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A HYBRID PENALTY METHOD FOR A CLASS OF OPTIMIZATION
PROBLEMS WITH MULTIPLE RANK CONSTRAINTS\ast 

TIANXIANG LIU\dagger , IVAN MARKOVSKY\ddagger , TING KEI PONG\S , AND AKIKO TAKEDA\P 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we consider the problem of minimizing a smooth objective over mul-
tiple rank constraints on Hankel structured matrices. These kinds of problems arise in system
identification, system theory, and signal processing, where the rank constraints are typically ``hard
constraints."" To solve these problems, we propose a hybrid penalty method that combines a penalty
method with a postprocessing scheme. Specifically, we solve the penalty subproblems until the pen-
alty parameter reaches a given threshold, and then switch to a local alternating ``pseudoprojection""
method to further reduce constraint violation. Pseudoprojection is a generalization of the concept of
projection. We show that a pseudoprojection onto a single low-rank Hankel structured matrix con-
straint can be computed efficiently by existing software such as SLRA [I. Markovsky and K. Usevich,
J. Comput. Appl. Math., 256 (2014), pp. 278--292], under mild assumptions. We also demonstrate
how the penalty subproblems in the hybrid penalty method can be solved by pseudoprojection-based
optimization methods, and then present some convergence results for our hybrid penalty method.
Finally, the efficiency of our method is illustrated by numerical examples.
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1. Introduction. Many data modeling problems can be posed and solved as
structured low-rank approximation problems, i.e., problems of approximating matrices
by preserving the structure but reducing the rank [13]. The to-be-approximated
matrices are constructed from data, and the model's complexity is related to the
rank of the approximation---the lower the rank, the simpler the model. However, the
simpler the model, the higher the approximation error. One way to deal with this
fundamental trade-off between model complexity and model accuracy is to solve a
sequence of low-rank approximation problems with increasing bounds on the rank.

\ast Received by the editors June 24, 2019; accepted for publication (in revised form) by D. Orban
June 25, 2020; published electronically September 1, 2020.

https://doi.org/10.1137/19M1269919
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The research of the first author is supported in part by JSPS KAKENHI grant

19H04069. The research of the second author has received funding from the European Research
Council (ERC) under the European Union's Seventh Framework Programme (FP7/2007--2013)/ERC
grant agreement 258581 ``Structured low-rank approximation: Theory, algorithms, and applications""
and Fond for Scientific Research Vlaanderen (FWO) projects G028015N ``Decoupling multivariate
polynomials in nonlinear system identification"" and G090117N ``Block-oriented nonlinear identifica-
tion using Volterra series""; and Fonds de la Recherche Scientifique (FNRS) -- FWO Vlaanderen under
Excellence of Science (EOS) Project 30468160 ``Structured low-rank matrix/tensor approximation:
numerical optimization-based algorithms and applications."" The research of the third author is sup-
ported in part by Hong Kong Research Grants Council PolyU153004/18p. The research of the last
author is supported in part by JSPS KAKENHI grants 17H01699 and 19H04069.

\dagger RIKEN Center for Advanced Intelligence Project, 1-4-1, Nihonbashi, Chuo-ku, Tokyo 103-0027,
Japan (tianxiang.liu@riken.jp).

\ddagger Department ELEC, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
(imarkovs@vub.ac.be).

\S Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, People's
Republic of China (tk.pong@polyu.edu.hk).

\P Department of Creative Informatics, Graduate School of Information Science and Technology,
University of Tokyo, Tokyo, Japan, and RIKEN Center for Advanced Intelligence Project, 1-4-1,
Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan (takeda@mist.i.u-tokyo.ac.jp, akiko.takeda@riken.jp).

1260

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/19M1269919
mailto:tianxiang.liu@riken.jp
mailto:imarkovs@vub.ac.be
mailto:tk.pong@polyu.edu.hk
mailto:takeda@mist.i.u-tokyo.ac.jp
mailto:akiko.takeda@riken.jp


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

METHOD FOR PROBLEMS WITH MULTIPLE RANK CONSTRAINTS 1261

A classical approach for estimating the bound on the rank involves solving the order
estimation problem. For more information about the order estimation problem, see
the overview paper [23].

In static linear data modeling problems, i.e., models defined by linear algebraic
equations, the data matrices are unstructured. All spectral and Frobenius norm op-
timal unstructured low-rank approximations can be obtained from truncation of the
singular value decomposition [4]. This result, known as the Eckart--Young--Mirsky the-
orem [2], is at the heart of dimensionality reduction methods in machine learning [22].
Unstructured low-rank approximation is equivalent to the principal component analy-
sis in statistics and the total least squares in numerical linear algebra [15].

The object of system theory, control, and signal processing is dynamical models.
In linear time-invariant data modeling problems, i.e., for models defined by linear
constant-coefficient difference equations, the data matrix is Hankel structured [1, 6,
11, 17]. To see this, consider a system defined by the equation

p0y(t) + p1y(t+ 1) + \cdot \cdot \cdot + psy(t+ s) = 0 for t = 1, . . . , T  - s.

By definition, the time series y = [y(1), . . . , y(T )]\top \in \BbbR T is a trajectory of the system
if

p\scrH s+1(y) = 0,

where p := [p0 p1 \cdot \cdot \cdot ps] \not = 0 is the parameter vector of the system and

\scrH s+1(y) :=

\left[         

y(1) y(2) y(3) \cdot \cdot \cdot y(T  - s)

y(2) y(3) . .
.

y(T  - s+ 1)

y(3) . .
. ...

...
y(s+ 1) y(s+ 2) \cdot \cdot \cdot y(T )

\right]         
is a Hankel matrix,1 constructed from the time series. Therefore, rank(\scrH s+1(y)) \leq s.
The resulting Hankel structured low-rank approximation problem does not admit
an analytic solution in terms of the singular value decomposition. For this reason,
numerous local optimization [12] as well as convex relaxation [3] methods are proposed
for solving it.

In this paper, we consider a generalization of the Hankel structured low-rank
approximation problem to multiple rank constraints. An application that motivates
this generalization is the common dynamics estimation problem in multichannel signal
processing [14, 16, 19]. Modeling each channel separately requires an individual rank
constraint of a Hankel matrix in the optimization problem. Imposing the assumption
that the channels have common dynamics then leads to an additional (coupling)
rank constraint. The problem of common dynamics estimation is closely related to
the problem of approximate common factor computation of multiple polynomials in
computer algebra [7, 26]. Specifically, we consider the following optimization problem
with multiple rank constraints:

1A Hankel matrix is usually defined to be a square matrix. However, here we use a more general
definition which does not require a Hankel matrix to be square.
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1262 T. LIU, I. MARKOVSKY, T. K. PONG, AND A. TAKEDA

min
y1,\cdot \cdot \cdot ,yN\in \BbbR n

f(y)

s.t. rank(\scrH ri+1(yi)) \leq ri, i = 1, . . . , N,(1.1)

rank ([\scrH r+1(y1) \scrH r+1(y2) \cdot \cdot \cdot \scrH r+1(yN )]) \leq r,

where y = vec(y1 \cdot \cdot \cdot yN ) (see section 2 for notation), ri and r are positive integers
satisfying ri \leq r \leq \lfloor n - 1

2 \rfloor (i = 1, . . . , N), and f represents the loss function, which
is nonnegative, level-bounded, and smooth with Lipschitz continuous gradient. For
example, f(y) = 1

2\| y  - y\| 2, where y \in \BbbR Nn is the noisy observation signal.
For constrained problems such as (1.1) with smooth objectives, a classical solution

method is the gradient projection algorithm, whose iterations require projections onto
the feasible set. However, the coupling structure of the last constraint in (1.1) makes
projection onto the feasible set a challenging problem: indeed, even the projection onto
the set defined by each single constraint in (1.1) does not admit a closed-form solution.
Thus, variants of proximal gradient algorithms cannot be directly applied to solving
(1.1). Fortunately, we can show that one can obtain a so-called pseudoprojection (see
Definition 2.2) onto the set defined by each single constraint by some existing solvers
such as SLRA [18], under mild assumptions.

Motivated by this, we adopt a penalty approach and construct penalty subprob-
lems whose feasible regions are either \BbbR n or defined by either the first N constraints
or the last constraint in (1.1): the pseudoprojections are easy to compute in all these
cases. We then propose an algorithm vNPGmajor for the penalty subproblems, making
explicit use of the difference-of-convex (DC) structure of the penalty functions. The
algorithm vNPGmajor is a variant of NPGmajor in [9, Algorithm 2] and is based on
computing pseudoprojections, which can be done efficiently for the feasible region of
the penalty subproblems.

While approximate solutions to (1.1) can now be obtained by our penalty method,
such solutions are typically not feasible for (1.1). This is not ideal for applications
such as system identification in which solution feasibility is an important concern
[11]. Even though constraint violation can theoretically be reduced via solving a
sequence of penalty subproblems with increasing weights in the penalty functions, in
practice this strategy results in high computational cost and numerical instability. To
resolve this issue, we shift to a postprocessing method after obtaining a moderately
accurate solution by our penalty method. Specifically, starting from such a solution
obtained from the penalty method, we apply an alternating pseudoprojection method,
alternating between the set defined by the first N constraints in (1.1) and that defined
by the last constraint there, to reduce constraint violation.

Our main contributions are highlighted as follows:
\bullet We propose a hybrid penalty method (Algorithm 3.2) for solving (1.1): a
penalty scheme allowing three different kinds of penalty subproblems, followed
by an alternating pseudoprojection method for postprocessing. An algorithm,
vNPGmajor (Algorithm 3.1), is proposed for the penalty subproblems.

\bullet We prove some convergence results for the hybrid penalty method, including
an error bound for the penalty method (Theorem 3.2) and the convergence
rate for the alternating pseudoprojection method (Theorem 3.4).

\bullet We demonstrate how a pseudoprojection can be obtained by the solver SLRA
[18] in section 4, under mild assumptions.

The rest of this paper is organized as follows. In section 2, we introduce notation
and some basic properties of Hankel operators. The hybrid penalty method and
the corresponding convergence analysis are presented in section 3. In section 4, we
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METHOD FOR PROBLEMS WITH MULTIPLE RANK CONSTRAINTS 1263

demonstrate how to compute pseudoprojections. Numerical simulation results are
presented in section 5. Finally, we give some concluding remarks in section 6.

2. Notation and preliminaries. Throughout this paper, we let \BbbR n denote the
n-dimensional Euclidean space and \| \cdot \| denote the Euclidean norm induced by vector
inner product \langle \cdot , \cdot \rangle . For an x \in \BbbR n, we let x(i) denote its ith entry. For vectors
y1, . . . , yN \in \BbbR n, we let vec(y1 \cdot \cdot \cdot yN ) := [y\top 1 \cdot \cdot \cdot y\top N ]\top \in \BbbR Nn. Given a matrix
A \in \BbbR m\times n, we let \| A\| F denote its Frobenius norm, \| A\| 2 denote its spectral norm,
A\top denote its transpose, and A(i, j) denote its (i, j)th entry. For A, B \in \BbbR m\times n, we
denote the matrix inner product by \langle A,B\rangle :=

\sum m
i=1

\sum n
j=1 A(i, j)B(i, j). For a linear

operator \scrA , we use \scrA \ast , Range(\scrA ), and ker(\scrA ) to denote its adjoint, range, and kernel,
respectively.

For an extended real-valued function h : \BbbR n \rightarrow \BbbR \cup \{ \infty \} , we say that h is proper
if domh := \{ x : h(x) <\infty \} \not = \emptyset and is closed if it is lower semicontinuous. Following
[21, Definition 8.3], for a proper closed function h : \BbbR n \rightarrow \BbbR \cup \{ \infty \} , the regular
subdifferential of h at y \in domh is defined as

\widehat \partial h(y) := \Biggl\{ u : lim inf
v\rightarrow y
v \not =y

h(v) - h(y) - u\top (v  - y)

\| v  - y\| 
\geq 0

\Biggr\} 
,

and the (limiting) subdifferential of h at y \in domh is defined as

\partial h(y) := \{ u : \exists ut \rightarrow u, yt
h\rightarrow ywithut \in \widehat \partial h(yt) for each t\} ,

where yt
h\rightarrow y means both h(yt) \rightarrow h(y) and yt \rightarrow y. We say that y is a stationary

point of h if 0 \in \partial h(y). It is known from [21, Theorem 10.1] that any local minimizer
of h is a stationary point.

For a nonempty closed set \Omega \subseteq \BbbR n, we let \delta \Omega denote the indicator function
of \Omega , which is zero in \Omega and is infinity otherwise. The regular normal cone and
(limiting) normal cone of \Omega at y \in \Omega are defined by \widehat N\Omega (y) := \widehat \partial \delta \Omega (y), and N\Omega (y) :=
\partial \delta \Omega (y), respectively. We use dist(x,\Omega ) to denote the distance from an x \in \BbbR n to \Omega 
and \scrP \Omega (x) to denote the projection, i.e., dist(x,\Omega ) := infy\in \Omega \| x  - y\| and \scrP \Omega (x) :=
argminy\in \Omega \| x  - y\| . For a nonempty closed set \Omega \subseteq \BbbR m\times n, the distance from an
X \in \BbbR m\times n to \Omega and its projection are defined with respect to the Frobenius norm:

dist(X,\Omega ) := inf
Y \in \Omega 
\| X  - Y \| F and \scrP \Omega (X) := argmin

Y \in \Omega 
\| X  - Y \| F .

We next recall the definition of prox-regular sets; see [21, Exercise 13.31].

Definition 2.1 (prox-regular sets). A closed set \Omega is prox-regular at x \in \Omega for
v \in N\Omega (x) if there exist \epsilon > 0 and \sigma \geq 0 such that whenever x \in \Omega and v \in N\Omega (x)
with \| x - x\| < \epsilon and \| v  - v\| < \epsilon , it holds that

\langle v, y  - x\rangle \leq \sigma 

2
\| y  - x\| 2 for all y \in \Omega with \| y  - x\| < \epsilon .

Furthermore, \Omega is prox-regular at x if it is prox-regular at x for all v \in N\Omega (x).

We now define the notion of pseudoprojection, which will be used in our subse-
quent discussions.

Definition 2.2 (pseudoprojection). Let \Omega \subseteq \BbbR n be a nonempty closed set,
u \in \Omega , and x \in \BbbR n. The pseudoprojection \scrP s

\Omega (x;u) of x onto \Omega with respect to u is
the collection of all y \in \Omega satisfying
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(a) (Stationarity) x - y \in N\Omega (y); and
(b) (Function value improvement) \| y  - x\| \leq \| u - x\| .

Notice that any element of the pseudoprojection is a stationary point of the
corresponding projection problem, i.e., it is a stationary point of the function w \mapsto \rightarrow 
1
2\| w  - x\| 2 + \delta \Omega (w). Also, each such element improves the function value of the
corresponding projection problem relative to a given point u \in \Omega . Pseudoprojection
onto a nonempty closed set is always nonempty; indeed, in view of [21, Example 6.16]
and [21, Proposition 6.5], we have \scrP \Omega (x) \subseteq \scrP s

\Omega (x;u) for all x \in \BbbR n and all u \in \Omega . We
will discuss how to obtain a pseudoprojection onto specific sets2 in our applications
in section 4.

For notational simplicity and for rewriting our problem conveniently with respect
to the variable y, we define linear operators \scrL i : \BbbR Nn \rightarrow \BbbR (ri+1)\times (n - ri) (i = 1, . . . , N)
and \scrL : \BbbR Nn \rightarrow \BbbR (r+1)\times N(n - r) as

\scrL i(y) := \scrH ri+1(yi), i = 1, . . . , N,

\scrL (y) := [\scrH r+1(y1) \scrH r+1(y2) \cdot \cdot \cdot \scrH r+1(yN )],
(2.1)

where y = vec(y1 \cdot \cdot \cdot yN ) \in \BbbR Nn, and ri (i = 1, . . . , N) and r are defined in (1.1). We
now present some properties of the linear operators \scrH l(\cdot ) and \scrL \ast .

Lemma 2.3. For any Y \in \BbbR (r+1)\times (n - r),

\scrH \ast 
r+1(Y ) =

\left[   Y (1, 1) \cdot \cdot \cdot 

the kth element\underbrace{}  \underbrace{}  \sum 
i+j=k+1

Y (i, j) \cdot \cdot \cdot Y (r + 1, n - r)

\right]   
\top 

\in \BbbR n.

Lemma 2.4. For any Wi \in \BbbR (r+1)\times (n - r), i = 1, . . . , N , it holds that

\scrL \ast [W1 W2 \cdot \cdot \cdot WN ] = vec
\bigl( 
\scrH \ast 

r+1(W1) \scrH \ast 
r+1(W2) \cdot \cdot \cdot \scrH \ast 

r+1(WN )
\bigr) 
.

Proof. Fix any Wi \in \BbbR (r+1)\times (n - r), i = 1, . . . , N . According to the definition of
adjoint, for any y = vec(y1 \cdot \cdot \cdot yN ) \in \BbbR Nn, we have

\langle \scrL \ast [W1 W2 \cdot \cdot \cdot WN ], y\rangle = \langle [W1 W2 \cdot \cdot \cdot WN ],\scrL (vec (y1 \cdot \cdot \cdot yN ))\rangle 
= \langle [W1 W2 \cdot \cdot \cdot WN ], [\scrH r+1(y1) \scrH r+1(y2) \cdot \cdot \cdot \scrH r+1(yN )]\rangle 

=

N\sum 
i=1

\langle Wi,\scrH r+1(yi)\rangle =
N\sum 
i=1

\bigl\langle 
\scrH \ast 

r+1(Wi), yi
\bigr\rangle 
.

Then the conclusion follows from this and the arbitrariness of y. This completes the
proof.

3. A hybrid penalty method. Notice that there are multiple rank constraints
in (1.1), making it difficult to compute the projection onto the feasible set. To handle
these constraints, one intuitive idea is to use a penalty method to ``reduce"" the number
of constraints. However, when feasibility is important (e.g., in applications such as

2With an abuse of terminology, we simply call an element of the pseudoprojection a pseudo-
projection.
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system identification [11]), we have to increase the weights in the penalty function to
improve the feasibility of approximate solutions returned by penalty methods, which
leads to high computational cost and numerical instability in practice. One way out
would be to shift to a local refinement method after obtaining a moderately accurate
solution by the penalty method.

Based on these intuitive ideas, our solution method will then consist of two stages:
a penalty method, followed by a postprocessing scheme. We will describe the penalty
method in section 3.1, the postprocessing scheme in section 3.2, and the hybrid penalty
method and its convergence analysis in section 3.3.

3.1. Stage 1: A penalty method. To describe the penalty method, we first
rewrite (1.1) as follows, using notation in (2.1):

min
y\in \BbbR Nn

f(y)

s.t. rank (\scrL i(y)) \leq ri, i = 1, . . . , N,

rank (\scrL (y)) \leq r.

This can be further equivalently rewritten as

min
y\in \BbbR Nn

F (y) := f(y) + \delta \Omega (y) +

k\sum 
i=1

\delta Ci
(\scrA i(y)) ,(3.1)

with three ways of setting k, \scrA i, \Omega , and Ci:
\bullet Variant I: k = 1, \scrA 1 = \scrL and

\Omega = \{ y : rank (\scrL i(y)) \leq ri, i = 1, . . . , N\} , C1 := \{ Y : rank(Y ) \leq r\} .

\bullet Variant II: k = N , \scrA i = \scrL i (i = 1, . . . , N) and

\Omega = \{ y : rank (\scrL (y)) \leq r\} , Ci = \{ Y : rank(Y ) \leq ri\} , i = 1, . . . , N.

\bullet Variant III: k = N + 1, \scrA i = \scrL i (i = 1, . . . , N), \scrA N+1 = \scrL and

\Omega = \BbbR Nn, Ci = \{ Y : rank(Y ) \leq ri\} , i = 1, . . . , N, CN+1 = \{ Y : rank(Y ) \leq r\} .

Here, we present three variants for model (3.1), which correspond to three specific pen-
alty schemes. In practice, which variant should be applied depends on the particular
instance of the problem. Notice that for the above three variants, the projection onto
Ci has a closed-form solution; see [5, Example 7.4.52]. On the other hand, although
the projection onto \Omega may not admit a closed-form solution, a stationary point as
defined in Definition 2.2 of the associated projection problem can be approximately
and efficiently obtained by some existing solvers such as SLRA [18], as we will show
in section 4, under mild assumptions.

Now we are ready to describe our penalty method. We first replace the constraints
\scrA i(y) \in Ci (i = 1, . . . , k) in (3.1) by a penalty for violating the constraints to obtain
the auxiliary function

F\lambda (y) = f(y) + \delta \Omega (y) +

k\sum 
i=1

1

2\lambda 
dist2(\scrA i(y), Ci),(3.2)

where \lambda > 0 is the penalty parameter. Then we approximately minimize the auxiliary
function F\lambda (y) and update y while decreasing \lambda .

Now we consider the subproblem of the penalty method, i.e., minimizing F\lambda in
(3.2) with fixed penalty parameter \lambda . Note that each term of the penalty function in
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Algorithm 3.1 vNPGmajor for subproblem (minimizing (3.5)) of penalty method

Step 0. Choose y0 \in \Omega , Lmax > Lmin > 0, \tau > 1, c > 0 and an integer M \geq 0.
Specify a stopping criterion. Set l = 0.
Step 1. Pick any \xi l \in 

\sum k
i=1

1
\lambda \scrA 

\ast 
i (\scrP Ci

(\scrA i(y
l))) and arbitrarily choose L0

l \in 
[Lmin, Lmax]. For Ll,i = L0

l \tau 
i, i = 0, 1, . . ., compute

ul
i \in \scrP s

\Omega 

\biggl( 
yl  - 1

Ll,i
(\nabla h(yl) - \xi l); yl

\biggr) 
(3.3)

until some ul
i satisfies

F\lambda (u
l
i) \leq max

[l - M ]+\leq j\leq l
F\lambda (y

j) - c

2
\| ul

i  - yl\| 2.(3.4)

Step 2. Let Ll = Ll,i, y
l+1 = ul

i, and l \leftarrow l + 1. Go to Step 1 unless the stopping
criterion is met.

(3.2) can be written as the Moreau envelope of indicator function \delta Ci(\cdot ). Using the
DC decomposition of the Moreau envelope as in [9, equation 6], we see that

F\lambda (y) = f(y) + \delta \Omega (y) +

k\sum 
i=1

inf
Yi

\biggl\{ 
\delta Ci

(Yi) +
1

2\lambda 
\| Yi  - \scrA i(y)\| 2F

\biggr\} 

= f(y) + \delta \Omega (y) +

k\sum 
i=1

\biggl\{ 
1

2\lambda 
\| \scrA i(y)\| 2F  - sup

Yi\in Ci

\biggl\{ 
1

\lambda 
\langle \scrA \ast 

i (Yi), y\rangle  - 
1

2\lambda 
\| Yi\| 2F

\biggr\} \biggr\} 

= f(y) +

k\sum 
i=1

1

2\lambda 
\| \scrA i(y)\| 2F\underbrace{}  \underbrace{}  

h(y)

+ \delta \Omega (y) - 
k\sum 

i=1

sup
Yi\in Ci

\biggl\{ 
1

\lambda 
\langle \scrA \ast 

i (Yi), y\rangle  - 
1

2\lambda 
\| Yi\| 2F

\biggr\} 
\underbrace{}  \underbrace{}  

g(y)

,(3.5)

where h is a smooth function with a Lipschitz continuous gradient whose Lipschitz
continuity modulus depends on \lambda , and g is a convex function with

k\sum 
i=1

1

\lambda 
\scrA \ast 

i (\scrP Ci
(\scrA i(y))) \subseteq \partial g(y);

this inclusion follows from [9, equation 7] and will be used for constructing majorants
when a variant of proximal gradient method is applied to minimizing F\lambda . Recall that
the projection onto Ci has a closed-form solution. Thus, for Variant III, in which
\Omega = \BbbR Nn, F\lambda can be minimized via NPGmajor in [9, Algorithm 2]. However, for
Variants I and II, the projection onto \Omega is not easy to compute. Fortunately, one can
obtain a special stationary point for the corresponding projection problems via specific
solvers: as we shall see in section 4, such a point belongs to the set of pseudoprojection
(see Definition 2.2) under mild assumptions. Thus, we propose Algorithm 3.1 below
as a variant of NPGmajor, which we call vNPGmajor, where we replace the projection
in the subproblem by pseudoprojection.

The line-search loop stopping criterion (3.4) in Algorithm 3.1 is discussed in
section 3.3, where it is shown that (3.4) is achieved after a finite number of iterations.
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3.2. Stage 2: Postprocessing scheme. After we obtain an approximate so-
lution by the penalty method, we shift to a postprocessing method. A natural and
simple choice for postprocessing is the alternating projection method. Let

\Omega 1 : =
\bigl\{ 
y \in \BbbR Nn : rank (\scrL i(y)) \leq ri, i = 1, . . . , N

\bigr\} 
,

\Omega 2 : = \{ y \in \BbbR Nn : rank (\scrL (y)) \leq r\} .
(3.6)

In the classical alternating projection method, one has to find the global minimizers
of the following problems in each iteration, for some \widetilde y:

min
y=vec(y1\cdot \cdot \cdot yN )\in \BbbR Nn

1

2
\| y  - \widetilde y\| 2 s.t. rank(\scrH ri+1(yi)) \leq ri, i = 1, . . . , N.(3.7)

min
y=vec(y1\cdot \cdot \cdot yN )\in \BbbR Nn

1

2
\| y  - \widetilde y\| 2 s.t. rank ([\scrH r+1(y1) \cdot \cdot \cdot \scrH r+1(yN )]) \leq r.(3.8)

However, these problems are in general difficult to solve globally. Fortunately, as men-
tioned in section 3.1, we can obtain a point in the set of pseudoprojection efficiently,
under mild assumptions. Thus, we adopt the following alternating pseudoprojection
method for postprocessing: start at some x0 \in \Omega 2 and z0 \in \Omega 1, let

zt+1 \in \scrP s
\Omega 1

(xt; zt) and xt+1 \in \scrP s
\Omega 2

(zt+1;xt), t = 0, 1, . . . .(3.9)

We will discuss how to compute the pseudoprojections in (3.9) in detail in section 4.
Notice that while the postprocessing (3.9) improves the feasibility of the solution, it
may also increase the function value f at the solution. We will compare the function
values before and after postprocessing in our numerical experiments in section 5.

3.3. Hybrid penalty method for (1.1) and convergence analysis. The hy-
brid penalty method for solving (1.1), which consists of the penalty method discussed
in section 3.1 and the postprocessing method discussed in section 3.2, is presented as
Algorithm 3.2.

Parameters in Step 0. In Algorithm 3.2, yfeas and y0 can always be chosen as
0. In our numerical experiments in section 5, to take advantage of the given data, we
choose y0 \in \Omega as a pseudoprojection of the noisy signal y onto \Omega , obtained by calling
SLRA in [15] with the default setting. The value of \lambda should be properly chosen. If
\lambda is too large, the penalty method in Algorithm 3.2 will terminate prematurely and
thus return a relatively bad approximate solution. On the other hand, if \lambda is too
small, it will lead to high computational cost and numerical instability in the penalty
method part. In section 5, we choose a \lambda to strike a balance between solution quality
and computational cost of the penalty method.

For the rest of the section, we will analyze the convergence of the hybrid penalty
method, including the convergence analysis for the penalty method in section 3.3.2
and the convergence rate for the postprocessing method in section 3.3.3. Before
proceeding, we first show that the criteria (3.4) and (3.10) are achieved after a finite
number of iterations.

3.3.1. Finite termination of (3.4) and (3.10). The following theorem is
about the finite termination of the line-search criterion (3.4) and the termination
criterion (3.10), i.e., they can be satisfied after finitely many inner iterations. The
proof is similar to that in [9, Proposition 1].

Theorem 3.1. The line-search criterion (3.4) is achieved after a finite number of
iterations. Moreover, \{ Ll\} is bounded. Furthermore, the termination criterion (3.10)
for Algorithm 3.1 is achieved after a finite number of iterations.
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Algorithm 3.2 A hybrid penalty method for (1.1)

Penalty method for (3.1)

Step 0. Pick two sequences of positive numbers with \epsilon t \downarrow 0 and \lambda t \downarrow 0, choose a
\lambda \geq 0, yfeas \in \Omega \cap 

\bigcap k
i=1\scrA 

 - 1
i (Ci) and y0 \in \Omega . Set t = 0.

Step 1. If F\lambda t(y
t) \leq F\lambda t(y

feas), set yt,0 = yt. Else, set yt,0 = yfeas.

Step 2. Approximately minimize F\lambda t by Algorithm 3.1, starting at yt,0 and termi-
nating at yt,lt when the following three conditions hold:

\| yt,lt+1  - yt,lt\| \leq \epsilon t, F\lambda t(y
t,lt) \leq F\lambda t(y

t,0),

dist

\biggl( 
0,\nabla f(yt,lt)+N\Omega (y

t,lt+1)+

k\sum 
i=1

1

\lambda t
\scrA \ast 

i

\bigl( 
\scrA i(y

t,lt) - \scrP Ci(\scrA i(y
t,lt))

\bigr) \biggr) 
\leq \epsilon t.

(3.10)

Step 3. Update yt+1 = yt,lt and t \leftarrow t + 1. If \lambda t < \lambda and \lambda > 0 , go to Step 4;
otherwise go to Step 1.

Postprocessing method involving the sets in (3.6)

Step 4. Let x0 \in \scrP s
\Omega 2

(yt+1; 0) and z0 \in \scrP s
\Omega 1

(yt+1; 0), use alternative pseudo-
projection as follows until a termination criterion is met:

zt+1 \in \scrP s
\Omega 1

(xt; zt) and xt+1 \in \scrP s
\Omega 2

(zt+1;xt) t = 0, 1, . . . .(3.11)

Proof. We start by discussing the line-search criterion. First, we observe from
(3.3) and Definition 2.2 that\bigm\| \bigm\| \bigm\| \bigm\| ul

i  - 
\biggl( 
yl  - 1

Ll,i

\bigl( 
\nabla h(yl) - \xi l

\bigr) \biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2 \leq \bigm\| \bigm\| \bigm\| \bigm\| yl  - \biggl( yl  - 1

Ll,i

\bigl( 
\nabla h(yl) - \xi l

\bigr) \biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2 ,
which is equivalent to\Bigl\langle 

\nabla h(yl) - \xi l, ul
i  - yl

\Bigr\rangle 
\leq  - Ll,i

2
\| ul

i  - yl\| 2.(3.12)

Next, recall from the definition of \xi l and [9, equation 7] that

\xi l \in 
k\sum 

i=1

1

\lambda 
\scrA \ast 

i

\bigl( 
\scrP Ci

\bigl( 
\scrA i(y

l)
\bigr) \bigr) 
\subseteq \partial g(yl).(3.13)

Using (3.12) and (3.13) together with ul
i \in \Omega , the L-smoothness of h and the convexity

of g give (here, we let L denote the Lipschitz continuity modulus of \nabla h)

F\lambda (u
l
i) = h(ul

i) - g(ul
i) \leq h(yl) +

\Bigl\langle 
\nabla h(yl), ul

i  - yl
\Bigr\rangle 
+

L

2
\| ul

i  - yl\| 2  - g(ul
i)

\leq h(yl) +
\Bigl\langle 
\nabla h(yl), ul

i  - yl
\Bigr\rangle 
+

L

2
\| ul

i  - yl\| 2  - g(yl) - 
\Bigl\langle 
\xi l, ul

i  - yl
\Bigr\rangle 

= F\lambda (y
l) +

\Bigl\langle 
\nabla h(yl) - \xi l, ul

i  - yl
\Bigr\rangle 
+

L

2
\| ul

i  - yl\| 2 \leq F\lambda (y
l) +

L - Ll,i

2
\| ul

i  - yl\| 2.

Thus, we see that (3.4) is satisfied whenever Ll,i \geq L + c. From the definition of
Ll,i, this latter inequality must hold when i satisfies \tau iLmin \geq L + c. Thus, the
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inequality must hold when i \geq \~i := max\{ \lceil log(L+c) - log(Lmin)
log\tau \rceil , 1\} , implying that the

line-search criterion (3.4) is achieved after a finite number of iterations. Moreover, we

have Ll \leq \tau 
\~iLmax for all l, which proves the boundedness of \{ Ll\} .

Next, let \{ yl\} be generated by Algorithm 3.1 starting at a yt,0 in Step 2 of
Algorithm 3.2. We show that the termination criteria (3.10) hold after finitely many
iterations in Algorithm 3.1 (with yl in place of yt,lt and yl+1 in place of yt,lt+1 in
(3.10)). First, from (3.4), it is easy to see that the second inequality in (3.10) holds.
Moreover, using a similar line of arguments as in [27, Lemma 4], we can show that

lim
l\rightarrow \infty 

\| yl+1  - yl\| = 0.(3.14)

Thus, the first inequality in (3.10) also holds after a finite number of iterations in
Algorithm 3.1. Finally, we note from (3.3) and Definition 2.2 that

yl  - 1

Ll

(\nabla h(yl) - \xi l) - yl+1 \in N\Omega (y
l+1).

Using this together with the definition of h in (3.5), we further obtain

Ll(y
l  - yl+1) - \nabla f(yl) - 

k\sum 
i=1

1

\lambda 
\scrA \ast 

i\scrA i(y
l) + \xi l \in N\Omega (y

l+1).

Combining this relation with (3.13) gives

dist

\Biggl( 
0,\nabla f(yl) +N\Omega (y

l+1) +

k\sum 
i=1

1

\lambda 
\scrA \ast 

i

\bigl( 
\scrA i(y

l) - \scrP Ci(\scrA i(y
l))
\bigr) \Biggr) 
\leq Ll\| yl+1  - yl\| .

This inequality together with (3.14) and the boundedness of \{ Ll\} shows that the
third inequality in (3.10) holds after a finite number of iterations. This completes the
proof.

3.3.2. Convergence analysis for the penalty method in Algorithm 3.2.
Notice that when \lambda = 0, the penalty method in Algorithm 3.2 is exactly the same
as [9, Algorithm 1]. Thus, we know from [9, Theorem 2] that the sequence \{ yt\} is
bounded and that any accumulation point of \{ yt\} , say, y\ast , is a stationary point of
(3.1) under the following classical constraint qualification:

x0 +

k\sum 
i=1

\scrA \ast 
i (xi) = 0 and x0 \in N\Omega (y

\ast ), xi \in NCi(\scrA i(y
\ast )) for i = 1, . . . , k

=\Rightarrow xi = 0 for i = 0, . . . , k.

We next estimate the violation of the constraints for the solution given by the penalty
method in Algorithm 3.2 in the following theorem. It implies that the constraint
violation can be suppressed by terminating the algorithm at a small \lambda t.

Theorem 3.2. Let \{ yt\} be the sequence generated by the penalty method in Al-
gorithm 3.2 for solving (3.1). Then we have for t \geq 1 and i = 1, . . . , k that

dist
\bigl( 
\scrA i(y

t), Ci

\bigr) 
\leq 
\sqrt{} 

2\lambda t - 1f(yfeas).
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Proof. Note from the nonnegativity of f , the definition of yt, the second inequality
in (3.10), and the choice of yt,0 and yfeas that for i = 1, . . . , k,

1

2\lambda t - 1
dist2(\scrA i(y

t), Ci) \leq F\lambda t - 1(y
t) = F\lambda t - 1(y

t - 1,lt - 1)

\leq F\lambda t - 1(y
t - 1,0) \leq F\lambda t - 1(y

feas) = f(yfeas).

This completes the proof.

3.3.3. Convergence analysis of the postprocessing method in Algo-
rithm 3.2. First, we present the following theorem which will be used later for
the convergence analysis of the postprocessing method in Algorithm 3.2.

Theorem 3.3. Let \Omega 2 be defined as in (3.6). Then \Omega 2 is prox-regular at any
y \in \Omega 2 that satisfies rank(\scrL (y)) = r.

Proof. First, we can rewrite \Omega 2 as

\Omega 2 = \{ y \in \BbbR Nn : \scrL (y) \in C\} with C := \{ Y \in \BbbR (r+1)\times N(n - r) : rank(Y ) \leq r\} .

By [20, Corollary 2.3], we see that \Omega 2 is prox-regular at y \in \Omega 2 if the following
conditions hold:

(a) there is no z \not = 0 in NC(\scrL (y)) with \scrL \ast z = 0;
(b) for every v \in N\Omega 2

(y), the set C is prox-regular at \scrL (y) for every z \in NC(\scrL (y))
with \scrL \ast z = v.

We will prove that the above two statements hold. First, we prove (a). Using
rank(\scrL (y)) = r and noting that by assumption, we have r \leq n - 1

2 and henceN(n - r) \geq 
r + 1, we see from [10, Proposition 3.6] that

NC(\scrL (y)) =
\Bigl\{ 
W : [ker(W )]

\bot \cap [ker(\scrL (y))]\bot = \{ 0\} and rank(W ) \leq 1
\Bigr\} 
.(3.15)

On the other hand, we see from Lemma 2.4 that for any W = [W1 W2 \cdot \cdot \cdot WN ] with
W\ell \in \BbbR (r+1)\times (n - r) (\ell = 1, . . . , N), we have

\scrL \ast [W1 W2 \cdot \cdot \cdot WN ] = vec
\bigl( 
\scrH \ast 

r+1(W1) \scrH \ast 
r+1(W2) \cdot \cdot \cdot \scrH \ast 

r+1(WN )
\bigr) 
.(3.16)

Suppose that there exists some \widehat W = [\widehat W1 \cdot \cdot \cdot \widehat WN ] \in NC(\scrL (y)) \cap ker(\scrL \ast ) with \widehat W\ell \in 
\BbbR (r+1)\times (n - r) (\ell = 1, . . . , N). We then know from (3.15) and (3.16) that

rank(\widehat W ) \leq 1 and \scrH \ast 
r+1(\widehat W\ell ) = 0 for all \ell = 1, . . . , N.(3.17)

Now we fix any \ell . Note from (3.17) and Lemma 2.3 that

rank(\widehat W\ell ) \leq 1,
\sum 

i+j=k+1

\widehat W\ell (i, j) = 0, for any k = 1, . . . , n.(3.18)

We claim that \widehat W\ell = 0. To prove this, we establish the following equivalent statement.
For each k = 1, . . . , n, all elements in the following set equal 0:

Sk :=
\Bigl\{ \widehat W\ell (i, j) : i+ j = k + 1

\Bigr\} 
.

First, it is easy to see from the equality in (3.18) that all elements in S1 and Sn are zero.
Now we prove that every element in Sk is zero by induction for each k = 1, 2, . . . , n - 1.
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Suppose that there exists someK \geq 1 so that every element in
\bigcup K

\ell =1 S\ell is zero. Let\widehat W\ell (i, j) and \widehat W\ell (\widehat i,\widehat j) be any two elements in SK+1 with i < \widehat i. We then know from the

first inequality in (3.18) that the 2\times 2 submatrix formed by\widehat W\ell (i,\widehat j), \widehat W\ell (i, j), \widehat W\ell (\widehat i,\widehat j),
and \widehat W\ell (\widehat i, j) is singular. Since i+\widehat j < \widehat i+\widehat j = K+2, we conclude that \widehat W\ell (i,\widehat j) = 0 by

the induction hypothesis. Consequently, there is at least one 0 in \{ \widehat W\ell (i, j),\widehat W\ell (\widehat i,\widehat j)\} .
By the arbitrariness of these two elements in SK+1, we see that there is at most one
nonzero element in SK+1. This together with the equality in (3.18) implies that every

element in SK+1 equals 0. Thus, we have \widehat W\ell = 0 by induction. Since \ell is arbitrary,

we see further that \widehat W = 0. This proves that NC(\scrL (y)) \cap ker(\scrL \ast ) = \{ 0\} , which is
equivalent to statement (a).

Now we prove (b). Using rank(\scrL (y)) = r, we know from [10, Proposition 3.8]
that C is prox-regular at \scrL (y). Then by the definition of prox-regularity, we see that
(b) holds. This completes the proof.

Since (3.11) involves the pseudoprojection instead of the actual projection, the
postprocessing method in Algorithm 3.2 is different from the classical alternating
projection method. Nevertheless, we can still show that the postprocessing method
in Algorithm 3.2 has local linear convergence under commonly used assumptions for
establishing local linear convergence of the alternating projection method (see, for
example, the assumptions used in [8, Theorem 5.16] and [10, Theorem 4.2]). The
proof follows the same line of arguments as in [8, Theorem 5.2]. We include the proof
in the appendix for the convenience of the readers.

Theorem 3.4. Let \Omega 1 and \Omega 2 be defined as in (3.6) and suppose that there exists
some y \in \Omega 1 \cap \Omega 2 such that rank(\scrL (y)) = r and N\Omega 1

(y) \cap  - N\Omega 2
(y) = \{ 0\} . Then

for any initial points x0 \in \Omega 2 and z0 \in \Omega 1 near y, any sequence generated by the
following iterations converges to a point in \Omega 1 \cap \Omega 2 R-linearly:

zt+1 \in \scrP s
\Omega 1

(xt; zt) and xt+1 \in \scrP s
\Omega 2

(zt+1;xt), t = 0, 1, . . . .(3.19)

4. Subproblem: Pseudoprojection. In this section, we consider the pseudo-
projection subproblems (3.3) in Algorithm 3.1 and (3.11) in Algorithm 3.2. Recall
that their corresponding projection problems can be put in the general form

min
y\in \BbbR d

1

2
\| y  - \widehat y\| 2 s.t. rank(\scrA (y)) \leq m;(4.1)

here, \scrA (y) \in \BbbR p\times q, and d, m, p, q, and \scrA are given as in (4.2) or (4.3) below,
corresponding to (3.7) and (3.8), respectively:

d = n, m = ri, p = ri + 1, q = n - ri, \scrA (y) = \scrH ri+1(y).(4.2)

d = Nn, m = r, p = r + 1, q = N(n - r), \scrA (y) = [\scrH r+1(y1) \cdot \cdot \cdot \scrH r+1(yN )].(4.3)

The pseudoprojection problem corresponding to (4.1) can now be stated as follows:
given \widehat y \in \BbbR d and some reference point yb \in \BbbR d satisfying rank(\scrA (yb)) \leq m, compute

ys \in \scrP s
\{ y: rank(\scrA (y))\leq m\} (\widehat y; yb).

In what follows, we will describe how such a ys can be obtained by the solver SLRA
in [18]. Recall that SLRA was developed based on the following key observation:

rank(\scrA (y)) \leq m\Leftarrow \Rightarrow \exists full row-rank matrix R \in \BbbR (p - m)\times p such that R\scrA (y) = 0.
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In view of this, algorithms were developed in [18] to approximately solve the following
equivalent formulation of (4.1):

min
R\in \BbbR (p - m)\times p

\Psi (R) s.t. RR\top = I,(4.4)

where

\Psi (R) := inf
y\in \BbbR d

\biggl\{ 
1

2
\| y  - \widehat y\| 2 : R\scrA (y) = 0

\biggr\} 
.(4.5)

Notice that under the settings in (4.2) or (4.3), we have p  - m = 1 and hence
(4.4) is an optimization problem in \BbbR 1\times p and the feasible set reduces to \{ R \in \BbbR 1\times p :
RRT = 1\} . We will show below in section 4.1 that \Psi in (4.5) is smooth on \BbbR 1\times p\setminus \{ 0\} .
The function value and the gradient of \Psi can be obtained as in [25, equation (y\top s)]
and [25, equation (\nabla d\times m)], respectively. Thus, when gradient-based optimization
methods such as those described in [18] are applied to solving (4.4), one obtains a
stationary point of the following function:\widetilde \Psi (R) := \Psi (R) + \delta \Theta (R), where \Theta := \{ R \in \BbbR 1\times p : RRT = 1\} .(4.6)

We will then discuss in section 4.2 how an element of \scrP s
\{ y: rank(\scrA (y))\leq m\} (\widehat y; yb) can be

obtained from such a stationary point under mild assumptions.

4.1. Smoothness of \Psi . In this subsection, we will prove that \Psi is smooth on
\BbbR 1\times p\setminus \{ 0\} . We start with an auxiliary lemma.

Lemma 4.1. Consider (4.1) with setting (4.2) or (4.3). For any U \in \BbbR 1\times q and
any R \in \BbbR 1\times p\setminus \{ 0\} , if \scrA \ast (R\top U) = 0, then U = 0.

Proof. Assume that U \in \BbbR 1\times q and R \in \BbbR 1\times p\setminus \{ 0\} satisfy \scrA \ast (R\top U) = 0. We need
to show that U = 0.

We first consider (4.1) with setting (4.2). In this case, we have m = ri, p = ri+1,
q = n - ri, and \scrA (y) = \scrH ri+1(y). Notice that R\top \in \BbbR p\times 1 = \BbbR ri+1 and U\top \in \BbbR q\times 1 =
\BbbR n - ri . Write

R = [R(1), . . . , R(ri + 1) ] , U = [U(1), . . . , U(n - ri) ] ,

and W = R\top U . Using Lemma 2.3, we obtain

\scrA \ast (R\top U) = \scrH \ast 
ri+1(W ) =

\left[    \cdot \cdot \cdot 
the kth element\underbrace{}  \underbrace{}  \sum 

s+t=k+1

W (s, t) \cdot \cdot \cdot 

\right]    
\top 

=

\left[    \cdot \cdot \cdot 
the kth element\underbrace{}  \underbrace{}  \sum 

s+t=k+1

R(s)U(t) \cdot \cdot \cdot 

\right]    
\top 

=

\left[     
R(1) R(2) \cdot \cdot \cdot R(ri + 1)

R(1) \cdot \cdot \cdot R(ri) R(ri + 1)
. . .

. . .
. . .

R(1) \cdot \cdot \cdot R(ri + 1)

\right]     
\top 

\underbrace{}  \underbrace{}  \widehat R

\left[     
U(1)
U(2)
...

U(n - ri)

\right]     .

Since \scrA \ast (R\top U) = 0, to show that U = 0, it suffices to show that the \widehat R \in 
\BbbR n\times (n - ri) above has full column rank. To this end, we first note from R \in \BbbR 1\times (ri+1)\setminus 
\{ 0\} that there is at least one nonzero element in R. Let i be the first integer in

1, . . . , ri +1 with R(i) \not = 0. Then the (n - ri)\times (n - ri) submatrix of \widehat R starting from
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the ith row is lower triangular with all diagonal entries being R(i) \not = 0. Consequently,

this submatrix is nonsingular and thus \widehat R has full column rank. This completes the
proof for this case.

Now we consider (4.1) with setting (4.3). In this case, we have m = r, p = r+ 1,
q = N(n  - r), and \scrA (y) = \scrL (y) = [\scrH r+1(y1) \cdot \cdot \cdot \scrH r+1(yN )] with y = vec(y1 \cdot \cdot \cdot yN ).
Notice that R\top \in \BbbR p\times 1 = \BbbR r+1 and U\top \in \BbbR q\times 1 = \BbbR N(n - r). Write

R = [R(1), . . . , R(r + 1)] , U = [U1, . . . , UN ] ,

where U\top 
i \in \BbbR n - r (i = 1, . . . , N). We then see from Lemma 2.4 that

\scrA \ast (R\top U) = \scrL \ast (R\top U) = vec

\left(   \scrH \ast 
r+1(R

\top U1) \cdot \cdot \cdot 

the kth block\underbrace{}  \underbrace{}  
\scrH \ast 

r+1(R
\top Uk) \cdot \cdot \cdot \scrH \ast 

r+1(R
\top UN )

\right)   .

Similar to the proof in setting (4.2), we can write the kth block of \scrA \ast (R\top U) as\left[     
R(1) R(2) \cdot \cdot \cdot R(r + 1)

R(1) \cdot \cdot \cdot R(r) R(r + 1)
. . .

. . .
. . .

R(1) \cdot \cdot \cdot R(r + 1)

\right]     
\top 

\underbrace{}  \underbrace{}  
R

\left[     
Uk(1)
Uk(2)

...
Uk(n - r)

\right]     .

Consequently, we have

\scrA \ast (R\top U) =

\left[   R .. .

R

\right]   U\top .(4.7)

Since \scrA \ast (R\top U) = 0, to prove that U = 0, we only need to show that the block
diagonal matrix on the right-hand side of (4.7) has full column rank. But then it
suffices to show that R has full column rank, and this latter claim can be established
by following a similar line of arguments as in the proof for setting (4.2). This completes
the proof.

Theorem 4.2. Consider (4.1) with setting (4.2) or (4.3). Then the function \Psi 
defined in (4.5) is smooth on \BbbR 1\times p\setminus \{ 0\} .

Proof. In view of [24, equation 5] and recalling that p  - m = 1 (in both cases
(4.2) and (4.3)), we only need to show that for any R \in \BbbR 1\times p\setminus \{ 0\} , the linear map
GR : \BbbR d  - \rightarrow \BbbR q defined as GR(y) := (R\scrA (y))\top is surjective, or equivalently, G\ast 

R is
injective. To proceed, fix any R \in \BbbR 1\times p\setminus \{ 0\} and consider any z \in \BbbR q with G\ast 

R(z) = 0.
Then we have for any y \in \BbbR d that

0 = \langle G\ast 
R(z), y\rangle = \langle z,GR(y)\rangle = \langle z, (R\scrA (y))\top \rangle = \langle \scrA \ast (R\top z\top ), y\rangle .

Thus we have \scrA \ast (R\top z\top ) = 0, which together with Lemma 4.1 implies that z = 0.
This completes the proof.

Since \Psi is smooth on \BbbR 1\times p\setminus \{ 0\} , we can then apply standard gradient-based op-

timization methods to solving (4.4) and obtain a stationary point of \widetilde \Psi in (4.6). We
next discuss how one can obtain a pseudoprojection from such a stationary point.
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4.2. Stationarity and improvement of function value. We discuss in this
subsection how to obtain a pseudoprojection from a suitable stationary point R\ast of\widetilde \Psi in (4.6), under mild assumptions. We start by showing how one can construct from
R\ast a point satisfying the stationarity condition in Definition 2.2.

Theorem 4.3. Consider (4.1) with setting (4.2) or (4.3). Let R\ast be a stationary

point of \widetilde \Psi in (4.6) and let y\ast achieve the infimum in (4.5) when R = R\ast . Then

0 \in y\ast  - \widehat y +\scrA \ast \bigl( N\{ X: rank(X)\leq m\} (\scrA (y\ast ))
\bigr) 
.(4.8)

If in addition rank(\scrA (y\ast )) = m, then we have

0 \in y\ast  - \widehat y +N\{ y: rank(\scrA (y))\leq m\} (y
\ast ).(4.9)

Proof. First, we define

\Phi (y,R) :=
1

2
\| y  - \widehat y\| 2 + \delta \{ (y,R): R\scrA (y)=0\} (y,R) + \delta \{ R: RR\top =1\} (R).(4.10)

Then we see from (4.6) and the definition of y\ast that

\widetilde \Psi (R\ast ) = inf
y
\Phi (y,R\ast ) = \Phi (y\ast , R\ast ).(4.11)

On the other hand, we also have from the stationarity of R\ast that 0 \in \partial \widetilde \Psi (R\ast ) =
\partial (\Psi + \delta \{ R: RR\top =1\} )(R

\ast ). Using this, (4.11), and [21, Theorem 10.13], we see further
that

(0, 0) \in \partial \Phi (y\ast , R\ast ).(4.12)

Next, notice from Lemma 4.1 that for any U \in \BbbR 1\times q, y \in \BbbR d, \lambda \in \BbbR , and
R \in \BbbR 1\times p\setminus \{ 0\} , the following implication holds:

\scrA \ast (R\top U) = 0 and U\scrA (y)\top + \lambda R = 0 =\Rightarrow U = 0 and \lambda = 0.

This corresponds to the linear independence constraint qualification for the following
optimization problem:

min
y\in \BbbR d,R\in \BbbR 1\times p

1

2
\| y  - \widehat y\| 2 s.t. R\scrA (y) = 0 and RR\top = 1.

Using this, the definition of \Phi in (4.10), (4.12), and [21, Example 10.8], we deduce that
there exist V \ast \in \BbbR 1\times q and a scalar \lambda \ast such that the following Karash--Kuhn--Tucker
conditions hold:

y\ast  - \widehat y +\scrA \ast (R\ast \top V \ast ) = 0, V \ast (\scrA (y\ast ))\top + \lambda \ast R\ast = 0,(4.13)

R\ast R\ast \top  - 1 = 0, R\ast \scrA (y\ast ) = 0.(4.14)

Multiplying both sides of the second equation in (4.13) from the right by R\ast \top , and
using the two equations in (4.14), we obtain \lambda \ast = 0 and thus

V \ast (\scrA (y\ast ))\top = 0.(4.15)

We now show that

R\ast \top V \ast \in N\{ X: rank(X)\leq m\} (\scrA (y\ast )).(4.16)

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

METHOD FOR PROBLEMS WITH MULTIPLE RANK CONSTRAINTS 1275

To proceed, recall that R\ast \in \BbbR 1\times p, which implies rank(R\ast \top V \ast ) \leq 1. According to
[10, Proposition 3.6], in order to establish (4.16), it now remains to show that

[ker(R\ast \top V \ast )]\bot \cap [ker(\scrA (y\ast ))]\bot = \{ 0\} .(4.17)

To this end, take any z \in [ker(R\ast \top V \ast )]\bot \cap [ker(\scrA (y\ast ))]\bot . Then we have in partic-
ular that z \in [ker(R\ast \top V \ast )]\bot = Range(V \ast \top R\ast ). This together with (4.15) implies
that \scrA (y\ast )z \in \scrA (y\ast )Range(V \ast \top R\ast ) = \{ 0\} . Thus, we must have z \in ker(\scrA (y\ast )) \cap 
[ker(\scrA (y\ast ))]\bot and consequently z = 0. This proves (4.17) and hence (4.16). The
desired relation (4.8) now follows immediately from (4.13) and (4.16).

Suppose in addition that rank(\scrA (y\ast )) = m. Then we have

\scrA \ast \bigl( N\{ X: rank(X)\leq m\} (\scrA (y\ast ))
\bigr) (a)

\subseteq \scrA \ast 
\Bigl( \widehat N\{ X: rank(X)\leq m\} (\scrA (y\ast ))

\Bigr) 
(b)

\subseteq \widehat N\{ y: rank(\scrA (y))\leq m\} (y
\ast )

(c)

\subseteq N\{ y: rank(\scrA (y))\leq m\} (y
\ast ),

where (a) follows from [10, Proposition 3.6] and the fact that proximal normal vectors
are regular normal vectors [21, Example 6.16], (b) follows from [21, Theorem 10.6],
and (c) follows from [21, Proposition 6.5]. This together with (4.8) proves (4.9). This
completes the proof.

We next show that if the stationary point R\ast of \widetilde \Psi in (4.6) is obtained via a
gradient-based descent optimization method with a suitably chosen initial point, then
the y\ast that attains the infimum in (4.5) will satisfy the condition on function value
improvement in Definition 2.2.

Theorem 4.4. Consider (4.1) with setting (4.2) or (4.3). Let yb \in \BbbR d satisfy

rank(\scrA (yb)) \leq m and let R0 \in \BbbR 1\times p\setminus \{ 0\} satisfy R0\scrA (yb) = 0. Then for any \widetilde R \in 
\BbbR 1\times p\setminus \{ 0\} with \Psi ( \widetilde R) \leq \Psi (R0), we have

\| y \widetilde R  - \widehat y\| \leq \| yb  - \widehat y\| ,(4.18)

where y \widetilde R attains the infimum in (4.5) when R = \widetilde R.

Proof. First, we see from R0\scrA (yb) = 0 and the definition of \Psi in (4.5) that

\Psi (R0) \leq 1
2\| yb  - \widehat y\| 2. This together with the assumption \Psi ( \widetilde R) \leq \Psi (R0) and the fact

that y \widetilde R attains the infimum in (4.5) when R = \widetilde R shows that

1

2
\| y \widetilde R  - \widehat y\| 2 = \Psi ( \widetilde R) \leq \Psi (R0) \leq 1

2
\| yb  - \widehat y\| 2.

This completes the proof.

Remark 4.5 (obtaining pseudoprojection in cases (4.2) or (4.3)). Let yb \in \BbbR d

satisfy rank(\scrA (yb)) \leq m and let R0 \in \BbbR 1\times p\setminus \{ 0\} satisfy R0\scrA (yb) = 0. Then one
can apply some standard gradient-based descent methods such as those implemented
in SLRA [18] for solving (4.4) with R0 as the initialization: these methods typically
generate a sequence \{ Rk\} so that any accumulation point, say, R\ast , is stationary for\widetilde \Psi in (4.6) and satisfies \Psi (R\ast ) \leq \Psi (R0). Suppose yR\ast achieves the infimum in (4.5)
when R = R\ast . Then we know from (4.9) in Theorem 4.3 and (4.18) in Theorem 4.4
that if rank(\scrA (yR\ast )) = m holds, then yR\ast \in \scrP s

rank(\scrA (y))\leq m(\widehat y; yb).
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4.3. Conjecture related to Theorem 4.3. In this subsection, we revisit the
assumption rank(\scrA (y\ast )) = m in Theorem 4.3. We would like to understand how likely
such a condition is fulfilled by the y\ast that achieves the infimum in (4.5), with R = R\ast 

being a stationary point of \widetilde \Psi in (4.6). Notice that if R\ast is indeed an optimal solution

of \widetilde \Psi , such a y\ast is an optimal solution of (4.1). Thus, we will first study whether
rank(\scrA (y\ast )) = m when y\ast is an optimal solution of (4.1). Specifically, we make the
following conjecture.

Conjecture 4.6. Let s be a positive integer. Suppose that \widehat y \in \BbbR n satisfies the
condition rank(\scrH s+1(\widehat y)) = s+1 and let y\ast solve the following optimization problem:

min
y\in \BbbR n

1

2
\| y  - \widehat y\| 2 s.t. rank (\scrH s+1(y)) \leq s.(4.19)

Then we have rank (\scrH s+1(y
\ast )) = s.

We do not know whether Conjecture 4.6 holds true for all positive numbers s.
However, we are able to prove that it holds true when s = 1.

Proposition 4.7. Conjecture 4.6 holds true when s = 1.

Proof. Since s = 1, we only need to show that there exists y \in \BbbR n with rank
(\scrH 2(y)) = 1 and \| y  - \widehat y\| 2 < \| \widehat y\| 2. First of all, since rank(\scrH 2(\widehat y)) = 2, we must have
n \geq 3. We consider two cases:

(i) \widehat y(1) \not = 0 or \widehat y(n) \not = 0; (ii) \widehat y(1) = 0 and \widehat y(n) = 0.

For case (i), we let y = [\widehat y(1) 0 \cdot \cdot \cdot 0]\top when \widehat y(1) \not = 0, and y = [0 \cdot \cdot \cdot 0 \widehat y(n)]\top when\widehat y(n) \not = 0. Then rank(\scrH 2(y)) = 1 and

\| y  - \widehat y\| 2 =

n\sum 
i=2

\widehat y2(i) < \| \widehat y\| 2 or \| y  - \widehat y\| 2 =

n - 1\sum 
i=1

\widehat y2(i) < \| \widehat y\| 2.
Now we consider case (ii). Notice that there exists at least one nonzero element in
\{ \widehat y(2), \cdot \cdot \cdot , \widehat y(n - 1)\} because rank(\scrH 2(\widehat y)) = 2. Hence, there are at most n - 2 distinct

real roots for the polynomial equation
\sum n - 1

i=2 \widehat y(i)(z)i - 1 = 0. Let \=z \not = 0 be a real

number different from these roots. Then we have
\sum n - 1

i=0 (z)
2i > 0. Let

c =

n - 1\sum 
i=2

\widehat y(i)(\=z)i - 1
\Big/ n - 1\sum 

i=0

(\=z)2i and y = [c cz \cdot \cdot \cdot czn - 1]\top .

Then c \not = 0 and rank (\scrH 2(y)) = 1. Consequently,

\| y  - \widehat y\| 2  - \| \widehat y\| 2 = \| y\| 2  - 2y\top \widehat y = c2
n - 1\sum 
i=0

(\=z)2i  - 2c

n - 1\sum 
i=2

\widehat y(i)(\=z)i - 1 =  - c2
n - 1\sum 
i=0

(\=z)2i < 0.

This completes the proof.
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5. Numerical experiments. In this section, we will conduct numerical exper-
iments for our hybrid penalty method, i.e., Algorithm 3.2. All numerical experiments
are performed in MATLAB R2019a on a 64-bit PC with 3.8 GHz Intel Core i5 Quad-
Core and 8 GB of DDR4 RAM.

We consider the following problem with two rank constraints:

min
y1\in \BbbR n,y2\in \BbbR n

1

2
\| y1  - y1\| 2W +

1

2
\| y2  - y2\| 2W

s.t. rank (\scrH n1+nc+1(y1)) \leq n1 + nc,

rank (\scrH n2+nc+1(y2)) \leq n2 + nc,(5.1)

rank ([\scrH n1+n2+nc+1(y1) \scrH n1+n2+nc+1(y2)]) \leq n1 + n2 + nc,

where \| y\| W :=
\sqrt{} 
y\top Wy, W is the n \times n diagonal matrix so that W (i, i) equals 1

when i is odd and equals 10 when i is even, n1, n2, and nc are given positive integers,
and y1 \in \BbbR n and y2 \in \BbbR n are known noisy signals.

Let HB 1, HB 2, and HB 3 represent the three hybrid penalty methods which
solve (5.1) by Algorithm 3.2 via the reformulation (3.1) with Variant I, Variant II, and
Variant III discussed in section 3.1, respectively. Let AP represent the alternating
pseudoprojection algorithm (3.9) applied directly to the sets \Omega 1 and \Omega 2 defined in
(3.6), constructed based on the data from (5.1).

Data generation. We first consider n = 50 with two 3-tuples (n1, n2, nc) =
(2, 2, 2) and (n1, n2, nc) = (2, 6, 4), and then consider n = 100 and n = 200 with
fixed 3-tuple (n1, n2, nc) = (2, 6, 4). For each 3-tuple, we first randomly generate two
signals y1 and y2 from two marginally stable linear time-invariant systems of order at
most n1 + nc and n2 + nc, respectively, which have nc common poles. Then we let
y1 = y1+\sigma \cdot W - 1/2\xi 1 and y2 = y2+\sigma \cdot W - 1/2\xi 2, where \sigma = 0.1 is the noise factor, and
\xi 1 and \xi 2 are random vectors with independent and identically distributed standard
Gaussian entries.

HB 1, HB 2, and HB 3. In Algorithm 3.1, we set Lmax = 108, Lmin = 10 - 8,
\tau = 2, c = 10 - 4, M = 4, L0

0 = 1, and for l \geq 1,

L0
l = max

\Biggl\{ 
min

\Biggl\{ 
(yl  - yl - 1)

\top \bigl( \nabla h(yl) - \nabla h(yl - 1)
\bigr) 

\| yl  - yl - 1\| 2
, Lmax

\Biggr\} 
, Lmin

\Biggr\} 
.

All pseudoprojection subproblems that arise are approximately solved by calling
SLRA [18] with default setting (except that the R0 is specified as in Remark 4.5). We
terminate Algorithm 3.1 when the number of iterations exceeds 108 or

\| yl  - yl - 1\| 
max \{ \| yl\| , 1\} 

< \epsilon t/Ll - 1 or

\bigm| \bigm| F\lambda t
(yl) - F\lambda t

(yl - 1)
\bigm| \bigm| 

max \{ | F\lambda t(y
l)| , 1\} 

< 10 - 10.

For the penalty method in Algorithm 3.2, we set yfeas = 0, \lambda t = \lambda t - 1/5 with
initial \lambda 0 = 0.1, \lambda = 10 - 4 and \epsilon t = max\{ \epsilon t - 1/1.5, 10

 - 6\} with initial \epsilon 0 = 10 - 5. Let
y = vec (y1 y2). We set the initial point y0 for HB 1 and HB 2 as a pseudoprojection
of y onto \Omega 1 and \Omega 2, respectively, obtained by calling SLRA in [18] with default
setting (the reference point is the origin). For HB 3, we set y0 = y.

For the postprocessing method in Algorithm 3.2, we also call SLRA in [18] with
default settings to approximately compute a pseudoprojection (except that the R0 is
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Fig. 1. Comparing terminating function values among AP, HB 1, HB 2, and HB 3 for n = 50.

Fig. 2. Comparing constraint violations and computation times (in seconds) among HB 1,
HB 2, and HB 3 for n = 50 and (n1, n2, nc) = (2, 6, 4).

specified as in Remark 4.5), and terminate it when the number of iterations exceeds
105 or

max\{ \| xt  - xt - 1\| , \| zt  - zt - 1\| \} 
max\{ \| xt - 1\| , \| zt - 1\| , 1\} 

< 10 - 10.

We output zt as the approximate solution.
AP. In this method, we start at y = vec(y1 y2) and call SLRA in [18] with default

setting (except that the R0 is specified as in Remark 4.5) to approximately compute
a pseudoprojection onto \Omega 1 and \Omega 2 defined in (3.6) (the initial reference points are
the origin). We also output zt as the approximate solution.

Numerical results. In Figure 1, we compare the four methods AP, HB 1,
HB 2, and HB 3 in terms of terminating function values over 100 random instances
for n = 50 and (n1, n2, nc) = (2, 2, 2) and over 30 random instances for n = 50 and
(n1, n2, nc) = (2, 6, 4).3 One can see that while the three hybrid penalty methods
HB 1, HB 2, and HB 3 have comparable performance, they always outperform AP.

In Figure 2, we compare the three hybrid penalty methods HB 1, HB 2, and HB 3
in terms of constraint violation (before and after postprocessing) and computation

3For each 3-tuple, we first generate y1 and y2 as described above. For these two fixed signals, we
generate 100 (and, resp., 30) random noisy signals \=y1 and \=y2 and solve the corresponding instances.
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time over 30 random instances for n = 50 and (n1, n2, nc) = (2, 6, 4). We measure
constraint violation by log10(vio), with vio given by

max

\biggl\{ 
dist(\scrH m1+1(y

\ast 
1),\Xi m1)

\| \scrH m1+1(y\ast 
1)\| 2

,
dist(\scrH m2+1(y

\ast 
2),\Xi m2)

\| \scrH m2+1(y\ast 
2)\| 2

,
dist([\scrH m+1(y

\ast 
1),\scrH m+1(y

\ast 
2)],\Xi m)

\| [Hm+1(y\ast 
1),\scrH m+1(y\ast 

2)]\| 2

\biggr\} 
,

where y\ast 1 and y\ast 2 are computed solutions, m1 = n1 + nc, m2 = n2 + nc, m = n1 +
n2 + nc, and \Xi s := \{ Y : rank(Y ) \leq s\} . One can see that the postprocessing scheme
significantly reduces constraint violation. On the other hand, HB 2 is faster than
HB 1 and HB 3.

In Figures 3 and 4, fixing (n1, n2, nc) = (2, 6, 4), for n = 100 and n = 200,
respectively, we compare the four methods AP, HB 1, HB 2, and HB 3 in terms
of terminating function values, and also compare the three hybrid penalty methods
HB 1, HB 2, and HB 3 in terms of computation time over 30 random instances.

In Figure 5, fixing (n1, n2, nc) = (2, 6, 4), for n = 100 and n = 200, respectively,
we compare the three hybrid penalty methods HB 1, HB 2, and HB 3 in terms of
function values (before and after postprocessing) over 30 random instances. One can
see that function values are increased but not significantly after postprocessing.

Fig. 3. Comparing terminating function values and computation times (in seconds) for n = 100
and (n1, n2, nc) = (2, 6, 4).

Fig. 4. Comparing terminating function values and computation times (in seconds) for n = 200
and (n1, n2, nc) = (2, 6, 4).
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Fig. 5. Comparing terminating function values before and after postprocessing among HB 1,
HB 2, and HB 3 for n = 100 and n = 200 with (n1, n2, nc) = (2, 6, 4).

6. Concluding remarks. In this paper, we propose a hybrid penalty method
for solving (1.1). The hybrid penalty method consists of two parts: a penalty scheme
which makes use of a special penalty function as in [9] and a postprocessing method for
reducing constraint violation. Both the penalty subproblems and the subproblems in
the postprocessing method involve the new concept of pseudoprojections: we discussed
in section 4 in detail how pseudoprojections can be computed efficiently by some
existing software such as [18], under mild assumptions.

There are several open questions related to pseudoprojection computation. For
instance, we still do not know how likely the condition rank(\scrA (y\ast )) = m holds for
the y\ast that achieves the infimum in (4.5) (with R = R\ast being a stationary point

of \widetilde \Psi in (4.6)).4 Even assuming y\ast is a solution of (4.19), we can only establish
rank(\scrH s+1(y

\ast )) = s when s = 1. The case for s > 1 is still open.

Appendix A. Proof of Theorem 3.4. Before proving Theorem 3.4, we first
state two auxiliary lemmas without proofs. The proof of Lemma A.1 can be found in
the first paragraph in the proof of [8, Theorem 5.16], and Lemma A.2 follows from
Theorem 3.3 and the same argument as in the proof of [8, Theorem 5.16].

Lemma A.1. Let \Omega 1 and \Omega 2 be defined as in (3.6), y \in \Omega 1 \cap \Omega 2 and define

c := max \{ \langle u, v\rangle : u \in N\Omega 1(y) \cap B, v \in  - N\Omega 2(y) \cap B\} ,(A.1)

where B is the closed unit ball. Then N\Omega 1
(y) \cap  - N\Omega 2

(y) = \{ 0\} if and only if c < 1.

Lemma A.2. Let \Omega 1 and \Omega 2 be defined as in (3.6). Suppose that there exists some
y \in \Omega 1 \cap \Omega 2 such that rank(\scrL (y)) = r and N\Omega 1(y)\cap  - N\Omega 2(y) = \{ 0\} . Let c be defined
as in (A.1). Then for any c \in (c, 1), there exist some \epsilon > 0 and \delta \in [0, 1 - c

2 ) such that

x \in \Omega 1 \cap B\epsilon (y), u \in N\Omega 1(x) \cap B
z \in \Omega 2 \cap B\epsilon (y), v \in  - N\Omega 2

(z) \cap B

\biggr\} 
=\Rightarrow \langle u, v\rangle \leq c,(A.2)

x, z \in \Omega 2 \cap B\epsilon (y)
v \in N\Omega 2

(z) \cap B

\biggr\} 
=\Rightarrow \langle v, x - z\rangle \leq \delta \| x - z\| ,(A.3)

where B\epsilon (y) is the closed ball with center y and radius \epsilon , and B is the closed unit ball.

4In the numerical experiments in section 5, the condition rank(\scrA (y\ast )) = m almost never fails for
the solution y\ast returned by SLRA: for over 99.9\% of our calls to SLRA, the mth singular value of
\scrA (y\ast ) is significantly larger than its next singular value.
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We now prove Theorem 3.4. The proof follows the same line of arguments as in
[8, Theorem 5.2].

Proof. Fix any c \in (c, 1) with c defined as in (A.1), and let \delta and \epsilon be given as in
Lemma A.2. We first claim that

\| zt+1  - y\| \leq \epsilon 
2

\| zt+1  - xt\| \leq \epsilon 
2

\biggr\} 
=\Rightarrow \| xt+1  - zt+1\| \leq c0\| xt  - zt+1\| ,(A.4)

where c0 := c+ 2\delta . To prove this, note from (3.19) and Definition 2.2 that

xt  - zt+1 \in N\Omega 1
(zt+1), zt+1  - xt+1 \in N\Omega 2

(xt+1),(A.5)

\| zt+1  - xt\| \leq \| zt  - xt\| , \| xt+1  - zt+1\| \leq \| xt  - zt+1\| .(A.6)

If \| xt+1 - zt+1\| = 0 or \| xt - zt+1\| = 0, we then see from the second inequality in (A.6)
that (A.4) holds trivially. Now we assume that \| xt+1 - zt+1\| \not = 0 and \| xt - zt+1\| \not = 0.
We first notice from (A.6), \| zt+1  - y\| \leq \epsilon 

2 , and \| z
t+1  - xt\| \leq \epsilon 

2 that

\| xt+1  - y\| \leq \| xt+1  - zt+1\| + \| zt+1  - y\| \leq \| zt+1  - xt\| + \| zt+1  - y\| \leq \epsilon ,(A.7)

\| xt  - xt+1\| \leq \| xt  - zt+1\| + \| zt+1  - xt+1\| \leq 2\| xt  - zt+1\| ,(A.8)

\| xt  - y\| \leq \| xt  - zt+1\| + \| zt+1  - y\| \leq \epsilon .(A.9)

Using (A.5), (A.7), and \| zt+1  - \=y\| \leq \epsilon 
2 , we obtain further that

xt - zt+1

\| xt - zt+1\| \in N\Omega 1
(zt+1) \cap B with zt+1 \in \Omega 1 \cap B\epsilon (y),(A.10)

xt+1 - zt+1

\| xt+1 - zt+1\| \in  - N\Omega 2(x
t+1) \cap B with xt+1 \in \Omega 2 \cap B\epsilon (y).(A.11)

Here, B represents the closed unit ball and B\epsilon (y) represents the closed ball with center
y and radius \epsilon . Furthermore, we see from (A.2), (A.10), and (A.11) that

\langle xt  - zt+1, xt+1  - zt+1\rangle \leq c\| xt  - zt+1\| \| xt+1  - zt+1\| .(A.12)

On the other hand, in view of (A.7), (A.9), and (A.11), we can apply (A.3) with

x = xt, z = xt+1, and v = zt+1 - xt+1

\| zt+1 - xt+1\| to obtain

\langle xt  - xt+1, zt+1  - xt+1\rangle \leq \delta \| xt  - xt+1\| \| zt+1  - xt+1\| 
\leq 2\delta \| xt  - zt+1\| \| zt+1  - xt+1\| ,

(A.13)

where the second inequality follows from (A.8). Adding (A.12) and (A.13), we obtain

\| xt+1  - zt+1\| \leq (c+ 2\delta )\| xt  - zt+1\| = c0\| xt  - zt+1\| ,

which proves (A.4).
Note from c0 = c + 2\delta with c \in (\=c, 1) and \delta \in [0, 1 - c

2 ) that c0 \in (0, 1). Choose

initial points x0 and z0 such that \gamma := \| x0 - y\| +\| z0 - x0\| < (1 - c0)\epsilon 
4 . Next, we prove

the following inequalities by induction:

\| zt+1  - xt\| \leq \gamma c0
t < \epsilon 

2 ,(A.14)

\| zt+1  - y\| \leq 2\gamma 1 - c0
t+1

1 - c0
< \epsilon 

2 ,(A.15)

\| xt+1  - zt+1\| \leq \gamma c0
t+1.(A.16)
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First, we prove that the above three inequalities hold for t = 0. Note from c0 \in (0, 1),
the z-update in (3.19), and the definition of \gamma that

\| z1  - x0\| \leq \| z0  - x0\| \leq \gamma <
\epsilon 

2
and \| z1  - y\| \leq \| z1  - x0\| + \| x0  - y\| \leq 2\gamma <

\epsilon 

2
,

which proves (A.14) and (A.15) for t = 0. Then we see from \| z1 - x0\| < \epsilon 
2 , \| z

1 - y\| < \epsilon 
2

and (A.4) that

\| x1  - z1\| \leq c0\| x0  - z1\| \leq \gamma c0,

which proves (A.16) for t = 0. To prove by induction, we assume that (A.14), (A.15),
and (A.16) hold for some t \geq 0. We know from the z-update, (A.14), and (A.16) that

\| zt+2  - xt+1\| \leq \| zt+1  - xt+1\| \leq \gamma ct+1
0 < \epsilon 

2 .

This together with (A.15) and (A.16) implies

\| zt+2  - y\| \leq \| zt+2  - xt+1\| + \| xt+1  - zt+1\| + \| zt+1  - y\| 

\leq \gamma ct+1
0 + \gamma ct+1

0 + 2\gamma 
1 - ct+1

0

1 - c0
= 2\gamma 

1 - ct+2
0

1 - c0
< 2\gamma 

1 - c0
< \epsilon 

2 .

We then see from \| zt+2  - xt+1\| < \epsilon 
2 , \| z

t+2  - y\| < \epsilon 
2 and (A.4) that

\| xt+2  - zt+2\| \leq c0\| xt+1  - zt+2\| \leq \gamma ct+2
0 .

Thus, we proved (A.14), (A.15), and (A.16) for t+ 1. This completes the induction.
Now we prove that the sequence \{ z0, x0, z1, x1 \cdot \cdot \cdot \} is a Cauchy sequence. For any

t and k > s \geq t, we know from (A.14) and (A.16) that

\| zk  - zs\| \leq 
\sum k - 1

j=s

\bigl( 
\| zj+1  - xj\| + \| xj  - zj\| 

\bigr) 
\leq 2\gamma 

\bigl( 
cs0 + cs+1

0 + \cdot \cdot \cdot + ck - 1
0

\bigr) 
\leq 2\gamma ct0

1 - c0
,

\| xk  - xs\| \leq 
\sum k - 1

j=s

\bigl( 
\| xj+1  - zj+1\| +\| zj+1  - xj\| 

\bigr) 
\leq \gamma 

\sum k - 1
j=s cj+1

0 +\gamma 
\sum k - 1

j=s cj0\leq 
\gamma ct0(1+c0)

1 - c0
.

Furthermore, by using (A.16), we have

\| zk  - xs\| \leq \| zk  - zs\| + \| zs  - xs\| \leq 2\gamma ct0
1 - c0

+ \gamma ct0,

\| xk  - zs\| \leq \| xk  - xs\| + \| xs  - zs\| \leq \gamma ct0(1+c0)
1 - c0

+ \gamma ct0.

These prove that the sequence \{ z0, x0, z1, x1 \cdot \cdot \cdot \} is a Cauchy sequence. Therefore, it
converges to some y\ast \in \Omega 1 \cap \Omega 2 and we have for any t that

\| zt  - y\ast \| \leq 2\gamma ct0
1 - c0

and \| xt  - y\ast \| \leq \gamma ct0(1+c0)
1 - c0

.

Thus the sequence \{ z0, x0, z1, x1 \cdot \cdot \cdot \} converges R-linearly. This completes the proof.
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