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Abstract

A periodic homogenization model of the electrostatic equation is constructed for
a comb drive with a large number of fingers and whose mode of operation is in-plane
and longitudinal. The model is obtained in the case where the distance between the
rotor and the stator is of an order εα, α ≥ 2, where ε denotes the period of distribution
of the fingers. The model derivation uses the two-scale convergence technique. Strong
convergences are also established. This allows us to find, after a proper scaling, the
limit of the electrostatic force applied to the rotor in the longitudinal direction.
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1 Introduction

The technology of Micro-Electro-Mechanical Systems, or MEMS, includes both mechanical
and electronic components on a single chip built with micro fabrication techniques. The main
MEMS parts are sensors, actuators, and microelectronics. Many types of micro actuation
techniques are available, the most common of which are piezoelectric, magnetic, thermal,
electrochemical, and electrostatic actuation. The latter is clearly the most widespread be-
cause of its compatibility with microfabrication technology, its ease of integration and its low
energy consumption. In particular, electrostatic comb drives, introduced in [52, 51] to enable
large travel range at low driving voltage, are among the most used electrostatically actuated
devices in microelectromechanical systems containing movable mechanical structures.

A comb drive is a deformable capacitor consisting of conductive stator and rotor, each
one composed of parallel fingers, that are interdigitated, and whose number may exceed one
hundred. The stator is clamped and the rotor is suspended on elastic springs. The elastic
suspension is designed to allow the rotor to move in one of the desired directions: longitudinal
direction, i.e. parallel to the fingers, or in one of the two perpendicular directions. From
the electrical point of view, the stator is grounded and the rotor is subjected to an electric
potential V . The difference in voltage induces an electrostatic force between the stator
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Figure 1: The comb drive

and the rotor which causes a displacement of the rotor and therefore restoring forces in the
suspension. The equilibrium state is reached when the mechanical restoring forces balance
the electrostatic force.

The advantages of using electrostatic comb drive actuator approach include low power
dissipation, simple electronic control, and easy capacity-based sensing mechanism. These
devices are intended for applications in mechanical sensors, RF communication, microbiology,
mechanical power transmission, long-range actuation, microphotonics, and microfluids [51,
55, 38, 33].

To achieve considerable electrostatic forces without reverting to excessively high driving
voltages, the freespace gap between the electrodes must be minimal. With the advances of
microfabrication technology, thinner fingers and smaller gaps can be micromachined. This
can allow for a denser spacing of fingers and thus increase the power density of comb drive
actuators.

Design of complex MEMS involving multiple comb drives can not be performed by trial
and error due to the high microfabrication cost and time consumption. Designers then make
an intensive use of models. Part of the comb drive modeling works focuse on the development
of analytical models that, beyond taking into account the electrostatic forces between parallel
parts, describe the fringe fields according to different methods and in many configurations
[37], [54], [34], [35] [43], [36], [43], and the analytical models in the software package Coventor
MEMS+ [20]. On the other side, the use of direct numerical simulation remains the reference
approach for general configurations. Most often it is carried out by a finite element method
[25], [16], [50], or a boundary element method [17], [44]. Despite the impressive increase of
computer power, the time scale required by their use for direct simulation, optimization or
calibration of complex systems is still incompatible with the time scale of a designer.

Until now, the use of multiscale methods has not been yet explored on this family of prob-
lems despite their periodic structure. However, they can offer a good compromise between
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numerical methods adapted to general physics and geometries, but expensive in simulation
time, and analytical methods developed for particular physics and geometries requiring only
a few computation resources.

In this paper we develop a first comb drive multiscale model based on asymptotic meth-
ods. Precisely, we consider a 2-dimensional model for an in-plane comb drive, in a vacuum
and in statical longitudinal regime, made by a rotor called Ωa

ε,α and a stator called Ωb
ε,α (see

Figure 1). Both of them are composed by a set of ε-periodic fingers, with cross-section of
order ε. The goal of this paper is to study the asymptotic behaviour of the longitudinal
electrostatic force applied on the rotor with respect to two parameters: the period ε and the
small distance between the rotor and the stator. A priori estimates show that in this model
a discriminating role is played by this distance that we consider of order εα. Precisely, we
prove that if α ≥ 2 for obtaining asymptotically a force of order O(1), the applied voltage
has to be of order εαV and in this case the limit force is given by

− ε0
2
V 2L

(
meas(ωa) + meas(ωb)

)
(1.1)

where ε0 is the vacuum permittivity, V is a constant independent of ε, L the comb length,
and meas(ωa) and meas(ωb) the length of the cross section of the reference finger of the rotor
and of the stator, respectively (see Figure 1). This result shows that only the longitudinal
forces on the extremities of the rotor’s fingers and on the part of the rotor’s boundary
corresponding to the orthogonal projection of the stator’s fingers play a significant role. In
particular, this means that the fringe field can be neglected in the asymptotic regime α ≥ 2.
We expect that this phenomenon appears when 0 ≤ α < 2. We also underline that in the
limit force there is no contribution of boundary layer effect on the lateral side of the comb,
that are expected in other regimes.

The paper is organized in the following way. The geometry of the comb drive is rigorously
described in Section 2. The problem satisfied by the electrical potential in the vacuum
between the rotor and the stator is given in Section 3 (see (3.1) where the voltage source
is normalized by assuming it equal to 1). The main result of this paper, i.e. the proof of
formula (1.1), is stated in Theorem 3.1. Section 4 is devoted to rescale the problem given
in Section 3 to a problem on a domain where the finger’s height is independent of ε (see
Figure 2). Thus, the problem is split on three subdomains Ωc,1

ε , Ωc,2
ε , and Ωc,3

ε (see Figure
3). Moreover, in Proposition 4.1 we prove a key result which allows us to transform the
longitudinal force applied on the rotor’s boundary part Γaε,α (see formula in (3.3) and also p.
225 in [39]) into an integral on Ωc,1

ε ∪Ωc,2
ε ∪Ωc,3

ε . A priori estimates of the rescaled solution of
problem (3.1) are obtained in Section 5. They suggest that different regimes depending on
α can be expected. Section 6 is devoted to prove Theorem 3.1 in the case α = 2. The proof
consists of several steps. In Section 6.1, further a priori estimates of the rescaled solution
are derived in the case α = 2. These estimates provide two-scale convergences (the two-scale
convergence technique was proposed in [49] and developed in [2], see also [14], [19], and [40]).
Then, in Section 6.2 the two-scale limits are identified on each subdomain Ωc,1, Ωc,2, and Ωc,3

(see Figure 4). The limit results are improved in Section 6.3 by corrector results. Finally in
Section 6.4, these correctors allow us to pass to the limit in the formula of the longitudinal
force stated in Proposition 4.1 and to prove Theorem 3.1 in the case α = 2. The proof of
Theorem 3.1 in the case α > 2 is only sketched in Section 7.
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Homogenization of oscillating boundaries with fixed amplitude is widely studied and we
refer to the following main papers: [1], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [15],
[21], [22], [23], [24], [26], [27], [28], [29], [30], [31], [32], [41] [42], [45], [46], [47], [48], and [53].

Also the homogenization of boundaries with oscillations having small amplitude has a
wide bibliography, but this argument is beyond the scope of this paper and a reader interested
in this subject can see some references quoted in [30].

2 The geometry

Let ζ1, ζ2, ζ3, ζ4 ∈]0, 1[ be such that

ζ1 < ζ2 < ζ3 < ζ4,

and set
ωa =]ζ1, ζ2[, ωb =]ζ3, ζ4[,

meas(ωa) = ζ2 − ζ1, meas(ωb) = ζ4 − ζ3.

Let α ∈ [0,+∞[, L ∈]0,+∞[, and l1, l2, l3 ∈]0,+∞[ be such that

l1 + 2 < l2 < l3.

For every ε ∈
{
L
n

: n ∈ N
}

set (see Figure 1 for α > 0 or Figure 2 for α = 0)

Ωa
ε,α = (]0, L[×]l2, l3[) ∪

L
ε
−1⋃

k=0

(εωa + εk)×]l1 + εα, l2]

 ,

Ωb
ε,α = (]0, L[×]0, l1[) ∪

L
ε
−1⋃

k=0

(
εωb + εk

)
× [l1, l2 − εα[

 ,

Ωc
ε,α = (]0, L[×]0, l3[) \

(
Ωa
ε,α ∪ Ωb

ε,α

)
,

Γaε,α = ∂Ωa
ε,α ∩ ∂Ωc

ε,α,

Γbε,α = ∂Ωb
ε,α ∩ ∂Ωc

ε,α,

Γε,α = Γaε,α ∪ Γbε,α,

Γ = {0, L}×]l1, l2[.

where Ωa
ε,α models the rotor, Ωb

ε,α the stator, each one composed of parallel fingers that are
interdigitated, Ωc

ε,α the vacuum between the rotor and the stator, and Γaε,α and Γbε,α are the
parts of the boundary of the rotor and of the stator facing each other. Moreover, setting
(see Figure 3 for α = 0)

Ωc,1
ε,α = Ωc

ε,α ∩ (]0, L[×]l1, l1 + εα[) ,

Ωc,2
ε,α = Ωc

ε,α ∩ (]0, L[×[l1 + εα, l2 − εα]) ,

4



Figure 2: The rescaled comb drive

Figure 3: Decomposition of the rescaled comb drive

Ωc,3
ε,α = Ωc

ε,α ∩ (]0, L[×]l2 − εα, l2[) ,

the vacuum is split in three parts

Ωc
ε,α = Ωc,1

ε,α ∪ Ωc,2
ε,α ∪ Ωc,3

ε,α.

Furthermore, set (see Figure 4)

Ωc,1 =]0, L[×]l1, l1 + 1[, Ωc,2 =]0, L[×]l1 + 1, l2 − 1[, Ωc,3 =]0, L[×]l2 − 1, l2[.

Remark 2.1. For simplicity we assumed ε ∈
{
L
n

: n ∈ N
}

. Of course, with small modifica-
tions in the proofs, all results of this paper hold true with ε ∈]0, 1[.
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Figure 4: The limit domains

3 The problem

Let α ∈ [0,+∞[. Then, for every ε consider the following normalized problem

−∆φε = 0, in Ωc
ε,α,

φε = 1, on Γaε,α,

φε = 0, on Γbε,α,

∇φε · ν = 0, on Γ,

(3.1)

where ν denotes the unit normal to Γ exterior to Ωc
ε,α. The solution φε represents the

electrical potential in the vacuum Ωc
ε,α when the stator is grounded and the voltage in the

rotor is assumed equal to 1. By setting

µε,α =


1, on Γaε,α,

0, on Γbε,α,

the weak formulation of (3.1) is
φε ∈ H1

Γε,α
(Ωc

ε,α, µε,α),∫
Ωcε,α

∇φε∇ψdx = 0, ∀ψ ∈ H1
Γε,α(Ωc

ε,α, 0),
(3.2)

where for g ∈ H− 1
2 (Γε,α) it is set

H1
Γε,α(Ωc

ε,α, g) = {ψ ∈ H1(Ωc
ε,α) : ψ = g, on Γε,α}.
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According to [39], p. 225, the longitudinal electrostatic force on rotor’s boundary Γaε,α
generated by the electrical potential εαV φε in the vacuum is given by

− ε0
2
V 2

∫
Γaε,α

|εα∇φε|2ν2 ds, (3.3)

where ε0 is the vacuum permittivity,V is a constant independent of ε, and ν2 denotes the
second component of the unit normal to Γaε,α exterior to Ωc

ε,α.
The main result of this paper is the following one.

Theorem 3.1. For every ε, let φε be the unique solution to (3.2) with α ≥ 2 and let ν2

denote the second component of the unit normal to Γaε,α exterior to Ωc
ε,α. Then,

lim
ε→0

∫
Γaε,α

|εα∇φε|2ν2 ds = L
(
meas(ωa) + meas(ωb)

)
, (3.4)

where L, ωa, and ωb are defined in Section 2.

In the sequel, the dependence on α of the domain will be omitted when α = 0. For
instance, Ωa

ε,0 will be denoted by Ωa
ε , and so on.

4 The rescaling

By virtue of transformation (see Figure 1 and Figure 2)

Tε,α : Ωc
ε → Ωc

ε,α (4.1)

defined by 
(x1, x2) ∈ Ωc,1

ε → (x1, (x2 − l1)εα + l1) ∈ Ωc,1
ε,α,

(x1, x2) ∈ Ωc,2
ε → (x1, Dε(x2 − l1 − 1) + l1 + εα) ∈ Ωc,2

ε,α,

(x1, x2) ∈ Ωc,3
ε → (x1, (x2 − l2 + 1)εα + l2 − εα) ∈ Ωc,3

ε,α,

(4.2)

with

Dε =
l2 − l1 − 2εα

l2 − l1 − 2
, (4.3)

problem (3.2) is rescaled in the following one

ϕε ∈ H1
Γε

(Ωc
ε, µε),∫

Ωc,1ε ∪Ωc,3ε

(
εα∂x1ϕε∂x1ψ + ε−α∂x2ϕε∂x2ψ

)
dx

+

∫
Ωc,2ε

(
Dε∂x1ϕε∂x1ψ +D−1

ε ∂x2ϕε∂x2ψ
)
dx = 0, ∀ψ ∈ H1

Γε(Ω
c
ε, 0).

(4.4)
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Remark that

lim
ε→0

Dε =
l2 − l1

l2 − l1 − 2
. (4.5)

Let
ϕ? ∈ C∞(R× [l1, l2]) (4.6)

be such that 
ϕ?(·, x2) is 1-periodic for every x2 ∈ [l1, l2],

ϕ? = 1, in ωa×]l1 + 1, l2[, ϕ? = 0, in ωb×]l1, l2 − 1[,

ϕ? = 1, on R× {l2}, ϕ? = 0, on R× {l1},

(4.7)

and for every ε ∈]0, 1[ set

ϕ?ε(x1, x2) = ϕ?
(x1

ε
, x2

)
, in R× [l1, l2]. (4.8)

The previous rescaling allows us to rewrite formula (3.3).

Proposition 4.1. For every ε, let φε be the unique solution to (3.2), ϕε be the unique
solution to (4.4), ϕ?ε be defined by (4.6)-(4.8), Dε be defined in (4.3), and let ν2 denote the
second component of the unit normal to Γaε,α exterior to Ωc

ε,α. Then, for every ε,∫
Γaε,α

|∇φε|2ν2ds =

∫
Ωc,1ε ∪Ωc,3ε

(
−∂x2ϕ

?
ε

(
|∂x1ϕε|

2 − 1

ε2α
|∂x2ϕε|

2

)
+ 2∂x2ϕε∂x1ϕ

?
ε∂x1ϕε

)
dx

+

∫
Ωc,2ε

(
−∂x2ϕ

?
ε

(
|∂x1ϕε|

2 − 1

D2
ε

|∂x2ϕε|
2

)
+ 2∂x2ϕε∂x1ϕ

?
ε∂x1ϕε

)
dx.

(4.9)

Proof. Let Tε,α be defined by (4.1)-(4.3). The first step is devoted to proving that∫
Γaε,α

|∇φε|2ν2ds

=

∫
Ωcε,α

(
−∂x2

(
ϕ?ε ◦ T−1

ε,α

)
|∇φε|2 + 2∂x2φε∇

(
ϕ?ε ◦ T−1

ε,α

)
∇φε

)
dx, ∀ε,

(4.10)

from which (4.10) follows by changing of variable (4.1) in the second integral.
As we shall show in the following,

|∇φε|2 ∈ W 1,1(Ωc
ε,α). (4.11)
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In particular, also (ϕ?ε ◦ T−1
ε,α)|∇φε|2 belongs to W 1,1(Ωc

ε,α). Thus, definitions (4.1) and (4.6)-
(4.8) allow us to write ∫

Γaε,α

|∇φε|2ν2ds =

∫
Γaε,α

(ϕ?ε ◦ T−1
ε,α)|∇φε|2ν2ds

=

∫
Γε,α∪Γ

(ϕ?ε ◦ T−1
ε,α)|∇φε|2ν2ds, ∀ε.

(4.12)

The Green’s Formula (for instance, see Th. 6.6-7 in [18]) gives∫
Γε,α∪Γ

(ϕ?ε ◦ T−1
ε,α)|∇φε|2ν2ds =

∫
Ωcε,α

∂x2((ϕ?ε ◦ T−1
ε,α)|∇φε|2)dx, ∀ε. (4.13)

Then, (4.12) and (4.13)) provides∫
Γaε,α

|∇φε|2ν2ds

=

∫
Ωcε,α

∂x2(ϕ?ε ◦ T−1
ε,α)|∇φε|2dx+ 2

∫
Ωcε,α

(ϕ?ε ◦ T−1
ε,α)∇φε∇(∂x2φε)dx, ∀ε.

(4.14)

On the other side (see below),

∇φε ∈ W 1, 3
2 (Ωc

ε,α). (4.15)

In particular, (ϕ?ε ◦ T−1
ε,α)∇φε belongs to W 1, 3

2 (Ωc
ε,α), and ∂x2φε belongs to W 1, 3

2 (Ωc
ε,α) which

is included in W 1, 6
5 (Ωc

ε,α). Consequently, again applying the Green’s Formula as it appears
in Theorem 6.6-7 in [18] with exponents p = 3

2
and q = 6

5
, the last integral in the right-hand

side of (4.14) becomes∫
Ωcε,α

(ϕ?ε ◦ T−1
ε,α)∇φε∇(∂x2φε)dx

= −
∫

Ωcε,α

div((ϕ?ε ◦ T−1
ε,α)∇φε) ∂x2φεdx+

∫
Γε,α∪Γ

(ϕ?ε ◦ T−1
ε,α)∂x2φε∇φενds, ∀ε,

(4.16)

where ν is the unit normal to Γε,α ∪ Γ exterior to Ωc
ε,α. Since∫

Γε,α∪Γ

(ϕ?ε ◦ T−1
ε,α)∂x2φε∇φενds =

∫
Γaε,α

|∇φε|2ν2ds, ∀ε,

which can be checked by inspectioning on each part of Γε,α ∪ Γ, one can rewrite (4.16) as∫
Ωcε,α

(ϕ?ε ◦ T−1
ε,α)∇φε∂x2∇φεdx

= −
∫

Ωcε,α

div((ϕ?ε ◦ T−1
ε,α)∇φε) ∂x2φεdx+

∫
Γaε,α

|∇φε|2ν2ds, ∀ε.

(4.17)
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Comparing (4.14) and (4.17) gives∫
Γaε,α

|∇φε|2ν2ds

= −
∫

Ωcε,α

∂x2(ϕ?ε ◦ T−1
ε,α)|∇φε|2dx+ 2

∫
Ωcε,α

div((ϕ?ε ◦ T−1
ε,α)∇φε)∂x2φεdx

= −
∫

Ωcε,α

∂x2(ϕ?ε ◦ T−1
ε,α)|∇φε|2dx+ 2

∫
Ωcε,α

∇(ϕ?ε ◦ T−1
ε,α)∇φε∂x2φεdx

+

∫
Ωcε,α

(ϕ?ε ◦ T−1
ε,α)∆φε∂x2φεdx, ∀ε,

which provides (4.10) since ∆φε = 0 in Ωc
ε,α.

Now, we sketch the proof of (4.11), based on the decomposition of φε as a sum of its sin-
gular and regular parts φSε ∈ H1(Ωc

ε,α) and φSε ∈ H2(Ωc
ε,α). At the vicinity of any reentering

corner with angle ω = 3π
2

, the expression in polar coordinate of the singular part reads

φSε (r, θ) = r
2
3 sin

(
2θ

3

)
.

Thus,
|∇φSε |2(r, θ) = r−

2
3 Φ0(θ),

with Φ0 ∈ C∞. The expansion of ∇|∇φε|2 in φSε and φRε includes four terms:

∇|∇φSε |2, ∇∇φSε∇φRε , ∇|∇φRε |2, and ∇∇φRε ∇φSε , (4.18)

of which only the first two terms cause regularity problems.
As the first term in (4.18) is concerned, one has

∇|∇φSε |2(r, θ) = r−
5
3 Φ1(θ),

with Φ1 ∈ C∞. Then, it is integrable. As the second term in (4.18) is concerned, one has

∇∇φSε∇φRε = (r
1
3∇∇φSε )(r−

1
3∇φRε )

and its integrability comes from the observation that both terms r
1
3∇∇φSε are r−

1
3∇φRε are

square integrable.
The contribution of the corners with mixed conditions, that is at the ends of Γ, to the

singular part is in H2−η(Ωc
ε,α) for any positive η and does not yield any regularity issue.

Regularity result (4.15) can be proved with the same arguments.

10



5 A priori estimates

Proposition 5.1. For every ε, let ϕε be the unique solution to (4.4). Then

∃c ∈]0,+∞[ :



∫
Ωc,1ε ∪Ωc,3ε

|∂x1ϕε|2dx ≤ c
(
ε−2−α + ε−2α

)
,

∫
Ωc,1ε ∪Ωc,3ε

|∂x2ϕε|2dx ≤ c
(
εα−2 + 1

)
,

∫
Ωc,2ε

|∇ϕε|2dx ≤ c
(
ε−2 + ε−α

)
,

∀ε. (5.1)

Proof. For every ε, let ϕ?ε be defined by (4.6)-(4.8). Moreover, set

Y =]0, 1[×]l1, l2[.

Then, one has

‖ϕ?ε‖2
L2(Ωcε)

≤
L
ε∑

k=0

ε‖ϕ?‖2
L2(Y ) = L‖ϕ?‖2

L2(Y ), ∀ε. (5.2)

Similarly, one obtains

‖∂x1ϕ
?
ε‖2
L2(Ωcε)

=
L

ε2
‖∂x1ϕ

?‖2
L2(Y ), ∀ε, (5.3)

and
‖∂x2ϕ

?
ε‖2
L2(Ωcε)

= L‖∂x2ϕ
?‖2
L2(Y ), ∀ε. (5.4)

Now choosing ψ = ϕε − ϕ?ε as test function in (4.4) and using Young’s inequality, (4.5),
and estimates (5.3) and (5.4) provide

∃c ∈]0,+∞[ :

∫
Ωc,1ε ∪Ωc,3ε

(
εα|∂x1ϕε|2 + ε−α|∂x2ϕε|2

)
dx+

∫
Ωc,2ε

|∇ϕε|2dx

≤ c (ε−2 + ε−α) , ∀ε,

which implies (5.1).

6 The case α = 2

This section is devoted to proving Theorem 3.1 when α = 2.

6.1 A priori estimates

Proposition 5.1 immediately implies the following result.
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Corollary 6.1. For every ε, let ϕε be the unique solution to (4.4) with α = 2. Then,

∃c ∈]0,+∞[ :


‖ε2∂x1ϕε‖L2(Ωc,1ε ∪Ωc,3ε ) ≤ c,

‖∂x2ϕε‖L2(Ωc,1ε ∪Ωc,3ε ) ≤ c,

‖ε∇ϕε‖L2(Ωc,2ε ) ≤ c,

∀ε. (6.1)

The next task is devoted to prove the following a priori estimate.

Proposition 6.2. For every ε, let ϕε be the unique solution to (4.4) with α = 2. Then,

∃c ∈]0,+∞[ : ‖ϕε‖L2(Ωcε)
≤ c, ∀ε. (6.2)

Proof. The Dirichlet boundary condition of ϕε on Γε and the second estimate in (6.1) provide
that

∃c ∈]0,+∞[ : ‖ϕε‖L2(Ωc,1ε ∪Ωc,3ε ) ≤ c, ∀ε.
The main task is to prove that

∃c ∈]0,+∞[ : ‖ϕε‖L2(Ωc,2ε ) ≤ c, ∀ε, (6.3)

which completes the proof. To this aim, set

P =]0, 1[\
(
ωa ∪ ωb

)
=]0, ζ1[∪]ζ2, ζ3[∪]ζ4, 1[.

Fix ε. Then, one has

‖ϕε‖2
L2(Ωc,2ε )

=

L
ε
−1∑

k=0

∫
(εP+εk)×]l1,l2[

|ϕε|2dx. (6.4)

Now fix k ∈
{

0, · · · , L
ε
− 1
}

. Then, if x1 ∈ εP + εk, one of the following three cases holds
true:

x1 ∈]εk, εζ1 + εk[, x1 ∈]εζ2 + εk, εζ3 + εk[, x1 ∈]εζ4 + εk, ε(1 + k)[.

In the first case, since
ϕε = 1, on {εζ1 + εk}×]l1, l2[,

one has

ϕε(x1, x2) = 1−
∫ εζ1+εk

x1

∂x1ϕε(t, x2)dt, ∀x1 ∈]εk, εζ1 + εk[, for a.e. x2 ∈]l1, l2[,

which implies∫ l2

l1

∫ εζ1+εk

εk

|ϕε(x1, x2)|2dx1dx2 ≤ 2(l2− l1)ε+2ε2

∫ l2

l1

∫ εζ1+εk

εk

|∂x1ϕε(x1, x2)|2dx1dx2. (6.5)

Similarly, since

ϕε = 0, on {εζ3 + εk}×]l1, l2[ and on {εζ4 + εk}×]l1, l2[,
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in the second and in the third case one has∫ l2

l1

∫ εζ3+εk

εζ2+εk

|ϕε(x1, x2)|2dx1dx2 ≤ 2ε2

∫ l2

l1

∫ εζ3+εk

εζ2+εk

|∂x1ϕε(x1, x2)|2dx1dx2 (6.6)

and ∫ l2

l1

∫ ε(1+k)

εζ4+εk

|ϕε(x1, x2)|2dx1dx2 ≤ 2ε2

∫ l2

l1

∫ ε(1+k)

εζ4+εk

|∂x1ϕε(x1, x2)|2dx1dx2. (6.7)

Adding (6.5), (6.6), and (6.7) gives∫
(εP+εk)×]l1,l2[

|ϕε|2dx ≤ 2(l2 − l1)ε+ 2ε2

∫
(εP+εk)×]l1,l2[

|∂x1ϕε|2dx,

from which, summing up k ∈
{

0, · · · , L
ε
− 1
}

and using (6.4) and the third estimate in (6.1),
one obtains (6.3).

6.2 Weak convergence results

The next proposition is devoted to studying the limit in Ωc,2, as ε tends to zero, of problem
(4.4) with α = 2.

Proposition 6.3. For every ε, let ϕε be the unique solution to (4.4) with α = 2. Set

ϕε,2 = ϕε|
Ω
c,2
ε

and

ϕε,2 =



ϕε,2, a.e. in Ωc,2
ε ,

1, a.e. in

L
ε
−1⋃

k=0

(εωa + εk)×]l1 + 1, l2 − 1[,

0, a.e. in

L
ε
−1⋃

k=0

(
εωb + εk

)
×]l1 + 1, l2 − 1[.

(6.8)

Let

ϕ2 : y ∈ [0, 1] −→



y + 1− ζ4

ζ1 − ζ4 + 1
, if y ∈ [0, ζ1],

1, if y ∈ [ζ1, ζ2],

y − ζ3

ζ2 − ζ3

, if y ∈ [ζ2, ζ3],

0, if y ∈ [ζ3, ζ4],

y − ζ4

ζ1 − ζ4 + 1
, if y ∈ [ζ4, 1].

(6.9)
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Then, 
ϕε,2 two scale converges to ϕ2,

ε∂x1ϕε,2 two scale converges to ∂yϕ2,

ε∂x2ϕε,2 two scale converges to 0,

(6.10)

as ε tends to zero.

Proof. Proposition 6.2 and the third estimate in (6.1) ensure the existence of a subsequence

of {ε}, still denoted by {ε}, and u2 ∈ L2
(

Ωc,2, H1
per(]0, 1[)

)
(in possible dependence on the

subsequence) such that 
ϕε,2 two scale converges to u2,

ε∂x1ϕε,2 two scale converges to ∂yu2,

ε∂x2ϕε,2 two scale converges to 0,

(6.11)

as ε tends to zero.
The next step is devoted to proving that

u2 = 1, a.e. in Ωc,2 × ωa. (6.12)

Indeed, the definition of ϕε,2 gives∫
Ωc,2

ϕε,2(x1, x2)ψ
(
x1, x2,

x1

ε

)
dx1dx2 =

∫
Ωc,2

ψ
(
x1, x2,

x1

ε

)
dx1dx2,

∀ψ ∈ C∞0 (Ωc,2 × ωa), ∀ε.

(6.13)

Passing to the limit, as ε tends to zero, in (6.13) and using the first limit in (6.11) provide∫
Ωc,2×ωa

u2(x1, x2, y)ψ (x1, x2, y) dx1dx2dy =

∫
Ωc,2×ωa

ψ (x1, x2, y) dx1dx2dy,

∀ψ ∈ C∞0 (Ωc,2 × ωa),

which implies (6.12).
Similarly, one proves that

u2 = 0, a.e. in Ωc,2 × ωb. (6.14)

Finally, choosing ψ = ε2χ1(x1, x2)χ2

(x1

ε

)
with χ1 ∈ C∞0 (Ωc,2) and χ2 ∈ H1

per (]0, 1[) such

that χ2 = 0 in ωa ∪ ωb as test function in (4.4) with α = 2 gives

Dεε
2

∫
Ωc,2

∂x1ϕε,2

(
∂x1χ1(x1, x2)χ2

(x1

ε

)
+ ε−1χ1(x1, x2)∂yχ2

(x1

ε

))
dx1dx2

+D−1
ε ε2

∫
Ωc,2

∂x2ϕε,2∂x2χ1(x1, x2)χ2

(x1

ε

)
dx1dx2 = 0,

∀χ1 ∈ C∞0 (Ωc,2) , ∀χ2 ∈ H1
per (]0, 1[) : χ2 = 0, in ωa ∪ ωb, ∀ε.

(6.15)
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Passing to the limit, as ε tends to zero, in (6.15) and using the second and third limits in
(6.11), and (4.5) provide that, for a.e. (x1, x2) in Ωc,2,∫

]0,1[\(ωa∪ωb)
∂yu2(x1, x2, y)∂yχ2(y)dy = 0,

∀χ2 ∈ H1
per (]0, 1[) : χ2 = 0, in ωa ∪ ωb.

(6.16)

Problem (6.12), (6.14), and (6.16) is equivalent to the following problem independent of
(x1, x2) 

∂2
y2u2 = 0, in ]0, 1[\

(
ωa ∪ ωb

)
,

u2 = 1, in ωa,

u2 = 0, in ωb,

u2(0) = u2(1),

∂yu2(0) = ∂yu2(1),

(6.17)

which admits (6.9) as unique solution. Consequently, limits in (6.11) hold for the whole
sequence and (6.10) is satisfied.

The next proposition is devoted to studying the limit in Ωc,3 and in Ωc,1, as ε tends to
zero, of problem (4.4) with α = 2.

Proposition 6.4. For every ε, let ϕε be the unique solution to (4.4) with α = 2. Set

ϕε,3 = ϕε|
Ω
c,3
ε

, ϕε,1 = ϕε|
Ω
c,1
ε

,

ϕ̃ε,3


ϕε,3, a.e. in Ωc,3

ε ,

1, a.e. in Ωc,3 \ Ωc,3
ε ,

(6.18)

and

ϕ̂ε,1 =


ϕε,1, a.e. in Ωc,1

ε ,

0, a.e. in Ωc,1 \ Ωc,1
ε .

(6.19)

Moreover, let

ϕ3 : (x1, x2, y) ∈ Ωc,3×]0, 1[−→


x2 + 1− l2, if y ∈ ωb,

1, if y ∈]0, 1[\ωb,
(6.20)

and

ϕ1 : (x1, x2, y) ∈ Ωc,1×]0, 1[−→


x2 − l1, if y ∈ ωa,

0, if y ∈]0, 1[\ωa.
(6.21)
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Then 
ϕ̃ε,3 two scale converges to ϕ3,

∂x2ϕ̃ε,3 two scale converges to ∂x2ϕ3,
(6.22)

and 
ϕ̂ε,1 two scale converges to ϕ1,

∂x2ϕ̂ε,1 two scale converges to ∂x2ϕ1,
(6.23)

as ε tends to zero.

Proof. The proof will be developed in several steps.
Proposition 6.2 and the second estimate in (6.1) ensure the existence of a subsequence

of {ε}, still denoted by {ε}, u3, ξ ∈ L2(Ωc,3×]0, 1[), and w, z ∈ L2(]0, L[×]0, 1[) (in possible
dependence on the subsequence) satisfying

ϕ̃ε,3 two scale converges to u3, (6.24)

and 
∂x2ϕ̃ε,3 two scale converges to ξ,

the trace of ϕ̃ε,3 on ]0, L[×{l2 − 1} two scale converges to w,

the trace of ϕ̃ε,3 on ]0, L[×{l2} two scale converges to z,

(6.25)

as ε tends to zero.
The first step is devoted to proving that

ξ = ∂x2u3, a.e. in Ωc,3×]0, 1[. (6.26)

Indeed, integration by parts gives∫
Ωc,3

∂x2ϕ̃ε,3(x1, x2)ψ
(
x1, x2,

x1

ε

)
dx1dx2

= −
∫

Ωc,3
ϕ̃ε,3(x1, x2)∂x2ψ

(
x1, x2,

x1

ε

)
dx1dx2, ∀ψ ∈ C∞0 (Ωc,3×]0, 1[), ∀ε.

(6.27)

Passing to the limit, as ε tends to zero, in (6.27) and using (6.24) and the first limit in (6.25)
provide ∫

Ωc,3×]0,1[

ξ(x1, x2, y)ψ(x1, x2, y)dx1dx2dy

= −
∫

Ωc,3×]0,1[

u3(x1, x2, y)∂x2ψ(x1, x2, y)dx1dx2dy, ∀ψ ∈ C∞0 (Ωc,3×]0, 1[),

which implies (6.26). Combining the first limit in (6.25) with (6.26) gives

∂x2ϕ̃ε,3 two scale converges to ∂x2u3, (6.28)
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as ε tends to zero.
The fact that u3 and ξ ∈ L2(Ωc,3×]0, 1[) combined with (6.26) provides that for a.e.

y ∈]0, 1[ u3(·, ·, y) has traces on ]0, l[×{l2−1} and on ]0, l[×{l2} belonging to L2(]0, l[×{l2−1})
and to L2(]0, l[×{l2}), respectively. The second step is devoted to proving that

w(x1, y) = u3(x1, l2 − 1, y), a.e in ]0, L[×]0, 1[. (6.29)

Indeed, integration by parts gives∫
Ωc,3

∂x2ϕ̃ε,3(x1, x2)ψ
(
x1,

x1

ε

)
(l2 − x2)dx1dx2

=

∫
Ωc,3

ϕ̃ε,3(x1, x2)ψ
(
x1,

x1

ε

)
dx1dx2−

∫
]0.L[

ϕ̃ε,3(x1, l2 − 1)ψ
(
x1,

x1

ε

)
dx1,

∀ψ ∈ C∞0 (]0, L[×]0, 1[), ∀ε.

(6.30)

Passing to the limit, as ε tends to zero, in (6.30) and using (6.24), the second limit in (6.25),
and (6.28) provide∫

Ωc,3×]0,1[

∂x2u3(x1, x2, y)ψ (x1, y) (l2 − x2)dx1dx2dy

=

∫
Ωc,3×]0,1[

u3(x1, x2, y)ψ (x1, y) dx1dx2dy−
∫

]0.L[×]0,1[

w(x1, y)ψ (x1, y) dx1dy,

∀ψ ∈ C∞0 (]0, L[×]0, 1[),

that is∫
]0,L[×]0,1[

w(x1, y)ψ (x1, y) dx1dy,=

∫ 1

0

(∫ L

0

w(x1, y)ψ(x1, y)dx1

)
dy =

∫ 1

0

(∫
Ωc,3

(u3(x1, x2, y)ψ(x1, y)− ∂x2u3(x1, x2, y)ψ(x1, y)(l2 − x2)) dx1dx2

)
dy

=

∫ 1

0

(∫ L

0

u3(x1, l2 − 1, y)ψ(x1, y)dx1

)
dy =

∫
]0,L[×]0,1[

u3(x1, l2 − 1, y)ψ (x1, y) dx1dy,

∀ψ ∈ C∞0 (]0, L[×]0, 1[),

which implies (6.29). Similarly, one proves that

z(x1, y) = u3(x1, l2, y), a.e in ]0, L[×]0, 1[. (6.31)

The third step is devoted to proving that

u3(x1, l2 − 1, y) = 0, a.e. in ]0, L[×ωb, (6.32)
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Indeed, the boundary condition of ϕε on Γbε gives∫
]0,L[

ϕ̃ε,3(x1, l2 − 1)ψ
(
x1,

x1

ε

)
dx1 = 0, ∀ψ ∈ C∞0 (]0, L[×ωb), ∀ε. (6.33)

Passing to the limit, as ε tends to zero, in (6.33) and using the second limit in (6.25) and
(6.29) provide∫

]0,L[×ωb
u3(x1, l2 − 1, y)ψ (x1, y) dx1dy = 0, ∀ψ ∈ C∞0 (]0, L[×ωb),

which implies (6.32). Similarly, one proves

u3(x1, l2, y) = 1, a.e. in ]0, L[×]0, 1[. (6.34)

Arguing as in the proof of (6.12) gives

u3 = 1, a.e. in Ωc,3 × ωa, (6.35)

The fourth step is devoted to proving that∫
Ωc,3×(]0,1[\ωa)

∂x2u3(x1, x2, y)∂x2χ(x1, x2, y)dx1dx2dy = 0,

∀χ ∈ C∞0 (Ωc,3 × (]0, 1[\ωa)) .

(6.36)

Indeed, choosing ψ = ε2χ
(
x1, x2,

x1

ε

)
with χ ∈ C∞0 (Ωc,3 × (]0, 1[\ωa)) as test function in

(4.4) with α = 2 gives∫
Ωc,3

ε4∂x1ϕ̃ε,3

(
∂x1χ

(
x1, x2,

x1

ε

)
+ ε−1∂yχ

(
x1, x2,

x1

ε

))
dx1dx2

+

∫
Ωc,3

∂x2ϕ̃ε,3∂x2χ
(
x1, x2,

x1

ε

)
dx1dx2 = 0, ∀χ ∈ C∞0

(
Ωc,3 × (]0, 1[\ωa)

)
), ∀ε.

(6.37)

Passing to the limit, as ε tends to zero, in (6.37) and using the first estimate in (6.1), (6.28),
and (6.35) provide (6.36).

In a similar way, one proves that there exist a subsequence of {ε}, still denoted by {ε}
and u1 ∈ L2(Ωc,1×]0, 1[) (in possible dependence on the subsequence) such that

ϕ̂ε,1 two scale converges to u1, (6.38)

as ε tends to zero. Moreover, ∂x2u1 ∈ L2(Ωc,1×]0, 1[) and

∂x2ϕ̂ε,1 two scale converges to ∂x2u1, (6.39)

as ε tends to zero. Furthermore,

u1 = 0, a.e. in Ωc,1 × ωb, (6.40)
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u1(x1, l1 + 1, y) = 1, a.e. in ]0, L[×ωa, (6.41)

u1(x1, l1, y) = 0, a.e. in ]0, L[×]0, 1[, (6.42)

and ∫
Ωc,1×(]0,1[\ωb)

∂x2u1(x1, x2, y)∂x2χ(x1, x2, y)dx1dx2dy = 0,

∀χ ∈ C∞0
(
Ωc,1 ×

(
]0, 1[\ωb

))
.

(6.43)

The last step is devoted to proving that∫
Ωc,3×(]0,1[\(ωa∪ωb))

∂x2u3(x1, x2, y)∂x2χ(x1, x2, y)dx1dx2dy

+

∫
Ωc,1×(]0,1[\(ωa∪ωb))

∂x2u1(x1, x2, y)∂x2χ(x1, x2, y)dx1dx2dy,

∀χ ∈ C∞0
(
Ωc ×

(
]0, 1[\

(
ωa ∪ ωb

)))
.

(6.44)

Indeed, choosing ψ = ε2χ
(
x1, x2,

x1

ε

)
with χ ∈ C∞0

(
Ωc ×

(
]0, 1[\

(
ωa ∪ ωb

)))
as test func-

tion in (4.4) with α = 2 gives

∫
Ωc,3

ε4∂x1ϕ̃ε,3

(
∂x1χ

(
x1, x2,

x1

ε

)
+ ε−1∂yχ

(
x1, x2,

x1

ε

))
dx1dx2

+

∫
Ωc,3

∂x2ϕ̃ε,3∂x2χ
(
x1, x2,

x1

ε

)
dx1dx2

+

∫
Ωc,1

ε4∂x1ϕ̂ε,3

(
∂x1χ

(
x1, x2,

x1

ε

)
+ ε−1∂yχ

(
x1, x2,

x1

ε

))
dx1dx2

+

∫
Ωc,1

∂x2ϕ̂ε,3∂x2χ
(
x1, x2,

x1

ε

)
dx1dx2

+Dεε
2

∫
Ωc,2

∂x1ϕε,2

(
∂x1χ

(
x1, x2,

x1

ε

)
+ ε−1∂yχ

(
x1, x2,

x1

ε

))
dx1dx2

+D−1
ε ε2

∫
Ωc,2

∂x2ϕε,2∂x2χ
(
x1, x2,

x1

ε

)
dx1dx2 = 0,

∀χ ∈ C∞0
(
Ωc ×

(
]0, 1[\

(
ωa ∪ ωb

)))
, ∀ε.

(6.45)

Passing to the limit, as ε tends to zero, in (6.45) and using the first estimate in (6.1), (6.28),
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(6.35), (6.39), (6.40), (4.5), and the second and third limit in (6.10) provide∫
Ωc,3×(]0,1[\(ωa∪ωb))

∂x2u3(x1, x2, y)∂x2χ(x1, x2, y)dx1dx2dy

+

∫
Ωc,1×(]0,1[\(ωa∪ωb))

∂x2u1(x1, x2, y)∂x2χ(x1, x2, y)dx1dx2dy+

l2 − l1
l2 − l1 − 2

.

∫
Ωc,2×(]0,1[\(ωa∪ωb))

∂yϕ2(x1, x2, y)∂yχ(x1, x2, y)dx1dx2dy,

∀χ ∈ C∞0
(
Ωc ×

(
]0, 1[\

(
ωa ∪ ωb

)))
.

(6.46)

which implies (6.44), since the last integral in (6.46) is zero due to (6.9).
Finally, (6.32), (6.34), (6.35), (6.36), and (6.40)-(6.44) assert that u3 and u1 solve the

following problems

u3 = 1, in Ωc,3 × ωa,

∂2
x2

2
u3(x1, x2, y) = 0, in Ωc,3 × (]0, 1[\ωa) ,

u3(x1, l2, y) = 1, in ]0, L[×]0, 1[,

u3(x1, l2 − 1, y) = 0, in ]0, L[×ωb,

∂x2u3(x1, l2 − 1, y) = 0, in ]0, L[×]0, 1[\
(
ωa ∪ ωb

)
,

(6.47)

and 

u1 = 0, in Ωc,1 × ωb,

∂2
x2

2
u1(x1, x2, y) = 0, in Ωc,1 ×

(
]0, 1[\ωb

)
,

u1(x1, l1, y) = 0, in ]0, L[×]0, 1[,

u1(x1, l1 + 1, y) = 1, in ]0, L[×ωa,

∂x2u1(x1, l1 + 1, y) = 0, in ]0, L[×]0, 1[\
(
ωa ∪ ωb

)
,

(6.48)

respectively, which means that u3 and u1 are given by (6.20) and (6.21), respectively. Con-
sequently, (6.24), (6.28), (6.38), and (6.39) hold true for the whole sequence and (6.22) and
(6.23) are satisfied.

The following result is an immediate consequence of Proposition 6.3 and Proposition 6.4.

Corollary 6.5. For every ε, let ϕε be the unique solution to (4.4) with α = 2 and let ϕε,2,
ϕ̃ε,3, and ϕ̂ε,1 be defined by (6.8), (6.18), and (6.19), respectively. Moreover, let ϕ2, ϕ3, and
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ϕ1 be defined by (6.9), (6.20), and (6.21), respectively. Then

ϕε,2 ⇀
1

2

(
1 + meas(ωa)−meas(ωb)

)
, ε∂x1ϕε,2 ⇀ 0, ε∂x2ϕε,2 ⇀ 0, weakly in L2(Ωc,2),

ϕ̃ε,3 ⇀ (x2 − l2)meas(ωb) + 1, ∂x2ϕ̃ε,3 ⇀ meas(ωb), weakly in L2(Ωc,3),

and
ϕ̂ε,1 ⇀ (x2 − l1)meas(ωa), ∂x2ϕ̂ε,1 ⇀ meas(ωa), weakly in L2(Ωc,1),

as ε tends to zero.

6.3 Corrector results

Th following proposition is devoted to proving the energies convergence.

Proposition 6.6. For every ε, let ϕε be the unique solution to (4.4) with α = 2. Moreover,
let ϕ1, ϕ3, and ϕ2, be defined by (6.21), (6.20), and (6.9), respectively. Then

lim
ε→0

[ ∫
Ωc,1ε ∪Ωc,3ε

(∣∣ε2∂x1ϕε
∣∣2 + |∂x2ϕε|

2
)
dx

+

∫
Ωc,2ε

(
Dε |ε∂x1ϕε|

2 +D−1
ε |ε∂x2ϕε|

2) dx]

=

∫
Ωc,1×ωa

|∂x2ϕ1|2 dxdy +

∫
Ωc,3×ωb

|∂x2ϕ3|2 dxdy

+
l2 − l1

l2 − l1 − 2

∫
Ωc,2×(]0,1[\(ωa∪ωb))

|∂yϕ2|2 dxdy.

(6.49)

Proof. Choosing ψ = ε2 (ϕε − ϕ?ε) as test function in (4.4), where ϕ?ε is defined by (4.6)-(4.8),
gives∫

Ωc,1ε ∪Ωc,3ε

(∣∣ε2∂x1ϕε
∣∣2 + |∂x2ϕε|

2
)
dx+

∫
Ωc,2ε

(
Dε |ε∂x1ϕε|

2 +D−1
ε |ε∂x2ϕε|

2) dx
=

∫
Ωc,1

(
ε3∂x1ϕ̂ε,1 (∂yϕ

?)
(x1

ε
, x2

)
+ ∂x2ϕ̂ε,1∂x2ϕ

?
(x1

ε
, x2

))
dx

+

∫
Ωc,3

(
ε3∂x1ϕ̃ε,3 (∂yϕ

?)
(x1

ε
, x2

)
+ ∂x2ϕ̃ε,3∂x2ϕ

?
(x1

ε
, x2

))
dx

+

∫
Ωc,2

(
Dεε∂x1ϕε,2 (∂yϕ

?)
(x1

ε
, x2

)
+D−1

ε ε2∂x2ϕε,2∂x2ϕ
?
(x1

ε
, x2

))
dx, ∀ε,

(6.50)

where ϕ̂ε,1, ϕ̃ε,3, ϕε,2 are defined by (6.19), (6.18), and (6.8), respectively. Passing to the
limit, as ε tends to zero, in (6.50) and using (4.5), the first estimate in (6.1), Proposition
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6.3, and Proposition 6.4 provide

lim
ε→0

[ ∫
Ωc,1ε ∪Ωc,3ε

(∣∣ε2∂x1ϕε
∣∣2 + |∂x2ϕε|

2
)
dx

+

∫
Ωc,2ε

(
Dε |ε∂x1ϕε|

2 +D−1
ε |ε∂x2ϕε|

2) dx]

=

∫
Ωc,1×ωa

∂x2ϕ
?dxdy +

∫
Ωc,3×ωb

∂x2ϕ
?dxdy

+
l2 − l1

l2 − l1 − 2

∫
Ωc,2×(]0,1[\(ωa∪ωb))

∂yϕ2∂yϕ
?dxdy.

(6.51)

As the third integral and fourth integral in (6.51) are concerned, the last two lines in (4.7),
(6.20), and (6.21) ensure that∫

Ωc,1×ωa
∂x2ϕ

?dxdy +

∫
Ωc,3×ωb

∂x2ϕ
?dxdy =

∫
Ωc,1×ωa

1dxdy +

∫
Ωc,3×ωb

1dxdy

=

∫
Ωc,1×ωa

|∂x2ϕ1|2 dxdy +

∫
Ωc,3×ωb

|∂x2ϕ3|2 dxdy.

(6.52)

As the last integral in (6.51) is concerned, the first two lines in (4.7) and (6.9) ensure that∫
Ωc,2×(]0,1[\(ωa∪ωb))

∂yϕ2∂yϕ
?dxdy =

(
1

ζ1 − ζ4 + 1
− 1

ζ2 − ζ3

)∫
Ωc,2

1dx

=

∫
Ωc,2×(]0,1[\(ωa∪ωb))

|∂yϕ2|2 dxdy.

(6.53)

Finally, (6.49) follows from (6.51), (6.52), and (6.53).

Proposition 6.3, Proposition 6.4, and Proposition 6.6 provide the following corrector
results.

Proposition 6.7. For every ε, let ϕε be the unique solution to (4.4) with α = 2. Moreover,
let ϕ1, ϕ3, and ϕ2, be defined by (6.21), (6.20), and (6.9), respectively. Then

lim
ε→0

∫
Ωc,1ε

(∣∣ε2∂x1ϕε
∣∣2 +

∣∣∣∂x2ϕε(x)− (∂x2ϕ1)
(x1

ε

)∣∣∣2) dx = 0, (6.54)

lim
ε→0

∫
Ωc,3ε

(∣∣ε2∂x1ϕε
∣∣2 +

∣∣∣∂x2ϕε(x)− (∂x2ϕ3)
(x1

ε

)∣∣∣2) dx = 0, (6.55)

and

lim
ε→0

∫
Ωc,2ε

(∣∣∣ε∂x1ϕε − (∂yϕ2)
(x1

ε

)∣∣∣2 + |ε∂x2ϕε(x)|2
)
dx = 0. (6.56)
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Proof. One has∫
Ωc,1ε

(∣∣ε2∂x1ϕε
∣∣2 +

∣∣∣∂x2ϕε(x)− (∂x2ϕ1)
(x1

ε

)∣∣∣2) dx
+

∫
Ωc,3ε

(∣∣ε2∂x1ϕε
∣∣2 +

∣∣∣∂x2ϕε(x)− (∂x2ϕ3)
(x1

ε

)∣∣∣2) dx
+

∫
Ωc,2ε

(
Dε

∣∣∣ε∂x1ϕε − (∂yϕ2)
(x1

ε

)∣∣∣2 +D−1
ε |ε∂x2ϕε(x)|2

)
dx =

∫
Ωc,1ε ∪Ωc,3ε

(∣∣ε2∂x1ϕε
∣∣2 + |∂x2ϕε|

2
)
dx+

∫
Ωc,2ε

(
Dε |ε∂x1ϕε|

2 +D−1
ε |ε∂x2ϕε|

2) dx
+

∫
Ωc,1

(∣∣∣(∂x2ϕ1)
(x1

ε

)∣∣∣2 − 2∂x2ϕ̂ε,1(x) (∂x2ϕ1)
(x1

ε

))
dx

+

∫
Ωc,3

(∣∣∣(∂x2ϕ3)
(x1

ε

)∣∣∣2 − 2∂x2ϕ̃ε,3(x) (∂x2ϕ3)
(x1

ε

))
dx

+Dε

∫
Ωc,2

(∣∣∣(∂yϕ2)
(x1

ε

)∣∣∣2 − 2ε∂x1ϕε,2(x) (∂yϕ2)
(x1

ε

))
dx, ∀ε.

where ϕ̂ε,1, ϕ̃ε,3, and ϕε,2 are defined by (6.19), (6.18), and (6.8), respectively. Passing to
the limit, as ε→ 0, in this equality and using Proposition 6.3, Proposition 6.4, Proposition
6.6, and (4.5) provide

lim
ε→0

[ ∫
Ωc,1ε

(∣∣ε2∂x1ϕε
∣∣2 +

∣∣∣∂x2ϕε(x)− (∂x2ϕ1)
(x1

ε

)∣∣∣2) dx
+

∫
Ωc,3ε

(∣∣ε2∂x1ϕε
∣∣2 +

∣∣∣∂x2ϕε(x)− (∂x2ϕ3)
(x1

ε

)∣∣∣2) dx
+

∫
Ωc,2ε

(
Dε

∣∣∣ε∂x1ϕε − (∂yϕ2)
(x1

ε

)∣∣∣2 +D−1
ε |ε∂x2ϕε(x)|2

)
dx

]
= 0,

which implies (6.54) thanks to (4.5).
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6.4 Proof of Theorem 3.1 with α = 2

Proof. Proposition 4.1 with α = 2 provides that for every ε∫
Γaε,2

|∇ε2φε|2ν2ds

= −
∫

Ωc,1ε ∪Ωc,3ε

∂x2ϕ
?
ε

∣∣ε2∂x1ϕε
∣∣2 dx+

∫
Ωc,1ε

∂x2ϕ
?
ε |∂x2ϕε|

2 dx+

∫
Ωc,3ε

∂x2ϕ
?
ε |∂x2ϕε|

2 dx

+2ε4

∫
Ωc,1ε ∪Ωc,3ε

∂x2ϕε∂x1ϕ
?
ε∂x1ϕεdx

+ε2

∫
Ωc,2ε

(
−∂x2ϕ

?
ε

(
|ε∂x1ϕε|

2 − 1

D2
ε

|ε∂x2ϕε|
2

)
+ 2ε∂x2ϕε∂x1ϕ

?
εε∂x1ϕε

)
dx.

(6.57)

As the first integral in the right-hand side of (6.57) is concerned, (4.6)-(4.8), (6.54), and
(6.55) provide that ∣∣∣∣∫

Ωc,1ε ∪Ωc,3ε

∂x2ϕ
?
ε

∣∣ε2∂x1ϕε
∣∣2 dx∣∣∣∣

≤ ‖∂x2ϕ
?‖L∞([0,1]×[l1,l2])

∫
Ωc,1ε ∪Ωc,3ε

∣∣ε2∂x1ϕε
∣∣2 dx→ 0,

(6.58)

as ε→ 0.
As the second integral in the right-hand side of (6.57) is concerned, one has∫

Ωc,1ε

∂x2ϕ
?
ε |∂x2ϕε|

2 dx =

∫
Ωc,1ε

∂x2ϕ
?
ε

∣∣∣∂x2ϕε − (∂x2ϕ1)
(x1

ε

)
+ (∂x2ϕ1)

(x1

ε

)∣∣∣2 dx
=

∫
Ωc,1ε

∂x2ϕ
?
ε

∣∣∣∂x2ϕε − (∂x2ϕ1)
(x1

ε

)∣∣∣2 dx+

∫
Ωc,1ε

∂x2ϕ
?
ε

∣∣∣(∂x2ϕ1)
(x1

ε

)∣∣∣2 dx
+2

∫
Ωc,1ε

∂x2ϕ
?
ε

(
∂x2ϕε − (∂x2ϕ1)

(x1

ε

))
(∂x2ϕ1)

(x1

ε

)
dx, ∀ε.

(6.59)
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where ϕ1 is defined in (6.21). Moreover, (4.6)-(4.8), (6.21), (6.54), and (6.55) provide

∣∣∣∣∫
Ωc,1ε

∂x2ϕ
?
ε

∣∣∣∂x2ϕε − (∂x2ϕ1)
(x1

ε

)∣∣∣2 dx∣∣∣∣
≤ ‖∂x2ϕ

?‖L∞([0,1]×[l1,l2])

∫
Ωc,1ε

∣∣∣∂x2ϕε − (∂x2ϕ1)
(x1

ε

)∣∣∣2 dx→ 0,

∫
Ωc,1ε

∂x2ϕ
?
ε

∣∣∣(∂x2ϕ1)
(x1

ε

)∣∣∣2 dx =

∫
Ωc,1

∂x2ϕ
?
(x1

ε
, x2

) ∣∣∣(∂x2ϕ1)
(x1

ε

)∣∣∣2 dx
→
∫

Ωc,1×ωa
∂x2ϕ

? (y, x2) dxdy = meas(ωa)L,

2

∣∣∣∣∫
Ωc,1ε

∂x2ϕ
?
ε

(
∂x2ϕε − (∂x2ϕ1)

(x1

ε

))
(∂x2ϕ1)

(x1

ε

)
dx

∣∣∣∣
≤ 2‖∂x2ϕ

?‖L∞([0,1]×[l1,l2])‖∂x2ϕ1‖L∞([0,1])

∫
Ωc,1ε

∣∣∣∂x2ϕε − (∂x2ϕ1)
(x1

ε

)∣∣∣ dx→ 0,

(6.60)

as ε→ 0. Then, combining (6.59) and (6.60) gives

lim
ε→0

∫
Ωc,1ε

∂x2ϕ
?
ε |∂x2ϕε|

2 dx = meas(ωa)L. (6.61)

Similarly, one proves that

lim
ε→0

∫
Ωc,3ε

∂x2ϕ
?
ε |∂x2ϕε|

2 dx = meas(ωb)L. (6.62)

As the fourth integral in the right-hand side of (6.57) is concerned, (4.6)-(4.8), and the
first two estimates in (6.1) provide∣∣∣∣2ε4

∫
Ωc,1ε ∪Ωc,3ε

∂x2ϕε∂x1ϕ
?
ε∂x1ϕεdx

∣∣∣∣
≤ 2ε‖∂x1ϕ

?‖L∞([0,1]×[l1,l2])‖ε2∂x1ϕε‖L2(Ωc,1ε ∪Ωc,3ε )‖∂x2ϕε‖L2(Ωc,1ε ∪Ωc,3ε ) → 0,

(6.63)

as ε→ 0.
As the last integral in the right-hand side of (6.57) is concerned, (4.5), (4.6)-(4.8), and

the last estimate in (6.1) provide∣∣∣∣ε2

∫
Ωc,2ε

(
−∂x2ϕ

?
ε

(
|ε∂x1ϕε|

2 − 1

D2
ε

|ε∂x2ϕε|
2

)
+ 2ε∂x2ϕε∂x1ϕ

?
εε∂x1ϕε

)
dx

∣∣∣∣
≤
[
ε2‖∂x2ϕ

?‖L∞([0,1]×[l1,l2])

∫
Ωc,2ε

(
|ε∂x1ϕε|

2 +
1

D2
ε

|ε∂x2ϕε|
2

)
dx

+2ε‖∂x1ϕ
?‖L∞([0,1]×[l1,l2])‖ε∂x1ϕε‖L2(Ωc,2ε )‖ε∂x2ϕε‖L2(Ωc,2ε )

]
→ 0,

(6.64)
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as ε→ 0.
Finally, passing to the limit, as ε tends to zero, in (6.57) and using (6.58), (6.61), (6.62),

(6.63), and (6.64) give (3.4) when α = 2.

7 The case α > 2

In the case α > 2, the proof of Theorem 3.1 will be just sketched.

7.1 A priori estimates

Proposition 5.1 immediately implies the following result.

Corollary 7.1. For every ε, let ϕε be the unique solution to (4.4) with α > 2. Then,

∃c ∈]0,+∞[ :



‖εα∂x1ϕε‖L2(Ωc,1ε ∪Ωc,3ε ) ≤ c,

‖∂x2ϕε‖L2(Ωc,1ε ∪Ωc,3ε ) ≤ c,

‖ε
α
2∇ϕε‖L2(Ωc,2ε ) ≤ c,

∀ε. (7.1)

This result provides the following a priori estimate.

Proposition 7.2. For every ε, let ϕε be the unique solution to (4.4) with α > 2. Then,

∃c ∈]0,+∞[ :


‖ϕε‖L2(Ωc,1ε ∪Ωc,3ε ) ≤ c,∥∥∥εα−2

2 ϕε

∥∥∥
L2(Ωc,2ε )

≤ c,
∀ε. (7.2)

Proof. The Dirichlet boundary condition of ϕε on Γε and the second estimate in (7.1) provide
the first estimate in (7.2).

Arguing as in the proof of Proposition 6.2 gives

‖ε
α−2

2 ϕε‖2
L2(Ωc,2ε )

≤ 2(l2 − l1)εα−2 + 2
∥∥εα2 ∂x1ϕε

∥∥2

L2(Ωc,2ε )
, ∀ε, (7.3)

which implies the second estimate in (7.2), thanks to the third estimate in (7.1).

7.2 Weak convergence results

The next proposition is devoted to studying the limit in Ωc,2, as ε tends to zero, of problem
(4.4) with α > 2.

Proposition 7.3. For every ε, let ϕε be the unique solution to (4.4) with α > 2 and let ϕε,2,
be defined by (6.8). Then,

ε
α−2

2 ϕε,2 two scale converges to 0,

ε
α
2 ∂x1ϕε,2 two scale converges to 0,

ε
α
2 ∂x2ϕε,2 two scale converges to 0,

(7.4)
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as ε tends to zero.

Proof. The second estimate in (7.2) and the third estimate in (7.1) ensure the existence

of a subsequence of {ε}, still denoted by {ε}, and u2 ∈ L2
(

Ωc,2, H1
per(]0, 1[)

)
(in possible

dependence on the subsequence) such that
ε
α−2

2 ϕε,2 two scale converges to u2,

ε
α
2 ∂x1ϕε,2 two scale converges to ∂yu2,

ε
α
2 ∂x2ϕε,2 two scale converges to 0,

(7.5)

as ε tends to zero.
Arguing as in the proof of Proposition 6.3, one obtains

u2 = 0, a.e. in Ωc,2 ×
(
ωa ∪ ωb

)
. (7.6)

Passing to the limit, as ε tends to zero, in (4.4) with α > 2 and with test functions

ψ = ε
α
2

+1χ1(x1, x2)χ2

(x1

ε

)
, where χ1 ∈ C∞0 (Ωc,2) and χ2 ∈ H1

per (]0, 1[) such that χ2 = 0

in ωa ∪ ωb, and using (4.5) and the second and third limits in (7.5) provide that, for a.e.
(x1, x2) in Ωc,2, ∫

]0,1[\(ωa∪ωb)
∂yu2(x1, x2, y)∂yχ2(y)dy = 0,

∀χ2 ∈ H1
per (]0, 1[) : χ2 = 0, in ωa ∪ ωb.

(7.7)

Problem (7.6) and (7.7) is equivalent to the following problem independent of (x1, x2)

∂2
y2u2 = 0, in ]0, 1[\

(
ωa ∪ ωb

)
,

u2 = 0, in ωa ∪ ωb,

u2(0) = u2(1),

∂yu2(0) = ∂yu2(1),

(7.8)

which admits u2 = 0 as unique solution. Consequently, limits in (7.5) hold for the whole
sequence and (7.4) is satisfied.

The next proposition is devoted to studying the limit in Ωc,3 and in Ωc,1, as ε tends to
zero, of problem (4.4) with α > 2.

Proposition 7.4. For every ε, let ϕε be the unique solution to (4.4) with α > 2 and let ϕ̃ε,3
and ϕ̂ε,1 be defined by (6.18) and (6.19), respectively. Moreover, let ϕ3 and ϕ1 be defined by
(6.20),and (6.21), respectively. Then,

ϕ̃ε,3 two scale converges to ϕ3,

∂x2ϕ̃ε,3 two scale converges to ∂x2ϕ3,
(7.9)
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and 
ϕ̂ε,1 two scale converges to ϕ1,

∂x2ϕ̂ε,1 two scale converges to ∂x2ϕ1,
(7.10)

as ε tends to zero.

Proof. One can repeat the proof of Proposition 6.4, by making attention to use equation
(4.4) with α > 2 instead of α = 2, and to multiply the test functions by εα instead of ε2

when it occurs. Really, in this case the proof is simpler than the proof of Proposition 6.4
due to the fact that the second limit in (7.4) is zero.

The following result is an immediate consequence of Proposition 7.3 and Proposition 7.4.

Corollary 7.5. For every ε, let ϕε be the unique solution to (4.4) with α > 2 and let ϕε,2,
ϕ̃ε,3, and ϕ̂ε,1 be defined by (6.8), (6.18), and (6.19), respectively. Moreover, let ϕ3 and ϕ1

be defined by (6.20) and (6.21), respectively. Then

ε
α−2

2 ϕε,2 ⇀ 0, ε
α
2 ∂x1ϕε,2 ⇀ 0, ε

α
2 ∂x2ϕε,2 ⇀ 0, weakly in L2(Ωc,2),

ϕ̃ε,3 ⇀ (x2 − l2)meas(ωb) + 1, ∂x2ϕ̃ε,3 ⇀ meas(ωb), weakly in L2(Ωc,3),

and
ϕ̂ε,1 ⇀ (x2 − l1)meas(ωa), ∂x2ϕ̂ε,1 ⇀ meas(ωa), weakly in L2(Ωc,1),

as ε tends to zero.

7.3 Corrector results

Arguing as in Proposition 6.6, one obtains the following energies convergence.

Proposition 7.6. For every ε, let ϕε be the unique solution to (4.4) with α > 2. Moreover,
let ϕ1 and ϕ3 be defined by (6.21) and (6.20), respectively. Then

lim
ε→0

[ ∫
Ωc,1ε ∪Ωc,3ε

(
|εα∂x1ϕε|

2 + |∂x2ϕε|
2)+

∫
Ωc,2ε

(
Dε

∣∣εα2 ∂x1ϕε
∣∣2 +D−1

ε

∣∣εα2 ∂x2ϕε
∣∣2) dx]

=

∫
Ωc,1×ωa

|∂x2ϕ1|2 dxdy +

∫
Ωc,3×ωb

|∂x2ϕ3|2 dxdy.

By arguing as in Proposition 6.7, Proposition 7.3, Proposition 7.4, and Proposition 7.6
provide the following corrector results.

Proposition 7.7. For every ε, let ϕε be the unique solution to (4.4) with α > 2. Moreover,
let ϕ1 and ϕ3 be defined by (6.21) and (6.20), respectively. Then

lim
ε→0

∫
Ωc,1ε

(
|εα∂x1ϕε|

2 +
∣∣∣∂x2ϕε(x)− (∂x2ϕ1)

(x1

ε

)∣∣∣2) dx = 0,

lim
ε→0

∫
Ωc,3ε

(
|εα∂x1ϕε|

2 +
∣∣∣∂x2ϕε(x)− (∂x2ϕ3)

(x1

ε

)∣∣∣2) dx = 0,

and

lim
ε→0

∫
Ωc,2ε

(∣∣εα2 ∂x1ϕε
∣∣2 +

∣∣εα2 ∂x2ϕε(x)
∣∣2) dx = 0.
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Finally, using Proposition 7.7, the proof of Theorem 3.1 with α > 2 follows the same
outline of the proof of Theorem 3.1 with α = 2.
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