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QUANTUM BGK MODEL NEAR A GLOBAL FERMI-DIRAC
DISTRIBUTION

GI-CHAN BAE AND SEOK-BAE YUN

ABSTRACT. In this paper, we consider the existence and asymptotic behavior of the
fermionic quantum BGK model, which is a relaxation model of the quantum Boltzmann
equation for fermions. More precisely, we establish the existence of unique classical
solutions and their exponentially fast stabilization when the initial data starts sufficiently
close to a global Fermi-Dirac distribution. A key difficulty unobserved in the study of the
classical BGK model is that we must verify that the equilibrium parameters is uniquely
determined through a set of nonlinear equations in each iteration step.

1. INTRODUCTION

1.1. Quantum BGK model. The quantum modification of the celebrated Boltzmann
equation was first suggested in [32] [46] [88] [89], which often goes by the name of Uehling-
Uhlenbeck equation or Nordheim equation. But the intricate structure of the collision
operator complicates the computations and understanding of quantum transport properties,
and the relaxation time approximation are widely used in physics and engineering [5] [15]

24,140, 42} 43| 144}, 45, 47, 167, (69, [73, [77, 195}, [96]:

1
O +p-V.F = L(F(F) - F)
F(Z’,p,O) = F()(J/',p)

(1.1)

Here F(z,p,t) is the number density function on phase point (z,p) € T3 x R? at time
t € Ry. 7 is the relaxation time. The Fermi-Dirac distribution F(F'), which is the quantum
counterpart of the classical Maxwellian for fermions is defined by the following process:
First, we define the macroscopic fields of local density, momentum and energy:

N(z,t) = /]RS F(x,p,t)dp,
(1.2 Plat) = [ Fla.p.tids

Bla,t) = / F(z,p,t)lpPdp.
RS

Key words and phrases. Quantum BGK model, Quantum Boltzmann equation, Fermi-Dirac distribution,
Nonlinear energy method.
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We then define the equilibrium constants: First, we derive ¢(z,t) from the following nonlin-
ear functional equation:

N
N(at) Jpaerrean 1P
B 2 2
Bz, t) — Pz(;v”)‘ Ip|
( N(z,t) - e|p|2+¢2(z,t) T 1dp

In view of this relation, we define 8(c) and B(N, P, E) for later convenience as

(1.3)

1
Jeo s BN, P.E) — N(x,1)

3
Ip|2 5 P(x,t)?
(fR3 e‘p‘zpiwdp) (E(:v, t) — N(zt) )

Once c¢(z,t) is determined by the relation ([3]), we define a(x,t) by

2
1 3 2

It will be shown later that (I3]) and (L) uniquely determines ¢ under additional conditions
(See Theorem [2T]).
The Fermi-Dirac distribution is now defined as follows:

1

(1.4) Ble) =

3 -
5

(1.6) F(F)(z,p,t) =

P, |? :
@D |p-FER] @) | g

The relaxation opeartor of the quantum-BGK model satisfies the following cancellation
property (See Section 2).

1 1
(1.7) F(F)(x,p,t)| p |dp= [ F(z,pt)| p |dp,
R |p|? R |p|?

which implies the conservation laws of N(x,t), P(z,t) and E(z,t):

/ F(t)dxdp = / Fydzdp,
T3 xR3 T3 xR3

(1.8) / F(t)pdzdp = / Fypdxdp,
T3 xR3 T3 xR3

[ FowPada= [ Rl
T3 xR3 T3 xR3

The following celebrated H-theorem was established in [93] :

d
SHE®) <0,

where the H-functional is defined by
H(F):/ FInF + (1 — F)In(1 — F)dxdp.
T3 xR3

We note that the H-functional is minimized when F is a Fermi-Dirac distribution (See Sec.
2).
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The relaxation time 7 can take various different forms depending on the physical situa-
tions, but usually given as an energy dependent, and hence, temperature dependent function.
Through out this paper, we assume that the relaxation time takes the following form:

1
(1.9) = = P(N)(CiT" + CoT™ + Cs) + Cu,

where T denotes the local temperature, and P is a homogeneous generic polynomial and
m,n,C; (i =1,2,3,4) satisfies

n>0,m<0,C;>0, Y Ci#0.

Since the temperature and the equilibrium coefficients given in (LI) are related by T =
(kpa)~! through the Boltzmann constant kg [44], we rewrite (L9 as

1
(1.10) ~ = P(N)(C1a" + Coa™ + C3) + Ci.

This encompass a wide range of the expressions for the relaxation time in the literature
[6, 91 38, (411, [44] [70L [73], [78, 81 [86, 95, [96].

1.2. Novelty and difficulty. The goal of this paper is to establish the existence of classical
solutions and their asymptotic behavior using the nonlinear energy method [34 [35] [36], when
the initial data lies close to a global Fermi-Dirac distribution:

1
(1.11) mP) = e 11
where ag and ¢y are determined by the following relation:
1 2
Ny fRs e‘p‘2+co+1dp 1 3 _2
(1.12) 7= g 0= /R e 1 ®) Mo

P2 5 | |2 5
(EO N N_?)) (flR3 e\p\zzco+1dp)
Here Ny, Py and Ey are defined as in (L2) from the initial data:
(1.13) Ny = / Fydxdp, Py = / Fopdxzdp, Ey= / Folp|*dxdp.
T3 xR3 T3 xR3 T3 xR3

Note that Py = 0.

For this, we decompose F' into the equilibrium and the perturbation as
(1.14) F=m+Vm—m2f,
and write ([LT)) as follows:
Of +p-Vof =Lf+T(f),
f(x,p,0) = fo(x,p),
where L denotes the linearized relaxation operator:
Lf=Pf—1,

and T'(f) is nonlinear term. (Precise definitions is in section 2.) P is macroscopic projection
operator for f on the five-dimensional linear space spanned by

(115) {\/m - m27p1\/m - mQ, p?\/m - m27p3\/m - m27 |p|2\/m —m? }
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We take vm — m? as the weight function in the perturbation instead of usual \/m, to
treat the nonlinear structure F — F? arising from the differentiation of the local Fermi-
Dirac distribution with respect to the macroscopic fields: N, P and E. Such nonlinear
structure turns out to be inconsistent with the conventional weight /m, and the choice of
weight function v/m — m? enables one to resolve such inconsistence, leading to the desired
dissipative structure of L. Similar observation was made in [52, 55] for quantum Landau
equations (See Section 3).

On the other hand, we see that the equation (1)) is well-defined only when we are able
to find the equilibrium coefficients a and ¢ uniquely from (7). In view of this, we must
guarantee that the functional relations (IL3) and (L) uniquely determine the equilibrium
coefficients in each iteration step. We accomplish this by 1) proving in Proposition 2] that
the function B(x) defined in (4] is strictly decreasing if we restrict = to (—In 3, c0):

f'(z) <0 for x> —1In3,
and 2) showing that the Lh.s of (I3)) falls into the range of 8 for each n:
0 < B(Nyp, P, E,) < B(—1n3),

if such inequality is satisfied initially, and the high-order energy are kept sufficiently small
for each iteration. This enables us to find a unique ¢, in the region (—1n 3, c0) and, in turn,
an so that we can proceed to the next iteration step (See Section 5.2).

1.3. Main results. We first need to set up some notational conventions.

e The constants in the estimates will be defined generically.
e ()2 and (,,-)rz = denote the standard L? inner product on R} and T2 x R?

respectively.
(f,9)r2 = / f)g(p)dp, (f.9)r2, = / [z, p)g(x, p)dzdp.
R3 T3 xR3
e || -]lzz and || - |[rz  denote the standard L? norms in RY and T3 x R3 respectively:

ez = ([ 1r0Fan) s Wz, = ([, 15nPasas)

e We use the following notations for multi-indices, differential operators:

o = [ap, 01, 02,03], B =[B1, B2, 5],

and
68 — a;lo 3;111 92 Has 91 §b2 §bs

T2 Tx3 Tp1 P2 TP3

We define the high-order energy functional E(f(t))(or E(t)):

EF@N =" Nogr®liz -

laf+IBI<N

We are ready to state our main result.

Theorem 1.1. Let N > 3. Suppose that Fy = m ++vm — m2fy > 0 satisfies
No
(1.16) ——= < B(—1n3).
By
Then there exists positive constant 6 and C, such that if E(fo) < §, then there exists a
unique global solution F to {I1]) such that
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(1) The distribution function F is non-negative for all t > 0:

F=m++/m—m2f >0,

0 < B(N,P,E) < f(—1n3).
(2) The conservation laws (I.8) hold.
(3) The high order energy functional E(f(t)) is uniformly bounded:

sup E(f(1)) < CE(fo)-

teRL

and satisfies

(4) The perturbation decays exponentially fast:
> 105F@)le2, < Ce,

z,p
laf+IBI<N

for some positive constants C' and €.

Remark 1.2. Tt states that if B(Ny, Py, Ep) lies in (0, 5(—1n3)), then B(N, P, E) also lies
in (0,8(—1n3)). It is only under such restriction that we are able to conclude that the
local Fermi-Dirac distribution is uniquely determined to satisfied the conservation laws (See
Section 2).

1.4. Brief history. The prototype of relaxation type models in quantum theory can be
traced back to early 1900s when Drude successfully explained the fundamental transport
properties of electrons such as the Ohm’s law or Hall effect using his relaxation model.
Ever since, relaxational approximations has been a popular tool in quantum and condensed
matter physics to understand various transport phenomena. Despite such popularity of the
quantum relaxation model in physics and engineering, the mathematical research on the
model has a rather short history, and most of the important problems remain unanswered.
We refer to [73] for the study on a stationary problem for bosonic quantum BGK model with
modified condensation ansantz. In [9] [10], the author considers the existence and asymptotic
behavior of analytic solutions for a BGK type model arising in the study of the cloud of
ultra-cold atoms in an optical lattice. These results seem to be the all existence results
known so far for quantum BGK models. For numerical computations for quantum BGK
models, we refer to [19] 30} B1L 72, [79], 82, [’3] 93], 04 [97].

Literature on quantum Boltzmann equations, especially in the case of free quantum
particles, are much richer. For studies in the spatially homogeneous regime, we refer to
1B, 12 26, 29, (3, (6, 57, B8, 60, 63, 64, 65] for bosonic gas, and [26, (9, 61 62] [66] for
fermions. Linearized problem for the spatially homogeneous quantum Boltzmann equation
were investigated in [25] 27, 28]. In the case of spatially inhomogeneous case, the exis-
tence of mild solution and its long time behavior is obtained by Dolbeault in [2I]. Lions
derived the existence of renormalized solution in [54]. Allemand considered conservation
laws and hydrodynamic limits in [2]. The Quantum Boltzmann equation in spatially de-
caying regime was investigated in [I06] [I07] for existence and long time behavior and in
[14] for uniform L' stability estimate. For the derivation of quantum Boltzmann equation,
see [7, 13| 37]. Quantum hydrodynamic models limit considered in [1l 20, [103]. Studies on
Wigner-Poisson type equation can be found in [4], 11 B9, 49, 50, 51}, 68 [74]. We refer to
[8, 18, 48], [711, [75] [76] [80] [92] 08, 99, 100} 101 102] 104, [105] for mathematical results on

classical BGK models. Nice survey on classical or quantum kinetic equations can be found

in [I5, 16} 17, 133} 84, 85} BT, 90, 91].
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This paper is organized as follows: In Section 2, we study the well-posedness problem
for the Fermi-Dirac distribution. In section 3, relaxation operator is linearized around a
global Fermi-Dirac distribution. In section 4, we present a priori estimates for macroscopic
quantities and equilibrium coefficients. In section 5, local in time existence and uniqueness
is derived. Finally, we prove our main theorem in Section 6.

2. MONOTONICITY OF 3

In this section, we consider the problem of determination of the equilibrium coefficients
a and c in the local Fermi-Dirac distribution. For this, we study the minimization problem
of H-functional

H(F):/R3(1—F)1n(1—F)+F1anp

under the constraints of (7). The corresponding Euler-Lagrange equation is

In + A1+ (A2, A3, M) - p + As[p|® =0,

1-F
which can be rewritten as

1
F(p) = eMt(A2,A8,04) p+As]pl* 417

It remains to choose A; (i = 1,...,5) so that F shares the zeroth, first, and second moments
with F' as in (L7). For simplicity, we reparametrize Aj,...,A\s to write the Fermi-Dirac
distribution as follows:

1

Flp) = ealp=bl2+c 1 1’

for a € Rt , b € R3, ¢ € R. We now check whether a, b, ¢ can be uniquely determined by
N, P, E. First, by making a change of variable v/a(p — b) — p, we get from the first line of

(0 that

1 -3 1
(2.1) N(:zr,t):/Rsmdp:“ z/Rg a1

Similarly, we make change of variable p — b — p and use the oddness of p/(e“‘p‘Z“ +1) to
write the second line of (L) as

P(x,t):/ #dp:/ pi_'—bdp:b]\](x,t).
R R

s el e 1 s el e 4 1

which gives the representation of b:

(2.2) bz, t) = D@0
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Finally, we compute the last line of (7)) as follows:

2
Bet) = [ oty
R

5 el Te 4 1

_ p+b
= |, w1

_ p|? 2p-b b?

_ /R e [ e [ e
P Y R R Y

=a - elpl?+e 1+ 1 D+ (ZE, )a

which, combined with [22), gives
P(z,t)?

. _ s p|?
23) Bt~ e =t [

)

From (Z1)) and (23), we deduce that

N(z,t) Jes e dp

3
5

(Bt - Het2)’

3
5

lp|? £
(f]R?’ elplZ+eciq dp)

or, in view of (L4)

remain to check| (2.4) B(c) = B(N, P, E).

If we can determine c from this identity, we can recover a from (2.1 by

1 3 2
ale,t) = (/R m‘@ N, 675

Therefore, it remains to check that (Z4]) uniquely determines ¢, which is accomplished in
the following theorem.

Theorem 2.1. Assume 0 < B(N, P, E) < 8(—1n3). Then,
B(c¢) = B(N,P,E)
has a unique solution ¢ in (—1In3,00).
Proof. This follows directly from the fact that
S, Ble) =0

and Proposition 2] below. O

In view of this theorem, we allow a slight abuse the notation to use 8~! in the following
sense:

(25) 7 = (Bl s

Proposition 2.1. The function §(c) defined in ({I4) is a strictly decreasing function of c
when ¢ > —1n 3.

Remark 2.2. The monotonicity of £ in the case ¢ < —In3 is inconclusive for now.
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Proof. We will show that the 8'(c) is strictly negative in ¢ > —1In3. The infinite differen-
tiability of § with respect to c is clear from the definition of 8. By an explicit computation
we see that

(2.6)

|p|? elplte 3 —|pl2el?!” ) 1
(fRs e P ) (fRe de) -3 (fRe e | s ey p
- .
A
(f]Rg elplZte ] p)

We represent in the spherical coordinates:

B'(c) =

B'(c) =

(47T)2/ ° D(C)

(57 )

6 e’} ,,,4 €T2+c e’} T2 e’} T4 [e’e] T2 er2+c
D(c) == ———d ———dr —2 d dr.
(C) 5 /0 (er2+c + 1)2 T/O er2+c + 1 r A er2+c + 1 T\/(; (er2+c + 1)2 r

Therefore, the desired result is achieved if we show that D(c) < 0. We then apply the

2
; ; g — _2re” tC — 1.3
integration by parts: u' = @i VT e for

e o] T4€T2+c 3 e ] 7,2
/ r24c 2 dr = / r24c dT,
0 (e + 1) 2 0 e + 1

_1
v = gr for

o] 2 r2+c 1 o] 1
I e
g (emte+1)2 2 Jp erte41
to rewrite D(c) as

9 ° r? 2 o rt o0 1
D(c) = 2 " w) - [ ——d
=3 (/0 e e 1 1 T> /0 e 1 T/o e 17

We then symmetrize D(c):

9 o0 :CQ o0 y2 [e'e] I4 [e'e] 1
D(c) = - ——d ————dy — d d
() / er®te 41 x/o ey2+c 1 /0 er’te 41 x/o e e 11

/ / 52 dzd
ez +c + 1 (ey2+c + 1) xray,
and write in the spherical coordinate:
2 cos2 0sin? 6 — cos*
er2 C0b2 O+c + 1)(€T2 sin2 0+c + 1) drde.
Applying the change of Varlable L —0=t, we get
sm tcos?t —sint ¢
8T2 sm2 t+c 4 1)(8T2 cos2 t+c + 1) drdt.

From these two expression, we obtam the following symmetric expression of D:

8 cos? 0sin® 0 — cos? 0 — sin* 0 drdd
(27) / / €T2 cos2 f+c + 1)(€T2 sin2 6+c + 1) rag.

)

oo

2
2re” T

l
and v = =%——
(er2+c+1)27
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We observe that
18 . o 2 . 4 4 1
~ sin 6 cos® § —sin® § — cos™ 0 = —E(?) + 7cos40),
to simplify this further into

1 [z [ — (34 Tcos40
:—/ / o303+ Teosdh) drd.
2 0 0 (er cos2 O0+c + 1)(67" sin? 0+c + 1)
Next, from the observation that
1
34 Tcos4f
2 cos2 ( 2 qin? ) drdf

er cos 9+c + 1)(67‘ sin? 6+4c + 1)
_ / / 5 —15(3 4 Tcos40) drdd
z o (67"2 cos2 O+c 4 1)(6T2 sin? O+c + 1) ’

which can be checked by considering the change of variable 8 — 7/2 — 0, we restrict the
domain of integral of D(c) into [0, 7/4]:

T — L (34 Tcos46
(2.8) D(c):/4/ 5 1(3 + Tcos40) drd.
0 0

(GTZ cos2? O+c + 1)(67"2 sin2 0+c + 1)

In view of the fact that —1/10(3 4+ 7cos46) changes sign from negative to positive at
0= 7 cos™!(—2) in interval [0, 5], we divide the integral as into the negative part and the
positive part:

1

geosTH (=) poo —L (34 7cosd6
I:/ / 2 ooa? 10( 2o 2) drdo,
0 er cos? 0+c + 1)(6T sin? 6+4c + 1)

°° (3 + Tcos40)
= drde.
/ cos—1(—3) ~/O 67“2 cos? 9+c + 1)(6T2 sin2 0+c 4 1) r

4

First, we observe that
. 1 3
67"2 cos? O+c 67"2 sin? O+c S er2+c ec on O S 9 S Z C0871 (_ _>7

to estimate the negative part I:
1

0o rlcos—l(—2
I:/ /400 (=%) 7‘5(—%(3+7COS4€)) dodr

er2+2c + 67"2 cos2 f+c 4 6T2 sin? 0+c 4 1)

1o (=) 5 (L (3 4 Tcos4d
/ / P34+ Teosd9) 0

er2+2c + er2+c +ec+1

rd Zcos 1(—%) 1 b
< d ——(34 7cos40)do | .
([ ) ([ e

Similarly, we use

. 2
6T2 cos? 0+-c + 67"2 sin? O+c > 2\/€T2 cos? 9+C€T2 sin? 6+c — 26%+C,
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to estimate I as

H_/OO/Z r5(— 15 (3 + Tcos 46)) o
0 icosfl(*%) (6T2+26 + er2 cos2 O0+c 4 67«2 sinZ O+c T 1)

[e's) =z 5(_ 1
S/ /4 r°( 10(3+7COS49))d9dr
0 icos*l(—%)
o r

2
er’t2c 4 2er e 4]

5 I 1
< </ 5 dr) / ——(3+ 7cos40)do | .
0 er’t2e yoete Teos—1(=2) 10

Now, for simplicity, we set

peosT'(=3) g 3 3 1
a :/ —E(3+7cos46‘)d9 =——cos ! (——) - — <0,
0

40 7 V40
0 1 33 3 1
= ——(3+T7cos40)df) = —— 4+ —cos™! [ —= — > 0.
B et 10( + 7 cos 46) 20 T 10 < 7> + m >

We combine the above two estimates for I and IT and observe —4/a > 8 > 0 to get
D(c)=1+1I

S rd o rd
< dr | a+ / dr)
oo _47.5 © 7~5 «
</0 er*tle ertte fec 41 0 ertHe 4 2eTre 4] 4

2
_ /OO P —demt 2 —ge'T e — 4 4 e H2e 4 er e e 4 Lir (—g)
0 (er2+2c + er2+c +ec + 1)(er2+20 + 2e§+c + 1) 4

/oo 5 _3er2+20 + er2-|—c +e°—3 a

< r 5 dr (— —) .

0 (er2+20 + er2+c +ec + 1)(er2+2c + Qe%Jrc + 1) 4

In second line, strict inequality arise because I and I1 can not satisfy equality at the same
time. Recalling (2Z.6]), what we have derived so far amounts to

)2/5 co 4 -3/ «a
ﬂ’(c)<(42) (/0 Wd’") (-7)

/oo 5 _36T2+26 + €T2+c + e — 3
X r = dr|.
0 (er2+2c + er2+c 4 et + 1)(6r2+2c + 28%4-0 + 1)

Therefore, we get the desired result from the following claim:

Claim: If ¢ > —In 3, then _gerH2e 4 erte L ge _3< 0 for all r > 0.
To prove this claim, we set

Y = —3em t2e + erte + e — 3.
Define

to rewrite Y as
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For this straight line to stay strictly negative for all X > 1, we impose the following condition
—3e% +e°<0, and Y(1) = —3e* +2¢°—3 < 0.

Since the second inequality is automatically satisfied, we only need to consider the first one,
which is equivalent to ¢ > —In 3. This completes the proof of the claim. O

The following corollary will recur throughout the paper.

Corollary 2.1. Let co > —In3. Then, there exists € > 0 and corresponding Ce n,Cep > 0
such that for |c — co| < e, B satisfies

(1) [B™(e)] < Cepn,
(2) 18'(0)] = Cepr.

Remark 2.3. This estimates on derivatives of 8 show up too often throughout the paper, so
we will not refer to this lemma except when it is necessary to explicitly mention it.

Proof. (1) By definition, S(c) is infinitely differentiable with respect to ¢. Therefore, any
derivatives of § is continuous, and attain its maximum and minimum in the closed interval
le —co| <e.

(2) Take e sufficiently small so that any c satisfying |c — ¢o| < e still satisfies ¢ > —In3.
Then, by Proposition 2] £'(¢) is strictly negative. Therefore, the |5’(c)| is a continuous
function that never vanishes, and we can find C. ¢ > 0 such that |5'(c)| > C. ¢ on the closed
interval |c¢ — ¢o| < e. O

3. LINEARIZATION OF FERMI-DIRAC MODEL

In this section, we consider the linearization of the Fermi-Dirac distribution near a global
Fermi-Dirac distribution:

1

G- )= e T

where ag and ¢q are determined by (LI2) and Ny, Py, Ey satisfy (P, = 0)

No
B(—1In3) > .
E3/°

3.1. Transitional Fermi-Dirac distribution. To study the linearization of the relaxation
operator, we define the transitional local Fermi-Dirac distribution:

1
(5:2) F0) =

where Ny, Py, Ey denotes the transition of macroscopic fields from (N, P, E) to (N, Py, Ep)
(0<6<1):

[
ag |p— <% c
ee;D Ng 9+1

Ng=06N + (1—6)Ny, Py=0P, Ey=0E+ (1—6)E,,

and ag and ¢y are defined by the following relations:

Ng f]R3 \p\2i09+1dp 1 % _2
recall ac| (3.3) T = = , Qg = (/ 7dp> N, ®.
R

2 2 [pl2+co 1
P2\ 5 Ip|2 5 3 € +
(EG - Fee) (f]R3 e‘p‘2+09+1dp)
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Note that F(#) represents the transition from the global Fermi-Dirac m(p) to the local
Fermi-Dirac F(F):
1 1
0= G PO S G

Definition 3.1. We define the macroscopic projection by
5
Pf = Z<f7 ei)Lgeia

i=1
where {e;}1<;<5 is an orthonormal basis for the five dimensional linear space defined by

vVm —m?

/ m —m?2dp
R3

iVm — m?

€1 =

6= ——2 i =234,
¢/pﬂm—mﬁ@
RS
(34) p|*(m — m*)dp
Ip]2vVm —m?2 — & m — m?2
m — m2dp
]RS

%m%m—mﬂw

/ lpl*V/m —m? — =& m—m2| dp
R3

m —m?2dp

R3

We now state the main goal of this section:

Theorem 3.2. Assume cg > —1n3. Then the local Fermi-Dirac distribution F(F') is lin-
earized around a global Fermi-Dirac distribution m if we define F = m +vm — m2f :

1
F(Fy=m+PfVm-m?+ > { / {Dixy Py F(O)}ii (1 — 9)d9}<f, ez (fes) s
1<i,j<s ~ 70

We postpone the proof until various preliminary computations are completed. We start
with the computations of the derivatives of transitional macroscopic fields.

3.2. Derivatives of transitional macroscopic fields. First we need the following lemma,
which is frequently used throughout this subsection:

Lemma 3.3. Define the constant k by

(3.5) k= /}R3 (m —m?)dp.

Assume
N,
T(/)5 < B(—1n3).
Ey
Then we have
N2
FEogk — J o >0

10&0 '
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Proof. Note that the assumption guarantees that we can find ¢ > —In3 by Theorem 2.1
An explicit computation gives

ONg Ipl? eaolpl*+eo
Eok — —2 = d d
0 1040 /]RS caolpteo 1 1 p/]R?’ (e®olPlPFeo 1 1)2 p

9 1 2
- ——dp) .
10ag R3 eaolpl*+co +1

We then note from the proof of Proposition 2] that the r.h.s is —(477)23(00), the strict

Qa%
positiveness of which under the assumption ¢g > — In 3 is also shown in Proposition 211 [

Lemma 3.4. Assume ¢y > —1In3, then we have

8
E3
0

N2’
—Eok + T0ao

(3.6) (671 (B(co)) =

Proof. From the differentiation rule for composite functions, we have

We then use (Z.0) to get

Ip|? E
(f]R3 elplZ+eo 1 dp)

] _—elplPteo g0 03 —[p|?el??+eo 1 ‘
s e‘p‘Q“OHdprs (elPl+e041)? ap =5 Jao (elp?Fe041)2 P Jps TP

(871 (B(c) =

Writing it in the spherical coordinates and applying integration by parts:

2
, 2re” teo 14
UW=—-—-  v=-T

(6T2+CO + 1)25 2 b
and rewriting back in the Cartesian coordinate, we derive

8
Ip|? 5
(f]R3 e\p\2+co+1dp
5.
_ [p|? elp2+eo 9 1
f]R?’ e\p\2+co+1dp«fR3 (elPl+co41)2 dp+ 10 f]R?’ e\P\2+co+1dp

We then recall the definition of Ny, Py, Fo in (L.I3]) and observe

eaolp|*+co s elpl*+co
(37) k - ‘/]R'g (60«0|;D|2+CO ¥ 1)2 dp - aO /Rii (e‘p‘2+co ¥ 1)2 dp7

to obtain

(87 (B(e)) =

Now we can calculate V(n, p, £,)Co-
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Lemma 3.5. Assume cg > —1In3. Then we have

(909 EO
O T I 1
0=0  —Lok + {545
609
2) — =0,
(2) 9P |,
869 3 NO
(3) —8E - _5 9N2 ’
0 lo=0 —Eok + 10;;

where k is defined by (33).

Proof. Thanks to Proposition 2] the definition of ¢y in B3] and the assumption ¢y >
—In 3, we can write

N,
(3.8) co=p" —
Ey—f2)°
0~ Ny
We differentiate (B.8)) w.r.t. Np:
2
deg| 1D Ny 1 (Be-i3)
ONg |g—g ' (co) ONg (Ep — 11\3192)% 6=0 B (co) (Ep — 11\3,—92 £ lo=o
We then recall Py = 0 and Lemma 3.4}
g |  E; 1 E,
= FREY E——
ONolo—o  —Eok+ 2% EF  —Eok + 32
A similar computation using Py = 0 gives
Ocy 1 0 Ny 1 %Pe —0
OB lg—g  P'(co) OFp (Eyg — Z—ez)% o—0 B'(co) (Ey — Z_ez)% 9—0 ’
and
G _ L O [ No B N 1.0 _ 3 N
OBolomo F'e0) 080 \ (By— 500 ) lozo P'(0) (By— )¥lomo O —Eok+ 55t

O

We now compute the derivatives of ag with respect to the macroscopic fields.

Lemma 3.6. We have

(1) 6&9 3 NQ
EYV = TE T oNZ
ONolo—o 5 —Eok + p02
6@9
2) — =0,
(2) s,
Oag 2 aok
(3) 9En =y, N
6 lo=0 —Eok + IOa%

where k is defined by (3.3).
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Proof. We recall
2
1 3
fR3 ewm2+c9+1dp
ag =\ —————
Ny ’
to compute
1 -3 1
(1 aa@ . 2 fRS e\P\2+09+1dp 0 ng B\P\2+09+1dp
ONglg_y 3 Ny ONy Ny 0=0
-1 _elpl®+eq P 1
1 3 (3 Co — R S—
. g fR?’ e\p\2+co+1dp No fﬂ@ (elp|?+co41)2 dpaNg 0=0 fﬂ@ e\p\2+co+1dp
3 Ny Ng

We then employ Lemma B3] (1) and B71) to proceed further as

_1 3 . 3
b 2 (adny) P [Moadtid| | —aio
ONy 6—0 3 Ny N02
dc
2 —kmﬁe o 1
= —ap NO
2 an EO
S T A
0 —Eok + T0ag
3 Ny
T 5 ., 9NZ®
5 —Eok + T0ao

(2) A similar computation using Lemma B3] (2) and Py = 0 gives

1 -3 1
80,9 . 2 fR3 e\p\2+ce+1dp ’ 0 fRS E\P\2+69+1dp
OPylo—y 3 Ny 0Py No 0=0
_1 7e\p\2+09 de,
- 2 fRS E\P\2jce+ldp ° ng (e\P\2+Cg+1)2dp8P99
3 Nog Ng 9=0
1 _elpI®+eo de,
B 2 f]RS e\p\2ic0+ldp ? fR3 (elplPFe011)2 dpaPZ 0—0
-3 No No

=0.
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(3) We use Lemma 35 (3) as

_1
8@9 - g e\P\2+Cg+1 p ’ 8 fRS e\PPiC@_’_ldp
0Fg|,_y 3 OEy No 6=0
_1 \p\ +eco de,
_2 e‘P\2+CO+1dp e (e‘P‘z“OJrl)2 PEy =0
3 Ny
3 -3 3 9
_ 2 (agNo —ag kg5 lo=o
3 Ny Ny
_ _Zaok 9cp |
3 No 8E9 0=0
- 2 aok 3 NQ
3 NO 5 E k + 10(1[)
- 2 aok
5 9NZ
b —Eok + 1t
]
3.3. Derivatives of F(#). We now turn to the derivatives of F(6).
Lemma 3.7. We have
OF(0) 3 No Lo
( ) 8N = g 9N§| 2_ gNg (m_m2)7
¢ lo=0 —Eok + T0ag —Eok T0ao
(9]:(9) 2@0 2
2 = —p(m —m"),
@) Gp|, = Frm =)
8]:(9) 2 aok NO
(3) aE = _g 9N2 | |2 5 9N2 (m - m2)
0 lo=0 —E0k+ 10a Eok 10(;;

Proof. All of these identities follows from similar arguments as in the previous cases using
Lemma and Lemma

a . anlo_Pa 2+C
B e
aNG 0=0 (€a9|p_N79| ~+co + 1)2 9—0
(2| wr+p] ) e
INg =0 ONg 0—0 (eao\P\z-i-co +1)2
= § NO | |2 _ L (m B m2)'
b —Eok + 10a —FEok +

10a0
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da Py |2 2 P, dc ap|p— 2 2-l-c
9F(0) {apz‘p_ﬁ’ —aem(p—ﬁﬂ—a_;e}eﬂ’ N9’ 0
(2) 0P, - Py |2
0 lo=0 (eae’p*N—el +Ce+1)2 0—0
_ 80"9 | |2 2 + 8C9 ao|p|*+co
a 0P 9=0 b p 0P, =0 (ea0|20|2+00 + 1)2
2
= Ni;)p(m —m?)
Py |?
Oa Odc ag|p—x=| +c
g 070 Bl RE ol e
8E0 0=0 (ea9|P*N—9| +co + 1)2 =0
_ (3(10 | |2 Ocy ) ao|p|”+co
9By |,y T 9Ey|,_,) (ewollPren 4 1)2
2 aok 2 No 5
= 79]\[2| | 79]\]2 (m -m )
5 —FEok + To 5 _Eok + o8

O

3.4. Proof of Theorem Now we turn to the proof of Theorem Using Taylor’s
theorem around 6 = 0, we obtain

(3.9) F(1) = F(0) + F(0) + / " F10)(1 — 0)d6.
0

We know F(0) = m. It remains to show for the second and the third term in the r.h.s.
(i) '(0) : By chain rule, we have

F'(0) = %f(N0,P9,E9)|9:o
_ <8N9 OF(6) 0P OF(6) @W(@))

00 0Ny 00 0P, 00 0OFEy
OF(9)
ONg

6=0

OF(0) OF(0)
- P=or, + (E — Ey)

= (N = No)
6=0 IEy

0=0

In the last line, we used Py = 0. Then Lemma [3.7] together with
NNy [ 5vm= i
= /W fpvm —m2dp,
B-E= [ 1wV,
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yields

3 N E
FO) = [ 1Vm=m dp | 5ol - —

d —Eok + 5. —Eok +

+ / fpv/m —m2dp (%) p(m —m?)
RS 0

9NZ2
10a0

2 apk 3 N,
+/3 FlpP i = dp | —5 " fpf? 4 E
R\

9NZ
10a0

5—E0k+m 5—E0k+
=I+11+1I1

= (fien)rzervm—m?+ 11+ (I+111- (fer)rzervm —m? ).

We first show that 1T is projection on e; (i = 2,3,4):
Lemma 3.8. We have

(3.10) 1 = Z <f,ei>Lgei\/m—m2.

i=2,3,4

Proof. First, we make the following observation (i = 2,3, 4):
o pivVm —m?
\/f]R?’ pf(m —m?)dp

_1
eao\p\2+CU 2
= </ P g dp | piV/m —m?
R

50 " (eaolpP+eo 4 1)

=

(eaO‘P‘2+CO +1

1 eaolp?+co -
= </R% §|p|2—)2dp> pivm—m?

[Nl

[p|2elPt* o

1 _s -
-z I S — m2
= <3a0 2 /}R3 (e & 1)2dp> pivVm—m=.

We then recall the following identity obtained in the proof of Proposition 2.1}

pPelr e 3 I
(311) ‘/]R'g (8|P|2+Co + 1)2dp - 5 - e|p|2+60 + 1dp7
and derive from (I2) that
_ —3)2 1
(3.12) No = a, /RS e 1 1dp,

to get

1
5 2

_5 1 B
e = (5% 2 / 7dp) pivVm —m?
R

3 elplP+eo 41

1
1Ng\ 2 —

2@0

1
2 2
(ﬂ) piv/m —m2.

No
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This immediately gives

I = </R fpmc@ <2“0) p(m —m?)

No
5 (LA o ) i

{(f, ei>Lgei\/m — m2.

i=2,3,4

For the remaining terms, we claim that
Lemma 3.9. We have
I+ 11T = (f,er)rzervm —m? = (f,e5) 25/ m —m?.

Proof. We recall the definition of k = [, m — m?dp to compute
vm — m?2

\/ Jgs m — m2dp
This readily yields

<f,61>L§€1\/m - % (/RS f\/mdp> (m — m?).

(3.13)

m —m2.

(3.14) =k 2

ey =

(3.15)

BI0) and BI2) to compute the numerator of e5 as follows:

2 2
m —m*)d
|p|2\/m—mQ—fR?’|p| ( )p\/m—mQ

rs M — m2dp

_5 2
_ 2 G § |p|28|p| eo — 9
_ (|p| = [ e ) Vi

3
2
o G =
2a0k Jps elPl*+eo 41

— (1o~ 5o
2a0k

dp) m — m?2

m —m2.

For the computation of the denominator of e5 (which we denote by A for simplicity),
first write it using the definition of k and Ny above as

A:/)@wwafgi~%mmm‘m“@¢ﬁfﬁﬂim
.

rs M — m2dp

= /W Ip|* (m — m*)dp — % (/W Ip|*(m — mz)dp)2

=L+ L.

(3.16)

19

We now turn to the representation of es. First, we recall the definition of k in (8.5) and use

we
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For I, we first observe that

2
_z p|telpl"+eo
(317) /3 |p|4(m - m2)dp = Q 2 /3 ( | |2 de
R R

elpl?+co + 1)

We then write it in the spherical coordinate:

|p|Aelpl*+eo I rOer’teo T bdedd
[ i

and carry out the integration by parts:

2
, 2re” tco 15
W =——  v=-T

(6T2+CO + 1)25 2 b

e <] 6 7‘2+co 5 e <] 4
J SN
o (et 12" T2 )y ettt
We then go back to (BIT) with these observations and find
27
/ Ip|*(m — m?)dp = §(f_ / / / ————dr sin ¢pdpdl
R3 0 6T2+Co +1

5 -1 p|?
— 2
= 2@@ ~/]R'* el e 1 1dp

5Eq
2&0 ’

to get

where we used the definition of Ey:

Eo= | mlp[*dp = Ldp—a 5/2 Ldp
0 R3 R3 eao|pl2+co +1 0 R elpl®tco 1 .

For I, we use (BI1)) and B.12)) to derive

2
Ip|2(m — m2)dp = ag ? et dp
R3 0 R3 (e|P|2+Co + 1)2

3 s 1
- §a0 ‘/]R'g e‘P\2+Co + 1dp

3Ny
- 2@0 '
Inserting these computations to [B.I6]), we get the following representation of the denomi-
nator of es:
5k 9INg
T 2a 4ka(2)'

We now combine all the above identities for the denominator and the numerator of es to
obtain

N[

2 aok 3N0 /
(318) €5 = 5791\[3 <|p|2 — ) m—m2.

2a0k
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Now, from (BI5) and the definition of I, we first compute

— (fren)erV/m —m?

3 N E 1
( fvm— m2dp> 5 ” INZ p|? — : aNg T & (m —m?)
—Eok + T0as —Eok + 152

2 aok 2 3N0 2 3N0 2
= - \/ — d — —

5 _Eok + 9N2 (/W fvm—msdp {2a0k ('pl 2a0k (m —m?)

2 aok 2 3N0 2 3]\/vO 2
- - A/ — — d — —

10ag

Similarly 111 also arranged as follows:

2 aok 3 N
Inz(/fwm—wm%@ ————imﬁm2 e | )
R3 0

S _Eok + 300 5 —Fok + 252
2 ao k 3N0
5W {/ fvm—m?|p| dp} <|p|2 - 2aok) (m —m?).
ok —

Combining these identities gives

(1=t e gerv/m=—m2} + 111
—4—i%w{/fw?7ﬁoﬁ e Yo} (10 = 22 ) (= )

5 Eok _ 2a0k
= <fa 65>L§e5 vim— m27
where we used (BI8). O

3.5. Computation of the 2nd order term in Theorem : We now turn to the
representation of the nonlinear terms:

(ii) / F"(0)(1 — 0)do : By an explicit computation, we obtain
0
@F

62
(N — No, P,E — Eo)" D{y, p, 2, F(0)(N — No, P, E — Eo)

> ADi, o F O i (Fredrz(fre;) 2

1<i,j<5

F'(0) = (Ng, Py, Ey)

We then represent the second derivative as follows:

Lemma 3.10. There exists polynomial Pg’; and RZ-];- satisfying following condition :

> ADNpy e FO) iy (fredrz(fres) iz

1<4,5<5

1<4,5<5

PZ,(0)
RZ.(0

(F(O) = FO)*)(f, ez (f e5) 2,

~—
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where Pi};» (0) is a generically defined polynomial of

Py
Ny A0, ( - E)u D(Ng,Pg,Eg)(a/ech)u D(2N97P91E9)(a/9709)7 ]:(9)7
and Rfj (0) is generic polynomial of Ny, satisfying the following structural assumptions:

. (’H]:l)PZ-{;- is a polynomial such that Pl]'; (0,0,...,0)=0.

o (Mr2)R]; is a monomial.
ey M),

In other words, for a multi-index m = (mq, ma,
o (Hrl)Pli(x1,22,....20) = 3, amx "z - - 2™, where ag = 0.
o (Mr2)R]; (1,20, ..., x0) = ama ay - apm.

Proof. We only consider the (1,1) element of D(2N9,P9,Ee)]:(9>’ that is 626%(?. Other ele-

ments can be treated similarly. Thanks to Lemma B.7] (1), we have
Py |2
AR WS TS

da P,
2FO) o [~ {a—zv‘2|P— Ny |* a0 F
3]\792 3]\79 (eae|20*§2|2+09 + 1)2
0 8@9 P@ 2 2P9 P@ 609 2
= |=—|p— = —|p— = — 0) — F(0
9N, [azva PN, TNz N, ) "o, | SO =700
80,9 P9 2 2P9 P9 869 8 2
— | =—=—Ip— = — |p— = — 0) — F(0
<8N9p | TN N, ) TN, | an, 7O~ F O]
— [ +1I,
where we used
eae\p—%\2+09 )
( aolp— L2 24 ey ; = F(0) - F(0)".
e No +1
An explicit computation yields
820,9 P9 2 8&9 4P9 P9 P9 P9 P02 8269
I=— S0 0 20 gl (p— 20 ) 4 2a0-2
(aNg P=N,| " oN, N2 ( NQ) N3 <p N9> TN T 5N
x (F(0) — F(6)%).
Similarly,
80,9 Pg 2 2P9 P9 809 8]:(9) 8‘/7(9)
IT=— | 204, 20 il I —2F(8
(azve ey, T P w) Yo, ) o, 0%y,
2
. 6&9 Pg 2 2P9 P@ (909 2
= — (8]\]9 p— N + ag Nz N, + N, (1 -2F(0))(F(0) — F(0)°).
Note that we have used Lemma [377] (1) in the last line. Therefore, in view of the definitions
9% F(6)

of P7;(#) and R/;(6), we can represent N7

92F()  P(0)
oNT  RE0) (F () = F(6)%).
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This completes the proof of the (1,1) elements. Others parts can be proved in a similar
manner. g

3.6. Linearization of the collision frequency. We now turn to the linearization of the
collision frequency.

Theorem 3.11. Assume cp > —1n3. Then collision frequency is linearized around m as
follows:

1 1
o1 ([ o) e

where C;(0) (1 =1,---,5) are given by

C1(0) = VEX(0)

2 oY (0)as el 1 (Hp - s - BN )
_ Y 2 a, 42 N
+ 5V O | [ o ) (B — B 0 ) N
No
1 2
2 (Np\?2 _1 —elpl"+co 1 QPO i1 B
CO)==(==) Y(®a,? d 57 Nt | =2,3,4
( ) 3 <2a0> ( )ae /1;3 (6|P|2+Ce + 1)2 pﬁ/(CQ) (Ee _ ]1\3;92)% 0 > (forz y 9y );
0
2 (2 k B Ip|?+co 1 3N
ap —1 —e ¢ —2Ng .
CO) =< | s —55 Y(0)a, / 3 dp s N,
9N, +c 2 / P2.s 6 >
3 5E@k-ﬁ ra (elPPPHeo 1 1)277 3(cq) (E _N_ee)s
with

X(0) = P'(Ng) (Craf + Caay* + C3),
Y(0) = P(Ng) (nCray ™" +mCaay ).
Proof. We recall
Ng=60N+(1—-0)Ny, Py=6P, Ey=0E+(1-0)E,
and define the transitional collision frequency as
g(0) = P(Ng) (Crag + Caag’ + Cs) + Cy.
Then we note that
9(1) = 7. 9(0) = = = P(No) (Craf +Caa +Ca) + Ci.

Without loss of generality, we set 79 to be 1 for simplicity. Applying Taylor expansion, we
derive

o(1) = 9(0) + / ¢/ (6)d0
(3.19) 0

— 4(0) +/01(N  NoP.E—E)- (ag(e) 29(0) ag(e)) "

ONg* 0Py’ OFEy
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(i) ¢’(0): Explicit calculation using chain rule gives

9'(0) = (/W \/Wfdp) X(0)

_ \P\2+Cg B) 3
€ Co 2
f]R3 (e dp — Qg

2 _1 2+c ON,
+ (/ \/mfdp> Y(0)5a, oty O
R3

Ny

[y =0 0co g,

2 _1 R3 (elplZ+c OP,

+ (/ \/mfpdp> Y(9)§a95 (elrTreo41)2 OF
RS

No
_e\P\QJng dcy
2 _1 fg elpl?+c oF dp
+ (/ \/mf|p|2dp) Y(9)§a95 Gl DO
R3 (4

Then, a tedious calculation using Lemma and Lemma together with (B10), (BI4)
and (BI8) yields the desired result. We omit the details. O

3.7. Linearized Quantum BGK model for fermions. We employ the notation Pf; and

Rfj generically from now on, since, once the property (Hx1) and (Hr2) are satisfied, the
exact form are not relevant. We also introduce the following three notations for notational
simplicity:

Pr.
Q/(0) = =%

and
1 2 1
F(0) - F0P)
gf:/gfe(—1—9d9, O;:/ciede.
»J 0 7.7( ) /m _ m2 ( ) o ( )
Now, we turn back to (3] with all these computations to get
F(F)=m+vVm—m2Pf++vV/m—m? Z ij<f,€i>Lg<f7€j>Lg.

1<i,5<5
1 >,
—=1+ ;c (f ez
We summarize all the argument of this section so far in the following proposition.

Proposition 3.1. The relaxation collision operator is linearized around the global Fermi-
Dirac distribution m as follows:

5
—{1+Zc;<f,ei>Lg} (PF=H+ Y Bl(fe)a(fre)nz
i=1 1<4,5<5

We now substitute

F=m++vVm—m2f,
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into (L)) to obtain the perturbed Fermi-Dirac model:
O0f+p-Veof =Lf+T(f),

3.20

( ) f(xapvo):fo(xvp)a
where fo(x,p) = % The linearized relaxation operator L and nonlinear perturbation
term I is defined as

Lf=Pf—-F,
and
3
T(f) =Y Ti(f),
i=1

with

= > Bl(fiez(fies) iz,

1<4,5<5

5
(3.21) La(f) = {Zcﬂfa ei)Lg} (Pf—1),
Ts(f)= Y. BLCI(fe)r2(f.ei) 2 (fren)rs

1<4,5,k<5

Then the conservation laws (L8)) for F' now take the following form:

Lemma 3.12. f satisfies

[ spom—widedp= [ fawp)vim — mdedy,
T3 xR3 T

3 xXR3
(3.22) / f (@, p, t)p\/m — m2dadp :/ folz, p)pv/m — m2dxdp,
T3 xR} T3 XR3
/3 . Flz, p, O)|p|*V'm — m2dadp = /3 3 Fola, p)p2v/m — m2dxdp.
T3 xRy T3 xR}

The following dissipative property of L now follows from standard argument:
Lemma 3.13. Linearized relaxzation operator L satisfies the following coercivity property.
(Lf.f)rz, =~ =P)flIZ: .

Proof. Since e; (i = 1,---,5) forms an orthonormal set by construction, P is a orthogonal
projection: P? = P and self adjoint. Hence we have

(Pf,(I = P)f)1z = (Pf. )iz — (P, Pf)sz

= (Pf.f)rz —(P*f. \)ra
=0,

which yields
(Lf oz =P =, [)z = (Pf = f,=Pf+ f)rz = =|l(I = P)fI[Z.-
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4. ESTIMATES ON THE NONLINEAR PART

In this section, we estimate the nonlinear part I'(f), which is crucial to close the energy
estimate. For this, we first estimate N, P, E and a and ¢, when £(t) is sufficiently small.

4.1. Estimates on the macroscopic field. We start with the estimates of the macroscopic
fields N, P and FE.

Lemma 4.1. Suppose E(t) is sufficiently small, then we have the following estimates.
(1) [N(z,t) — No| < CVE(R),
(2) |P(z,1)] < CVE),
3) |E(z,t) — Eo| < CVE),

< CVE),

(
ot 2

for some constant C > 0.

Proof. (1), (2) and (3) follows from a direct application of Holder inequality. For example,

|E — Eo| = }/RS Iplzx/mfdp} < </RB f2dp>% (/RS |p|4(m—m2)dp>% < CVE®).

We now turn to (4). Using the above estimate (1) — (3), we get

P2 ()
E——>Fy—CJV&( > FEy—Cy\E&
N_ 0 lVo—C\/—_ 0

so that
N Ny < N0+C\/Tt) No

B (m-cyEm) B

Now, by mean value theorem, we can find Ey — C/E(t) < k < Ej such that

M

(Eo NN/ ) Ef - (O\/ ) ki > By - gC\/S(t) (EO - c\/g(t))_‘f’ .
Hence we have
N No _ No+CVED _ No
o E CH-ovew B
. C(EO‘ +No) VED
(Eg - C\/S(t)) B}
< CVED).
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Lower bound can be obtained in a similar manner:

N _&> No —C/E(1) _&
(E-5)°  Eg (B0 +CVED) ° OB

< No — C/E(1) B &

CES+CVED B

_C\EDES — NoC/EWD

2 3 3
(G +0vEm) B

—CVER).

v

Lemma 4.2. Suppose E(t) is sufficiently small and || > 1, then we have
(1) [0%N (2, )] < CVER),
(2) [0%P (2, 1) <
(3) [07E(z, )] <
P(x,t
(4) o < (z, >) ‘ < CaVE),

(5) |0B(N, P, E)| < Cyn/E(2),

for some C >0 and C,, > 0.

Proof. (1)-(3) follows directly from applying 0% and estimating using Hélder inequality. For
example, we have

9B =

o ([ 1P (me+ im=is) ay) |

<([ 1o dp>é ([ it m2>dp>%
< CVE(®).

(4) A direct application of Leibniz rule and product rule of differentiation gives

(6% P [65] a21
0 <N>'§Oa > o P > o N'
e |<]al |az|<lal
(4.1) la
1 n+1
<Co| > [0™P| P > |o™N|
loa|<[a] 0<n<|al 1<]as[<al

Then the desired result follows from the estimate (1),(2) of this lemma and Lemma F.T] (1).
(5) Using chain rule, together with Lemma [£.1] and previous estimates in this lemma, the
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derivatives of denominator can be estimated as

lex|

P2 2 P2 g-n p2
“ - — < - — 2 [
r(e-5) el 2 (%) )| 2 (e %)
1<n<|qf laz| <]l
(42) tn o
<Co| > (Bo-cVE®m)' | (cvVE® +Cugt)
1<n<]a|
< CuvE(L).
Then the desired result follows directly from this and
1 n+1
0°B(N,P,E)| < Co | > |0™N]| Yo/
la1[<lal 0<n<lal | (B —5&)°

lex|

3
s P2 5
0 (E‘ﬂ

4.2. Estimates on the equilibrium coefficients. We now estimate the equilibrium co-
efficients a and c.

P>

1<z <]

O

Lemma 4.3. Assume E(t) is sufficiently small. Then we have
(1) Je(z,1) — col < CVED,
(2) Ja(z, ) — ao] < CVEW,
for some constant C > 0.

Proof. (1) Since £(t) is sufficiently small, we have from Lemma [41] (4) that

N N N
(4.3) 0< 335 —CVER) < — 75 < 335 + CVE(t) < B(—n3),
By (B-5)" " 5

so that, in view of Theorem 2] and (2.35]), we can represent
c=B""(B(N,P,E)).
We then deduce from the monotonicity of 5 and (@3) that

(4.4) gt (NS +C 8(t)> <ec<p? <N€j e, 5(15)) :
Eg E§

Now, applying mean value theorem (which is possible due to Corollary 2.1)) on both sides,
we have

Eg

it (D) - ovElig or < oVEm.

for some

g1 (Nf;) <k<p (NS - C\/E(t)> .

E§ Ej
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Similarly, we have

) + cw/e(t)ﬁk) > ¢ — CV/EQ).

c> B! (NS
EO)
5(t)> <k<p? <N§>
Eg

N
—1 0
g (E

0

Note that we have used Corollary 211 (2) to bound 1/|5(k)|.
(2) Thanks to the estimate (1) of this lemma and Lemma [£1] (1), we estimate

H 3
1 3 2 1 2
= T dr| N3 < d Ny — CA/E(t))75.
¢ (/R% elplP+e 41 p) = </R% el +e0—CED | p) (No ()3

Applying mean value theorem on

f(x) = / L gy and gl@) =2,

s elpl*+2 1

for some

yields
_elp*+k

2
3 2
1/ e — 3 _1/ -3
"= </Rs elpl2+co + a1 ¢ e (elP’TF 4+ 1)2 dp) <N " g )

for k € (co — C/E(t),co) and h € (Ng — C/E(t), No). This gives, for sufficiently large C
and sufficiently small £(t)

2

1 3 2

a< / L ) NP CVED = a0+ CVEQ).
s PP Fo0 4 1

The estimate for lower bound is almost identical. [l

We now turn to the estimates of derivatives of a and c.

Lemma 4.4. Suppose E(t) is sufficiently small and || > 1. Then we have the following
estimates for c.

(1) 10%]| < Cq \/—

(2) [0%B(c)| < Ca/E),

(3) [0*(V(n,p,E)c)i| < CoVE) for i=1,---,5,
(4) |aa(v%N,P,E)C)i,j| < CoVEW) for i, j=1,---,5,

for some Cy > 0.

Proof. (1) Since

(B_l)l (B(N,P,E)) = ﬂ’(c)'

We easily see that (371)("™) takes the following form:
P(ﬂ(c)v ﬁ/(c)v T 7ﬂ(n) (C))
15" ()" ’

(B~H)™ (B(N, P, E)) =
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for some generic polynomial P satisfying P(0,0,---,0) = 0. Therefore, Corollary 2]
Lemma 1] (4) and Lemma 3] (1) give the following uniform bound

(8~ )™ BN, P.B)| < Ca,

for some C,, > 0. Then, the desired result follows from this, together with Lemma 2] (5),
and the following computation:

0%| =0~ {7 (B(N. P, E))}

<Ca )y, (‘ (NPE)D

n<|al

lex|

8“1 B(N, P, E)‘

1<l |<a]
(2) Estimate on the derivative of ¢ above and Corollary 2] readily gives

lex|

078 < Ca Y- (BD@N) [ D 0med] < CaV/ED.

n<|a 1<) | <]
(3) We will consider the derivatives of d¢/ON. We recall from Lemma (1) that
Jde 1 E-— s 2

oge 1 BTSN
ON  Plc)(BE-L£2)3
Take 0%, then we obtain
Oc 1 _sr
(45) ol <c, o (3 ) [l |22
8N / 2\ 5
x|+ lazl <ol ) (E-%)

Employing the estimate (1) of this lemma and Corollary 2] we can estimate

|

1 1
9 (_> ' <c, S — 91 {8'(c))
B(c) 0<§<:|a (B'(c))" ! 1<§<|a’ |
laf o
1
<Ca T putleb () 9%l
o<§<:|a CLONA 1<§<|a‘ | mlz;la

< CovE(L).
On the other hand, by an almost identical manner as in the proof of Lemmal£2 (5), we can
derive
8 P?
E-s%
(E-%)°

Inserting these estimates into (£.5) gives the desired result.
(4) We only consider (1, 1) elements of V%N p,)C; Which is

80&

‘gcm/%.

9?%c ﬁ”(c)( _%PWQ) +24 1 P4 1
N T FEP () BION ()T
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Therefore, we can bound it by C'/£(t) similarly as in the proof of (3). O

Lemma 4.5. Suppose E(t) is sufficiently small and || > 1. Then we have the following
estimates for a.

(1) [0%a] < Cav/E(R),
(2) |(9O‘(V(NVPVE)(1)Z-| S Ca\/ g(f) fO’f’ 7 = 1, s ,5,
(3) 10%(Vin ppy@®ij| < CaV/E() for i,j=1,---,5,

for some Cy > 0.

Proof. We only consider 8 (9%a/9N?). Recall the definition of a:

2
1 52
“—(/Rsmdp) N

Then explicit calculations give

and

2
_elPIT+e

Oa _ 2

ON 3

(92a__2 fRS

ON2 9
+2 fRS
3
+2 fR%
3
+2 fRS
3

g
N2 R3

—4 _lpl?+e
1 3 e dc _ 1
e\p\2+c+1dp NfRS (elpl?+e41)2 o 4P fRS e\m2+c+1dp

; e\P\21+c+1dp i 620 / _e|p|2+c d
N NON? Jpo (ePre 112

N N2

1 ) 1
2 (f]RS ﬁdp) ? NfRf* (elpl?+e41)2 8_Jt\jfdp_ f]R3 ewp\2+c+1dp

2

N2

1 Jc —elplPte
e e _ap
N2ON Jgs (elPl?+e +1)2

1

e\p\2ic+1dp 1 Oc 2/ 6\1)\2+C(e\p\2+c . 1)d

N N \ON ge  (elPlP+e 1 1)3 P

1

e\P\2}FC+1dp 1 oc _elplP+e .

N N2 ON R3 (e\PP-‘rc + 1)2 P

_elplP+c B 2 1

€ c

TR T e an®t s ————dp.
(elPPHe +1)2 ON Pt N /Rs el e 1P

Therefore, the desired estimate is derived once we obtain the estimates for the derivatives

of

h(c)

/ L g ke / i
= , Cc) = .
ps ePPre 17 wo (ePre 127

Then, it can be easily verified through an explicit computation that

dp,

K™ (@), K™ ()] < C / !

rs elPlte 41
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which, thanks to the chain rule and Lemma [£4] (1), leads to

|0%h(c)], 0%k (c)| < Car/E(T).

This, together with Lemma [ZTH4.4] gives the desired result.

5. LOCAL EXISTENCE

5.1. Estimates on the nonlinear term. Using the estimates for the macroscopic fields
(N, P,E) and the equilibrium coefficients (a,c) in the previous section, we derive the fol-
lowing estimate of the nonlinear terms:

Proposition 5.1. Suppose £(t) is sufficiently small enough to satisfies Lemma [{.1] - [{-3
Then we have

[Larten] < S o flsglo il ol

ot [+]az| <[af
+C Yy 10° Fllz2 110°2 £1] 2110 1] 22 llg] 2.
ot [+ oz | +]as| <]
Proof. We only consider I';. Estimates for other terms are almost identical. Recall

nin= 3 {[ @ 0LZD 0 oo} (1 eonirenns
1<i,7<5

mm

We first claim the following:
e Claim: For sufficiently small £(t), we obtain

. F(0) - F(0)? s

for some Cq g > 0.

Proof of the claim: By Leibniz’s rule
F(0) — F(6)°
le% F _ fe%
o {Qm.(e) i §| 7O |Z | l\a ol
a |+ |az|<|a
EAMENET
The uniform bound of ’80‘1 {Q i} ’ < Cl is rather straightforward (and tedious) from the

definition and all the upper and lower bound estimates for the equilibrium coefficients and
conservative quantities in the previous section. For the remaining part, we observe from

1

m—m

(22|

ag 2 ¢
e AR A S
2

that

()

_i‘z
eae‘p Ng | TCo '

(eae\pﬁ—%\2+ce + 1)2

<Cap Y. '% O +e‘a2°”2‘620)’
[B11+1821<18]

T3,
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By a simple calculation, we get
a0)124 o _a0|,2 <o a0 |12 co a2 <o
‘%(egp T2 e 2ol 2>‘§ ‘pﬁ(ao,p)(ezlpl T2 p ez lpl 2)‘

and

Py |?
eae ‘P*N—e‘ +co
a3 <

ﬁ (eae‘ﬁ%fw + 1)2

Pa,,@ (6 a076 00765 ( N9)> eae‘p_%‘Z-‘rce ‘

+1

(0% (0% 1
Pos (000 0rcr 00 ) —— |,

eae|P N9| +Ce+1

where Pg and P, g denote generically defined polynomials. These estimates and the lower
and upper bounds established in the previous section on the equilibrium coefficients give

0) — F(6)2 LplP+L o o~ R P2
8?{]:() f()}‘écage +e .

vm —m?

Finally, the desired estimate follows from the following computation:

_7e|
ea9|p Ng +Ce+1

2 2 2
=ZP=F R+ 4 =R P2

ag
eT‘p‘ + 2 _|_e

<
_ Py -
ea9|p N9| +09+1 ea9<%|P|2—3N—%>+ce

eRIPP+F 4 o=l
(“0 cvel )( Ip?=C 5(t))+co—c\/%
< (P HOVED) b HOVED (-0 +OVED) - 4Oy /ED

802
< Ce ® P17,

for sufficiently small £(¢). This completes the proof of the claim. Now we turn to the proof
of the proposition:

Using the claim above, and the Holder inequality, we obtain
F(0) — F(9)
3“F(f)gdp‘ = > > / / 051 Q7 ;(0)—F———(
B S — 12
R 1<0,5<5 o |+l |+ s | <o mem
X (0% f,€i) 120" f, ;) L2 9dp
a, 2
<c 3 [ e P gdplion gl Flug

[ar |+ ez | <]

_ 90 2
<0 S e gl 2 10% £l ] flz

[ |+]az|<|ef

<C >0 10 fllezllo® fllzzllgllze.

o] +]az|<|ef

1—0)|do
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5.2. Local existence. We now construct the local-in-time smooth solution:

Theorem 5.1. Let N > 4 and Fy = m + vm —m2fy > 0. Then there exists My > 0,
T. > 0, such that if T, < % and E(fo) < %, there exists a unique non-negative local in
time solution f(x,p,t) of (320) such that

(1) The high order energy E(t) is uniformly bounded :

sup E(t) < M.
0<¢<T.

(2) The high order energy E(t) is continuous in [0,T).
(3) The conservation laws (3.23) hold for all [0,Ty).
(4) (N, P, E) satisfies

0 < B(N,P,E) < (—1n3).

Proof. We define the iteration sequence F™ as follow :

1
a FnJrl _|_p . VanJrl —
(5.1) ' T(F7)

F"H(x,p,0) = Fo(z, p).
with FO(z,p,t) = Fy(z,p). This is equivalent to
Of™ N+ p - Vaf T [ = P T(f") 4 Da(f7, f7F) + Ta (1),
frH (w,p,0) = fo(z,p),
with fO(x,p,t) = \/F‘)_—m Here, I'; and I's are defined as in (8.21]) whereas, I's is defined

m—m2’

slightly differently as

(F(F") - F* 1),

(5.2)

5
Do(f", [+ = {Zcm”,em} (Pf™— .
=1

The key ingredient is the uniform control of the size of high-order energy in each iteration
step:

Lemma 5.2. If £(fy) < 22 then there exists Mo > 0 and T, > 0 such that E(f™(t)) < Mo
for alln >0 fort € [0,Ty].

Proof. We use induction. Assume we have obtained f™ such that £(f™(¢)) < My on [0, T4],
for sufficiently small My. Then Lemma 1] (4) and Lemma (1) imply that

0 < B(Np, Py, Ep) < B(—1n3)

for sufficiently small My. Therefore, thanks to Theorem 2.1 we are able to find a, and ¢,
such that ¢, > —In3, which guarantees that F(F™) is well-defined, and so is the iteration
for n 4+ 1th step (EJ]). Then, applying the linearization argument in Section 3, we obtain
B2). Now, in view of Lemma and Corollary [ZI] we see that |3'(c)| has a strictly
positive lower bound, enabling one to compute derivatives of all the equilibrium coefficients
by Lemma [£.4] and 5] and therefore, of F(F™). This implies that f"*! also is smooth.
Hence, we can apply 0§ on both sides of E2):

3
QOFI™ ! +p - VaOF [T+ OF T = = Y 0O fH + OGP + OFT1 ()
i=1
+ 3§T2(fna fnJrl) + 8§T3(fn)a
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and take inner product with Bg‘ f™tL. Then, a standard argument leads to

(1= CT. — CTu/My — CT. M) sup E(f™H (1) < (% +CT, + CTon/My + CT*MO)MO,
0<t<T,

which, for sufficiently small My, gives the desired result for £(f"*!). This completes the
proof of the lemma. O

With Lemma [£.2] the remaining proof for Theorem .11 is standard. We omit it. O

6. PROOF OF THE MAIN THEOREM

Now, we have obtained most of the necessary estimates, and the remaining process is
rather standard. We only sketch the proof.

6.1. Coercivity of L. We define @, b and ¢ as follows:

a(x,t) = /}R3 fvVm —m2dp,
l_)i(xat):/Rsfpi\/m_m2dpa (1215273)
(o) = [ flpl*vim =P,

and
Pf =a(x,t)vV/m—m?2 + Zi)i(x, t)piv/m —m?2 + &(z, t)|p|* Vm — m2.
We then split f into the macroscopic part Pf and the microscopic part (I—P)f. Substituting
this in (320, one gets
O +p-Va)(Pf) = =0 +p-Va)((I = P)f)+ L(I = P)f +T(f).
We then expand the 1.h.s with respect to
60) (v pe/m = m iy =g m = ol — ),

for i,j =1,2,3 to write it as

D S 0wllpl? + (0a,bi + 0:0)P; + D (O,bj + Oubi)pip; + (Oebi + 0a,0) + e p V/m — m?2,
1<i<3 i<j<3

To arrive at the set of micro-macro equations:

Lemma 6.1. @, b and ¢ satisfies the following system:

(9,5& == la + h@,
Opbi + 0,0 = lag; + hapis

6%-(_71' + 0iC = Ui + Ny,
amlé - lEi + h’E’h
where la, Loz, lijs lei, lei are coefficient of the expansion of —(0y +p- V) (I — P)f) + L(I —

P)f with respect to basis (61). Similarly, ha,h hij, Nges, hes are the coefficients of the
expansion of T'(f) with respect to same basis.

abi»
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From (?7), it is now standard to derive the following full coercivity estimate for sufficiently
small £(t):

(6.3) Yo AL f 0% e, <=6 Y [10°F()lIZ2

lo| <N la|<N

6.2. Global existence. Finally, we extend the local existence to the global one by closing
the nonlinear energy estimate. Let f be the smooth local in time solution constructed in
Theorem Bl First we derive the energy estimate with |3| = 0. Applying 0% on each side
of (3:20) and taking inner product with 0%f, we obtain

SN0 I, = (L0 1,0% Flus, +{0°T(), 0 Pz,

By using coercive estimates (6.3) and nonlinear estimates in Proposition 5.1l we derive

g5 ST, 6 S 0, < CVEmEG
la| <N
For the energy estimate involving velocity derivatives, we apply 05 to (3.20):
{0t +p- Vo +1}05f = 0,0~ VaOz_p, f + 0P f + 03T (f),
and take inner product with 93 f to get

Eg:

3€
2 2
22, + 5 05 fllzs

&.|g‘

3
1 fe% « 1 fe% eI
S 0813 + 108 fI: < 5= S N95TE S
=1

C Lo Ce| oa
+ o1, + SNop s, + o VEDEN

For sufficiently small ¢, |05 f||7. terms in right hand side are absorbed in the good term
z,p
of the Lh.s to yield

£ ||aﬁf||L2 ||aﬂf||L2p<c ZH@;*::ing,p+ce||a“f||%g,p

2dt
+CVER)E(

Then, we observe that right hand side of Z &g can be controlled by the good terms of
|Bl=m+1

Cm > & +Cm 3 &
|Bl=m || <N
for sufficiently large C,,. Therefore, by standard induction argument, we obtain

d (03 (03
> {onglossii, +sllegaiiz:, | < oxV/EDE®

lee|+|BI<N
|Bl<m

for constant C}, and d,,. Then by standard continuity argument we derive global in time
existence for smooth solution for [B.20). This completes the proof.
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