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We present new stabilization terms for solving the linear transport equation on a
cut cell mesh using the discontinuous Galerkin (DG) method in two dimensions with
piecewise linear polynomials. The goal is to allow for explicit time stepping schemes,
despite the presence of cut cells. Using a method of lines approach, we start with a
standard upwind DG discretization for the background mesh and add penalty terms
that stabilize the solution on small cut cells in a conservative way. Then, one can use
explicit time stepping, even on cut cells, with a time step length that is appropriate
for the background mesh. In one dimension, we show monotonicity of the proposed
scheme for piecewise constant polynomials and total variation diminishing in the means
stability for piecewise linear polynomials. We also present numerical results in one and
two dimensions that support our theoretical findings.

1. Introduction

Finite element (FE) and more recently discontinuous Galerkin (DG) schemes have successfully been
used on a huge variety of equations and are overall well understood. Therefore, research has advanced
from solving model problems on simple geometries to trying to solve real-world problems. As a result,
grid generation has become a huge issue. Simulating flow around an airplane, flow in blood vessels,
or phase transitions requires to mesh very complicated geometries, which are often given as CAD
models or implicitly. The generation of corresponding body-fitted meshes is a very involved process.

In recent years, the usage of embedded boundary or cut cell meshes has become increasingly
popular. The details of these approaches vary. In this work, we will focus on the approach of cutting
a given geometry out of given background mesh, resulting in so called cut cells along the boundary of
the embedded object. These cells can have various shapes and may in particular become arbitrarily
small. Special schemes must be developed to guarantee stability on these cells. There already exists
a significant amount of literature for stabilizing problems of elliptic and parabolic type on cut cell
meshes, see e.g. [1,2,6,11,13,18,24,29,38] and the references cited therein. For small cells, stability
of higher derivatives is lost and different stabilization techniques have been proposed. A successful
approach is the ghost penalty stabilization [12], sometimes referred to as the cutFEM method [13].

For hyperbolic conservation laws on cut cell meshes, different problems arise, compared to solving
elliptic and parabolic PDEs. Probably the biggest issue is the small cell problem – that standard
explicit schemes are not stable on the arbitrarily small cut cells when the time step is chosen ac-
cording to the cell size of the background mesh. An additional complication is the fact that there is
typically no concept of coercivity that could serve as a guideline for constructing stabilization terms.
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Furthermore one wants the numerical scheme to satisfy properties such as monotonicity and TVD
(total variation diminishing) stability in order to avoid overshoot or oscillations in the presence of
discontinuities, which could result in unphysical solutions.

In the context of finite volume schemes, which have traditionally been used for the solution of
hyperbolic conservation laws, already several solution approaches exist that solve the small cell
problem while dealing with arbitrarily small cut cells; e.g., the flux redistribution method [15,17,36],
the h-box method [9,10,25], and the mixed explicit implicit scheme [33]. For the solution of hyperbolic
conservation laws on cut cell meshes using DG schemes, very little work has been done. As one of
the first ones, in Bastian et. al [7] use an implicit Euler method to overcome the small cell problem
for a linear transport problem, but this approach is bound to first order accuracy. For explicit time
stepping schemes some work relies on so called cell merging or cell agglomeration [28, 35]. In this
approach, cut cells that are too small are merged with neighboring cells. As this approach puts the
complexity back into the mesh generation we do not want to consider it here. Recently, Gürkan and
Massing [23] suggested a new scheme for solving the steady advection-reaction problem on a cut cell
mesh with potentially arbitrarily small cut cells that uses a ghost penalty approach. However, the
authors consider only the steady case and do not discuss properties such as monotonicity or TVD
stability. Also, Sticko and Kreiss [40] have worked on using penalty terms to stabilize the solution
of the wave equation. In both cases, the penalty term employed has great similarity to the ghost
penalty stabilization used for elliptic problems [12].

To the best of our knowledge, the scheme suggested in this work is the first DG scheme for
overcoming the small cell problem for time-dependent scalar conservation laws by dealing with the
potentially arbitrarily small cut cells while ensuring monotonicity and TVD stability. Therefore, we
will focus on the linear advection equation as the standard model problem in the following. Many
problems that occur for solving more complex hyperbolic equations already show up for this simple
model.

Our approach is based on stabilizing the spatial discretization. One is free in the choice of the time
stepping scheme. In particular, our stabilized spatial discretization allows for using standard explicit
time stepping schemes everywhere, even on cut cells. We obtain stability on cut cells by adding
penalty terms. In that sense the suggested scheme is similar to the ghost penalty approach [12].
However, the details of the terms differ significantly. In particular, the terms are fundamentally
different from the ones used in [23, 40]. Conceptually, the terms are designed to reconstruct the
proper domain of dependence on small cut cells and their neighbors, similar to the idea of the h-box
method, but without an explicit geometry reconstruction. In this work we consider piecewise linear
polynomials in one and two space dimensions.

This paper is structured as follows. In section 2.1, we provide background information, such as
triangulation and geometry information as well as the standard scheme that we plan to stabilize.
Section 3 contains the core of this work, the formulation of the stabilization terms in 2D. In section
4, we focus on the 1D case for a better understanding of the proposed stabilization and provide
theoretical results for the case of piecewise constant and piecewise linear polynomials. We discuss
implementational aspects of the proposed scheme in section 5. And in section 6, we provide numerical
results in both 1D and 2D that support our theoretical findings. We conclude with a short summary
and an outlook in section 7.

2. Discretization

2.1. Preliminaries

In this work, we focus on the linear advection equation as the classic model problem for hyperbolic
scalar conservation laws, which is given by
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T̂h(Ω̂)

∩

Ω

→
Th(Ω)

Figure 1: Construction of a cut cell mesh Th(Ω): The background mesh T̂h of the larger domain Ω̂

is intersected with the computational domain Ω, leading to cut cells E = Ê ∩ Ω, where
Ê ∈ T̂h is an element of the background mesh.

ut + 〈β,∇u〉 = 0 in Ω× (0, T ), (1a)

u = g on ∂Ωin × (0, T ), (1b)

u = u0 on Ω× {t = 0}. (1c)

Here, Ω ⊂ R2 is a open, connected, polygonal domain, ∂Ω denotes its boundary, and ∂Ωin := {x ∈
∂Ω : 〈β(x), n(x)〉 < 0} its inflow boundary. The velocity field β ∈ R2 is assumed to satisfy ∇ · β = 0
and 〈·, ·〉 denotes the canonical scalar product in R2.

To construct our discrete approximation, we first consider a larger polygonal domain Ω̂ ⊃ Ω, which
is easy to mesh, see figure 1.

Definition 2.1 (Cut cell mesh). Given a background mesh T̂h of Ω̂, we introduce a cut cell mesh

Th(Ω). Let T̂h be a non-overlapping set of shape-regular elements Ê such that
⋃

Ê∈T̂h

Ê = Ω̂. For

simplicity, we will assume in this paper that T̂h corresponds to a Cartesian background mesh but this
is not necessary. Intersecting Ω and the background mesh induces the triangulation

Th :=
{
E := Ê ∩ Ω

∣∣∣ Ê ∈ T̂h } .
Note that Th is a triangulation of Ω consisting of structured (Cartesian) cells and cut cells. The
internal and external skeletons of the partitioning are given by

Γint = {eE1,E2 = ∂E1 ∩ ∂E2 | E1, E2 ∈ Th and E1 6= E2 and |eE1,E2 | > 0} . (2)

Γext = {eE = ∂E ∩ ∂Ω | E ∈ Th and |eE | > 0} . (3)

Definition 2.2 (Discrete Function Space). Following the usual discontinuous Galerkin formulation
we define the discrete space V kh (Th) ⊂ L2(Ω) by

V kh (Th) =
{
vh ∈ L2(Ω) | ∀E ∈ Th, vh|E ∈ P k(E)

}
, (4)

where P k denotes the polynomial space of degree k.

In this paper we will only consider the cases k = 0 and k = 1, i.e., piecewise constant and piecewise
linear polynomials. On the skeleton Γint, functions uh ∈ V kh are not well-defined. Therefore, we define
jump and average as follows.

Definition 2.3 (Jump & Average). The jump in normal direction over a face eE1,E2
= ∂E1 ∩ ∂E2

between two elements E1 and E2 is defined as

JuhK := uh|E1
nE1

+ uh|E2
nE2

, (5)
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where nE1
, nE2

∈ R2 denote the unit outward normals of E1 and E2, respectively. Note that the
jump of a scalar quantity is vector-valued, i.e., JuhK ∈ R2. We define a scalar-valued jump on a face
e ∈ ∂E as

[uh]E := − JuhK · nE . (6)

The (scalar-valued) average on a face is defined as

{{uh}} :=
1

2
(uh|E1

+ uh|E2
).

2.2. Unstabilized DG Formulation

We now introduce the DG scheme as used on structured background cells. Additional stabilization
terms will be necessary on small cut cells, as we will discuss in section 3. We will use a method of
lines approach and first discretize (1) in space and then in time.

The spatial discretization of (1) corresponds to the standard DG discretization using upwind
fluxes [19]: Find uh ∈ V kh (Th) such that

〈dtuh(t), wh〉+ aupw
h (uh(t), wh) + lh (wh) = 0, ∀wh ∈ V kh (Th), (7)

with

aupw
h (uh, wh) :=−

∑
E∈Th

∫
E

uh 〈β,∇hwh〉dx+
∑
e∈Γext

∫
e

〈β, n〉⊕ uhwh ds

+
∑
e∈Γint

∫
e

(
{{uh}} 〈β, JwhK〉+

1

2
|〈β, ne〉| 〈JuhK , JwhK〉

)
ds ,

(8)

lh(wh) :=−
∑
e∈Γext

∫
e

〈β, n〉	 g wh ds , (9)

where n ∈ R2 denotes the unit outer normal on ∂Ω and ne ∈ R2 denotes a unit normal on a face e
(of arbitrary but fixed orientation). The negative and positive components of a quantity x ∈ R are

defined as x	 := |x|−x
2 and x⊕ := |x|+x

2 . Note that x	, x⊕ ≥ 0.
The new method does not rely on a particular time stepping scheme. Nevertheless, it is desirable

that the scheme is explicit in order to allow for fast operator evaluation and to ease the use of
limiters. Furthermore, it should be of the same order of accuracy as the spatial discretization and
result in a discretization that is TVD.

While for piecewise constant polynomials in space the explicit Euler scheme suffices, it will diminish
the convergence order for V 1

h (Th). We thus decided to employ the explicit second-order TVD Runge-
Kutta (RK) scheme [22] that is given for the ODE yt = F (y) by

y(1) = yn + ∆tF (yn),

yn+1 =
1

2
yn +

1

2
y(1) +

1

2
∆tF (y(1)).

(10)

A limiter is necessary to avoid unphysical oscillations close to discontinuities when using piecewise
linear polynomials. We have chosen a Barth-Jespersen type limiter [3] that has been extended to
the DG setting by exploiting the structure of the local Taylor basis [30]. This limits the gradient
in such a way that the local solution of a cell E evaluated at each neighboring centroid does not
over/undershoot the maximum/minimum taken over the cell’s E average value and the average
values of all of cell’s E face neighbors. The limiter is applied as a postprocessing step to both the
intermediate solution u(1) and the solution un+1.
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3. Stabilization

There are two problems that need to be dealt with in order to ensure stability on cut cells and to
avoid overshoot and oscillations. First, the average mass in each cell must be controlled so that
a piecewise constant approximation does not produce oscillations. Second, the gradients must be
controlled to avoid oscillations within a single cell and unphysical evaluations at cell faces. Both
goals must be reached without violating mass conservation. For this purpose, we introduce two
stabilization terms J0

h and J1
h: the first one will control average values and the second one mainly

gradients.
One way to think of the stabilization terms is that they ensure that only a certain fraction of the

inflow stays in the small cut cell by transporting the remaining part of the cut cell’s inflow directly
through the small cut cell into its outflow neighbors.

Definition 3.1 (Capacity). We define the capacity of a cut cell E as

αE,ω := min

(
ω

|E|
∆t
∫
∂E
〈β, n〉	 ds

, 1

)
, ω ∈ R, ω ∈ (0, 1]. (11)

For ω = 1, the capacity measures the fraction of the inflow that is allowed to flow into the cut cell
E without producing overshoot.

We further denote with I the set of cut cells on which the stabilization should be applied. The
idea is that only small cut cells need stabilization:

I = {E ∈ Th | E is small cut cell and will be stabilized} . (12)

We assume that for every pair of neighboring cut cells, at most one of the two cut cells is an
element of I. While it is possible to extend the proposed scheme to several neighboring cut cells, the
implementation would be more difficult. We design the stabilization such that the CFL condition
for explicit time stepping schemes essentially only depends on the resolution of the background mesh
and not on the size of small cut cells from the set I.

Definition 3.2 (Inflow and outflow faces). For each cell E we denote the set of inflow faces and
outflow faces as

Fi(E) := {e ∈ ∂E | β · nE < 0 on γ},
Fo(E) := {e ∈ ∂E | β · nE ≥ 0 on γ},

where nE denotes the unit outer normal of cell E on face e.

Definition 3.3 (Outflow neighbors of E ∈ I). The set of outflow neighbors No(E) of a cut cell
E ∈ I is defined by

No(E) = {E′ ∈ Th | ∂E ∩ ∂E′ ∈ Fo(E), E′ 6= E} . (13)

Another way to think of the stabilization is that it reconstructs the proper domain of dependence,
i.e., it ensures that the outflow neighbors of a small cut cell get information from the inflow neighbors
of that cut cell. The stabilization term at a given point on an outflow face thus depends on the flux
on the inflow faces, measured upstream along the trajectory.

Definition 3.4 (Trajectory operator). For every point x0 ∈ Fi(E) the trajectory τ : Fi(E) → E
describes the curve traced out by a particle starting at x0 and being transported with β:

τ(x0) :=

{
x ∈ E

∣∣∣∣ ddtx(t) = β(x(t)), x(0) = x0, t > 0

}
.

5



(1,1)

(0,0)
γ

(a) Full domain
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(b) Zoom on the small triangle cut cell

Figure 2: Illustration of trajectory operator TE : Consider flow parallel to a ramp. The tiny triangle
cut cell (fig. 2a) needs stabilization. Fig 2b illustrates trajectories that start at points x1

and x2 on the inflow face and end at points x̂1 and x̂2 on the outflow face. The trajectory
operator TE inverts this coupling: TE(w)(x̂i) = w(xi), i = 1, 2.

Note that τ describes an injective mapping. We define τ−1 as the operator that maps back onto
Fi(E) and introduce the trajectory operator

TE(w)(x) := w(τ−1(x)),

as the evaluation of w on the inflow face, following the trajectory backwards from x. An illustration
of the trajectory operator is given in figure 2.

Definition 3.5 (Trajectory length). The trajectory length len(TE)(x) measures the length of a tra-
jectory within the cell E. It is defined as follows: for a point x ∈ E we identify the point x0 on the
inflow face and consider the length of the curve from x0 (through x) to a point on an outflow face of
E.

In section 5.1 we will discuss how to realize TE and len(TE) practically.
The penalty term J0

h is now constructed in such a way that any inflow that exceeds the capacity
of a small cut cell is moved to the downwind cells and is given by

J0
h(uh, wh) =

∑
E∈I

J0,E
h (uh, wh), with

J0,E
h (uh, wh) =−

∫
E

ηE TE([uh]E) 〈β,∇wh〉dx

+
∑

e∈Fo(E)

∫
e

ηE TE([uh]E) 〈β, JwhK〉ds ,

(14)

and with ηE = 1− αE, 12 . (15)

The volume contribution can be seen as a transport within the cut cell of the quantity ηE =
1 − αE, 12 , which should not remain in the cut cell, from its inflow faces to its outflow faces. The
second term which is applied on the outflow faces transports this quantity out of the cut cell into
its downwind neighbors. We only allow the fraction αE, 12 instead of αE,1 to stay within the cut cell
as the latter one would result in too restrictive slope limiting, leading to close to zero gradients on
the cut cells. The main task of the second stabilization term J1

h is to restore control over gradients.
Its structure is similar to the one of J0

h, but it employs the derivative of the discrete solution uh and
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uses a different scaling and a different relation between skeleton and boundary terms:

J1
h(uh, wh) =

∑
E∈I

J1,E
h (uh, wh), with

J1,E
h (uh, wh) =− ρ

∫
E

ηE len(TE)TE([∂τuh]E) 〈β,∇wh〉dx

+
∑

e∈Fo(E)

∫
e

ηE len(TE)TE([∂τuh]E) 〈β, JwhK〉ds ,

(16)

where ∂τuh denotes the derivative along the trajectory, which is evaluated ∂τuh = 〈∇uh, β〉 /‖β‖,
and ρ = 1

2 . (We introduce the parameter ρ here as we will later examine the stability of the
resulting scheme for different values of ρ.) The stabilized spatial discretization is then given by:
Find uh ∈ V kh (Th) such that ∀ wh ∈ V kh (Th)

〈dtuh(t), wh〉+ aupw
h (uh(t), wh) + J0

h(uh, wh) + J1
h(uh, wh) + lh (wh) = 0. (17)

Next, we will examine the mass conservation properties of the stabilization terms.

Definition 3.6 (Indicator function). The indicator function of a cell or cell patch is defined as

IE(x) =

{
1 for x ∈ E,
0 otherwise.

(18)

Lemma 3.1. Let E ∈ I. Then

J0,E
h (uh, IE∪No(E)) + J1,E

h (uh, IE∪No(E)) = 0. (19)

Proof. We first focus on J0,E
h . Due to the linearity of J0,E

h in wh, there holds

J0,E
h (uh, IE∪No(E)) = J0,E

h (uh, IE) + J0,E
h (uh, INo(E))

=
∑

e∈Fo(E)

∫
e

ηETE([uh]E) 〈β, IEnE〉ds+
∑

e∈Fo(E)

∫
e

ηE TE([uh]E)
〈
β,−INo(E)nE

〉
ds

= 0.

The same argumentation can be used for J1,E
h .

This result (together with the local mass conservation properties of the standard DG discretization
(8)) guarantees local mass conservation in the extended control volume E ∪ No(E) of a small cut
cell E ∈ I: the same amount of mass that is not allowed to stay in E is redistributed to E’s outflow
neighbors. This slightly extended setting of local mass conservation is a natural consequence of our
stabilization.

4. The 1D case

For a better understanding of the proposed scheme and for the validation of some theoretical proper-
ties, we focus on the 1D case in this section. WLOG, we consider the interval I = (0, 1) and assume
β > 0 to be constant. Our PDE is given by

ut(x, t) + βux(x, t) = 0 in I × (0, T ), u(0, t) = g(t) for t ∈ (0, T ), (20)

with initial data u(x, 0) = u0(x). For the analysis in this section we will focus on solving the model
problem MP shown in figure 3: we discretize the interval I in N − 1 cells Ej = [xj− 1

2
, xj+ 1

2
] of

equidistant length h. Then we split one cell, the cell k, in two cells of lengths αh (referred to as cell
k1) and (1− α)h (referred to as cell k2) with α ∈ (0, 1

2 ].

7



αhh (1 − αh)hh

k k + 1 k + 2k − 1k − 2

k1 k2

hh h h

xk− 5
2

xk− 3
2

xk− 1
2

xk+ 1
2

xk+ 3
2

xk+ 5
2

xcut

Figure 3: Model problem MP: equidistant mesh with cell k split into two cells of lengths αh and
(1− α)h with α ∈ (0, 1

2 ].

Remark 4.1 (Notation). Different to 2D, there is a natural order of cells in 1D. In 1D, we will
therefore use the notation indicated in figure 3 and refer to ‘cell j’ and associate faces with xj±1/2

instead of using ‘cell E’ or ‘cell Ej’ or ‘face e’.

Using the notation x±
j+ 1

2

= limε→0 xj+ 1
2
± ε, the bilinear form (8) simplifies to

aupw
h (uh, wh) =−

N∑
j=1

∫
j

βuh∂xwh dx+ βuh(x−
N+ 1

2

)wh(x−
N+ 1

2

)

+

N−1∑
j=1

βuh(x−
j+ 1

2

) JwhKj+ 1
2
.

(21)

The definitions of the jump and of lh, given by (5) and (9) in 2D, reduce in 1D to

JwhKj+ 1
2

= wh(x−
j+ 1

2

)− wh(x+
j+ 1

2

), lh(wh) := −βg(0)wh(x+
1
2

). (22)

Further, we define the CFL number

λ =
β∆t

h
. (23)

Note that λ is chosen only with respect to the background mesh width h but the volume fraction
α ∈

(
0, 1

2

]
in MP is allowed to become arbitrarily close to 0. For the considered model problem

MP, the set of cells that need to be stabilized consists of I = {k1} and therefore J0
h and J1

h coincide

with J0,k1
h and J1,k1

h , respectively. The stabilization terms J0,k1
h and J1,k1

h , given by (14) and (16)
in 2D, simplify significantly for the considered setup in 1D:

• For cell k1, the inflow face is k − 1
2 and the outflow face is kcut.

• For x = xcut, TE([uh]E)(x) in 2D simply corresponds to JuhKk− 1
2

in 1D: the trajectory operator

TE is trivial and [uh]E , defined in (6), on an inflow face corresponds to the definition of JuhK
in 1D, given by (22), for β > 0.

• The length len(TE) is simply αh.

• The derivative ∂τuh in the definition of J1,k1
h simply corresponds to ∂xuh.

Summarizing Jh = J0
h + J1

h, the stabilization term in 1D for the considered setup is of the form

Jh(uh, wh) =β ηk1

(
JuhKk− 1

2
+ αh J∂xuhKk− 1

2

)
JwhKcut

−
∫
k1

β ηk1

(
JuhKk− 1

2
+ αh ρ J∂xuhKk− 1

2

)
∂xwh dx

(24)
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with

ηk1 = 1− αk1, 12 , αk1, 12 = min
( α

2λ
, 1
)
, ρ =

1

2
. (25)

Note that αk1,ω is exactly the 1D equivalent of the capacity αE,ω defined in (11) as using λ = β∆t
h

we can reformulate

αE,ω = min

(
ω
αh

β∆t
, 1

)
= min

(
ω
α

λ
, 1
)
.

The resulting stabilized scheme is then given by: Find uh ∈ V kh (Th) such that

〈dtuh(t), wh〉+ aupw
h (uh(t), wh) + Jh(uh(t), wh) + lh (wh) = 0 ∀wh ∈ V kh (Th). (26)

Definition 4.1 (MP0 and MP1). Both MP0 and MP1 refer to

• solving the advection equation (20) using periodic boundary conditions for the model problem
MP shown in figure 3,

• using the stabilized scheme (26) with CFL λ = β∆t
h .

By MP0 we refer to the case of piecewise constant polynomials and by MP1 to the case of piecewise
linear polynomials, respectively.

4.1. Behavior of the space discretization without stabilization term Jh

Before we discuss the properties of our stabilized scheme, we shortly present numerical results that
illuminate the different kind of instabilities that occur if one does not use the stabilization term Jh.

4.1.1. Test 1: 1D single small cut cell

We consider the model problem MP and place the cell k such that xk−1/2 = 0.5. We use discontin-
uous initial data

u0(x) =

{
1 0.1 ≤ x ≤ 0.5,

0 otherwise.
(27)

We set β = 1, α = 0.001, λ = 0.5, and h = 0.05, and use V 0
h (Th) as well as periodic boundary

conditions.
We compare three scenarios: (1) we do not use stabilization, i.e., we apply (26) without the term

Jh; (2) we apply the stabilization Jh; (3) instead of the Jh suggested in this work, we use a straight-
forward adaption of the ghost penalty stabilization [12] to stabilize the problem. The ghost penalty
stabilization has been used very successfully to stabilize the solution of elliptic problems on cut cell
meshes. A first attempt to transfer the stabilization to the situation considered here would result in
using a stabilization term of the form

ρ1 JuhKk− 1
2

JwhKk− 1
2

+ ρ2 JuhKcut JwhKcut (28)

(instead of the Jh that we suggest). We use ρ1 = ρ2 = ηk1 (as for Jh).
We rewrite the described spatial discretization as a system of ODEs of the form y

t
= Ly with a

suitable matrix L. In figure 4a we present the eigenvalue distribution of ∆tL where ∆t = λh. Most
values lie in the stability region of the explicit Euler scheme. But if we do not stabilize or use the
ghost penalty stabilization (28), there is one outlier eigenvalue (corresponding to the small cut cell),
leading to stability problems. With our stabilization, all values are in the stability region of explicit
Euler.

Next, we consider the usage of an implicit time stepping scheme. The result after one time step
for using the implicit Trapezoidal scheme is shown in figure 4b. Despite the time stepping scheme

9
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(a) Distribution of eigenvalues for the three
schemes. In blue we depict the stability re-
gion of the explicit Euler.
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(b) Solution after one time step using implicit
Trapezoidal rule in time.

Figure 4: Numerical results for Test 1, comparing unstabilized, ghost penalty, and the proposed
scheme.

being stable in an ODE stability sense, we observe a strong overshoot: instead of staying between 0
and 1, the value on the cut cell jumps up to 2 if we do not stabilize. When using the very simple
ghost penalty stabilization (28) the overshoot is smaller but still significant. The reason for this
behavior is that the implicit Trapezoidal scheme is not unconditionally TVD. In fact, no second- or
higher-order scheme has this property [27, 39]. As a result, if the cell fraction α becomes too small,
the scheme develops unphysical oscillations and/or overshoot unless one uses a stabilization that
prohibits that behavior. Our stabilization has been designed to achieve this.

In the following, we will support these numerical results by mathematical facts: we will prove that
our stabilization term Jh (a) makes explicit time stepping stable again and (b) guarantees that no
unphysical oscillations and/or overshoot occur.

4.2. Piecewise constant polynomials

In the special case of piecewise constant polynomials, the discrete solution uh on cell j at time tn,
which we will denote by unj , is an approximation to the average of u over cell j and the method is
equivalent to a first-order finite volume scheme. For MP0, the stabilization term (24) reduces to
(with ηk1 given by (25))

Jh(uh, wh) = β ηk1 JuhKk− 1
2

JwhKcut . (29)

4.2.1. Monotonicity

One very desirable property of a first-order scheme for hyperbolic conservation laws is to be mono-
tone. This property guarantees for example that an overshoot as seen in figure 4b cannot occur.

Definition 4.2 (see [26]). A method is called monotone, if

uni ≥ vni ∀ i ⇒ un+1
i ≥ vn+1

i ∀ i. (30)

Since this is challenging to verify we will use the following equivalent definition.

Definition 4.3 (see [41]). A method un+1
j = H(unj−iL , u

n
j−iL+1, ..., u

n
j+iR

) is called monotone, if ∀j
there holds for every l with −iL ≤ l ≤ iR

∂H

∂uj+l
(uj−iL , ..., uj+iR) ≥ 0. (31)

10



For a linear scheme this implies that all coefficients need to be non-negative. We will verify this
property for our stabilized scheme using the concept of M-matrices.

Definition 4.4 (see [37]). Let B ∈ Rn×n be a Z-Matrix, i.e., for B = (bij) there holds bij ≤ 0 for
every i 6= j. If bii > 0 ∀i and there exists a positive diagonal matrix D such that BD is strictly
diagonal dominant, we call B an M-matrix.

Lemma 4.1 (see [37]). Let B ∈ Rn×n be an M-matrix. Then B−1 exists and B−1 ≥ 0.

Lemma 4.2. Consider MP0. Discretize the time using the theta scheme. Then, the method is
monotone under the CFL condition λ < 1

2(1−Θ) .

Proof. The theta scheme for the ODE yt = F (y) is defined as

yn+1 = yn + ∆t
[
ΘF (yn+1) + (1−Θ)F (yn)

]
, (32)

with Θ ∈ [0, 1] (Θ = 0 : explicit Euler, Θ = 1: implicit Euler, Θ = 1
2 : implicit Trapezoidal). Let us

first assume α < 2λ, which is the interesting case. Then, αk1, 12 = α
2λ . Rewriting one time step of

our stabilized discretization in matrix-vector formulation results in

(M + ∆tΘ(A+ J))︸ ︷︷ ︸
=:B

un+1 = (M −∆t(1−Θ)(A+ J))︸ ︷︷ ︸
=:C

un. (33)

Defining τ1 := ∆tΘβ ≥ 0 and τ2 := ∆t (1−Θ)β ≥ 0, the two matrices are of the form (entries on
the main diagonal are boxed)

B =



h + τ1 0 ··· ··· 0 −τ1

−τ1 h + τ1

. . . 0

0
. . .

. . .
...

... −τ1 α
2λ

αh + τ1
α
2λ

−τ1(1− α
2λ ) −τ1 α

2λ
(1− α)h + τ1

...

...
. . .

. . . 0
0 ··· ··· 0 −τ1 h + τ1


and

C =



h− τ2 0 ··· ··· 0 τ2

τ2 h− τ2 0 0

0
. . .

. . .
...

... τ2
α
2λ

αh− τ2 α
2λ

τ2(1− α
2λ ) τ2

α
2λ

(1− α)h− τ2
...

...
. . .

. . . 0
0 ··· ··· 0 τ2 h− τ2


.

According to definition 31, we need to show that B−1C is non-negative. Following lemma 4.1 we
will verify that B is an M-matrix and C is non-negative.

Most cells use a standard first-order upwind scheme in space and the theta scheme with standard
CFL condition in time and obviously satisfy these conditions. We will focus on the rows correspond-
ing to cells k1 and k2, which differ from the remaining rows due to the stabilization term Jh. We
start with matrix B and the row corresponding to cell k2. The diagonal entry (1 − α)h + τ1 is
positive while the remaining entries are negative, since α < 2λ. To prove the diagonal dominance
we compute:

|bk2,k2 | −
∑
j 6=k2

|bk2,j | = (1− α)h+ τ1 −
(
τ1 −

ατ1
2λ

)
− ατ1

2λ
= (1− α)h > 0.

11



Similar calculations for the row corresponding to k1 imply that B is an M-matrix.
Next we will show positivity of C, considering the CFL condition λ < 1

2(1−Θ) . For a standard,

equidistant cell, the positivity of the entries is guaranteed already by the standard CFL condition
and thus also by our slightly stricter condition. Straight-forward calculations further reveal that all
entries in rows k1 and k2 are positive. We note that in particular the positivity of entry ck2,k2 is
guaranteed by the CFL condition and the fact that a lower bound for the size of k2 is h

2 .
Finally, for α ≥ 2λ, there holds αk1, 12 = 1 and therefore the factor ηk1 = 1−αk1, 12 in the definition

of Jh evaluates to 0, i.e., we would not stabilize. But as in this case ck1,k1 = αh− τ2 ≥ λhΘ ≥ 0, all
required properties of B and C would hold true without stabilization. This concludes the proof.

Remark 4.2 (Ghost penalty stabilization). Using the stabilization (28) instead of the Jh given in
(29), this would result in additional 2 × 2 blocks in the matrices B and C at positions ((k − 1) :
k1, (k − 1) : k1) and (k1 : k2, k1 : k2), respectively. We note that it is not possible to find factors ρ1

and ρ2 that guarantee that all entries of C are non-negative for α → 0. In contrast, our stabilizing
2×2 block has been shifted to (k1 : k2, (k−1) : k1). This shifted stabilization reflects the fact that for
the hyperbolic equations there is a designated direction of information transport, whereas for elliptic
problems there is not. This shifted stabilization is also a major difference to the stabilization terms
used by other authors [23, 40].

4.2.2. L1 stability and TVD stability

Next, we will show that MP0 with explicit Euler in time is L1 stable as well as TVD stable (to be
defined below) under the standard CFL condition, independent of the size of α.

On standard cells away from the cut cells k1 and k2, the scheme given by (26) in combination
with explicit Euler in time corresponds to the standard upwind scheme [31]. We will assume for
the rest of this subsection that α < 2λ. If this was not the case, we would still have a non-uniform
mesh, but would no longer violate the CFL condition on cell k1 needed for L1 and TVD stability
and the results in the following will remain valid. For α < 2λ, we get the following formulae in the
neighborhood of the small cut cell k1 after a minor reordering and simplification of the terms

un+1
k−1 = unk−1 − λ

(
unk−1 − unk−2

)
, (34a)

un+1
k1

=
1

2
unk1 +

1

2
unk−1, (34b)

un+1
k2

=

(
1− λ

1− α

)
unk2 +

α

2(1− α)
unk1 +

λ− α
2

1− α
unk−1, (34c)

un+1
k+1 = unk+1 − λ

(
unk+1 − unk2

)
. (34d)

Lemma 4.3. Consider MP0 with explicit Euler in time. Then, for λ < 1
2 there holds∥∥un+1

∥∥
L1 ≤ ‖un‖L1 ∀n ≥ 0.

We note that the required CFL condition is independent of the size of α (but takes into account
that the bigger cut cell k2 is not stabilized).

Proof. We define∑
j

|un+1
j |hj =

∑
j≤k−1

|un+1
j |h︸ ︷︷ ︸

T1

+ |un+1
k1
|αh︸ ︷︷ ︸

T2

+ |un+1
k2
|(1− α)h︸ ︷︷ ︸
T3

+
∑
j≥k+1

|un+1
j |h︸ ︷︷ ︸

T4

.

On all cells except for cells k1 and k2, the standard upwind scheme is used (compare also (34a) and
(34d)). Plugging in the corresponding formulae and using λ > 0 as well as 1− λ > 0 gives

T1 ≤
∑
j≤k−2

|unj |h+ (1− λ)|unk−1|h, T4 ≤
∑
j≥k+1

|unj |h+ λh|unk2 |.

12



For cells k1 and k2, we directly obtain from equations (34b) and (34c) (using 1 − α − λ ≥ 0 and
2λ− α ≥ 0)

T2 ≤
αh

2

(
|unk1 |+ |u

n
k−1|

)
, T3 ≤ (1− α− λ)h|unk2 |+

αh

2
|unk1 |+

(
λ− α

2

)
h|unk−1|.

Summing up the estimates for T1, . . . , T4 implies the claim.

Definition 4.5 ( [16]). A DG scheme is called TVDM (total variation diminishing in the means) if

TV(un+1) ≤ TV(un) with TV(un) =
∑
j

|unj+1 − unj | (35)

holds for all n ≥ 0. Here, unj denotes the mean of u on cell j at time tn.

For piecewise constant polynomials, the means unj correspond to the unknowns unj and TVDM
coincides with the TVD (total variation diminishing) [31] property. (For later use for piecewise linear
polynomials we provide the more general definition here.)

Lemma 4.4. Consider MP0 with explicit Euler in time. Then, the scheme is TVD stable for λ < 1
2 .

Proof. We decompose∑
j

|un+1
j − un+1

j−1 | =
∑
j≤k−1

|un+1
j − un+1

j−1 |︸ ︷︷ ︸
T1

+ |un+1
k1
− un+1

k−1 |︸ ︷︷ ︸
T2

+ |un+1
k2
− un+1

k1
|︸ ︷︷ ︸

T3

+ |un+1
k+1 − u

n+1
k2
|︸ ︷︷ ︸

T4

+
∑
j≥k+2

|un+1
j − un+1

j−1 |︸ ︷︷ ︸
T5

.

For the standard parts of the scheme, we get

T1 ≤
∑
j≤k−2

|unj − unj−1|+ (1− λ)|unk−1 − unk−2|, T5 ≤
∑
j≥k+2

|unj − unj−1|+ λ|unk+1 − unk2 |.

Using (34a) and (34b), a direct substitution of the formulae results in

T2 ≤
1

2
|unk1 − u

n
k−1|+ λ|unk−1 − unk−2|.

For T3 and T4, we reorder the terms resulting from the definitions (34b)-(34d) to get

T3 ≤
(

1− λ

1− α

)
|unk2 − u

n
k1 |+

(
1

2
− 2λ− α

2(1− α)

)
|unk1 − u

n
k−1|,

T4 ≤ (1− λ) |unk+1 − unk2 |+
λ

1− α
|unk2 − u

n
k1 |+

2λ− α
2(1− α)

|unk1 − u
n
k−1|.

We emphasize that all factors outside of the absolute values are non-negative due to the made
assumptions. Summing up the estimates for T1, . . . , T5 implies the claim.

Remark 4.3. On an equidistant mesh, a standard finite volume scheme that is monotone is au-
tomatically TVD [26]. As the standard proof for this result does not transfer to our situation, we
provide here the proof for TVD stability in addition.
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Figure 5: Eigenvalues of (36): The stability region of the explicit RK scheme is shown in blue.
The colors refer to the different eigenvalues and show their evolution while changing the
parameters α or ρ. Left: Behavior for decreasing α (α = 2−i, i ∈ [1, . . . , 10], ρ = 1

2 ). Right:
Behavior for varying ρ (ρ ∈ [0, 1], α = 10−2).

4.3. Piecewise linear polynomials

In this subsection we examine MP1 more closely. In this case, the stabilization term Jh is given
by (24). For simplicity, we will assume in this subsection that we use a centered, rescaled moment
basis, see also section 5.2. In time, we will consider the second-order explicit TVD RK scheme given
by (10).

4.3.1. Eigenvalue analysis

We now want to motivate the stability of our stabilized scheme in combination with the second-
order explicit RK scheme (10) by means of an eigenvalue analysis using symbolic computations with
sympy [34]. We consider the model problem MP for the special case of N = 5, i.e., we start with
four equidistant cells of length h and split the third cell in two cells of length αh and length (1−α)h.
We use Dirichlet boundary conditions and WLOG β = 1.

We consider the stabilized scheme (26) with the stabilization term Jh given by (24). For the
construction of the stabilization term Jh, we have made several design choices, e.g., the choices of
ω and ηk1 and the general structure of the terms. Here, we will focus on the parameter ρ. We will
show that ρ = 1

2 is exactly the value that one needs to make explicit time stepping stable again.
We rewrite the variational formulation (26) as a system of ODEs with M being the mass matrix,

A being the stiffness matrix incorporating aupw
h (·, ·), and J incorporating the corresponding parts of

Jh(·, ·). We then symbolically setup the operator

R = M−1(M −∆t(A+ J))− Id, (36)

which is the stability function used in the ODE stability analysis. As α ≤ 1
2 , a lower bound for the

size of the unstabilized cut cell k2 is h
2 . The limiting CFL number λ for piecewise linear polynomials

is then λ = 1
6 . We therefore choose ∆t = h

6 to compute the eigenvalues of R. We find three pairs of
complex eigenvalues:

λ1,2 = −2±
√

2i

6
,

λ3,4 =
2±
√

2i

6 (α− 1)
,

λ5,6 =
1+6αρ−5α−2ρ±

√
36α2ρ2−48α2ρ+13α2−24αρ2+28αρ−8α+4ρ2−4ρ+1

2α .
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The first four eigenvalues are not critical: λ1,2 are independent of α and λ3,4 converge to λ1,2 for
α → 0. The behavior of the last two eigenvalues λ5,6 is unclear, as they might diverge for α → 0,
depending on the choice of ρ. We observe that for ρ = 1

2 the numerator becomes independent of α
resulting in

λ5,6 = −2±
√

2i

2
.

For a sequence of decreasing α, we visualize the eigenvalues of R and observe that for ∆t = h
6 all

eigenvalues stay within the stability region of the explicit second-order TVD RK scheme (10) (figure
5 left), indicating the stability of the explicit time stepping scheme. For fixing α = 0.01 and testing
different choices of ρ, we observe (figure 5 right) that two eigenvalues diverge. These observations
support our choice of ρ = 1

2 and are consistent with our numerical experiments, in which we never
observed stability issues due to using an explicit time stepping scheme on tiny cut cells.

4.3.2. TVDM stability

We can only expect to obtain a TVDM stability result for piecewise linear polynomials if we apply a
limiter. Different to 2D, in 1D we only reconstruct to cell faces instead of to neighboring centroids,
which results in an MC like limiter [31]. (In 2D, depending on the mesh, this could result in a limiter
that is not linearity-preserving.) By assumption, our solution u∗j on cell j resulting from solving (26)

with the time stepping scheme (10), where (·)∗ stands for (·)(1) or (·)n+1, uses the centered moment
basis

ū∗j +∇u∗j (x− xj). (37)

Then, we enforce

∇u∗j = minmod

(
∇u∗j ,

ū∗j+1 − ū∗j
xj+1/2 − xj

,
ū∗j − ū∗j−1

xj − xj−1/2

)
(38)

with

minmod (a1, . . . , am) =

{
smin1≤i≤m|ai|, |s| = 1, s = 1

m

∑n
i=1 sgn (ai),

0, otherwise.

Lemma 4.5. Consider MP1 with explicit Euler in time. Assume that the moment basis (37) and
limiter (38) is used, which has been modified on cell k − 1 to additionally enforce

min
(
ūnk−1, ū

n
k1

)
≤ uk−1(xcut) ≤ max

(
ūnk−1, ū

n
k1

)
. (39)

Then, for λ < 1
4 the scheme is TVDM stable.

Proof. The proof follows that of lemma 4.4. Details are given in appendix A.

Corollary 4.1. Let the assumptions of lemma 4.5 hold true but replace the explicit Euler scheme
by the second-order scheme TVD RK scheme (10). Then, for λ < 1

4 the scheme is TVDM stable.

Proof. The result follows directly from the fact that TVD RK schemes are constructed to be convex
combinations of explicit Euler steps [22].

5. Implementation

The implementation is based on the DUNE [4, 5] framework, a feature rich C++ finite element
library. For the cut cell discretization we rely on the dune-udg package [20] and its integration with
dune-pdelab [8]. The dune-udg module was originally developed for the unfitted DG method [6].
We modified it to realize the extended stencil of the proposed stabilization terms J0

h and J1
h.
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The domain is represented as a discrete level set function that uses vertex values, i.e., as a bi-linear
finite element function. Given this representation, cut cells and their corresponding quadrature rules
are constructed using the TPMC libary [21]. We note that this setup results in a restriction of the
geometry that can be realized: it only allows for a polygonal representation of the domain and for
the numerical tests we cannot resolve smooth geometries exactly.

5.1. Implementing the trajectory operator & trajectory length

In 1D, the trajectory operator TE is trivial. In higher space dimensions it becomes more involved to
evaluate TE . We will now describe a simple approach to compute (approximately) the evaluation of
TE(w)(x) for every point x ∈ E.

Let E ∈ I. From the unsteady problem (1), we derive a localized stationary equation given by

〈β,∇w̃〉 = 0 in E, (40)

w̃ = 〈β,w〉 on Fi(E), (41)

and natural outflow boundary conditions on Fo(E). The solution w̃ approximates TE(w)(x) ≈ w̃(x).
To discretize (40), we employ the bilinear form aupw

h restricted to Ω = E, i.e., to a single element,
which we denote by aupw

E . We thus search w̃h ∈ Pm(E) such that

aupw
E (w̃h, vh) = 0 ∀vh ∈ Pm(E).

Remark 5.1 (Test spaces). Depending on the shape of the streamlines of the vector field β and
the domain setup, we might choose m 6= k, i.e., use a different polynomial degree for this local
subproblem. For β|E ∈ [P l(E)]2 and w|e ∈ P k(e), e ∈ Fi(E), the solution w̃ is also polynomial and
can thus be computed exactly. If we assume β to depend linearly on x and use V 0

h (Th) to solve (1),
then [uh]e ∈ P 0(e) and w̃h(x) = TE(wh)(x) is exact for w̃h(x) ∈ P 1(E).

Remark 5.2 (Fast evaluation). Note that (40) is a linear problem. We can interpolate w|Fi into a
polynomial basis and also w̃ is represented in a local polynomial basis. We can therefore precompute
local (per element) trajectory operators, mapping the coefficients wi onto coefficient w̃j, and store
this operator as a small dense matrix.

The trajectory length can be computed in a very similar way. It consists of two steps. First, we
solve a local problem, which yields the trajectory length len(TE)(x) for every point x ∈ Fi(E). In the
second step we compute TE(len(TE)), which allows evaluating the local length of the corresponding
trajectory for every point in Ē.

To compute len(TE)(x) we consider the following local problem:

−|β|−1
〈
β,∇l̃

〉
= 1 in E, (42)

l̃ = 0 on Fo(E), (43)

and natural outflow boundary conditions on Fi(E). It basically computes the path integral over 1
along the trajectory and thus yields the trajectory length len(TE)(x) = l̃(x). Again we discretize
using the weak form as derived for (1) and then we extend len(TE)(x) from x ∈ Fi(E) into the cell
by computing w̃ in (40).

5.2. Construction of local shape-functions

Although in principal the choice of the local basis should not have impact on the method itself,
there are practical aspects to consider. In particular the implementation of the limiter becomes
significantly simpler, if one can separate the average value in the cell from the local fluctuations.
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Figure 6: Test 2 (1D, smooth initial data): Optimal (second order) convergence rates for the error
at end time T = 1.

Thus we choose to use a moment basis. In 1D we have chosen the local basis Φk in cell k (in global
coordinates) as

{1, (x− xk)/hk}, with hk = xk+ 1
2
− xk− 1

2
. (44)

This allows modifying the gradient without changing the average mass in the cell.
In 2D we don’t have an explicit formula, but we again construct the basis via moments in such

a way, i.e., we split into a constant function and linear functions with average zero. The linear
functions are centered around the center of mass of the cut cell, but in contrast to the 1D case, we
don’t do the additional rescaling, so that the gradients are the same as on the background mesh.

6. Numerical results

In this section we support our theoretical findings by numerical experiments in 1D and 2D.

6.1. Numerical results for the 1D case

For the numerical results in 1D, we solve (26) with the stabilization term Jh defined in (24) using
V 1
h (Th).

6.1.1. Test 2: 1D, smooth initial data

We consider a variant of MP1 by changing the model problem MP slightly: we split all cells between
x = 0.1 and x = 0.9 in cut cell pairs of length αkh and (1− αk)h and compare 3 different scenarios:

1. S1: the fraction αk is the same for all cells, i.e., αk = α (‘α =’);

2. S2: the cell fraction αk varies and is computed as αk = 0.1Xk+10−6 with Xk being a uniformly
distributed random number in (0, 1) (‘random α’);

3. S3: we do not split in cut cell pairs (‘equidistant’).

We use smooth initial data u0(x) = sin(2πx), set β = 1, λ = 1
6 , and use the time stepping scheme

(10).
In figure 6, the error at time T = 1, measured in the L1 and L∞ norm, are shown. We observe

second-order convergence for all tested scenarios. In particular, the errors for pairs with α = 0.1 and
α = 10−4 are almost the same and fairly comparable to the case of not cutting the cells.

Figure 7 (left) shows the solution at time T = 1 for S2 without and with using the limiter described
in lemma 4.5 for a coarse mesh with h = 0.05. Without limiter, the solution matches very well with
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the exact solution. With limiter, we observe the expected peak clipping but there is no form of
staircasing or other unwanted interaction between the limiter and the gradient stabilization.
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Figure 7: Solutions of Test 2 and 3 at T = 1 for h = 0.05 with and without limiter.

6.1.2. Test 3: 1D, discontinuous initial data

We use the setup of Test 2 with the scenario S2 but use discontinuous initial data u0 given by (27).
In figure 7 (right) we show the solution at time T = 1 for h = 0.05 with and without limiter. As
expected, the solution does not show overshoot when the limiter is applied.

Additionally, we measure TV(un), defined in (35), and observe that it is non-increasing during the
simulation if the limiter is used. We note that this is not the case if we do not apply the additional
condition (39) for limiting on the inflow neighbor of a small cut cell of type k1 ∈ I.

6.2. Numerical results for the 2D case

For the numerical experiments in 2D we focus on the geometry of a ramp with angle γ, see figure 2a:
we use Ω̂ = (0, 1)2 and discretize it with N ×N Cartesian cells, resulting in the mesh width h = 1

N .
Afterwards we cut out a ramp at x = 0.2001 with angle γ with a straight intersection, resulting in
the computational domain Ω. Our initial data u0 are defined with respect to a standard Cartesian
coordinate system (x, y) and then transformed to our rotated and shifted coordinate system (x̂, ŷ)
by using the transformation (

x̂
ŷ

)
=

(
cos γ sin γ
− sin γ cos γ

)
·
(
x− 0.2001

y

)
. (45)

The cut cells are located along the ramp and have various shapes and sizes. In our experiments,

the smallest volume fractions of cut cells E, computed as |E|h2 , varied typically between 10−5 and
10−8. Generally the set I should include all cells that are small in direction of β. In this particular
setup, this is equivalent to choosing triangular cut cells, where the cut (i.e., the hypotenuse) is shorter

than h
2 . For ease of implementation we decided to simply use I = {E ∈ Th | |E|h2 < 0.1}. Using this

definition of I for 5◦ ≤ γ ≤ 45◦, the shortest hypotenuse of a triangle cut cell that is not stabilized
corresponds to roughly 0.6h.

When choosing the time step size ∆t, we need to take into account that the step size needs to
be appropriate for V kh (Th), k = 0, 1, for both Cartesian cells of size h2 and cut cells E that are not
stabilized, i.e., for cut cells E 6∈ I. Finding a tight bound for the latter category is non-trivial and
a project in itself. We have chosen the constraint

∆t ≤ 0.6
1

2k + 1

0.5 h

maxij‖βij‖
, (46)
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Figure 8: Test 4 (2D, smooth initial data): L1 and L∞ convergence rates for the error at end time
T for various angles γ. Reduced L∞ order, compared to the 1D tests.

which has worked well in our numerical experiments and which is in good agreement with a recently
suggested CFL condition for DG schemes on triangular meshes [14].

For β, we choose

βV (x, y) =
1

2
√

1 + tan2(γ)

(
1

tan(γ)

)
(2 + (x− 0.2001) sin γ + y cos(γ + π)) . (47)

This incompressible velocity field transports the mass parallel to the ramp with decreasing speed for
increasing distance to the ramp. For comparison, we also use the constant velocity field

βC(x, y) =
2√

1 + tan2(γ)

(
1

tan(γ)

)
. (48)

6.2.1. Test 4: 2D Smooth initial data

We use the velocity field βV , choose smooth initial data

u0(x̂, ŷ) = sin

( √
2πx̂

1− 0.2001

)
,

and compute the solution at time T = 0.5 using V 1
h (Th).

Figure 8 shows the error at time T in the L1 and L∞ norm. We observe second-order convergence
in the L1 norm. Due to the irregularity of the cut cells, the L∞ error is not smooth, indicated
by the zig-zag behavior of the plotted results. We therefore use a least squares fit to compute the
convergence rates. The rates vary, depending on the angle, and lie between 1.52 and 1.63. This
slightly reduced order of convergence will need to be examined in more detail in the future. In
general it is challenging to achieve full second-order accuracy on cut cells as the sizes of neighboring
cells differ by several orders of magnitude and therefore errors of neighboring cells do not cancel the
same way as on a structured mesh.

For comparison we show in table 1 the convergence rates for additional angles γ as well as for
using the constant velocity field βC . The results for the constant velocity βC are very similar to the
ones for βV , except for 5◦ degree. We note that it is reasonable that the results for a 5◦ degree ramp
are better as most cut cells have full length in flow direction, i.e., such a ramp contains significantly
fewer ‘problematic’ cut cells than a ramp with a higher angle and the sizes of neighboring cut cells
do not differ as strongly.

Finally, in figure 9 (left column), we show the solution for βV and γ = 30◦ on a coarse mesh of
N = 30. The 1D profile along the cut boundary shows the expected sine curve. For the contour
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Table 1: Convergence rates (L1 and L∞ norm) for Test 4 for constant (βC) and varying (βV ) velocity
field.

Angle γ: 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

βC L1 2.02 2.01 2.01 2.00 2.00 2.01 2.01 2.01 2.02
L∞ 1.88 1.68 1.63 1.60 1.60 1.56 1.54 1.53 1.58

βV L1 2.02 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.00
L∞ 1.62 1.60 1.57 1.55 1.51 1.55 1.54 1.53 1.59

plot, we observe that the contour lines are straight lines all the way to the boundary. We note that
for the initial data u0 the contour lines are perpendicular to the ramp. Due to βV having decreasing
speed for increasing distance to the ramp, the lines have been rotated during the simulation.

V 1
h (Th) w/o limiter V 0

h (Th) V 1
h (Th) w/o limiter V 1

h (Th) with limiter

Figure 9: Solutions of Test 4 (column 1) and Test 5 (columns 2-4) at time T = 0.4, with N = 30
for four different scenarios. Straight contour lines in columns 2 and 3 indicate that our
stabilization does not add extra diffusion on the cut cells. The upper row plots show u
along the cut boundary.

6.2.2. Test 5: 2D Discontinuous initial data

We use the velocity field βV and compute until time T = 0.4 for discontinuous initial data

u0(x̂, ŷ) =

{
1 for x̂ < 4

15 ,

0 otherwise.

Figure 9 (columns 2-4) shows the discrete solution for N = 30 for γ = 30◦ for both V 0
h (Th) and

V 1
h (Th), the latter without and with limiter. For both V 0

h (Th) and V 1
h (Th) with limiter, the discrete

solution stays between 0 and 1 and we do not observe overshoot. This is also indicated by the 1D
line plots along the cut boundary. Further, we verified numerically for V 0

h (Th) that all matrix indices
in the matrix B−1C, compare (33) for the 1D version, are non-negative.

Examining the contour lines more closely, we find that for V 0
h (Th) and V 1

h (Th) without limiter the
contour lines are straight lines all the way to the boundary, indicating that our stabilization does
not add extra diffusion on the cut cells. For the case of V 1

h (Th) with limiter, we observe slightly
more diffusion along the boundary. We attribute this to the limiter: on a Cartesian cell, we only
limit in x- and y-direction. On cut cells however we also limit roughly in advection direction when
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reconstructing to neighboring centroids. We expect this behavior to improve if a more accurate
limiter, e.g., the LP limiter [32] is used, but this is not the focus of this work.

7. Conclusions and Outlook

We have presented a new stabilization for DG schemes for linear scalar conservation laws on cut
cell meshes that solves the small cell problem and makes explicit time stepping stable again. Our
stabilization is designed to only let a certain portion of the inflow of a small cut cell stay in that
small cut cell and to transport the remaining portion directly into the cut cell’s outflow neighbors.
As a by-product, we reconstruct the proper domain of dependence of the small cut cell’s outflow
neighbors. In that sense our stabilization relies on similar ideas as the h-box method [9, 25], but
without an explicit geometry reconstruction.

The approach for realizing these ideas in a DG setting was inspired by the ghost penalty method
[12] but significant changes were necessary to adjust the terms that were developed for elliptic
problems to the setting of hyperbolic equations. In this contribution, we have focused on using two
standard explicit time stepping schemes (the explicit Euler scheme and the standard second-order
TVD RK scheme) and the standard Barth-Jespersen limiter but there are no explicit obstacles for
working with other choices of time stepping schemes and limiters.

Our stabilization ensures conservation (in a slightly extended meaning). In one dimension, we
have shown that the stabilized scheme is monotone for piecewise constant polynomials and total
variation diminishing in the means for piecewise linear polynomials in combination with explicit
time stepping schemes. In numerical tests we observed optimal convergence rates in the L1 and L∞

norm for 1D. In 2D, the numerical results in the L1 norm showed again full second-order convergence
but the convergence rate in the L∞ norm was slightly reduced. This will be examined in more detail
in future work. We also plan to extend the stabilization to higher-order polynomial degrees and to
non-linear conservation laws.

A. Proof of TVDM property

Proof of lemma 4.5. The structure follows that of the proof of lemma 4.4. We will show that∑
j |ū

n+1
j − ūn+1

j−1 | ≤
∑
j |ūnj − ūnj−1| ∀n ≥ 0 and ∀j.

We exploit the fact that a moment basis is used. Testing with wh = Ij yields the update for ūj .
For the update of the gradient, it is sufficient to consider the information that the postprocessing by
applying the limiter provides. Again it is sufficient to consider the case α < 2λ.

In the following uj(x) denotes the full (linear) solution of cell j evaluated at x, which can be
written as uj(x) = ūj + (x− xj)∇uj . We first provide the update formulae in the neighborhood of
the cut cell k1 induced by the stabilization (26):

ūn+1
k−1 = ūnk−1 − λ

(
unk−1(xk− 1

2
)− unk−2(xk− 3

2
)
)

(49a)

ūn+1
k1

= ūnk1 −
1
2

(
unk1(xcut)− unk−1(xcut)

)
− λh∇unk−1 (49b)

ūn+1
k2

= ūnk2 −
λ

1− α

(
unk2(xk+ 1

2
)− α

2λ
unk1(xcut)−

(
1− α

2λ

)
unk−1(xcut)

)
. (49c)
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We decompose the sum of the TV in the means at time tn+1 in terms T1 to T5:∑
j |ū

n+1
j − ūn+1

j−1 | =
∑
j≤k−1|ū

n+1
j − ūn+1

j−1 |︸ ︷︷ ︸
T1

+ |ūn+1
k1
− ūn+1

k−1 |︸ ︷︷ ︸
T2

+ |ūn+1
k2
− ūn+1

k1
|︸ ︷︷ ︸

T3

+ |ūn+1
k+1 − ū

n+1
k2
|︸ ︷︷ ︸

T4

+
∑
j≥k+2|ū

n+1
j − ūn+1

j−1 |︸ ︷︷ ︸
T5

.

In the following, we will estimate each of the terms T1 to T5 separately. We will use that the MC
limiter guarantees

0 ≤ ∇uj
2
hj

(ūnj+1 − ūnj )
≤ 1, 0 ≤ ∇uj

2
hj

(ūnj − ūnj−1)
≤ 1, (50)

which implies

unj (xj+ 1
2
)− unj−1(xj− 1

2
)

ūnj − ūnj−1

= 1 +
hj
2 ∇uj

ūnj − ūnj−1

−
hj−1

2 ∇uj−1

ūnj − ūnj−1

∈ [0, 2] . (51)

Using this property and λ < 1
2 (to guarantee the non-negativity of the pre-factors), there holds for

two equidistant cells away from cells k1 and k2

∣∣ūn+1
j − ūn+1

j−1

∣∣ ≤ (1− λ
unj (xj+ 1

2
)− unj−1(xj− 1

2
)

ūnj − ūnj−1

)∣∣ūnj − ūnj−1

∣∣
+ λ

unj−1(xj− 1
2
)− unj−2(xj− 3

2
)

ūnj−1 − ūnj−2

∣∣ūnj−1 − ūnj−2

∣∣ .
This yields bounds for T1 and T5:

T1 ≤
∑
j≤k−2

∣∣ūnj − ūnj−1

∣∣+

(
1− λ

unk−1(xk− 1
2
)− unk−2(xk− 3

2
)

ūnk−1 − ūnk−2

)∣∣ūnk−1 − ūnk−2

∣∣ ,
T5 ≤

∑
j≥k+2

∣∣ūnj − ūnj−1

∣∣+ λ
unk+1(xk+ 3

2
)− uk2(xk+ 1

2
))

ūnk+1 − ūnk2

∣∣ūnk+1 − ūnk2
∣∣ .

For T2 we can show using (49a) and (49b)

T2 ≤

(
1− 1

2

unk1(xcut)− unk−1(xcut)

ūnk1 − ū
n
k−1

− λh∇uk−1

ūnk1 − ū
n
k−1

)∣∣ūnk1 − ūnk−1

∣∣
+ λ

unk−1(xk− 1
2
)− unk−2(xk− 3

2
)

ūnk−1 − ūnk−2

∣∣ūnk−1 − ūnk−2

∣∣ .
For this we need to verify that the two pre-factors are non-negative and that it is therefore allowed
to pull them out of the absolute value. The pre-factor of the second term is non-negative due to
(51). For the first pre-factor we obtain using (39)

unk1(xcut)− unk−1(xcut)

ūnk1 − ū
n
k−1

= 1 +
αh
2 ∇uk1

ūnk1 − ū
n
k−1

−
(
h
2 + αh

)
∇uk−1

ūnk1 − ū
n
k−1

∈ [0, 2].

This implies with (50), λ < 1
4 , and (39)

1− 1

2

unk1(xcut)− unk−1(xcut)

ūnk1 − ū
n
k−1

− λh∇uk−1

ūnk1 − ū
n
k−1

=
1

2
− 1

2

αh
2 ∇uk1

ūnk1 − ū
n
k−1

+
1

2

((
h
2 + αh

)
− 2λh

)
∇uk−1

ūnk1 − ū
n
k−1

∈ [0, 1].
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For T3, we get from (49b) and (49c)

T3 ≤

(
1− λ

1− α
unk2(xk+ 1

2
)− unk1(xcut)

ūnk2 − ū
n
k1

)∣∣ūnk2 − ūnk1∣∣
+

((
1

2
+

α− 2λ

2(1− α)

)
unk1(xcut)− unk−1(xcut)

ūnk1 − ū
n
k−1

+
λh∇uk−1

ūnk1 − ū
n
k−1

)∣∣ūnk1 − ūnk−1

∣∣ .
Again we check the pre-factors. The first pre-factor is obviously non-negative because of (51) and
λ

1−α ≤
1
2 . Further, 1

2 + α−2λ
2(1−α) ≥ 0 for λ ≤ 1

2 . Therefore, using (50), the second pre-factor is

non-negative as well. Finally, for T4 we estimate

T4 ≤

(
1− λ

unk+1(xk+ 3
2
)− uk2(xk+ 1

2
)

ūnk+1 − ūnk2

)∣∣ūnk+1 − ūnk2
∣∣

+
λ

1− α
unk2(xk+ 1

2
)− uk1(xcut)

ūnk2 − ū
n
k1

∣∣ūnk2 − ūnk1∣∣
+

(
λ

1− α
− α

2(1− α)

)
unk1(xcut)− uk−1(xcut)

ūnk1 − ū
n
k−1

∣∣ūnk1 − ūnk−1

∣∣ .
For the last term there holds λ

1−α −
α

2(1−α) ≥ 0 due to 2λ ≥ α. Together with other previously shown

estimates, this implies that all three pre-factors are non-negative. Finally, summing up the estimates
for T1, . . . , T5 implies the claim.
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