k)
S◦(p).

The other consequences now follow from applying the recursive formulas. �

Thus, it suffices to restrict our attention to subtrees lying under increasing prefixes. To avoid clutter in
the remainder of the results, we abuse notation to let S(p),S◦(p), and S̄(p) each refer to their numerators
over the standard denominator

∑
p-prefixed π∈SN θ

c(π). To ensure that this is valid, we avow that all of our
equalities will occur between quantities for which their implied denominators agree.
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Theorem 3.6. For the increasing prefixes p = [12 · · · (k − 1)] and q = [12 · · · k], we have

S◦(p) = S̄(q) + S◦(q)
∑

nontrivial permutations
r of q having p as a prefix

θc(r)−c(q), and

S(p) = S(q)
∑

nontrivial permutations
r of q having p as a prefix

θc(r)−c(q).

Proof. There are k children of p in the prefix tree; they are distinguished by their value in the last position.
The prefix q itself is an eligible child so S̄(q) is the optimal probability for the subtree rooted at q. The
subtrees under each of the other k − 1 children of p are isomorphic to T ◦(q) via the bijection σr where
r is a nontrivial permutation of q having p as a prefix. For each π ∈ SN that is won in S◦(q), we have
θc(σr·π) = θc(π)θc(r)−c(q) by prefix equivariance, and the first result follows.

The second result is similar. First, observe that none of the q-prefixed π ∈ SN are p-winnable. Each
of the p-winnable permutations arises by applying one of the σr to a q-winnable permutation π. This has
the effect of placing the value N into position k− 1, as desired. Prefix equivariance produces a factor of
θc(r)−c(q) for each choice of σr. �

Corollary 3.7. For any increasing prefixes p = [12 · · · (k − 1)] and q = [12 · · · k], we have that if q is
negative then p is negative.

Proof. Suppose q is negative so S◦(q) > S(q). Then, by Theorem 3.6 we have

S◦(p) = S̄(q) + S◦(q)
∑

nontrivial permutations
r of q having p as a prefix

θc(r)−c(q)

> S(q)

1 +
∑

nontrivial permutations
r of q having p as a prefix

θc(r)−c(q)

 = S(q) + S(p) ≥ S(p),

so p is negative as well. �

Theorem 3.8. For a weighted game of best choice defined using a prefix equivariant statistic, the optimal
strategy is positional.

Proof. By Corollary 3.7, there exists some k such that all of the increasing prefixes with size less or
equal to k are negative, and all of the increasing prefixes with size greater than k are positive. Applying
the σq isomorphisms, the same k also serves to separate positive and negative eligible prefixes in the rest
of the tree by Theorem 3.5. Hence, the optimal strike strategy coincides with the positional strategy that
rejects the first k candidates and accepts the next left-to-right maximum thereafter. �

Remark 3.9. Knowing that the optimal strategy in a game of best choice is positional simplifies the
analysis considerably. Rather than recursively traversing the entire prefix tree to find the optimal strike
set, which could conceivably be any antichain, we know that the optimum must be one of theN strategies
obtained by rejecting k = 0, 1, 2, . . ., or N − 1 candidates and accepting the next maximum. Then, one
can write an equation to determine k.

Remark 3.10. It is interesting to compare the proof above at θ = 1 with arguments from the literature
on the classical secretary problem. While numerous papers either assume or claim that the optimal
strategy is positional, few of them actually provide or reference a complete proof. As far as we can tell,
there are essentially two elementary arguments for the result. One appears as part of a reminiscence
in [Kad94] that develops a careful proof using convexity, along different lines than ours, but has not
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been widely cited (although Ron Graham is acknowledged in the postscript). The other is a conditioning
argument, apparently originating in [Pal58] (unpublished) and very loosely summarized by [GM66].
Once symmetry (as in Theorem 3.5) is established, this argument compares the conditional probabilities
for winning if we accept the current candidate (“stay”) versus if we consider eligible candidates later in
the game (“go”). The argument claims that the “stay” probabilities are increasing, which can be verified
directly by counting. The argument also claims that the “go” probabilities are decreasing, but counting
is recursive in this case (corresponding to our Theorem 3.6) and is complicated by the fact that “stay”
and “go” are not complementary probabilities.

4. PRECISE RESULTS FOR EWENS DISTRIBUTION

When we weight by c(π) = # left-to-right maxima in π, we obtain the Ewens distribution. In this
section, we work out the optimal best choice strategy for all N .

Definition 4.1. Let {N}! be the polynomial in θ defined by

{N}! = θ(θ + 1)(θ + 2) · · · (θ + (N − 1)).

The following result justifies our “θ-analogue” notation.

Lemma 4.2. We have
{N}! =

∑
π∈SN

θ#left-to-right maxima in π.

Hence, the coefficients of θ in {N}! are Stirling numbers (of the type used to count permutations by
number of cycles).

Proof. This is straightforward to prove using induction since we may extend each permutation π ofN−1
by placing one of the values 1, 2, . . . , N − 1 in the last position and arranging the complementary values
according to π (this does not create a new left-to-right maximum so contributes (N − 1){N − 1}! to
{N}!) or by simply appending the valueN to the last position of π (which does create a new left-to-right
maximum, so contributes θ{N − 1}! to {N}!).

The equivalence between the number of cycles and number of left-to-right maxima (attributed to
Rényi) is accomplished by writing the cycle notation for a permutation using the maximum element in a
cycle as the starting point and then arranging the cycles with increasing maximum elements. �

We are primarily interested in

W (N, k) =
∑

k-winnable π∈SN

θ#left-to-right maxima in π.

Here, we say that π is k-winnable if it would be won by the positional strategy that rejects the first k
candidates and accepts the next left-to-right maximum thereafter. Some examples of these polynomials
are given in Figure 2. Our next result provides a recursive description for them.

Theorem 4.3. We have

W (N, k) = (N − 1)W (N − 1, k) +
(N − 2)!

(k − 1)!
θ{k}!

with initial conditions W (1, 0) = θ and W (N,N) = 0.

Proof. We have two cases for the k-winnable permutations π ∈ SN .
• If the last position contains one of the values 1, 2, . . . , N − 1, then it is not a left-to-right maxi-

mum and we may view the complementary values as some k-winnable π̃ ∈ SN−1. Hence, these
contribute (N − 1)W (N − 1, k) to W (N, k).
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N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

1 θ
2 θ θ2

3 2θ 3θ2 θ3 + θ2

4 6θ 11θ2 5θ3 + 5θ2 θ4 + 3θ3 + 2θ2

5 24θ 50θ2 26θ3 + 26θ2 7θ4 + 21θ3 + 14θ2 θ5 + 6θ4 + 11θ3 + 6θ2

6 120θ 274θ2 154θ3 + 154θ2 47θ4 + 141θ3 + 94θ2 9θ5 + 54θ4 + 99θ3 + 54θ2 θ6 + 10θ5 + 35θ4 + 50θ3 + 24θ2

FIGURE 2. Some W (N, k) polynomials

• If the last position contains N then it is a left-to-right maximum and the value N − 1 must lie in
one of the first k positions in order for π to be k-winnable. We can choose the rest of the values
to place among the first k positions in

(
N−2
k−1

)
ways and then permute them, keeping track of the

number of left-to-right maxima with {k}!. For each of these, we may also then permute the rest
of the entries in positions k + 1, k + 2, . . . , N − 1 in (N − k − 1)! ways. All together, these
contribute

θ1

(
N − 2

k − 1

)
{k}!(N − k − 1)! =

(N − 2)!

(k − 1)!
θ{k}!

to W (N, k).

The initial conditions are immediate. �

Now, let ∆W (N, k) = W (N, k + 1) − W (N, k). The zeros of these polynomials will determine
the intervals of θ that produce games for which a given positional strategy is optimal. We begin by
translating the recurrence.

Corollary 4.4. We have

∆W (N, k) = (N − 1)∆W (N − 1, k) + θ2 (N − 2)!

k!
{k}!

with initial conditions ∆W (N,N − 2) = θ(θ − (N − 1)){N − 2}!.

Proof. By Theorem 4.3, we have

∆W (N, k) = W (N, k + 1)−W (N, k) = (N − 1) (W (N − 1, k + 1)−W (N − 1, k))

+θ(N − 2)!

(
{k + 1}!

k!
− {k}!

(k − 1)!

)
= (N − 1)∆W (N − 1, k) + θ

(N − 2)!

k!
{k}! ((θ + k)− k)

yielding the result.
The initial conditions follow by subtractingW (N,N−2) = (2N−3)θ{N−2}! fromW (N,N−1) =

θ{N − 1}!. �

It turns out that we can solve this recurrence.

Theorem 4.5. We have

∆W (N, k) = c1(N, k)

((
N−1∑
i=k+1

1

i

)
θ − 1

)
θ{k}!
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for c1(N, k) =
∏N−1
j=k+1 j which is constant in θ. Hence, ∆W has only real roots. Moreover, the only

positive root of ∆W (N, k) occurs at

θ = 1
/( N−1∑

i=k+1

1

i

)
.

Proof. We fix k and argue by induction on N . When N = k − 2, we apply the initial condition in
Corollary 4.4 with c1(N,N − 2) = (N − 1).

Now suppose the result holds for N − 1. Then, by Corollary 4.4

∆W (N, k) = (N − 1)

(
c1

((
N−2∑
i=k+1

1

i

)
θ − 1

)
θ{k}!

)
+ θ2 (N − 2)!

k!
{k}!

=

(
(N − 1)c1

((
N−2∑
i=k+1

1

i

)
θ − 1

)
+ θ

(N − 2)!

k!

)
θ{k}!

= (N − 1)c1


(N − 2)(N − 3) · · · (k + 1)

(N − 1)c1
+

∑
k+1≤i≤N−2

∏
k+1≤j≤N−2

j 6=i

j

(N − 2)(N − 3) · · · (k + 1)

 θ − 1

 θ{k}!.

Now, if we let c1 = (N − 2)(N − 3) · · · (k + 1), we may rewrite the linear term as (N − 2)(N − 3) · · · (k + 1)

(N − 1)(N − 2)(N − 3) · · · (k + 1)
+

(N − 1)
∑

k+1≤i≤N−2

∏
k+1≤j≤N−2

j 6=i

j

(N − 1)(N − 2)(N − 3) · · · (k + 1)

 θ−1 =

(
N−1∑
i=k+1

1

i

)
θ−1

obtaining (N − 1)c1

((∑N−1
i=k+1

1
i

)
θ − 1

)
θ{k}! as desired. �

Corollary 4.6. We have

κN (θ) =


0 if 0 < θ ≤

(∑N−1
i=1

1
i

)−1

k if
(∑N−1

i=k
1
i

)−1
< θ ≤

(∑N−1
i=k+1

1
i

)−1

N − 1 if θ > N − 1.

Proof. Since, for fixed N , the positive roots from Theorem 4.5 are unique and increasing in k, we find
that the strategy function κN (θ) is increasing as well. �

This completely determines the optimal strategy precisely for all N . Some of the cutoff values for θ
are illustrated in Figure 3. We have highlighted the optimal range including θ = 1 corresponding to the
classical uniform case.

5. ASYMPTOTIC RESULTS FOR EWENS DISTRIBUTION

To facilitate a comparison with the classical case, we can also solve the Ewens model asymptotically.
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N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

2 1∗
3 2/3 2∗
4 6/11 6/5∗ 3
5 12/25 12/13 12/7∗ 4
6 60/137 60/77 60/47∗ 20/9 5
7 20/49 20/29 20/19∗ 60/37 30/11 6
8 140/363 140/223 140/153 420/319∗ 210/107 42/13 7
9 280/761 280/481 280/341 840/743∗ 840/533 168/73 56/15 8
10 2520/7129 2520/4609 2520/3349 2520/2509∗ 2520/1879 504/275 504/191 72/17 9
11 2520/7381 2520/4861 2520/3601 2520/2761 2520/2131∗ 2520/1627 2520/1207 360/121 90/19 10

FIGURE 3. Some critical roots (
∑N−1

i=k+1(1/i))−1

5.1. Optimal strategy. For fixed θ and large N , the optimal k is given by solving

θ−1 =
N−1∑
i=k

1

i
=

N−1∑
i=k

1

i/(N − 1)

1

N − 1

for k. The latter is a Riemann sum approximation for the integral
∫ 1
x

1
t dt where t = i

N−1 and x = k
N−1 .

Therefore, as N →∞ we obtain

θ−1 =

∫ 1

x

1

t
dt = − lnx

which we can solve for x = 1/e1/θ. Thus, the optimal number of initial rejections is approximately
k = N/e1/θ for N sufficiently large. A plot is shown in Figure 4.

FIGURE 4. Proportion of initial rejections in the Ewens distribution for θ > 1

5.2. Optimal probability of success. Reviewing the previous section, we find that we can solveW (N, k)
explicitly. Each W (N, k) polynomial is just a constant in θ (that depends on N and k) times the polyno-
mial θ{k}!.

Theorem 5.1. For all N and k ≥ 1, we have

W (N, k) = θ{k}! (N − 1)!

(k − 1)!

N−1∑
i=k

1

i
.

When k = 0, we have W (N, 0) = (N − 1)!θ.
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Proof. This is straightforward to prove by induction from Theorem 4.3. �

Since the optimal value of k satisfies θ =
(∑N−1

i=k
1
i

)−1
we can cancel it and the optimal probability

W simplifies to
W (N, k)

{N}!
=
{k}!

(k − 1)!

(N − 1)!

{N}!
.

When θ is an integer, this is just a ratio of binomial coefficients, but for arbitrary positive real θ we
use gamma functions (see e.g. [OLBC10]). By iterating the recurrence Γ(z + 1) = zΓ(z) we obtain
{N}! = Γ(θ+N)

Γ(θ) . Hence,

{k}!
(k − 1)!

(N − 1)!

{N}!
=

Γ(θ + k)

Γ(θ)(k − 1)!

Γ(θ)(N − 1)!

Γ(θ +N)
=

Γ(θ + k)

Γ(k)

Γ(N)

Γ(θ +N)
.

Using limx→∞
Γ(x+θ)
Γ(x)xθ

= 1, we get

lim
N→∞

Γ(θ + k)

Γ(k)

Γ(N)

Γ(θ +N)
= lim

N→∞

kθ

N θ
= lim

N→∞

(
k

N

)θ
=

(
1

e1/θ

)θ
= 1/e.

Remarkably, this probability of success is independent of θ.

6. RESULTS FOR MALLOWS DISTRIBUTION

We now turn to the Mallows distribution defined by c(π) = #inversions in π. We begin by working
out the standard “θ-analogue” for this statistic.

Definition 6.1. Let [N ] be the polynomial in θ defined by 1 + θ + θ2 + · · · + θN−1. Let [N ]! be the
polynomial in θ defined by

[N ]! = [N ][N − 1] · · · [1].

Lemma 6.2. We have
[N ]! =

∑
π∈SN

θ#inversions in π.

Proof. This is straightforward to prove using induction since we may extend each permutation π ofN−1
by placing one of the values i = 1, 2, . . . , N in the last position and arranging the complementary values
according to π. This creates N − i new inversions, so contributes [N ][N − 1]! to [N ]!. �

Let us redefine
W (N, k) =

∑
k-winnable π∈SN

θ#inversions in π

for the Mallows distribution. Our next result provides a recursive description for these polynomials.

Theorem 6.3. We have

W (N, k) = θ[N − 1]W (N − 1, k) + θN−k−1[k][N − 2]!

with initial conditions W (1, 0) = 1 and W (N,N) = 0.

Proof. We have two cases for the k-winnable permutations π ∈ SN .
• If the last position contains one of the values i = 1, 2, . . . , N − 1, then it contributes N − i to

the inversion count and we may view the complementary values as some k-winnable π̃ ∈ SN−1.
Hence, these contribute θ[N − 1]W (N − 1, k) to W (N, k).
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FIGURE 5. Success probability in the Mallows distribution for θ < 1

• If the last position containsN then the valueN−1 must lie in one of the first k positions in order
for π to be k-winnable. These choices for the position of value N −1 contribute θN−k−1[k]. For
each of these, we choose a permutation of size N − 2 to fill in the remaining positions, keeping
track of the inversions with [N − 2]!.

The initial conditions are immediate. �

We can solve this recurrence.

Corollary 6.4. We have

W (N, k) = θN−k−1[N − 1]!
N−1∑
i=k

[k]

[i]

for k > 0 and W (N, 0) = θN−1[N − 1]!.

Proof. This is straightforward to prove by induction on N from Theorem 6.3. �

For this distribution, the precise transition probabilities for each N seem to be inaccessible, being
roots of polynomials (with complex solutions) that use many repeated root extractions as opposed to
the rational numbers we obtained in the Ewens case. However, we obtain some interesting asymptotic
results. Figure 5 shows a plot of the optimal success probability for various values of θ < 1 based on the
following theorem.

Theorem 6.5. If θ < 1 then the optimal strategy as N becomes large is to reject the first N − j
candidates where j = max(−1/(ln θ), 1), and select the next left-to-right maximum thereafter. This
strategy succeeds with probability jθj−1(1− θ). If 1/e < θ < 1, this probability of success simplifies to
e−1

(
θ−1
θ ln θ

)
.

Proof. Rewriting the probability W (N, k)/[N ]! from Corollary 6.4 gives

θN−k−1 [k]

[N ]

N−1∑
i=k

1

[i]
= (1− θ)θN−k−1 1− θk

1− θN
N−1∑
i=k

1

1− θi

=
θN − θN−1 − θN−k + θN−k−1

1− θN
N−1∑
i=k

1

1− θi
.

For fixed θ ∈ (0, 1), as N becomes large, the fraction tends to θN−k−1(1 − θ) and the terms in the
series become close to 1 so the probability reduces to θN−k−1(1− θ)(N − k). This sequence converges
to a positive value if and only if the N − k sequence converges to a finite value.
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FIGURE 6. The success probability for θ > 1 in the cases k = 1, k = 2, and k = 3.
The maximum occurs at (1.55, 0.433939) for k = 1, (1.25, 0.400125) for k = 2, and
(1.16, 0.389029) for k = 3.

So we let j = N − k obtaining limN→∞W (N, k)/[N ]! = jθj−1(1− θ). Differentiating with respect
to j and setting equal to zero, we solve to obtain the optimal j = −1/(ln θ). For θ < 1/e, we have j < 1
but we cannot reject more than N − 1 candidates so max appears in the expression. �

The case where θ > 1 is less interesting from our intrinsic learning perspective but we sketch the
behavior of these models for mathematical completeness. Taken together, the results also prove that the
asymptotically optimal strategy does not vary continuously with the parameter θ.

Corollary 6.6. Fix θ > 1 and an integer k ≥ 1. Then,

lim
N→∞

W (N, k)

[N ]!
= (θ − 1)

θk − 1

θk+1

∞∑
i=k

1

θi − 1
.

In particular, we approach a single asymptotic distribution as N →∞ so the optimal strategy will be to
reject some number of initial candidates (not depending on N ) and select the next left-to-right maximum
thereafter.

Proof. Once again, consider

W (N, k)

[N ]!
=
θN − θN−1 − θN−k + θN−k−1

θN − 1

N−1∑
i=k

1

θi − 1
.

For fixed θ > 1, asN becomes large, the fraction tends to 1−θ−1−θ−k+θ−(k+1) = (1−θ−1)(1−θ−k)
and the series converges (e.g. by the integral test).

Thus, every k-positional strategy has some nonzero probability in the limit asN →∞. As k becomes
large, the series tends to zero, being approximately

∑∞
i=k(1/θ)

i = θ−k/(1 − θ−1). Therefore, the
optimal asymptotic probability will occur for some fixed k (depending on θ). �

Figure 6 shows some plots (obtained numerically) of the optimal success probabilities for various
values of θ and k. For any particular value of θ > 1, one can explicitly compute the probabilities in
Corollary 6.6 and find the optimal strategy k. For example, it appears that k = 1 is optimal for all
θ > 1.285 (approximately). Although the series always converges, finding a closed form for its limiting
value involves the “q-digamma function” which prevents us from obtaining a simple description of the
optimal strategy in general. It also appears that the maximal probability of success for these models
occurs when θ ≈ 1.55 (for which k = 1 is the optimal strategy). It would be interesting to determine
this maximum more precisely.
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