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Abstract

This paper introduces a system of stochastic differential equations
(SDE) of mean-field type that models pedestrian motion. The system
lets the pedestrians spend time at, and move along, walls, by means of
sticky boundaries and boundary diffusion. As an alternative to Neumann-
type boundary conditions, sticky boundaries and boundary diffusion have
a ’smoothing’ effect on pedestrian motion. When these effects are active,
the pedestrian paths are semimartingales with first-variation part abso-
lutely continuous with respect to the Lebesgue measure dt, rather than
an increasing processes (which in general induces a measure singular with
respect to dt) as is the case under Neumann boundary conditions. We
show that the proposed mean-field model for pedestrian motion admits a
unique weak solution and that it is possible to control the system in the
weak sense, using a Pontryagin-type maximum principle. We also relate
the mean-field type control problem to the social cost minimization in an
interacting particle system. We study the novel model features numer-
ically and we confirm empirical findings on pedestrian crowd motion in
congested corridors.
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1 Introduction

Models for pedestrian motion in confined domains must consider interaction
with solid obstacles such as pillars and walls. The pedestrian response to a
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restriction of movement has been included into crowd models either as bound-
ary conditions or repulsive forces. Up until today, the Neumann condition and
its variants (e.g. no-flux) have been especially popular among the boundary
conditions. The Neumann condition suffers from a drawback related to its mi-
croscopic (pathwise) interpretation. A Neumann condition on the crowd density
corresponds to pedestrian paths reflecting in the boundary. In reality, pedes-
trians do not bounce off walls in the manner of classical Newtonian particles,
but their movement is slowed down by the impact and a positive amount of
time is needed to choose a new direction of motion. It is natural to think that
whenever a pedestrian is forced (or decides) to make contact with a wall, she
stays there for some time. During this time, she can move and interact with
other pedestrians, before re-entering the interior of the domain.

1.1 Mathematical modeling of pedestrian-wall interaction

Today there is more than one conventional approach to the mathematical model-
ing of pedestrian motion. This section aims to summarize how they incorporate
the interaction between pedestrians and walls.

Microscopic force-based models, among which the social force model has
gained the most attention, describes pedestrians as Newton-like particles. From
the initial work [30] and onward, the influence a wall has on the pedestrian is
modelled as a repulsive force. The shape of the corresponding potential has
been studied experimentally, for example in [40]. The cellular automata is
another widely used microscopic approach to pedestrian crowd modeling. Walls
are modeled as cells to which pedestrians cannot transition, already the original
work [37] considers this viewpoint. In the continuum limits of cellular automata,
as for example in [14, 13], boundary conditions are often set to no-flux conditions
of the same type as (1) below.

The focus of macroscopic models is the global pedestrian density, either in a
stationary or a dynamic regime. Inspired by fluid dynamics [33] treats the crowd
as a ’thinking fluid’ that moves at maximum speed towards a target location
while taking environmental factors into account, such as the congestion of the
crowd. In this category of models, boundary conditions at impenetrable walls
are most often implemented as Neumann conditions for the pedestrian density.
The pathwise interpretation of a Neumann boundary condition is instantaneous
reflection. A nonlocal projection of pedestrian velocity in normal and tangential
direction of the boundary respectively is suggested in [6] and implemented in
[7], allowing for nonlocal interaction with boundaries.

Mean-field games and mean-field type control/games are macroscopic mod-
els of rational pedestrians with the ability to anticipate crowd movement, and
adapt accordingly. These models can capture competition between individuals
as well as crowd/sub-crowd cooperation. In the mean-field approach to pedes-
trian crowd modeling pedestrian-to-pedestrian interaction is assumed to be sym-
metric and weak, thus plausibly replaced by an interaction with a mean field
(typically a functional of the pedestrian density). One of the most attractive
features of the mean-field approach is that it connects the macroscopic (pedes-
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trian density) and the microscopic (pedestrian path) point-of-view, typically
through results on the near-optimality/equilibrium of mean-field optimal con-
trols/equilibria. The connection permits us to infer individual pedestrian behav-
ior from crowd density simulations, and vice versa. In what follows, the crowd
density is denoted by m. In [38], the density is subjected to n(x) · ∇m(t, x) = 0
at walls, where n(x) is the outward normal at x. Under this constraint, the
normal velocity of the pedestrian is zero at any wall. Taking conservation of
probability mass into account, [10] derives the following boundary condition

− n(x) · (∇m(t, x)−G(m)v(t, x)) = 0, (1)

where G(m)v is a general form of the pedestrian velocity. The constraint (1)
represents reflection at the boundary since in the corresponding microscopic
interpretation pedestrians make a classical Newtonian bounce whenever they
hit the boundary. The same type of constraint is used in [2]. The case of several
interacting populations in a bounded domain with reflecting boundaries has
been studied in the stationary and dynamic case [17, 1, 5]. In these papers, the
crowd density at walls is constrained by

n(x) · (∇m(t, x) +m(t, x)∂pH(x,∇u)) = 0. (2)

The constraint is a reflection and the term −∂pH(x,∇u) is the velocity of pedes-
trians that use the mean-field equilibrium strategy.

1.2 Sticky reflected stochastic differential equations

The sticky reflected Brownian motion was discovered by Feller [23, 24, 25]. He
studied the infinitesimal generator of strong Markov processes on [0,∞) that
behave like Brownian motion in (0,∞), and showed that it is possible for the
process to be ’sticky’ on the boundary, i.e. to sojourn at 0. So ’sticky reflection’
was appended to the list of boundary conditions for diffusions, which already
included instantaneous reflection, absorption, and the elastic Robin condition.
Wentzell [44] extended the result to more general domains.

Itô and McKean [34] constructed sample paths to the one-dimensional sticky
reflected Brownian motion

dXt = 2µ1{Xt=0}dt+ 1{Xt>0}dWt, µ > 0, (3)

whose infinitesimal generator is the one studied by Feller. Skorokhod conjec-
tured that the sticky reflected Brownian motion has no strong solution. A proof
that (3) has a unique weak solution can be found in for example [46, IV.7].

Chitashvili published the technical report [15] in 1989 claiming a proof of
Skorokhod’s conjecture. Around that time, the process was studied by several
authors, e.g. [29, 26, 3, 47], to name a few. Warren [45] provided a proof of
Skorokhod’s conjecture in 1997 and in 2014 Engelbert and Peskir [22] published
a proof useful for further generalizations. The fact that the system has no
strong solution has consequences for how optimal control of the system can be
approached, as we will see in this paper.
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Building on [22], interacting particle systems of sticky reflected Brownian
motions are considered in [27]. Interaction is introduced via a Girsanov trans-
formation. See [27, Sect. 3.2] for the construction. Under assumptions on the
’shape’ of the interaction and integrability of the Girsanov kernel, the interact-
ing system is well-defined. Since the process no longer behaves like a Brownian
motion in the interior of the domain, it is now referred to as a sticky reflected
SDE. The boundary behavior is shown to be sticky in the sense that the process
spends a (dt-)positive time on the boundary.

Sticky reflected SDEs with boundary diffusion are considered in [28]. The
paths defined by such a system are allowed to move on the (sufficiently smooth)
boundary ∂D of some bounded domain D ⊂ Rd. Under smoothness conditions
on ∂D, the authors show that this type of SDE has a unique weak solution.
Furthermore, an interacting system is studied, where interaction is introduced
via a Girsanov transformation.

1.3 Synopsis

In this paper, the sticky reflected SDE with boundary diffusion of [28] is pro-
posed as a model for pedestrian crowd motion in confined domains. We begin by
considering a (non-transformed) sticky reflected SDE with boundary diffusion
on D, a non-empty bounded subset of Rn with C2-smooth boundary Γ := ∂D
(see Section 2.2, below) and outward normal n,

dXt = (1D(Xt) + 1Γ(Xt)π(Xt)) dBt − 1Γ(Xt)
1

2

( 1

γ
+ κ(Xt)

)
n(Xt)dt, (4)

where π(Xt) is the projection onto the tangent space of Γ at Xt, κ(Xt) is
the mean curvature of Γ at Xt, and γ is a positive constant representing the
stickiness of Γ, cf. Remark 1 in Section 3 below. All relevant technical details
can be found in Section 2. Equation (4) admits a unique weak solution P, but
no strong solution. To control an equation that admits only a weak solution
is to control a probability measure on (Ω,F), under which the state process
X· := {Xt}t∈[0,T ] is interpreted as the coordinate process Xt(ω) = ω(t). If all
the admissible distributions of X· are absolutely continuous with respect the
reference measure P, then Girsanov’s theorem can be used to implement the
control. This corresponds to for the case when the drift of (4) is controlled. In
the controlled diffusion case, admissible measures are all singular with P and
with one another (for different controls), and the control problem is in fact a
robustness problem over all admissible measures which leads to the so-called
second order backward SDE framework [42]. In this paper we treat the case
with controlled drift, the controlled diffusion case will be treated elsewhere. A
mean-field dependent drift β is introduced into the coordinate process through
the Girsanov transformation

dPu

dP

∣∣∣
Ft

= Lut := Et
(∫ ·

0

β (t,X·,Pu(t), ut)
∗
dBt

)
, (5)
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where Pu(t) := Pu ◦ X−1
t is the marginal distribution of Xt under Pu, β∗ de-

notes the transpose of β, and E is the Doléans-Dade exponential defined for a
continuous local martingale M as

Et(M) := exp

(
Mt −

1

2
〈M〉t

)
. (6)

The path of a typical pedestrian in the interacting crowd is then (under Pu)
described by

dXt = 1D(Xt)
(
β (t,X·,Pu(t), ut) dt+ dBut

)
+ 1Γ(Xt)

(
π(Xt)β (t,X·,Pu(t), ut)−

n(Xt)

2γ

)
dt

+ 1Γ(Xt)dB
Γ,u
t ,

dBΓ,u
t = π(Xt)dB

u
t −

1

2
κ(Xt)n(Xt)dt,

(7)

where Bu is a Pu-Brownian motion. We provide a proof of the existence of the
controlled probability measure Pu based on a fixed-point argument involving
the total variation distance (cf. [20]).

Pedestrians are assumed to be cooperating and controlled by a rational cen-
tral planner. The central planner represents an authority that gives directions
to the crowd through signs, mobile devices, or security personnel, and the crowd
follows the instructions. This setup has been used to study evacuation in for ex-
ample [11, 12, 21]. For a discussion on the goals, the degrees of cooperation, and
the information structure in a pedestrian crowd, see [18]. The central planner’s
goal is to minimize the finite-horizon cost functional

J(u) := Eu

[∫ T

0

f (t,X·,Pu(t), ut) dt+ g (XT ,Pu(T ))

]
, (8)

where f is the instantaneous cost and g is the terminal cost (see Section 4 for
conditions on the functions f and g). The minimization of (8) subject to (7) is
equivalent to the following mean-field type control problem, stated in the strong
sense in the original probability space with measure P, inf

u∈U
E

[∫ T

0

Lut f (t,X·,Pu(t), ut) dt+ LuT g (XT ,Pu(T ))

]
,

s.t. dLut = Lut β (t,X·,Pu(t), ut)
∗
dBt, L

u
0 = 1.

(9)

The validity of (9) is justified in Section 4 below. Problem (9) is nowadays a
standard mean-field type control problem and a stochastic maximum principle
yielding necessary conditions for an optimal control can be found in [9]. Solving
the general problem (9) with a Pontryagin-type maximum principle poses some
practical difficulties, the main one being the necessity of a second order adjoint
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process. However, most difficulties can be tackled by imposing assumptions
plausible for the application in pedestrian crowd motion. With the aim to
replicate the pedestrian behavior observed in the empirical studies [49] and [50],
we consider here a special case of (9) where ut takes values in a convex set and
Pu(t) is replaced by Eu[r(Xt)], where the function r : Rd → Rd can be different
for each of the coefficients involved.

1.4 Paper contribution and outline

The main contribution of this paper is a new approach to boundary conditions
in pedestrian crowd modeling. Sticky reflected SDEs of mean-field type with
boundary diffusion is proposed as an alternative to reflected SDEs of mean-field
type to model pedestrian paths in optimal-control based models. Sticky bound-
aries and boundary diffusion allow the pedestrian to spend time and move along
the boundary (walls, pillars, etc.), in contrast to reflected SDE-based models
where pedestrians are immediately reflected. Existence and uniqueness of the
mean-field type version of the sticky reflected SDE with boundary diffusion
is treated. The model can be optimally controlled (in the weak sense) and a
Pontryagin-type stochastic maximum principle is applied to derive necessary
optimality conditions. Furthermore, the mean-field type control problem has
a microscopic interpretation in the form of a system of interacting sticky re-
flected SDEs with boundary diffusion. The new features of sticky boundaries
and boundary diffusion yield more flexibility when modeling pedestrian behav-
ior at boundaries. A scenario of unidirectional pedestrian flow in a long narrow
corridor is studied numerically to highlight these novel characteristics and to
replicate experimental findings as a first step in model validation.

The rest of the paper is organized as follows. Section 2 defines notation and
summarizes relevant background theory. Section 3 introduces sticky reflected
SDEs of mean-field type with boundary diffusion. Conditions under which the
equation has a unique weak solution are presented. In Section 4 the finite horizon
optimal control of the state equation introduced in Section 3 is considered.
In the uncontrolled case, the convergence on an interacting (non-mean-field)
particle system to the sticky reflected SDE of mean-field type is proved. Finally,
Section 5 presents analytic examples and numerical results based on the particle
system approximation concerning unidirectional flow in a long narrow corridor.

2 Preliminaries

The domain D is a non-empty bounded subset of Rd with C2-smooth boundary
Γ := ∂D. The closure of D is denoted D̄. The Euclidean norm is denoted | · |. A
finite time horizon T > 0 is fixed throughout the paper. The path of a stochastic
process is denoted X· := {Xt}t∈[0,T ], and C is a generic positive constant.
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2.1 The coordinate process and probability metrics

Let (X , d) be a metric space. The set of Borel probability measures on X is
denoted by P(X ). By Pp(X ) ⊂ P(X ) we denote the set of all µ ∈ P(X ) such
that (‖µ‖p)p :=

∫
d(y0, y)pµ(dy) <∞ for an arbitrary y0 ∈ X .

Let Ω := C([0, T ];Rd) be endowed with the metric |ω|T := supt∈[0,T ] |ω(t)|
for ω ∈ Ω. Denote by F the Borel σ-field over Ω. Given t ∈ [0, T ] and ω ∈ Ω,
put Xt(ω) = ω(t) and denote by F0

t := σ(Xs; s ≤ t) the filtration generated by
X·. X· is the so-called coordinate process. For any P ∈ P(Ω) (the set of Borel
probability measures on Ω) we denote by FP := (FPt ; t ∈ [0, T ]) the completion
of F0 := (F0

t ; t ∈ [0, T ]) with the P -null sets of Ω.
Let µ, ν ∈ P(Rd) and let B(Rd) be the Borel σ-algebra on Rd. The total

variation metric on (Rd,B(Rd)) is

dTV (µ, ν) := 2 sup
A∈B(Rd)

|µ(A)− ν(A)| . (10)

On the filtration FP , where P ∈ P(Ω), the total variation metric between
m,m′ ∈ P(Ω) is

Dt(m,m
′) := 2 sup

A∈FP
t

|m(A)−m′(A)| , 0 ≤ t ≤ T, , (11)

and satisfies Ds(m,m
′) ≤ Dt(m,m

′) for 0 ≤ s ≤ t. Consider the coordinate
process X·, then for m,m′ ∈ P(Ω),

dTV
(
m ◦X−1

t ,m′ ◦X−1
t

)
≤ Dt(m,m

′), 0 ≤ t ≤ T. (12)

Endowed with the metric DT , P(Ω) is a complete metric space. The total
variation metric is connected to the Kullback-Leibler divergence through the
Csiszár-Kullback-Pinsker inequality,

D2
t (m,m

′) ≤ 2Em [log (dm/dm′)] , (13)

where Em denotes expectation with respect to m.

2.2 Boundary diffusion

In this subsection we introduce the boundary diffusion BΓ and review the nec-
essary parts of the background theory presented in [28, Sect. 2].

Definition 1. Γ is Lipschitz continuous (resp. Ck-smooth) if for every x ∈ Γ
there exists a neighborhood V ⊂ Rd of x such that Γ ∩ V is the graph of a
Lipschitz continuous (resp. Ck-smooth) function and D ∩ V is located on one
side of the graph, i.e., there exists new orthogonal coordinates (y1, . . . , yd) given
by an orthogonal map T , a reference point z ∈ Rd−1, real numbers r, h > 0, and
a Lipschitz continuous (resp. Ck-smooth) function ϕ : Rd−1 → R such that

(i) V = {y ∈ Rd : |y−d − z| < r, |yd − ϕ(y−d)| < h}
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(ii) D ∩ V = {y ∈ V : −h < yd − ϕ(y−d) < 0}

iii) Γ ∩ V = {y ∈ V : yd = ϕ(y−d)}

Definition 2. For y ∈ V , let

ñ(y) :=
(−∇ϕ(y−d), 1)√
|∇ϕ(y−d)|2 + 1

. (14)

Let x ∈ Γ and T ∈ Rd×d be the orthogonal transformation from Definition 1.
Then the outward normal vector at x is defined by n(x) := T−1ñ(Tx).

Definition 3. Let x ∈ Γ and π(x) := E − n(x)n(x)∗ ∈ Rd×d, where E is the
identity matrix. π(x) is the orthogonal projection on the tangent space at x.

Note that for z ∈ Rd, π(x)z = z − (n(x), z)n(x).

Definition 4. Let f ∈ C1(D̄) and x ∈ Γ. Whenever Γ is sufficiently smooth
at x, ∇Γf(x) := π(x)∇f(x) and if f ∈ C2(D̄), ∆Γf(x) := Tr(∇2

Γf(x)). If n is
differentiable at x the mean curvature of Γ at x is

κ(x) := divΓn(x) = (π(x)∇) · n(x). (15)

In [28] it is noted that whenever Γ is C2-smooth,

(π∇)
∗
π = −κn. (16)

A Brownian motion BΓ
· on a smooth boundary Γ is a Γ-valued stochastic process

generated by 1
2∆Γ. This is in analogy with the standard Brownian motion on

Rd, in the sense that BΓ
· solves the martingale problem for ( 1

2∆Γ, C
∞(Γ)). A

solution to the Stratonovich SDE

dBΓ
t = π(BΓ

t ) ◦ dBt, (17)

where B· is a standard Brownian motion on Rd, is a Brownian motion on Γ [32,
Chap. 3, Sect. 2]. By the Itô-Stratonovich transformation rule, the Brownian
motion on Γ solves

dBΓ
t = −1

2
κ(BΓ

t )n(BΓ
t )dt+ π(BΓ

t )dBt. (18)

3 Sticky reflected SDEs of mean-field type with
boundary diffusion

In this section we provide conditions for the existence and uniqueness of a weak
solution to the sticky reflected SDE of mean-field type with boundary diffusion.
Consider the reflected sticky SDE with boundary diffusion,

dXt = −1Γ(Xt)
1

2

(
1

γ
+ κ(Xt)

)
n(Xt)dt

+ (1D(Xt) + 1Γ(Xt)π(Xt)) dBt,

X0 = x0 ∈ D̄,

(19)

8



which from now on will be written in short-hand notation as

dXt = a(Xt)dt+ σ(Xt)dBt, (20)

where a : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×d are bounded functions
over [0, T ]× D̄, defined as

a(x) := −1Γ(x)
1

2

(
1

γ
+ κ(x)

)
n(x), σ(x) := 1D(x) + 1Γ(x)π(x). (21)

By [28, Thm 3.9 & 3.17], (19) has a unique weak solution, i.e. there is a
unique probability measure P on (Ω,F) that solves the corresponding martingale
problem (cf. [35, Thm 18.7]), and the solution X· is C([0, T ]; D̄)-valued P-a.s.
The result [28, Thm 3.9] relies on some conditions, lets verify them for the sake
of completeness. The weight functions α and β, introduced on [28, pp. 6], are
in (19) set to be everywhere constant and positive such that α/β = 1/γ (cf.
Remark 1, below). Condition 3.12 of [28] therefore holds: ∂D is C2 and the
constant positive weight functions have the required regularity. This justifies
the use of [28, Thm 3.9], and no further conditions are required for [28, Thm
3.17]. To simplify notation, from now on through out the rest of this paper let F
denote the completion of F0 with the P-null sets of Ω, i.e. F = (Ft; t ≥ 0) := FP.

Remark 1. The coordinate process is composed of three essential parts:

• Interior diffusion 1D(Xt)dBt;

• Boundary diffusion 1Γ(Xt)(π(Xt)dBt − 1
2 (κn)(Xt)dt) = 1Γ(Xt)dB

Γ
t ;

• Normal sticky reflection −1Γ(Xt)
1

2γn(Xt)dt.

The constant γ is connected to the level of stickiness of the boundary Γ. It
is related to the invariant distribution of the coordinate processes’ Rd-valued
time marginal. Let λ and s denote the Lebesgue measure on Rd and the surface
measure on Γ, respectively. Consider the measure ρ := 1Dαλ+1Γα

′s, α, α′ ∈ R.
By choosing α = ᾱ/λ(D) and α′ = (1 − ᾱ)/s(Γ), ᾱ ∈ [0, 1], ρ becomes a
probability measure on Rd with support in D̄ and ρ is in fact the invariant
distribution of (19) whenever

1

γ
=

ᾱ

(1− ᾱ)

s(Γ)

λ(D)
. (22)

Hence ᾱ → 1 as γ → 0 and the invariant distribution of (19) concentrates on
the interior D. But as γ →∞, it concentrates on the boundary Γ. We say that
the more probability mass that ρ locates on Γ, the stickier Γ is.

Next, we introduce mean-field interactions and a control process in (19)
through a Girsanov transformation.

Definition 5. Let the set of control values U be a subset of Rd. The set of
admissible controls is

U := {u : [0, T ]× Ω→ U : u F-prog. measurable} . (23)
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Let Q(t) := Q ◦ X−1
t denote the t-marginal distribution of the coordinate

process under Q ∈ P(Ω). Let β be a measurable function from [0, T ] × Ω ×
P(Rd)× U into Rd such that

Assumption 1. For every Q ∈ P(Ω) and u ∈ U , (β(t,X·,Q(t), ut))t∈[0,T ]

is progressively measurable with respect to F, the completion of the filtration
generated by the coordinate process with the P-null sets of Ω.

Assumption 2. For every t ∈ [0, T ], ω ∈ Ω, u ∈ U , and µ ∈ P(Rd),

|β(t, ω, µ, u)| ≤ C
(

1 + |ω|T +

∫
Rd

|y|µ(dy)

)
. (24)

Assumption 3. For every t ∈ [0, T ], ω ∈ Ω, u ∈ U , and µ, µ′ ∈ P(Rd),

|β (t, ω, µ, u)− β (t, ω, µ′, u)| ≤ CdTV (µ, µ′). (25)

Given Q ∈ P(Ω) and u ∈ U , let

Lu,Qt := Et
(∫ ·

0

β (s,X·,Q(s), us) dBs

)
, (26)

where E is the Doléans-Dade exponential (cf. (6)).

Lemma 1. The positive measure Pu,Q defined by dPu,Q = Lu,Qt dP on Ft for
all t ∈ [0, T ], is well-defined and is a probability measure on Ω. Moreover,
Pu,Q ∈ Pp(Ω) for all p ∈ [1,∞) and under Pu,Q the coordinate process satisfies

Xt = x0 +

∫ t

0

(
σ(Xs)β (s,X·,Q(s), us) + a(Xs)

)
ds+

∫ t

0

σ(Xs)dB
Q
s , (27)

where BQ is a standard Pu,Q-Brownian motion.

Proof. Assume that ϕ· is a process such that Pϕ, defined by dPϕ = Lϕt dP on
Ft where Lϕt := Et(

∫ ·
0
ϕsdBs), is a probability measure on Ω. By Girsanov’s

theorem, the coordinate process under Pϕ satisfies

dXt = (σ(Xt)ϕt + a(Xt)) dt+ σ(Xt)dB
ϕ
t , (28)

where Bϕ· is a Pϕ-Brownian motion. C2-smoothness of the boundary Γ grants
a bounded orthogonal projection on Γ’s tangent space and a bounded mean
curvature of Γ. By the Burkholder-Davis-Gundy inequality we have for 1 ≤ p <
∞

Eϕ [|X|pT ] ≤ Eϕ
[
C

(
|X0|p +

∫ T

0

|σ(Xs)ϕs|pds+

∫ T

0

|a(Xs)|pds

+

∣∣∣∣∫ ·
0

σ(Xs)dB
ϕ
s

∣∣∣∣p
T

)]

≤ C

(
1 +

∫ T

0

Eϕ[|ϕs|p]ds

)
,

(29)
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where Eϕ denotes expectation taken under Pϕ. By Assumption 3 it holds for
every t ∈ [0, T ], ω ∈ Ω, µ ∈ P(Rd), and u ∈ U that

|β (t, ω, µ, u)| ≤ C
(
dTV (µ,P(t)) + |β (t, ω,P(t), u)|

)
. (30)

In view of (30), Assumption 2 and 3, and the fact that the total variation
between two probability measures is uniformly bounded, we have for all t ∈
[0, T ],

|β(t,X·,Q(t), ut)| ≤ C (dTV (Q(t),P(t)) + |β(t,X·,P(t), ut)|)

≤ C
(

1 + |X|T +

∫
Rd

|y|P(t)(dy)

)
≤ C

(
sup{|y| : y ∈ D̄}

)
=: C̄ <∞, P-a.s.

(31)

The third inequality of (31) holds P-a.s. since under P, X· ∈ C
(
[0, T ]; D̄

)
almost

surely. We note that (31) implies that Novikov’s condition is satisfied,

E

[
exp

(
1

2

∫ T

0

sup
s∈[0,T ]

|β(s,X·,Q(s), us)|2dt

)]
≤ E

[
exp

(
TC̄2

2

)]
<∞, (32)

where E denotes expectation with respect to P. Hence the Doléans-Dade expo-
nential defined in (26) is an (Ft,P)-martingale and Pu,Q is indeed a probability
measure, i.e. Pu,Q ∈ P(Ω). To show that Pu,Q ∈ Pp(Ω) for any p ∈ [1,∞), we
simply note that

Eu,Q [|X|pT ]

= Eu,Q
[
|X|pT

(
1{X·∈C([0,T ];D̄)} + 1{X· /∈C([0,T ];D̄)}

)]
= E

[
Lu,QT |X|

p
T

(
1{X·∈C([0,T ];D̄)} + 1{X· /∈C([0,T ];D̄)}

)]
≤ sup{|y|p : y ∈ D̄}E

[
Lu,QT 1{X·∈C([0,T ];D̄)}

]
= sup{|y|p : y ∈ D̄}.

(33)

Finally, by Girsanov’s theorem the coordinate process under Pu,Q satisfies (27).

For a given u ∈ U , consider the map

Φu : P(Ω) 3 Q 7→ Pu,Q ∈ P(Ω), (34)

such that dPu,Q = Lu,Qt dP on Ft, where Lu,Q is given by (26).

Proposition 1. The map Φu is well-defined and admits a unique fixed point for
all u ∈ U . Moreover, for every p ∈ [1,∞) the fixed point, denoted Pu, belongs
to Pp(Ω). In particular,

Eu [|X|pT ] ≤ sup
y∈D̄
|y|p, (35)

where Eu denotes expectation with respect to Pu.
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Proof. By Lemma 1, the mapping is well defined. We first show the contraction
property of the map Φu in the complete metric space P(Ω), endowed with the
total variation distance DT . The proof is an adaptation of the proof of [16,

Thm. 8]. For each t ∈ [0, T ], let βQ
t := β(t,X·,Q(t), ut). Given Q, Q̃ ∈ P(Ω),

the Csiszár-Kullback-Pinsker inequality (13) and the fact that
∫ ·

0
(dBs − βQ

s ds)

is a martingale under Φu(Q) = Pu,Q yields

D2
T

(
Φu(Q),Φu(Q̃)

)
≤ 2Eu,Q

[
log
(
Lu,QT /Lu,Q̃T

)]
= 2Eu,Q

[∫ T

0

(
βQ
s − βQ̃

s

)
dBs −

1

2

∫ T

0

(
βQ
s

)2

−
(
βQ̃
s

)2

ds

]

= 2Eu,Q

[∫ T

0

(
βQ
s − βQ̃

s

)
βQ
s −

1

2

(
βQ
s

)2

+
1

2

(
βQ̃
s

)2

ds

]

=

∫ T

0

Eu,Q
[(
βQ
s − βQ̃

s

)2
]
ds

≤ C
∫ T

0

d2
TV

(
Q(s), Q̃(s)

)
ds ≤ C

∫ T

0

D2
s

(
Q, Q̃

)
ds.

(36)

Iterating the inequality, we obtain for every N ∈ N,

D2
T

(
ΦNu (Q),ΦNu (Q̃)

)
≤ CNTN

N !
D2
T

(
Q, Q̃

)
, (37)

where ΦNu denotes the N -fold composition of Φu. Hence ΦNu is a contraction for
N large enough, thus admitting a unique fixed point, which is also the unique
fixed point for Φu. Under Pu, the fixed point of Φu, the coordinate process
satisfies

dXt = (σ(Xt)β (t,X·,Pu(t), ut) + a(Xt)) dt+ σ(Xt)dB
u
t , (38)

where Bu is a Pu-Brownian motion. Following the calculations from Lemma 1
that lead to (33), we get the estimate

(‖Pu‖p)
p = Eu [|X|pT ] ≤ sup

y∈D̄
|y|p, (39)

where p ∈ [1,∞).

From now on, we will denote the Brownian motion corresponding to Pu
by Bu. To summarize this section, we have proved the following result under
Assumption 1-3.

Theorem 1. Given u ∈ U , there exists a unique weak solution to the sticky
reflected SDE of mean-field type with boundary diffusion

dXt = (σ(Xt)β (t,X·,Pu(t), ut) + a(Xt)) dt+ σ(Xt)dB
u
t . (40)

Under Pu the t-marginal distribution of X· is Pu(t) for t ∈ [0, T ] and X· is
almost surely C([0, T ]; D̄)-valued. Furthermore, Pu ∈ Pp(Ω).
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Proof. We are left to show that Pu
(
X· ∈ C([0, T ]; D̄)

)
= 1, all other statements

of the theorem have been proved. Let LuT := ET (
∫ ·

0
β(s,X·,Pu(s), us)dBs).

Since P(X· /∈ C([0, T ]; D̄) = 0,

Pu
(
X· /∈ C([0, T ]; D̄)

)
= E

[
LuT 1{X· /∈C([0,T ];D̄)}

]
= 0, (41)

which proves that X· is Pu-almost surely C([0, T ]; D̄)-valued.

Remark 2. The drift component β is projected in the tangential direction of
the boundary by σ whenever the process is at the boundary (cf. (19)). The drift
component a is not effected by the transformation. From a modeling perspec-
tive, the interpretation is that the pedestrian’s tangential movement is partially
controllable but also influenced by other pedestrians through the mean field. The
normal direction is an uncontrolled delayed reflection.

4 Mean-field type optimal control

Let Eu denote expectation taken under Pu. To apply the stochastic maximum
principle of [8], we make the assumption that the mean-field type Girsanov
kernel β depends linearly on Pu.

Assumption 4. Let β̃ : [0, T ] × Ω × Rd × U → Rd and let rβ : Rd → Rd, and
assume that

β (t,X·,Pu(t), ut) = β̃ (t,X·, E
u [rβ(Xt)] , ut) . (42)

With some abuse of notation, we will continue to denote the Girsanov kernel
by β, although from now this refers to β̃. Let f : [0, T ] × Ω × Rd × U → R,
g : Rd × Rd → R, rf : Rd → Rd, and rg : Rd → Rd.
Assumption 5. For every u ∈ U , the process (f(t,X·, E

u[rf (Xt)], ut))t is pro-
gressively measurable with respect to F and (x, y) 7→ g(x, y) is Borel measurable.

Consider the finite horizon mean-field type cost functional J : U → R,

J(u) := Eu

[∫ T

0

f (t,X·, E
u [rf (Xt)] , ut) dt+ g (XT , E

u [rg(XT )])

]
. (43)

The control problem considered in this section is the minimization of J with
respect to u ∈ U under the constraint that the coordinate process for any given
u satisfies (40). The integration in (43) is with respect to a measure absolutely
continuous with respect to P. Changing measure, we get

J(u) = E

[ ∫ T

0

Lut f (t,X·, E[Lut rf (Xt)], ut) dt

+ LuT g (XT , E[LuT rg(XT )])

]
,

(44)

where E is the expectation taken under the original probability measure P and
Lu the controlled likelihood process, given by the SDE of mean-field type

dLut = Lut β (t,X·, E [Lut rβ(Xt)] , ut)
∗
dBt, Lu0 = 1. (45)
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4.1 Necessary optimality conditions

After making one final assumption about the regularity of β, f , and g (Assump-
tion 6 below), the stochastic maximum principle yields necessary conditions on
an optimal control for the minimization of (44) subject to (45). Assumption 4
and 6 are stated in their current form for the sake of technical, not conceptual,
simplicity and may be relaxed.

Assumption 6. The functions (t, x, y, u) 7→ (f, β)(t, x, y, u) and (x, y) 7→ g(x, y)
are twice continuously differentiable with respect to y. Moreover, β, f and g and
all their derivatives up to second order with respect to y are continuous in (y, u),
and bounded.

The next result is a slight generalization of [8, Thm 2.1]. The paper [8] treats
an optimal control problem of mean-field type with deterministic coefficients.
The approach of [8], which goes back to [41], extends without any further condi-
tions to include random coefficients, as shown in [31]. Moreover, in our case the
coefficients are not bounded functions, they are linear in the likelihood. This
seems to violate the conditions of [8, Thm 2.1] but an application of Grönwall’s
lemma yields E[(Lut )p] ≤ exp(C(p)t) for all t ∈ [0, T ] and p ≥ 2, where C(p) is a
bounded constant, and the estimates of [8] can be recovered after an application
of Hölder’s inequality.

Theorem 2. Assume that (û, Lû) solves the optimal control problem (44)-(45).
Then there are two pairs of F-adapted processes, (p, q) and (P,Q), that satisfy
the first and second order adjoint equations

dpt = −
(
qtβ

û
t + E

[
qtL

û
t∇yβût

]
rβ(Xt)

− f ût − E
[
Lût∇yf ût

]
rf (Xt)

)
dt+ qtdBt,

pT = −gûT − E
[
LûT∇ygûT

]
rg(XT ),

(46)


dPt = −

( ∣∣βût + E
[
Lût∇yβût

]
rβ(Xt)

∣∣2 Pt
+ 2Qt

(
βût + E

[
Lût∇yβût

]
rβ(Xt)

) )
dt+QtdBt,

PT = 0,

(47)

where ∇y denotes differentiation with respect to the Rd-valued argument. Fur-
thermore, (p, q) and (P,Q) satisfy

E

[
sup
t∈[0,T ]

|pt|2 +

∫ T

0

|qt|2dt

]
<∞, E

[
sup
t∈[0,T ]

|Pt|2 +

∫ T

0

|Qt|2dt

]
<∞, (48)

and for every u ∈ U and a.e. t ∈ [0, T ], it holds P-a.s. that

H
(
Lût , u, pt, qt

)
−H

(
Lût , ût, pt, qt

)
+

1

2
[δ (Lβ) (t)]

T
Pt [δ (Lβ) (t)] ≤ 0, (49)
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where H(Lut , ut, pt, qt):=Lut β
u
t qt−Lut fut and

δ(Lβ)(t) := Lût
(
β
(
t,X·, E[Lût rβ(Xt)], u

)
− βût

)
. (50)

The following local form of the optimality condition (49) can be found in
e.g. [48, pp. 120], and will be useful for computation in Section 5. If U is a
convex set and H is differentiable with respect to u, then (49) implies

(u− ût)∗∇uH
(
Lût , ût, pt, qt

)
≤ 0, ∀ u ∈ U, a.e. t ∈ [0, T ], P-a.s. (51)

Remark 3. Sufficient conditions for weak optimal controls will seldom be sat-
isfied since they typically require the Hamiltonian to be convex (or concave) in
at least state (Lut ) and control (ut). This is false even for the simplest ver-
sion of our problem. Assume that β(t, ω, y, u) = u and f = 0, then (`, u) 7→
H(`, u, p, q) = `uq, which is neither convex nor concave. However, necessary
optimality conditions can be useful as we will see in Section 5.

4.2 Microscopic interpretation of the mean-field type con-
trol problem

In this section, we give a microscopic interpretation of the mean-field type con-
trol problem (9) in the form of an interacting particle system (collaboratively)
minimizing the social cost. Our means will be the propagation of chaos result
[39, Thm. 2.6]. We will work under all the assumptions stated so far, but we
will use the notation from Section 3 for β, f , and g.

We will fix a closed-loop control and we will assume that all the interacting
particles are using this control. This assumption is made in order to extract
the approximating property of any solution to the mean-field optimal control
problem that is on closed-loop form. In Section 5, we will see examples of such
controls.

We introduce an interacting system of sticky reflected SDEs with boundary
diffusion. Each equation has an initial value with distribution λ, where λ is a
nonatomic measure and λ(D̄) = 1. See Remark 10 in [39] for the necessity of
the random initial condition.

Consider the measure P⊗N on (ΩN ,B(ΩN )), the weak solution to a system
of N ∈ N i.i.d. sticky reflected Brownian motions with boundary diffusion

dXN,i
t = a(XN,i

t )dt+ σ(XN,i
t )dBit, XN,i

0 = ξN,i, i = 1, . . . , N, (52)

where ξ1, . . . , ξN are i.i.d. random variables with law λ which has support only
on D̄, and such that B1, . . . , BN are independent F-Wiener processes. The func-
tions a and σ are defined as in (20). Given controls ui ∈ U (now F-progressively

measurable), i = 1, 2, . . . , define the likelihood process LN,iu,t as the solution to

dLN,iu,t = LN,iu,t β
(
t,XN,i

· , µNt , u
i
t

)∗
dBit, LN,iu,0 = 1, i = 1, . . . , N, (53)
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where µN is the empirical measure of the coordinate processes,

µN :=
1

N

N∑
i=1

δXi
·
∈ P(Ω).

Then LNu,t :=
∏N
i=1 L

N,i
u,t is the Radon-Nikodym derivative for the Girsanov-type

change of measure from P⊗N to PN,u, under which the coordinate processes
satisfy dXN,i

t =
(
a(XN,i

t ) + σ(XN,i
t )β

(
t,XN,i

· , µNt , u
i
t

))
dt+ σ(XN,i

t )dB̃it,

XN,i
0 = ξN,i, i = 1, . . . , N,

(54)

where B̃1, . . . are PN,u-Brownian motions and u := (u1, . . . , uN ). We note that
PN,u is the law of a system of interacting diffusion processes. The social cost of
the system (54) is defined as

1

N

N∑
i=1

J i(u) :=
1

N

N∑
i=1

EN,u

[∫ T

0

f(t,XN,i
· , µNt , u

i
t)dt+ g(Xi

T , µ
N
T )

]
. (55)

The following theorem is an adaptation of [39, Thm. 2.6] where the drift b :=
a+ σβ and the Girsanov kernel σ−1b := β.

Theorem 3. Let u ∈ U be a closed-loop control, i.e. ut(ω) = ϕ(ω·∧t) for some
measurable function ϕ : (Ω,F)→ (U,B(U)). Given the control u and a random
variable ξ with law λ (nonatomic with support only on D̄), the sticky reflected
SDE of mean-field type with boundary diffusion{

dXt = (a(Xt) + σ(Xt)β(t,X·,Pu(t), ϕ(X·∧t))) dt+ σ(Xt)dBt,

X0 = ξ,
(56)

can be approximated by the interacting particle system (54) with all components
using the fixed closed-loop control u. Furthermore, the value of the mean-field
cost functional J at u is the asymptotic social cost of the interacting particle
system as N → ∞ when all the XN,is are using the fixed control u. More
specifically,

lim
N→∞

DT

(
PN,u ◦ (XN,1

· , . . . , XN,k
· )−1, (Pu ◦X−1

· )⊗k
)

= 0, (57)

with u = (u, . . . , u), and

lim
N→∞

1

N

N∑
i=1

J i(u, . . . , u)→ J(u). (58)

Proof. We denote by E(P(Ω)) the smallest σ-field on P(Ω) such that the map
µ 7→

∫
Ω
φdµ is measurable for all bounded and measurable φ : Ω → R. As
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pointed out in [39], E(P(Ω)) coincides with the Borel σ-field on P(Ω) generated
by the topology of weak convergence.

To verify the assumptions of [39, Thm. 2.6], we note that β is progressively
measurable with respect to F and that β is Lipschitz continuous in the measure-
valued argument with respect to dTV . This implies condition (E) in [39], the
E(P(Ω))-measurability of the function

Fs,t : P(Ω)→ R,

Fs,t(ν) =

∫
Ω

∫ t

s

|β(u, ω, νt)− β(u, ω,Pu(t))|2 du ν(dω),
(59)

the τ(Ω)-continuity of Fs,t, and the inequality (2.3) from [39, Thm. 2.6]. Fur-
thermore, β is bounded, implying condition (A) in [39]. So the propagation of
chaos (57) holds.

By [43, Prop. 2.2], the propagation of chaos implies that P(P(Ω)) 3MN :=
PN,u ◦ (µN )−1 → δPu◦X−1

·
in the weak topology. By assumption, f and g are

bounded and continuous in the y-argument. Hence,

lim
N→∞

1

N

N∑
i=1

J i(u, . . . , u)

= lim
N→∞

1

N

N∑
i=1

EN,u

[∫ T

0

f
(
t,XN,i, µNt , ϕ(XN,i

·∧t )
)
dt+ g(XN,i

T , µNT )

]

= lim
N→∞

EN,u

[∫ T

0

∫
Ω

f
(
t, ω′, µNt , ϕ(ω′·∧t)

)
µN (dω′)dt

+

∫
Ω

g(ω′(T ), µNT )µN (dω′)

]

= lim
N→∞

∫ T

0

∫
P(Ω)

{∫
Ω

f

(
t, ω′,

∫
Ω

rf (ω′′(t))m(dω′′), ϕ(ω′·∧t)

)
m(dω′)

}
MN (dm)dt

+ lim
N→∞

∫
P(Ω)

∫
Ω

g

(
ω′(T ),

∫
Ω

rg(ω
′′(T ))m(dω′′)

)
m(dω′)MN (dm).

= Eu

[∫ T

0

f (t,X·,Pu(t)) dt+ g (XT ,Pu(T ))

]
= J(u).

(60)

5 Examples

As a first step in model validation, experimental results on pedestrian speed
profiles in a long narrow corridor are replicated in this section. The applica-
tion of the proposed approach also displays the new features it offers regarding
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behavior near walls. From the necessary optimality conditions we derive an
expression for the optimal control valid in following two toy examples and the
corridor scenario. The numerical simulations are based on the particle system
approximation derived in Section 4.2.

Throughout the rest of this section it is assumed that the compact set U
is convex and sufficiently large so that all optimal control in the following an-
alytical expressions are admissible. Furthermore, it is assumed that rg is dif-
ferentiable and that (û, Lû) is optimal for the mean-field type control problem
(44)-(45). We recall the first order adjoint equation,

dpt = −
(
qtβ

û
t + E

[
qtL

û
t∇yβût

]
rβ(Xt)

− f ût − E
[
Lût∇yf ût

]
rf (Xt)

)
dt+ qtdBt,

pT = −gûT − E
[
LûT∇ygûT

]
rg(XT ).

(61)

Rewriting E[Lût Yt] = Eû[Yt] and changing measure to Pû, (61) becomes{
dpt = −Atdt+ qtdB

û
t ,

pT = −gûT − Eû
[
∇ygûT

]
rg(XT ),

(62)

where At := Eû
[
qt∇yβût

]
rβ(Xt) − f ût − Eû

[
∇yf ût

]
rf (Xt). By the martingale

representation theorem (see e.g. [36, pp. 182]) p can be written as the condi-
tional expectation

pt = −Eû
[
gûT + Eû[∇ygûT ]rg(XT ) | Ft

]
+ Eû

[∫ T

t

Asds | Ft

]
. (63)

The theorem applies to our problem since g and its y-derivative are assumed to
be bounded. Let

φ (t,Xt) := g
(
Xt, E

û[rg(Xt)]
)

+ Eû[∇ygût ]rg(Xt). (64)

By Dynkin’s formula,

Eû[φ(T,XT ) | Ft] = φ(t,Xt) +

∫ T

t

Eû [(G + ∂s)φ (s,Xs) | Ft] ds, (65)

where G is the generator of the coordinate process and ∂s denotes differentiation
with respect to time, working on the two remaining arguments of φ. Hence, by
applying Itô’s formula on p in (63), where only X· contributes to the diffusion
part, and matching the diffusion parts of that and p from (62), we get

qs = −∇xφ(s,Xs)σ(Xs). (66)

The local optimality condition in the case of a convex U and coefficients differ-
entiable in u, given in (51) right below Theorem 2, can be used to write û in
terms of the other processes. To use it, we make the following assumption.
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Assumption 7. The functions (t, x, y, u) 7→ (f, β)(t, x, y, u) are differentiable
with respect to u.

With Assumption 7 in force, an optimal control û satisfies the the local opti-
mality condition. The local optimality condition is satisfied by any û such that
∇uH(Lût , ût, pt, qt) = 0 for almost every t ∈ [0, T ], P-a.s., i.e.

qt∇uβût = ∇uf ût , a.e. t ∈ [0, T ], P-a.s.. (67)

Since Pû is absolutely continuous with respect to P, the equality above also
holds for almost every t ∈ [0, T ] Pû-a.s. We have now at hand an expression for
the optimal control whenever we can solve (66)-(67) for û.

5.1 Linear-quadratic problems with convex U

5.1.1 A non-mean-field example

Let D ⊂ Rd be an admissible domain and P the probability measure on the space
of continuous paths under which the coordinate process solves (19). Consider
the following linear-quadratic optimal control problem on D,min

u∈U

1

2
E

[∫ T

0

Lut |ut|2dt+ LuT |XT − xT |2
]
,

s.t. dLut = Lut u
∗
t dBt, Lu0 = 1,

where B is a P-Brownian motion. The necessary optimality condition (67) yields

ût = q∗t , P-a.s., a.e. t ∈ [0, T ]. (68)

Matching the diffusion coefficients gives us the optimal control,

ût = −σ(Xt) (Xt − xT ) , P-a.s., a.e. t ∈ [0, T ]. (69)

The corresponding likelihood process solves

dLût = −Lût (Xt − xT )
∗
σ(Xt)dBt, Lû0 = 1,

and under Pû, the optimally controlled path distribution, the coordinate process
solves

dXt = a(Xt)dt+ σ(Xt)dBt

= a(Xt)dt+ σ(Xt)
(
−σ(Xt) (Xt − xT ) dt+ dBût

)
= (a(Xt)− σ(Xt) (Xt − xT )) dt+ σ(Xt)dB

û
t .

(70)

We have used the fact that π2 = π = π∗, which holds since π is an orthogonal
projection.
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5.1.2 A mean-field example

Consider now on some admissible domain D ⊂ Rd the mean-field type optimal
control problemmin

u∈U

1

2
E

[∫ T

0

Lut |ut|2dt+ LuT |XT − E [LuTXT ]|2
]
,

s.t. dLut = Lut u
∗
t dBt, Lu0 = 1.

As before, B is a P-Brownian motion, where P is a probability measure on the
path space under which the coordinate process solves (19). Then Eû[∇ygût ] = 0,
so (since rg(x) = x here)

∇xφ (t,Xt) =
(
Xt − Eû[Xt]

)∗
,

and (67) yields ût = −σ(Xt)(Xt − Eû[Xt]) P-a.s. for almost every t ∈ [0, T ].
Under Pû the coordinate process solves

dXt =
(
a(Xt)− σ(Xt)

(
Xt − Eû [Xt]

))
dt+ σ(Xt)dB

û
t .

5.2 Unidirectional pedestrian motion in a corridor

Experimental studies have been conducted on the impact of proximity to walls
on pedestrian speed. Pedestrian speed profiles heavily depend on circumstances
like location, weather, and congestion. In this section, we will replicate two sce-
narios of unidirectional motion in a confined domain with the proposed mean-
field type optimal control model. Especially, we are interested in how the pro-
posed model behaves on the boundary and if boundary movement characteristics
can be influenced through the running cost f . Sticky boundaries and bound-
ary diffusion grants our pedestrians controlled movement at the boundary. By
altering the internal parameters of these effect, we are able to shape the mean
speed profile at the boundary.

Zanlungo et al. [49] observe that in a tunnel connecting a shopping cen-
ter with a railway station in Osaka, Japan, pedestrians tend to lower their
walking speed when walking close to the walls. The authors obtain a concave
cross-section average speed profile from their experiment, with its maximum
approximately at the center of the corridor. The average speed at the center of
the corridor is about 10% higher than that of near-wall walkers.

Daamen and Hoogendoorn [19] on the other hand observe (in a controlled
environment) pedestrian speeds that are higher at the boundary than in the in-
terior of the domain. In their experiment, a unidirectional stream of pedestrians
walk in a wide corridor that at a certain point, at a bottleneck, shrinks into a
tight corridor. Upstream from the bottleneck, pedestrians close to the corridor
walls move more freely due to less congestion, compared to those at the center of
the corridor. The experiment results in a cross-section speed profile with more
than twice as high average pedestrian speed in the low-density regions along
corridor walls compared to the center of the corridor.
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By modeling congestion with simple mean-dependent effects, we can repli-
cate the overall shape of the average speed profiles of both [49] and [19] (not
the density profile, to achieve this one needs a more sophisticated mean-field
model). Our reason for implementing only mean-dependent effects, not of non-
local distribution-dependent effects like those considered in for example [4], is
solely to simplify the analysis.

Consider a long narrow corridor with walls parallel to the x-axis at y = −0.1
and y = 0.1. Our analysis requires D to be C2-smooth, so the effective corridor
(the corridor perceived by the pedestrians) has rounded corners. However, the
corners will not have any substantial effect on the simulation results since the
crowd is initiated so far away from the target that under the chosen coefficient
values, the pedestrians will not reach it ahead of the time horizon T = 1. On this
domain, crowd behavior is modeled with the following optimal control problem min

u·∈U

1

2
E

[∫ 1

0

Lut f (t,X·, E [Lut rf (Xt)] , ut) dt+ LuT |XT − xT |2
]
,

s.t. dLut = Lut utdBt, Lu0 = 1,

(71)

where B is a Brownian motion under P, the probability measure under which
X· solves (19) with γ = 0.5, and xT is the location of an exit at the end of
the corridor. The choice of γ is made so that the plots below are visually
comparable. The running cost f is of congestion-type,

f (t,X·, E [Lut rf (Xt)] , ut) = C(Xt)
(
cf + h (t,X·, E

u [rf (Xt)])
)
u2
t ,

where cfu
2, cf > 0, is the cost of moving in free space, and hu2 the additional

cost to move in congested areas. The coefficient C(Xt) := cΓ1Γ(Xt) + 1D(Xt),
cΓ > 0, is used to monitor f (though it is not our control process) on the
boundary Γ. The cost of moving on the boundary is increasing with cΓ, so for
high cΓ we expect lower speed on the boundary. We know from (67)-(66) that

q∗t = C(Xt)
(
cf + h

(
t,X·, E

û [rf (Xt)]
) )
ût, qt = −(Xt − xT )∗σ(Xt). (72)

Matching the expressions in (72) yields the optimal control

ût =
σ(Xt) (Xt − xT )

C(Xt)
(
cf + h (t,X·, Eû [rf (Xt)])

) .
It implements the following strategy: move towards the target location xT , but
scale the speed according to the local congestion. Consider the two congestion
penalties

h1 :=
∣∣X2(t)− Eû [X2(t)]

∣∣ , h2 :=
1

|X2(t)− Eû [X2(t)]|
, (73)

where X2(t) is the second (the y-)component of the coordinate process, i.e. the
component in the direction perpendicular to the corridor walls. Stickiness is set
to γ = 0.5. The choice of h in (73) means that we have set rf (Xt) = X2(t).
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The corridor is split into 9 segments parallel with the corridor walls. The
mean speed is estimated in each segment for four different values of cΓ and the
results corresponding to congestion penalty h1 and h2 are presented in Figure 1
and 2, respectively. The profiles plotted in Figure 1 attains the concave shape
observed by [49], mimicking the fast track in the middle of the lane. In Figure 2
the profiles follow the convex shape observed by [19], taking into account that
movement in the crowded center (mean of the group) is costly. When cΓ is
small, the pedestrians can travel further on the boundary for the same cost.
Heuristically, the higher γ is the longer it takes for the pedestrian to re-enter D
and therefore a high γ combined with a small cΓ yields the highest boundary
speed. This effect is evident in the figures, where smaller values of cΓ results
in higher mean speed at the boundary. We note that we are able to shape the
mean speed at the boundary by our choice of model parameters.
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Figure 1: Mean speed in 9 segments of the corridor when h = h1, estimated
from 4000 realizations of the controlled coordinate process.

6 Conclusion and discussion

In this paper, we propose a variation of the mean-field approach to crowd mod-
eling based on sticky reflected SDEs which to the best of our knowledge is
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Figure 2: Mean speed in 9 segments of the corridor when h = h2, estimated
from 4000 realizations of the controlled coordinate process.

new. The proposed model accounts for pedestrians that spend some time at the
boundary and that have the possibility to choose a new direction of motion.

We provide conditions for the proposed dynamics to admit a unique weak
solution, which is the best we can hope for (cf. [22]). Then, we consider mean-
field type optimal control of the proposed dynamic model and give necessary
conditions for optimality with a Pontryagin-type stochastic maximum principle.
There is a microscopic interpretation of the model even on the boundary of
the domain and thus it has the potential to approximate optimal/equilibrium
behavior of a pedestrian crowd on a microscopic (individual) level. We verify a
propagation of chaos result in the uncontrolled case.

Pedestrians do often see and react to walls at a distance. This has been
studied empirically, experiments are mentioned in the introduction. Force-based
models can implement repulsing potential forces spiking to infinity at boundaries
to keep the pedestrians away from the walls and inside the domain, effectively
making it impossible for any pedestrian to reach a wall. A ranged, nonlocal,
interaction with walls will have a smoothing effect on pedestrian density, just like
nonlocal pedestrian-to-pedestrian interaction has, as is noted in [4]. Nonlocal
interaction is an important aspect of pedestrian crowd modeling, but cannot
give an answer to what will happen whenever a pedestrian actually reaches
a wall. Interaction with walls at a distance can be included in our proposed
model either in the drift, as is the case in force-based models, or through the
cost functional, as in agent-based models.

An extension of the proposed framework would be to let the pedestrian
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control its stickiness, i.e. its motion in the normal direction of the boundary at
the boundary. Stickiness is not necessarily a physical feature of the domain, but
the time spent on the boundary may be subject to the pedestrian’s preference.
This aspect cannot be described by the proposed model, since the Girsanov
change of measure does not effect stickiness (cf. Remark 2). Another extension
would be to consider the controlled diffusion case mentioned in the introduction.
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