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OPTIMAL BROWNIAN STOPPING WHEN THE SOURCE AND

TARGET ARE RADIALLY SYMMETRIC DISTRIBUTIONS

By Nassif Ghoussoub† Young-Heon Kim† and Tongseok Lim‡

The University of British Columbia† and ShanghaiTech University ‡

Given two probability measures µ, ν on Rd, in subharmonic or-

der, we describe optimal stopping times τ that maximize/minimize
the cost functional E|B0 − Bτ |

α, α > 0, where (Bt)t is Brownian
motion with initial law µ and with final distribution –once stopped
at τ– equal to ν. Under the assumption of radial symmetry on µ

and ν, we show that in dimension d ≥ 3 and α 6= 2, there exists
a unique optimal solution given by a non-randomized stopping time
characterized as the hitting time to a suitably symmetric barrier. We
also relate this problem to the optimal transportation problem for
subharmonic martingales, and establish a duality result. This paper
is an expanded version of a previously posted but not published work
by the authors [22].

1. Introduction. Let µ and ν be two probability measures on Rd, d ≥ 2 with
finite first moment, and let (Bt)t denote the Brownian motion with initial law µ. We
consider the following –possibly empty– set of stopping times, with respect to the
Brownian filtration:

T (µ, ν) = {τ | τ is a stopping time, B0 ∼ µ,Bτ ∼ ν, and E[τ ] <∞},

where here and in the sequel, the notation X ∼ λ means that the law of the random
variable X is the probability measure λ.

For a given cost function c : Rd×Rd → R, and assuming T (µ, ν) is non-empty, we
shall consider the following optimization problem

Maximize / Minimize E [c(B0, Bτ )] over τ ∈ T (µ, ν).(1.1)

∗The first two authors are partially supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC). Y.-H. Kim was also supported by an Alfred P. Sloan Research Fellow-
ship. T. Lim was partly supported by a doctoral graduate fellowship from the University of British
Columbia, by the Austrian Science Foundation (FWF) through grant Y782, and by the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)
/ ERC grant agreement no. 335421. In addition, T. Lim gratefully acknowledges support from
ShanghaiTech University. Part of this research was done while the authors were visiting the Fields
institute in Toronto during the thematic program on “Calculus of Variations” in Fall 2014. We are
thankful for the hospitality and the great research environment that the institute provided.

MSC 2010 subject classifications: Primary 49-XX, 60-XX; secondary 52-XX
Keywords and phrases: Subharmonic Martingale Optimal Transport, Skorokhod Embedding,

Monotonicity, Radial Symmetry.

1

http://arxiv.org/abs/1906.11635v1


2 N. GHOUSSOUB, Y-H KIM AND T. LIM

Recall that a stopping time on a filtered probability space (Ω,F , (Ft)t,P) is a
random variable τ : Ω → [0,+∞] such that {τ ≤ t} ∈ Ft for every t ≥ 0. A
randomized stopping time is a probability measure τ on Ω × [0,+∞] such that for
each u ∈ R+, the random time ρu(ω) := inf{t ≥ 0 : τω([0, t]) ≥ u} is a stopping
time, where (τω)ω is a disintegration of τ along the path ω according to P, that is
τ(dω, dt) = τω(dt)P(dω). In the sequel, “stopping times” including those in T (µ, ν),
will mean possibly randomized stopping times unless stated otherwise. We note that
a stopping time is non-randomized if the disintegration τω is the Dirac measure on R+

for P a.e. ω. For further details See Section 2, and also e.g. Beiglböck-Cox-Huesmann
[2], Guo-Tan-Touzi [26].

The purpose of the present article is to identify and characterize those optimal stop-
ping times for which (1.1) is attained. In particular, we will be investigating when
optimal stopping times are unique, ‘true’ as opposed to randomized, and whether
they are hitting times of some barriers. Moreover, we consider how conditions of ra-
dial symmetry on the source and target measures are reflected in terms of symmetry
in the geometry of the barrier.

But first, we recall that the Skorokhod Embedding Problem (SEP) -initiated by
Skorokhod [40] in the early 1960s- gives necessary and sufficient condition on a
pair (µ, ν), which insures that the set T (µ, ν) is non-empty. In dimension one, this
condition states that µ and ν should be in convex order, that is

(1.2)
∫
fdµ ≤

∫
fdν for every convex function f on Rd.

Since then, the problem and its variants were investigated by a large number of
researchers, and have led to several important results in probability theory and
stochastic processes. We refer to Ob lój [36] for an excellent survey of the subject,
which describes no less than 21 different solutions to (SEP).

More recently, Hobson [27] made the connection between SEP and problems of ro-
bust pricing and hedging of financial instruments. Hobson-Klimmek [29] and Hobson-
Neuberger [30] connected SEP to finding robust price bounds for the forward starting
straddle. See the excellent survey of Hobson [28].

The interest eventually shifted to the problem of finding optimal solutions among
those that solve (SEP). In other words, which among the stopping times in T (µ, ν)
maximize or minimize a given cost function. Among the multitude of contributions
to these questions, we point out the papers of Beiglböck-Cox-Huesmann [2], Cox-
Ob lój-Touzi [11], Dolinsky-Soner [13, 14], Guo-Tan-Touzi [26], Källblad-Tan-Touzi
[32], to name just a few. We do single out, however, the recent work of Beiglböck-
Cox-Huesmann [2], which uses the analogy between the optimal SEP and the theory
of optimal mass transport, to identify and prove the so-called Monotonicity Principle
(MP), which will be one of the main tools used in this paper.

Most of the previously mentioned works focus on the one-dimensional case. More
recently, Ghoussoub-Kim-Palmer use dynamic programming and PDE methods to
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give solutions, that is, optimal non-randomized stopping times, in all dimensions for
the minimization case when the cost is either c(x, y) = |x− y| or when it is dynamic
and given by a certain Lagrangian [23, 24]. Left open is the case of a general cost,
including those of the form

c(x, y) = |x− y|α,(1.3)

where 0 < α 6= 2, or more generally cost functions of the form c(x, y) = f(|x− y|),
where f : R+ → R is a continuous function such that f(0) = 0.

The present paper also deals with higher dimensional situation, but with a focus
on the case where both source and target measures are radially symmetric. One of
the main goals is to analyze how this symmetry impacts the structure of the barrier
sets, whose hitting times determine the optimal stopping times. To state our first
main result, we shall denote by Pc(O) the set of compactly supported probability
measures whose supports are in a given open set O of Rd.

Theorem 1.1. Consider the cost function c(x, y) = |x − y|α, where 0 < α 6= 2,
and let µ, ν ∈ Pc(Rd) be radial1, d ≥ 3 are such that T (µ, ν) is nonempty. Assume
µ ∈ H−1(Rd), µ ∧ ν = 0, µ({0}) = 0, and µ(∂ suppµ) = 0.
Then, there exists a unique solution τ for the minimization/maximization problem

(1.1), that is given by a non-randomized stopping time.
Moreover, in the minimization problem with 0 < α ≤ 1, the solution τ is still

unique also among all possibly randomized solutions, and without the assumption
that µ ∧ ν = 0

Actually, we shall show that the optimal τ is a hitting time of a suitable barrier.
Moreover, each barrier set for the Brownian motion Bx starting from x is axially
symmetric around the line that connects the origin and x (see Remark 2.12). A sim-
ilar structure is detected in the two dimensional case, however, it was not sufficient
to yield a non-randomized stopping time (see Remark 2.13).

For the rest of this introduction, we do not assume that µ, ν are necessarily radial,
but we shall need the notion of measures in subharmonic order. Recall that a function
f is subharmonic on an open set U in Rd if it is upper-semicontinuous with values
on R ∪ {−∞} and satisfies

f(x) ≤
1

Leb(B)

∫

B

f(y)dy for every closed ball B in U with center at x.

When f is C2, the latter condition is equivalent to ∆f ≥ 0 on U , where ∆ =
∑d

i=1
∂
∂xi

is the Laplacian. We note that, unlike convex functions, a subharmonic function on
U may not have any subharmonic extension on a larger domain V . Therefore it is

1A measure µ is radial if µ(A) = µ(M(A)) for any A ∈ B(Rd) and any orthogonal matrix M .
An example is the Gaussian measure with mean 0 and covariance matrix σ2 Id, σ > 0.
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important to specify a subharmonic function with its domain. We shall therefore
consider SH(O) to be the cone of all subharmonic functions on an open set O.

Definition 1.2. We say that µ, ν ∈ Pc(Rd) are in subharmonic order if the
following holds:

(1.4)

∫

f dµ ≤

∫

f dν for every f ∈ SH(O),

where O is an open set containing supp(µ+ ν). We shall then write µ ≺s ν.

The fact that in higher dimension, the condition µ ≺s ν is also sufficient for
the non-emptiness of T (µ, ν) has been the subject of many studies. See for example
Rost [39], Monroe [35], Baxter-Chacon [1], Chacon-Walsh [9], Falkner [17] and many
others. We shall give yet another proof of this fact from a different viewpoint, and
present the intimate connection between the optimal Skorokhod embedding problem
(OSEP) and the subharmonic martingale optimal transport (SMOT) problem that
we now introduce.

For this, recall the martingale optimal transport (MOT) problem. Let Π(µ, ν) be
the set of transport plans with marginals µ, ν, i.e. the subset of P(Rd×Rd) consisting
of all couplings of µ, ν (see [42]). Then the MOT problem consists of the following:

Minimize Cost[π] =

∫∫

c(x, y)dπ(x, y) over π ∈ MT(µ, ν),(1.5)

where MT(µ, ν) is the set of martingale transport plans, that is, the subset of Π(µ, ν)
such that for each π ∈ MT(µ, ν), its disintegration (πx)x∈Rd w.r.t. µ satisfies

f(x) ≤

∫

f(y) dπx(y)(1.6)

for any convex function f on Rd. In other words, x is the barycenter of πx, µ-a.e. x.
Problem (1.5) has been extensively studied, especially in one dimension by Bei-

glböck-Juillet [5], Beiglböck-Nutz-Touzi [6] and more recently in higher dimension
by Ghoussoub-Kim-Lim [22]. For more recent developments, see De March-Touzi
[12] and Ob lój-Siorpaes [37]. In our situation, we need to consider the class of sub-
harmonic martingale transport plans on O, that is the class SMTO(µ, ν) of those
π ∈ MT(µ, ν) such that supp(µ + ν) ⊂ O and the inequality (1.6) also holds for
every subharmonic function f on O. This leads us to the subharmonic martingale
optimal transport problem (on the domain O):

Minimize Cost[π] =

∫∫

O×O

c(x, y)dπ(x, y) over π ∈ SMTO(µ, ν).(1.7)
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Since every convex function is subharmonic, SMTO(µ, ν) ⊂ MT(µ, ν), and for d = 1
these two sets are the same. However, for d ≥ 2, the inclusion is strict and prob-
lems (1.5) and (1.7) are different. The following standard example illustrates this
difference, and also the importance of the choice of the domain O in the SMOT
problem.

Example 1.3. Let Br be the open disk centered at 0 with radius r in R2, and
let Sr = ∂Br be its boundary. Let ρr be the uniform probability measure on Sr.
As a first example, let µ = ρ1 and ν = 1

2(δ0 + ρ2). Then clearly MT(µ, ν) 6= ∅. On
the other hand, if we consider the subharmonic function g(z) = log |z|, then

∫

g(z) dµ(z) = 0 > −∞ =

∫

g(z) dν(z),

which implies that SMTRd(µ, ν) = ∅, since otherwise for any π ∈ SMTRd(µ, ν),

∫

g(y)dν(y) =

∫ (∫

g(y)dπx(y)
)

dµ(x) ≥

∫

g(x)dµ(x).

Another illustrative example consists of taking µ = ρ2 and ν = ρ3. Letting
U = {x | 1 < |x| < 4} be an annulus and V = B4, then SMTV (µ, ν) 6= ∅ but
SMTU (µ, ν) = ∅. One way to see this is by considering a Brownian motion Bt

with B0 ∼ µ, and letting τB3
be the first exit time of Bt from B3. Then for any

f ∈ SH(V ), f(Bt∧τB3
) is a submartingale, and hence the joint law of (B0, BτB3

)
is an element of SMTV (µ, ν). On the other hand, the function h(z) = − log |z| is
superharmonic on V and harmonic on U and satisfies

∫
hdµ >

∫
hdν, which means

that SMTU (µ, ν) = ∅. In terms of why a stopping time in T (µ, ν) is lacking, it is
because since B0 ∼ µ, there is a positive probability that Bt hits the boundary ∂U
before hitting S3.

The above example shows that, unlike the MOT problem, the SMOT problem is
domain sensitive, which leads to the following natural question. Given µ, ν ∈ Pc(Rd),
for which domain O, does SMTRd(µ, ν) 6= ∅ also imply that SMTO(µ, ν) 6= ∅?
To provide an answer, we make the following definition.

Definition 1.4. We say that an open set O is a regular domain for µ, ν ∈ Pc(Rd)
if there exists a compact set K in O such that supp(µ + ν) ⊂ K and Rd \ K is
connected. We denote by R(µ, ν) the set of all regular domains for µ, ν.

Now we define the set of subharmonic martingale transport plans as follows:

SMT(µ, ν) =
⋂

O∈R(µ,ν)

SMTO(µ, ν).
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Also, define Ψ to be a space of continuous test functions for subharmonic martingales

Ψ := {p ∈ C(Rd × Rd) | p(x, x) = 0 and p(x, ·) ∈ SH(Rd) for all x ∈ Rd }.

The following theorem tells us that SMT(µ, ν) is not smaller than SMTRd(µ, ν), and
gives a precise connection between the order of µ, ν, the solvability of SMOT, and
that of OSEP.

Theorem 1.5. Let µ, ν ∈ Pc(Rd). Then

SMT(µ, ν) = SMTRd(µ, ν) =
{

π ∈ Π(µ, ν)
∣
∣
∣

∫

p(x, y)dπ(x, y) ≥ 0 ∀p ∈ Ψ
}

(1.8)

and the following are equivalent:

1) µ ≺s ν,
2) µ ≺s(O) ν for every O ∈ R(µ, ν),
3) SMT(µ, ν) 6= ∅,
4) TO(µ, ν) := T (µ, ν) ∩ {τ | τ = τ ∧ τO} 6= ∅ for every O ∈ R(µ, ν),

where τO is the first exit time of a d-dimensional Brownian motion (Bt)t from O.
Moreover, for each π ∈ SMT(µ, ν) and O ∈ R(µ, ν), there exists a stopping time

τ such that B0 ∼ µ, Bτ ∼ ν, τ = τ ∧ τO, and π is the joint distribution of (B0, Bτ ).

We then explore a dual problem by considering the class of functions

Kc = {(α, β, p) ∈ Cb × Cb × Ψ |β(y) − α(x) + p(x, y) ≤ c(x, y)},

and prove the following duality result.

Theorem 1.6. Let µ, ν ∈ Pc(Rd), and let c be a lower-semicontinuous cost. Then
the following duality holds:

sup

{∫

β dν −

∫

αdµ
∣
∣
∣ (α, β, p) ∈ Kc

}

= inf

{∫

c(x, y) dπ
∣
∣
∣ π ∈ SMT(µ, ν)

}

= inf {E [c(B0, Bτ )] | τ ∈ T (µ, ν)} .

We remark that a dual attainment result has been achieved recently in [23] for a
certain class of cost functions, including the power costs c(x, y) = ±|x− y|α, α > 0,
under suitable assumptions as considered in this paper, but without assuming radial
symmetry on µ and ν. We in fact use this latter result in the appendix to prove the
radial monotonicity principle in Proposition 2.7, which is crucial for this paper.

In section 2 we prove Theorem 1.1 by using that radial monotonicity principle. In
section 3 we prove Theorems 1.5, and 1.6. Sections 2 and 3 can be read independently.
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2. Structure of optimal stopping times in symmetric Skorohod Embed-

dings. In this section we focus on Theorem 1.1, and for that we start by introducing
a symmetric version of the monotonicity principle of Beiglböck-Cox-Huesmann [2],
adapted for the radially symmetric case in multi-dimensions.

We first make more precise the filtered Brownian probability space on which we
operate. We consider C(R+) = {ω : R+ → Rd | ω(0) = 0, ω is continuous} to be the
path space starting at 0. The probability space will be Ω := C(R+) × Rd equipped
with the probability measure P := W⊗µ, where W is the Wiener measure and µ is a
given (initial) probability measure on Rd. Stopping times and randomized stopping
times will be with respect to this obviously filtered probability space.

Following Beiglböck-Cox-Huesmann [2], let S be the set of all stopped paths

S = {(fx, s) | fx : [0, s] → Rd is continuous and fx(0) = x},(2.1)

which, by letting fx(t) = fx(s) for t ≥ s, can be viewed as a subset of Ω.
Notice that a (randomized) stopping time ξ can be considered as a probability

measure on Ω×[0,+∞]. In particular, if the stopping time is finite almost surely, then
ξ is concentrated on the set S of stopped paths. In addition, ξ can be disintegrated
along the paths in Ω and give a family of probability measures {ξωx} on [0,+∞],
where ωx(t) := ω(t) + x.

Now we can also interpret ξ as a transport plan in the following way: for (fx, s) ∈ S,
ξ transports the infinitesimal mass dξ

(
(fx, s)

)
from x ∈ Rd to fx(s) ∈ Rd along the

path (fx, s). Now define a map T : S → Rd × Rd by

T ((fx, s)) = (x, fx(s))(2.2)

and let Tξ be the push-forward of the measure ξ by the map T , thus Tξ is a
probability measure on Rd × Rd, which is a transport plan.

Next, we introduce the conditional randomized stopping time given (fx, s) ∈ S,
that is, the normalized stopping measure given that we followed the path fx up to
time s. For (fx, s) ∈ S and ω ∈ C(R+), define the concatenated path fx ⊕ ω by

(fx ⊕ ω)(t) =

{

fx(t) if t ≤ s,

fx(s) + ω(t− s) if t > s.

Definition 2.1 (Conditional stopping time [2]). Let ξ be a randomized stopping
time, defined on Ω. The conditional randomized stopping time of ξ given (fx, s) ∈ S,
denoted by ξ(f

x,s), gives a probability measure on each W-a.e. ω ∈ C(R+) as follows:

ξ(f
x,s)

ω ([0, t]) =
1

1 − ξfx⊕ω([0, s])
(ξfx⊕ω([0, t + s]) − ξfx⊕ω([0, s]))

if ξfx⊕ω([0, s]) < 1,

ξ(f
x,s)

ω ({0}) = 1 if ξfx⊕ω([0, s]) = 1.
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According to [2], this is the normalized stopping measure of the “bush” which follows
the “stub” (fx, s). Note that ξfx⊕ω([0, s]) does not depend on the bush ω.

2.1. The Beiglböck-Cox-Huesmann monotonicity principle on stopped paths. Con-
sider the set of all stopped paths S, and let Γ ⊂ S be a concentration set of a given
stopping time τ , i.e. τ(Γ) = 1. Given the “stopped paths” Γ, consider the “going
paths” Γ< := {(f, t) | ∃(g, t′) ∈ Γ, t < t′, and f ≡ g on [0, t].} We shall write

(x→ ψy : x′ → y′) ∈ (τ,Γ),(2.3)

if there exist (fx, t) ∈ Γ<, (gx
′

, t′) ∈ Γ such that y = fx(t), y′ = gx
′

(t′), and
ψy = Law(By(τ (f

x,t))). Notice that the measure ψy is the conditional probability
measure generated by the strong Markov property of the Brownian motion that
once stopped at y at time t then continued following the stopping time rule τ . Also,
the fact (gx

′

, t′) ∈ Γ means intuitively that the path gx
′

drops a mass at the point
y′ under the stopping rule τ . We shall consider the following cost for such a pair of
transport

C(x→ ψy : x′ → y′) =

∫

c(x, z) dψy(z) + c(x′, y′).(2.4)

In the sequel, we shall denote by SH(x) the set of probability measures ψ whose
barycenter x satisfies δx ≺s ψ. As seen in Theorem 1.5, these are the probabilities
that can be obtained by stopped Brownian motions starting at x. The following
principle will be crucial for the proof ofTheorem 1.1. It was proved by Beiglböck-
Cox-Huesmann [2] for more general path-dependent costs.

Theorem 2.2 (Monotonicity principle [2]). Suppose c is a cost function and that
τ is an optimal stopping time for the minimization problem (1.1). Then, there exists
a Borel set Γ ⊆ S such that τ(Γ) = 1, and Γ is c-monotone in the following sense:
If ψy ∈ SH(y) and (x→ ψy : x′ → y) ∈ (τ,Γ), then

C(x→ ψy : x′ → y) ≤ C(x→ y : x′ → ψy).(2.5)

Here is a first easy but informative application of this principle, but first an im-
portant result about the case where the source and target have overlapping mass.
Recall that stopping measures (which are not necessarily probability measures) lie
in C(R+;Rd) × [0,+∞].

Proposition 2.3. Let τ0 be a zero-stopping measure, i.e. concentrated on
C(R+;Rd)×{0}, and assume that its projection on the second component Rd is µ∧ν.
Assume the cost function is of the form c(x, y) = f(|x− y|) and that it satisfies

(2.6) c(x, x) = 0 and c(x, z) ≤ c(x, y) + c(y, z) for all x, y, z ∈ Rd,
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with equality in the triangle inequality occurring if and only if x, y, z are along a line.
Then for any τ ∈ T (µ, ν) that minimizes problem (1.1), we must have τ0 ≤ τ , and

therefore τ∗ := τ − τ0 solves the minimization problem (1.1) with the same cost but
for the disjoint source marginal µ̄ := µ− µ ∧ ν, and target marginal ν̄ := ν − µ ∧ ν.

Proof. Note that having τ0 ≤ τ means that under τ , the common mass µ ∧ ν
stays put. Let π := Tτ (resp., π0 := Tτ0) be a coupling of the pair (µ, ν) (resp.,
(µ ∧ ν, µ ∧ ν) and observe that

τ0 ≤ τ ⇐⇒ π0 ≤ π.

We will prove the latter, and for this we largely follow the argument of [34]. Let
Γ ⊂ S be a c-monotone set for τ in Theorem 2.2. Let TΓ := T (Γ) so that π(TΓ) = 1.
Let πD be the restriction of π on the diagonal ∆ = {(x, x) : x ∈ Rd}. Note that
suppπ0 ⊂ ∆. Now if π0 � π, the measure π0 − πD has a non-zero positive part. Let
η be the push-forward measure of this positive part by the projection (x, x) 7→ x.
Denote dπ(x, y) = dπx(y)dµ(x) and dπ(x, y) = dπy(x)dν(y) to be disintegrations of
π w.r.t. µ and ν respectively. Then by definition of η, we have

πx 6= δx and πx 6= δx, η − a.e. x.

This implies that there exist (fx, 0) ∈ Γ<, (gz, t) ∈ Γ such that z 6= x, x = gz(t) and
πx = Law(Bx

τ ). Now recall the assumption on c that c(y, x) + c(x, z) ≥ c(y, z), and
the inequality is strict unless z, x, y lie on a line in this order. Hence

∫

c(y, x) dπx(y) + c(x, z) >

∫

c(y, z) dπx(y).

As c(x, x) = 0, this means

C(x→ πx : z → x) > C(x→ x : z → πx),

a contradiction to Theorem 2.2.

Remark 2.4. Note that the cost c(x, y) = |x − y|α, 0 < α ≤ 1 satisfies the
triangle inequality (2.6), and the above proposition implies that whenever we are
studying the minimization problem with such a cost, we can assume that µ ∧ ν = 0
without loss of generality. Indeed, the proposition says that in this case all the
optimal (possibly randomized) stopping times τ of the minimization problem (1.1)
are uniquely decomposed into two stopping measures as τ = τ0 + τ∗, where τ0 is
concentrated at the time T = 0 while τ∗ is the stopping measure at positive times.
Furthermore, given marginals µ and ν, τ0 is the largest possible stopping measure in
such a way that τ0 acts as an identity transport from µ∧ν to itself. In Section 2.4 we
will prove that the measure τ∗, once disintegrated along each path, is supported at
a single time, i.e. it is non-randomized. Thus, the optimal stopping times τ = τ0+τ∗

can be randomized only at time 0.
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2.2. The radially symmetric monotonicity principle. We now give a variant of
Theorem 2.2, which exploits the radial symmetry of the marginals µ and ν. For
this, we will introduce several notions related to radial symmetry. First, we give the
definition of R-equivalence. Recall the definition of the transport plan Tξ induced
by the stopping time ξ (see (2.2)).

Definition 2.5. Let λ(x) = |x| be the modulus map.

1. Two probability measures ϕ and ψ on Rd are said to be R-equivalent if their
push-forward measures by λ coincide, i.e. λ#ϕ = λ#ψ. We then write ϕ ∼=R ψ.

2. Two stopping times ξ and ζ are said to be R-equivalent if the first marginals
and second marginals of Tξ and Tζ are R-equivalent, respectively. We then
write ξ ∼=R ζ.

The following symmetrization was introduced in [34] for the Martingale Optimal
Transport Problem with radially symmetric marginals. It will also be useful in this
paper. Let M be the group of all d × d real orthogonal matrices, and let H be the
Haar measure2 on M. For a given M ∈ M and a stopping time ξ, we define Mξ as
follows: for each A ⊂ S, set

(Mξ)(A) = ξ(M−1(A)).

Clearly, Mξ is also a stopping time. Now we introduce the symmetrization operator
which acts on both the probability measures on Rd and on the stopping times.

Definition 2.6. The symmetrization operator Θ acts on the set of probability
measures on Rd, and on the set of stopping times as follows:

1. For each probability measure µ on Rd and B ⊂ Rd,

(Θµ)(B) =

∫

M∈M

(Mµ)(B) dH(M).

2. For each stopping time ξ and A ⊂ S,

(Θξ)(A) =

∫

M∈M

(Mξ)(A) dH(M).

Observe that Θµ is the unique radially symmetric probability measure which is
R-equivalent to µ. Moreover, for any stopping time ξ, notice that (see [34] for a
proof)

if Tξ has marginals µ and ν, then T (Θξ) has marginals Θµ and Θν.(2.7)

2The Haar measure H associated to a compact topological group G is the unique probability
measure which is left- and right-invariant: H(gA) = H(A) and H(Ag) = H(A) for every g ∈ G and
A ∈ B(G). See [18, Chapter 11] for more details.
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This leads to the following important observation: Assume c(x, y) is a rotation in-
variant cost function, i.e., c(Mx,My) = c(x, y) for any M ∈ M, and define the cost
of a stopping time ξ to be:

C(ξ) =

∫

Rd×Rd

c(x, y)Tξ(dx, dy).

If ξ solves the minimization problem (1.1) where Tξ has radially symmetric marginals
µ and ν, then for any stopping time ζ, we must have

C(ζ) ≥ C(ξ) whenever ζ ∼=R ξ.(2.8)

Indeed, if C(ζ) < C(ξ), then since C(ζ) = C(Θζ), Θζ will solve the minimization
problem (1.1) with the same marginals µ, ν and less cost, a contradiction. Of course,
if ξ solves the maximization problem then the opposite inequality in (2.8) must hold.

We are now ready to introduce the radial monotonicity principle. A proof will be
provided in the appendix.

Proposition 2.7 (Radial monotonicity principle). Let c(x, y) = ±|x− y|α, α >
0, and µ, ν ∈ Pc(Rd) be radially symmetric. Assume that µ ∈ H−1(Rd), µ ≺s ν,
µ ∧ ν = 0, and µ(∂ suppµ) = 0. Suppose τ is an optimal stopping time for the
corresponding minimization problem (1.1). Then, there exists a Borel set Γ ⊆ S
such that τ(Γ) = 1, and Γ is radially c-monotone in the following sense:
If ψy ∈ SH(y), (x→ ψy : x′ → y′) ∈ (τ,Γ) and |y| = |y′|, then

C(x→ ψy : x′ → y′) ≤ C(x→ y : x′ → ϕy′)(2.9)

for any ϕy′ ∈ SH(y′) that is R-equivalent to ψy.

Remark 2.8. The result should hold for all radially symmetric measures without
the additional assumptions on µ and ν, i.e., µ ∈ H−1(Rd) and µ(∂ suppµ) = 0.

Actually, we believe the principle of radial monotonicity should follow directly
from the general monotonicity principle (Theorem 2.2) once applied to the case
where the marginals are radially symmetric. An idea for the proof goes as follows: If
the optimal stopping time τ allows a particle starting at x to diffuse when it reaches
y so that it becomes the probability measure ψy, but takes another particle at x′ to
stop at y′, and if we have the opposite inequality

C(x→ ψy : x′ → y′) > C(x→ y : x′ → ϕy′)(2.10)

for some ϕy′ ∈ SH(y′), then we can modify the stopping time τ to τ ′ in such a way
that the particle at x now stops at y by τ ′, but instead the particle at x′ starts
diffusing at y′ until it becomes ϕy′ . Then (2.10) means that the cost for τ ′ is smaller
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than that of τ , but note that the modified stopping time τ ′ may not satisfy the
terminal marginal condition ν. However, as ψy

∼=R ϕy′ and |y| = |y′|, τ ′ is also R-
equivalent to τ , a contradiction by (2.8). The radial monotonicity principle asserts
the existence of a set of stopped paths Γ which supports the optimal stopping time
and resists any such modification.

2.3. A variational lemma. In this section we prove our key observation, namely,
Lemma 2.9, which shows a variational calculus with elements in SH(y). This will
yield Proposition 2.10 that provides crucial comparisons that are used in the next
section to prove our main theorem. To explain the idea, first let Sy,r be the uniform
probability measure on the sphere of center y and radius r, arguably the most simple
element in SH(y). We choose c(x, y) = |x−y| for simplicity and consider the following
“gain” function,

G(x) = G(x, y, r) :=

∫

|x− z| dSy,r(z) − |x− y|,

and its gradient ∇xG. Note that G is essentially the increase in cost when the Dirac
mass at y diffuses uniformly onto the sphere. It satisfies the following properties:

1. If |x− y| < |x′ − y′| and r is fixed, then G(x, y, r) > G(x′, y′, r).
In other words, for the same diffusion, the increase in cost is greater when the
distance |x− y| is small. Hence, for the minimization problem, it is better to
stop particles near the source x, and let the particles that are far from x to
diffuse, as long as the given marginal condition is respected.

2. The vector ∇G(x) points toward the direction y − x, thus the directional
derivative ∇uG(x) is

∇uG(x) < 0 if 〈u, y − x〉 < 0.

Hence the gain function decreases when x moves away from the “center of diffu-
sion” y. By combining this with the monotonicity principle (Proposition (2.7)),
one can get crucial information about the optimal stopping time.

From now on, c(x, y) = |x− y|α, 0 < α 6= 2. We define the gain function

G(x, ψy) :=

∫

|x− z|αdψy(z) − |x− y|α for ψy ∈ SH(y).

Note that G is essentially the increase in cost when the Dirac mass at y diffuses to
ψy. The following variational lemma is crucial for our analysis.

Lemma 2.9. Let x, y be nonzero vectors in Rd and let r = |x|. Let u be a unit
tangent vector to the sphere Sr at x, such that 〈u, y〉 < 0. Let ψy ∈ SH(y) \ {δy}.
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Then, there exists a ϕy ∈ SH(y) which is R-equivalent to ψy, such that

G(x, ϕy) = G(x, ψy)

∇uG(x, ϕy) < 0 if 0 < α < 2,

∇uG(x, ϕy) > 0 if α > 2,

where the directional derivative is applied to the x variable.

Proof. Let c(x, z) = |x − z|α and take its partial derivative ∂
∂xd

at x = 0, to
obtain

h(z) := ∇edc(x, z)
∣
∣
x=0

= −α |z|α−2 zd(2.11)

Taking the Laplacian in z, we get

∆h(z) = −α(α− 2)(α + d− 2) |z|α−4 zd.(2.12)

We see that the function h is

i) strictly superharmonic in the lower half-space {zd < 0} if 0 < α < 2
ii) strictly subharmonic in the lower half-space {zd < 0} if α > 2.

Let 0 < α < 2, and assume without loss of generality that x = x1 e1 = (x1, 0, ..., 0)
and u = ed. Then 〈u, y〉 < 0, which means that y is in the lower half-space. Let
H = {z ∈ Rd : zd = 0} and choose a stopping time τ for the Brownian motion By

such that Law(By
τ ) = ψy, and let η be the first time By hits H. Let σy = Law(By

τ∧η).
Then σy is supported in the closed lower half-space and it is nontrivial, hence by
the strict superharmonicity (2.12), we have

∇uG(x, σy) < 0.

Now we modify τ to τ ′ in the following way; if τ ≤ η, then we let τ ′ = τ . But if
τ > η, in other words if a particle at y has landed on H but not completely stopped
by τ , then we symmetrize the remaining time of τ (i.e. the conditional stopping
time) with respect to H and get τ ′. More precisely, let τH be the reflection of the
conditional stopping time of τ with respect to H; that is, if τ stops a path emanating
from H, then τH stops the reflected path at the same time. Now define τ ′ := τ+τH

2
to be a randomization; before re-starting Brownian motion on H, we flip a coin and
choose either τ or τH for the conditional stopping time.

Now, define ϕy = Law(By
τ ′) and observe that

i) G(x, ϕy) = G(x, ψy) and ϕy
∼=R ψy, by the symmetry with respect to H in the

definition of τ ′.
ii) ∇uG(x, ϕy) = ∇uG(x, σy), since the function z 7→ ∇edc(x, z) is odd in zd (see

(2.11)) hence the symmetrization in the definition of τ ′ does not change ∇uG.
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This proves the lemma.

Notice that the above lemma implies, in particular for 0 < α < 2, that

0 < G(x, ψy) −G(z, ϕy) = C(x→ ψy : z → y) − C(x→ y : z → ϕy)

if z = x + ǫu with 〈u, y〉 < 0, for small ǫ > 0, where ǫ depends on x and ψy.

In the following proposition, we make this result less infinitesimal. This will be
crucial in the next section to prove our main theorem.

Proposition 2.10. Let ϕy ∈ SH(y) \ {δy} be given, and define

G(x) := min
σy∈SH(y),σy

∼=Rϕy

∫

|x− z|αdσy(z) − |x− y|α,

G(x) := max
σy∈SH(y),σy

∼=Rϕy

∫

|x− z|αdσy(z) − |x− y|α.

Then G,G are attained, and for x0, x1, y ∈ Rd with |x0| = |x1| and |x0−y| < |x1−y|,

G(x0) > G(x1) and G(x0) > G(x1) if 0 < α < 2,

G(x0) < G(x1) and G(x0) < G(x1) if α > 2.

Proof. Define

ℜ(x, ϕy) :=

{

ψy ∈ SH(y) : ψy ∈ arg min
σy

∼=Rϕy

∫

|x− z|αdσy(z)

}

,

ℜ(x, ϕy) :=

{

ψy ∈ SH(y) : ψy ∈ arg max
σy

∼=Rϕy

∫

|x− z|αdσy(z)

}

.

We will soon show that these are nonempty. Note that, by definition

G(x) = G(x, ψy) =

∫

|x− z|αdψy(z) − |x− y|α for any ψy ∈ ℜ(x, ϕy),

G(x) = G(x, ψy) =

∫

|x− z|αdψy(z) − |x− y|α for any ψy ∈ ℜ(x, ϕy).

First, we claim that G(x) and G(x) are continuous.
Indeed, let xn → x in Rd, and define

C(x) := G(x) + |x− y|α =

∫

|x− z|αdψy(z) for any ψy ∈ ℜ(x, ϕy).

Set an = C(xn) and a = C(x). Choose any subsequence {ak} of {an} and a corre-
sponding sequence of measures ψk ∈ ℜ(xk, ϕy). By compactness, {ψk} has a subse-
quence {ψl} which converges to, say ψ. Note that ψ ∈ SH(y) and ψ ∼=R ϕy by weak
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convergence. Now, write

∫

|xl − z|αdψl(z) −

∫

|x− z|αdψ(z) =

[ ∫

(|xl − z|α − |x− z|α) dψl(z)

]

+

[ ∫

|x− z|αdψl(z) −

∫

|x− z|αdψ(z)

]

.

The first bracket goes to zero as l → ∞ since |xl − z|α − |x− z|α → 0 uniformly on
every compact set in Rd, and the second bracket goes to zero since ψl → ψ.
Now we claim that

∫

|x− z|αdψ(z) = C(x) = a, i.e. ψ ∈ ℜ(x, ϕy).(2.13)

If not, then there exists a ρ ∈ ℜ(x, ϕy) such that

∫

|x− z|αdψ(z) >

∫

|x− z|αdρ(z), hence
∫

|xl − z|αdψl(z) >

∫

|xl − z|αdρ(z) for all large l,

a contradiction since ψl ∈ ℜ(xl, ϕy). Therefore, an → a, since this holds for any
subsequence.

To complete the proof of the proposition, we let 0 < α < 2. Note that x0, x1, y are
nonzero. Let r = |x0| = |x1|. Without loss of generality, we can assume that there
exists a differentiable curve x(t) : [0, 1] → Sr with x(0) = x0, x(1) = x1 such that
|x(t) − y | is strictly increasing. In other words, x(t) satisfies that |x(t)| = r and
〈 d
dt
x(t), y〉 < 0 for all t. We note that, although finding such a curve is not always

possible, we can always choose an alternative point x′1 = Mx1 for some orthogonal
matrix M with My = y, so that there is a geodesic curve on the sphere Sr connecting
x0 and x′1 with the desired property. Notice that G(x1) = G(x′1), hence such a change
does not affect the conclusion.

Now for a fixed t ∈ [0, 1], choose any ψy ∈ ℜ(x(t), ϕy). Then Lemma 2.9 gives
σy ∈ ℜ(x(t), ϕy) with d

dt
G(x(t), σy) < 0. By definition, G(x(s)) ≤ G(x(s), σy) for

any s, and G(x(t)) = G(x(t), σy). Hence

lim sup
ǫ↓0

G(x(t+ ǫ)) −G(x(t))

ǫ
≤ lim sup

ǫ↓0

G(x(t + ǫ), σy) −G(x(t), σy)

ǫ

=
d

dt
G(x(t), σy) < 0.

The function G(x(t)) is continuous and satisfies the above strict inequality for each
t ∈ [0, 1], hence it must be strictly decreasing.
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For G(x(t)), we similarly use σy ∈ ℜ(x(t), ϕy) and d
dt
G(x(t), σy) < 0 to get

lim inf
ǫ↓0

G(x(t− ǫ)) −G(x(t))

ǫ
≥ lim inf

ǫ↓0

G(x(t− ǫ), σy) −G(x(t), σy)

ǫ

= −
d

dt
G(x(t), σy) > 0.

We again see that G(x(t)) is strictly decreasing.
The case α > 2 can be proved in a similar fashion, and the proposition follows.

2.4. Optimal Stopping problem for radially symmetric marginals. Finally, armed
with Lemma 2.9 and Proposition 2.10, we establish Theorem 1.1.

Proof of Theorem 1.1. We give a proof for the minimization problem for the
case 0 < α < 2; the case α > 2, or the maximization problem, can be proved
similarly.

Fix 0 < α < 2, and let τ be a minimizer for (1.1). For x, y 6= 0 in Rd with x 6‖ y,
(here ‖ denote parallelism), we define the barrier set:

Uy
x = {z ∈ Rd : |z| = |y| and 〈x, z〉 > 〈x, y〉}.

The set Uy
x looks like the spherical cap of radius |y|, which is symmetric around the

axis in the direction of x, containing the point y in its boundary.
We shall say that a pair (f, s) and (g, t) in S is forbidden if

f(0) = g(0) 6= 0 and ∃s′ < s such that f(s′) ∈ U
g(t)
g(0)

.

In words, a forbidden pair consists of a path that penetrates the barrier generated
by the other path. We let FP denote the set of forbidden pairs.

First, we show that there exists Γ ⊂ S on which τ is concentrated, such that
Γ does not admit any “forbidden pair” that lies in Γ × Γ. Indeed, choose the c-
monotone Γ for τ as given by Proposition 2.7 and suppose that FP∩(Γ×Γ) 6= ∅, i.e.
there exists a forbidden pair (f, s) and (g, t) in Γ where (f, s) penetrates the barrier

U
g(t)
g(0), that is, not stopping when it hits the set. Then, by the Markov property, the

penetrating path (f, s) yields a nontrivial subharmonic measure, say ψy ∈ SH(y),
namely the conditional probability, whose barycenter is at the point y = fx(s′) where

the barrier U
g(t)
g(0) is hit. But this contradicts Proposition 2.10 and Proposition 2.7.

Hence, FP ∩ (Γ × Γ) = ∅.
Now, we show that since Γ does not allow forbidden pairs, then every stopping time

concentrated on Γ is necessarily non-randomized, which clearly yields the uniqueness.
Indeed, let ξ be any stopping time in T (µ, ν) with ξ(Γ) = 1. Define Γ0 = {(fx, s) ∈
Γ | s = 0}, i.e. Γ0 consists of the paths that are stopped immediately at time 0. Let
Γ+ = Γ \ Γ0. We can assume x 6= 0 for every (fx, s) ∈ Γ as µ({0}) = 0. Moreover,
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because d ≥ 3, the probability of the Brownian motion from x to hit a line segment
is zero, so we can assume that fx(s) 6‖ x.3 Let ξ0 be the restriction of ξ on Γ0, and
ξ+ be on Γ+.

We claim that since FP ∩ (Γ × Γ) = ∅, ξ+ must be of non-randomized type.
Let us suppose the contrary. Then there exists an element (fx, s) ∈ Γ, s > 0, x 6= 0,
such that the conditional stopping time ξ(f

x,s) is nonzero. This means that the
Brownian motion which has followed the path fx up to time s > 0 will continue
its motion at y := fx(s). Now consider the barrier U := Uy

x and note that the
Brownian motion starting at y governed by any non-zero stopping time will go
through the surface U before its complete stop, since y is on the boundary of (d−1)-
dimensional set U . This implies that there is a stopped path (gy , t) ∈ S such that
the concatenation (fx ⊕ gy, s + t) ∈ Γ and for some s′ < s + t, (fx ⊕ gy)(s′) ∈ U .
This means that the pair ((fx⊕ gy, s+ t), (fx, s)) ∈ Γ×Γ is a forbidden pair, which
is a contradiction.

The separation assumption µ ∧ ν = 0 implies ξ0 = 0, yielding that ξ is non-
randomized. This implies the uniqueness of ξ in the usual way, that is if τ and τ ′ are
two minimizers and if their disintegrations do not agree, i.e. τωx 6= τ ′ωx for all ωx ∈ B
with P(B) > 0, then the stopping time τ+τ ′

2 , which is obviously a minimizer, must
be of randomized type, thus yielding a contradiction. This concludes the proof.

Remark 2.11. In fact the proof of Theorem 1.1 shows that, if the radial mono-
tonicity principle holds without the assumption µ∧ ν = 0, then every optimal stop-
ping time τ is decomposed into two stopping measures as τ = τ0 + τ∗, where τ0 is
supported at time T = 0 while τ∗ is supported in T > 0 and is non-randomized.

Remark 2.12. Let Γ be the c-monotone set as given in Proposition 2.7 on which
the optimizer in Theorem 1.1 is concentrated. The proof of Theorem 1.1 in fact tells
us that, for the minimization problem with 0 < α < 2 or the maximization problem
with α > 2, the optimal stopping time is given by the first time Brownian motion
Bx hits the following union of barriers

Ux := ∪yU
y
x , where y = fx(s), y 6‖ x, for some (fx, s) ∈ Γ.

Moreover, by the uniqueness property and the radial symmetry of µ and ν, the
sets Ux’s are congruent under rotation, that is if M is an orthogonal matrix and
M(x) = x′, then M(Ux) = Ux′ .

For minimization problem with α > 2 or maximization problem with 0 < α < 2,
we have the same type of result, but the barrier will be reversed: it will be given by

Vx := ∪yV
y
x , where y = fx(s), y 6‖ x, for some (fx, s) ∈ Γ,

3The assumption d ≥ 3 is used here only.
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where V y
x is the reversed barrier

V y
x = {z ∈ Rd : |z| = |y| and 〈x, z〉 < 〈x, y〉}.

This is due to the interchange of the superharmonic and subharmonic region of
the derivative of the gain function (2.11), according to the value of α. Also note
that when dealing with maximization problem, the inequalities (2.5) and (2.9) in
the monotonicity principles must be reversed.

Remark 2.13. Observe that in the above proof, the argument breaks down in
the two dimensional case, because the probability for a Brownian motion to hit a
line segment is not zero when the dimension ≤ 2. Still, it shows that the optimal
(possibly randomized) stopping time τ has to stop the Brownian path completely
once it stops at a point not parallel to the initial point. Therefore, in particular, for
the minimization problem with 0 < α < 2, the set

Ux := ∪yU
y
x , where y = fx(s), y 6‖ x, for some (fx, s) ∈ Γ

is a barrier. However, there are chances that the Brownian path may stop only
partially at points parallel to x, then to continue until it hits the set Ux. Similar
result holds for the maximization problem or with α > 2.

Finally, we note that the ideas in this section can be applied to costs that are more
general than the ones of the form |x−y|α considered in this paper. In particular, they
apply to a class of cost functions c(x, y) that are invariant under rotation and whose
directional derivatives ∇uc(x, y) in the x-variable have suitable sub/superharmonic
regions in the y-variable.

3. Subharmonic martingale optimal transport problem. In the previous
section we focused on the structure or optimal stopping times, utilizing the radial
symmetry of marginals. From now on we do not assume the radial symmetry but
consider general marginals. We assume compact support, but see Proposition 3.4 for
an exception.

As mentioned in the introduction, a subharmonic function on an open subset of Rd

may not allow a subharmonic extension on all of Rd in general. When can f ∈ SH(O)
be approximated by f̃ ∈ SH(Rd) in O? To give an answer, we recall the following.

Lemma 3.1 (Walsh [43]). Let K be a compact subset of Rd such that Rd \K is
connected. Then for each ε > 0 and a harmonic function u on an open set containing
K, there exists a harmonic polynomial v such that |u− v| < ε on K.

Keeping this in mind, we turn to the proof of Theorem 1.5. First we need the
following very likely known lemma. Given an open set O in Rd, let C(O) be the
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space of continuous functions on O. We give a topology on C(O) which is induced
by the following convergence, namely, fn → f iff ||fn − f ||L∞(K) → 0 on every
compact subset K of O. It is clear that this topology is metrizable via the following
metric

d(f, g) :=

∞∑

n=1

2−n min(1, ||f − g||Kn)

where {Kn} is a compact exhaustion of O; Kn is compact, Kn ⊂ int(Kn+1), and
∪nKn = O.

Lemma 3.2. The space H(O) of harmonic functions on O, is separable under d.

Proof. The space C(O) is separable under the metric d, e.g. the set Q[x1, ..., xd]
of polynomials with rational coefficients is a countable dense subset of C(O) by
Stone-Weierstrass Theorem. Then since every subspace of a separable metric space
is separable, H(O) is separable as well.

Proof of Theorem 1.5. To prove (1.8)), note that if π ∈ SMTRd(µ, ν), then
for any p ∈ Ψ we have

∫

p(x, y)dπ(x, y) =

∫

p(x, y)dπx(y)dµ(x) ≥

∫

p(x, x)dµ(x) = 0

in view of the subharmonicity of of y 7→ p(x, y). Hence we have the following inclu-
sions

SMT(µ, ν) ⊂ SMTRd(µ, ν) ⊂
{

π ∈ Π(µ, ν)
∣
∣
∣

∫

p(x, y)dπ(x, y) ≥ 0 ∀p ∈ Ψ
}

.

Now let π ∈ Π(µ, ν) and assume
∫
p dπ ≥ 0 for every p ∈ Ψ. We now prove that

π ∈ SMT(µ, ν). Indeed, let 1Bz,r be the indicator function on the ball Bz,r of center
z and radius r, and consider the functions of the form

p(x, y) = 1Bz,r(x)(ϕ(y) − ϕ(x)) where ϕ ∈ H(Rd).

Then p(x, y) ∈ Ψ4. For z ∈ suppµ, we have

0 ≤
1

µ(Bz,r)

∫∫

p(x, y)dπ(x, y) =
1

µ(Bz,r)

∫

Bz,r

(∫

ϕ(y)dπx(y) − ϕ(x)

)

dµ(x)

→

∫

ϕ(y)dπz(y) − ϕ(z) as r → 0, µ− a.e. z,

4Technically 1Bz,r
(x) is not continuous, but it can be approximated by continuous and compactly

supported functions.
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where the convergence is due to e.g. [33, Lemma 4.1.2.]. By changing ϕ 7→ −ϕ in
p(x, y), we deduce

∫

ϕ(y)dπz(y) = ϕ(z) µ− a.e. z.(3.1)

One may notice that the µ - a.e. convergence set could depend on the choice of ϕ,
but the application of Lemma 3.2 then ensures that the equality (3.1) holds for all
ϕ ∈ H(Rd), µ - a.e..

Let ψ be the fundamental solution of the Laplace equation, and let ψa(x) = ψ(x−
a) and ψa,c(x) = max(ψ(x − a), c) where a ∈ Rd and c ∈ R. Note that ψa,c is
continuous and subharmonic on Rd. By applying the above argument with p(x, y) =
1Bz,r(x)(ψa,c(y) − ψa,c(x)) and letting cց −∞, we deduce

∫

ψa(y)dπz(y) ≥ ψa(z) for every a ∈ Rd, µ− a.e. z.(3.2)

Now let O be a regular domain for µ, ν, and let K be a compact set in O such that
supp(µ+ ν) ⊂ K and Rd \K is connected. Let O′ be an open precompact subset of
O containing K. For each f ∈ SH(O), there exists a nonnegative Borel measure κ
on O such that f can be decomposed as

f(x) = h(x) +

∫

O′

ψa(x)dκ(a) ∀x ∈ O′, for some h ∈ H(O′)

by Riesz representation theorem. Let hε be a harmonic polynomial such that |h −
hε| < ε on K by Walsh’s theorem. Then for µ-a.e. x, we have

∫

f(y)dπx(y) =

∫

h(y)dπx(y) +

∫

Rd

∫

O′

ψa(y)dκ(a)dπx(y)

≥

∫

hε(y)dπx(y) +

∫

O′

∫

Rd

ψa(y)dπx(y)dκ(a) − ε

≥ hε(x) +

∫

O′

ψa(x)dκ(a) − ε

≥ h(x) +

∫

O′

ψa(x)dκ(a) − 2ε = f(x) − 2ε.

Letting ε → 0 we get
∫
f(y)dπx(y) ≥ f(x) µ-a.e. x, implying π ∈ SMTO(µ, ν). As

O ∈ R(µ, ν) was arbitrary we deduce that π ∈ SMT(µ, ν). This completes the proof
of the equality (1.8).

Now we prove the equivalence in Theorem 1.5. Notice that (1) ⇐⇒ (2) is imme-
diate by the same approximation argument as above. The direction (3) =⇒ (1) is
also immediate, as for f ∈ SH(Rd) and π ∈ SMT(µ, ν),

∫

f(y)dν(y) =

∫

f(y)dπx(y)dµ(x) ≥

∫

f(x)dµ(x).
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To see that (4) =⇒ (3), let O be an open ball containing supp(µ + ν), and take
τ ∈ TO(µ, ν). Then for f ∈ SH(Rd), since (f(Bt∧τ ))t is a submartingale, we have

E[f(Y ) | X] ≥ f(X), where X = B0 ∼ µ, Y = Bτ ∼ ν.

This means that the joint law of (X,Y ) belongs to SMT(µ, ν).
It remains to show the implication (2) =⇒ (4). This will be done in Proposi-

tion 3.4 below, where we prove it for possibly non-compactly supported marginals.
Finally, let now π ∈ SMT(µ, ν) and its disintegration (πx)x with respect to µ. Let

(Bt)t be a Brownian motion with B0 ∼ µ, and let O ∈ R(µ, ν) be bounded. Since
δx ≺s(O) πx for µ-almost all x, and noting that B0 and Bt−B0 are independent, one
can apply the implication (2) ⇒ (4) to the subharmonic ordered pair (δx, πx), and use
the measurable selection theorem, to find a stopping time τ = τ ∧τO such that given
B0, we have Law(Bτ ∈ · |B0) = πB0

( · ). It is then clear that Law(B0, Bτ ) = π.

The following is now immediate.

Corollary 3.3. Let µ, ν ∈ Pc(Rd) and assume µ ≺s ν. Then

inf {E [c(B0, Bτ )] | τ ∈ T (µ, ν)} = inf

{∫∫

c(x, y)dπ |π ∈ SMT(µ, ν)

}

.

The following proposition may have its own interest. Let P2(O) be the set of
probability measures concentrated in O and with finite second moments. Define the
order µ ≺s2(O) ν by

µ ≺s2(O) ν ⇐⇒

∫

fdµ ≤

∫

fdν for every f ∈ SH(O) with f(x) ≤ Cf (1 + |x|2).

Proposition 3.4. Let µ, ν ∈ P2(O) and assume µ ≺s2(O) ν. Then TO(µ, ν) 6= ∅.

Remark 3.5. For the proposition, we need not assume O is regular since the
proof clearly implies that if µ, ν ∈ Pc(O) are such that µ ≺s(O) ν, then necessarily
TO(µ, ν) 6= ∅.

To prove the proposition, we first introduce the notion of spherical martingales.

Definition 3.6. Let U be the uniform probability measure on the unit sphere
Sd−1 in Rd. Let (Xi)

∞
i=1 be i.i.d random variables on some probability space (Ω,P),

whose distribution is U . A stochastic process (Fn)n≥0 is called a spherical martingale
(valued) in O if there is an associated sequence of bounded measurable functions

rn : Rd × Sd−1 × · · · × Sd−1
︸ ︷︷ ︸

(n−1)−times

→ R+
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such that

Fn(X1, ...,Xn) − Fn−1(X1, ...,Xn−1) = rn(F0,X1, ...,Xn−1) ·Xn

and if for every n ∈ N, 0 ≤ λ ≤ 1 and (X1,X2, ...,Xn),

Fn−1(X1, ...,Xn−1) + λrn(F0,X1, ...,Xn−1)Xn ∈ O.

At each time n, a particle splits uniformly onto a surrounding sphere of radius
rn. An important observation is that the push-forward measure of δx by a spherical
martingale Fn has the same law as Bx

τ , where the stopping time τ is defined as
follows: τ1 is the first time Bx hits the sphere S(x, r1(x)) centered at x and with
radius r1(x). If Bτ1(ω) = x1 ∈ S(x, r1(x)), then define τ2 to be the first hitting time
Bx1 hits the sphere S(x1, r2(x, x1)). One can then define inductively a sequence of
stopping times τ1 ≤ τ2 ≤ ... such that Fn(P) = Law(Bx

τn).
The following lemma is an analogue of a result of Bu-Schachermayer [8, Proposition

2.1] about analytic martingales.

Lemma 3.7. Let O be an open set in Rd and f : O → R ∪ {−∞} be an upper
semicontinuous function. Then there exists a unique maximal subharmonic function
f̂ on O which is dominated by f . In other words, f̂ ≤ f and g ≤ f̂ for every
g ∈ SH(O) with g ≤ f . Furthermore, f̂ can be constructed as follows:
For each n ∈ N, define fn on O by

fn(x) = inf{E[f(Fn)] : (Fi)
n
i=0 is a spherical martingale in O with F0 = x(3.3)

and Fn(P) is compactly supported in O}.

Then, the sequence (fn)∞n=0 decreases pointwise to f̂ .

Proof. We will use an equivalent form of (3.3):

f0 = f and for n ≥ 1, fn(x) = inf

{∫

fn−1(x+ ry) dU(y)

}

where the infimum is taken over all r ≥ 0 such that {x+ rB} ⊂ O. Here, {x+ rB}
denotes the closed ball of radius r around x.

First note that the sequence (fn)∞n=0 is decreasing. To show the upper-semicontinuity
of f̂ , we proceed inductively and assume fn−1 is upper semicontinuous. If (xk)∞k=0

in O is such that limk→∞ xk = x0, and r ≥ 0 is such that {x0 + rB} ⊂ O, where B
is the closed unit ball, then there is k0 such that {xk + rB} ⊂ O for k ≥ k0. The
upper semicontinuous function fn−1 is bounded above on the relatively compact set
∪∞
k=k0

{xk + rB} and, for every z ∈ B, fn−1(x0 + rz) ≥ lim supk→∞ fn−1(xk + rz).
Hence by Fatou’s lemma,

∫

fn−1(x0 + ry) dU(y) ≥ lim sup
k→∞

∫

fn−1(xk + ry) dU(y) ≥ lim sup
k→∞

fn(xk).
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Thus fn(x0) ≥ lim sup
k→∞

fn(xk), hence showing that fn and consequently f̂ is upper-

semicontinuous.
Let now g be a subharmonic function on O with g ≤ f . Again, inductively, assum-

ing that g ≤ fn−1, then for {x0 + rB} ⊂ O,
∫

fn−1(x0 + ry) dU(y) ≥

∫

g(x0 + ry) dU(y) ≥ g(x0),

and so fn(x0) ≥ g(x0). Hence f̂ ≥ g. Finally, for {x0 + rB} ⊂ O, we get from
monotone convergence

f̂(x0) = lim
n→∞

fn(x0) ≤ lim
n→∞

∫

fn−1(x0 + ry) dU(y) =

∫

f̂(x0 + ry) dU(y).

This shows that f̂ is subharmonic, and the proof of the lemma is complete.

Let now Lip∗(O) be the space of all finite measures in O with finite first moments.

Lemma 3.8. Let µ, ν ∈ P2(O) be such that µ ≺s2(O) ν, and consider the following
subset of P2(O),

Φ = {Fn(P) : (Fi)
n
i=0 is a spherical martingale valued in O with F0 ∼ µ}.

Set ν̃ := (1 + |x|)ν and

Φ̃ = (1 + |x|)Φ := {σ̃ | σ̃ = (1 + |x|)σ for some σ ∈ Φ}.

Then, ν̃ is in the weak∗-closure of Φ̃ in Lip∗(O).

Proof. Observe first that Φ is convex. Indeed, if (F ′
i )

n
i=0 and (F ′′

i )mi=0 are two
spherical martingales with F ′

0 ∼ µ, F ′′
0 ∼ µ, we may assume n = m, then define a

spherical martingale (Fi)
n+1
i=0 by letting F0 = F1 ∼ µ and for 1 ≤ i ≤ n,

Fi+1(X1,X2, ...,Xi+1) =

{

F ′
i (X2, ...,Xi+1) if X1 is in the upper hemisphere,

F ′′
i (X2, ...,Xi+1) if X1 is in the lower hemisphere.

Clearly Fn+1(P) = {F ′
n(P) + F ′′

n (P)}/2 and hence Φ is convex, and therefore Φ̃ =
(1 + |x|)Φ is convex in Lip∗(O).

If now the statement of the lemma were false, then by the Hahn-Banach theorem
we can find a Lipschitz function f on O and real numbers a < b such that

∫

g dν ≤ a, while

∫

g ◦ Fn dP ≥ b for every Fn(P) ∈ Φ,

where g(x) = (1 + |x|)f(x). But since every element in Φ has initial distribution
µ, then by Lemma 3.7 and (3.3), we have

∫
ĝ dµ ≥ b and therefore a ≥

∫
g dν ≥

∫
ĝ dν ≥

∫
ĝ dµ ≥ b, which is a contradiction.
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Proof of Proposition 3.4. By Lemma 3.8, we have a sequence {νn} ⊂ Φ such
that

∫
|x|2dνn(x) →

∫
|x|2dν(x). We know that νn = Law(Bτn) for a sequence of

stopping times τn and a Brownian motion B with initial law µ. Hence in particular
Eτn = E|Bτn |

2 =
∫
|x|2dνn(x) ≤ V for some constant V and for all n. The sequence

(τn) is then tight, and it is standard that it has a convergent subsequence to a –
possibly randomized– stopping time τ in such a way that Ef(Bτk) → Ef(Bτ ) for
every f continuous and bounded function on Rd. (see for example [1] or [2]). In other
words, Law(Bτk) → Law(Bτ ), and therefore, Bτ ∼ ν. Let τO be the first exit time of
(Bt) from O and note that τk = τk ∧ τO by the definition of Φ, and therefore τ also
satisfies τ = τ ∧ τO. Notice also that Eτ = E|Bτ |

2 ≤ V as well, hence the martingale
(Bτ∧t)t≥0 is bounded in L2.

Lastly, we prove the duality result announced in the introduction.

Proof of Theorem 1.6. By a standard argument, it is enough to prove the theo-
rem for continuous cost c, so let us assume this. Clearly, the left-hand side is smaller
than or equal to the right-hand side since for every π ∈ SMT(µ, ν) (if exists) and
for every (α, β, p) ∈ Kc, we have

∫
p(x, y)dπ(x, y) ≥ 0.

For the reverse inequality, we first note that Kantorovich duality for the standard
optimal transport problem with a continuous cost c(x, y) − p(x, y) yields

sup
(α,β,p)∈Kc

(∫

βdν −

∫

αdµ

)

= sup
p∈Ψ

inf
π∈Π(µ,ν)

∫

(c− p)dπ.

Now it is standard to apply a min-max theorem (see e.g. [3, Theorem 2]) to inter-
change the order of inf and sup, and thereby obtain

sup
(α,β,p)∈Kc

(∫

βdν −

∫

αdµ

)

= inf
π∈Π(µ,ν)

sup
p∈Ψ

∫

(c− p)dπ.(3.4)

Note that the supremum over p can be finite only when
∫
p(x, y)dπ(x, y) ≥ 0, since

otherwise we can replace p with λp for some λ > 0, making the value of the integral
∫

(c−p)dπ arbitrarily large. Therefore, by Theorem 1.5, the infimum in (3.4) can be
restricted to π ∈ SMT(µ, ν), and we obtain

sup
(α,β,p)∈Kc

(∫

βdν −

∫

αdµ

)

= inf
π∈SMT(µ,ν)

sup
p∈Ψ

∫

(c− p)dπ.

Finally, since 0 ∈ Ψ, the last expression is greater than or equal to

inf

{∫

c(x, y)dπ | π ∈ SMT(µ, ν)

}

.

Together with Corollary 3.3, this completes the proof of the duality for the subhar-
monic martingale optimal transport problem.
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4. Appendix: The radially symmetric monotonicity principle. In this
section we use the dual attainment result [23] to provide a proof of Proposition 2.7.

Proof of Proposition 2.7. Let O be an open ball containing supp(µ+ν). First,
we can assume without loss of generality that suppµ ∩ supp ν = ∅. Indeed, due
to the assumption µ ∧ ν = 0 and µ(∂ suppµ) = 0, for each µ-a.e. x, x′, we can
consider the restriction of µ to µ+ on an open set containing x, x′ outside supp ν
and let ν+ be the corresponding target measure under the stopping time τ . Then
suppµ+ ∩ supp ν+ = ∅. It will be sufficient to prove the desired conclusion of the
proposition for those x, x′ ∈ suppµ+, suppϕy ⊂ supp ν+, and y′ ∈ supp ν+.

Now, from [23, Theorem 4.1 and the proof of Theorem 7.1 (1)] we have the existence
of the optimizers for the dual problem. Here, note that the theorems in [23] can be
used because suppµ ∩ supp ν = ∅, the function c(x, y) = ±|x − y|α, α > 0, is C2

for those x, y ∈ suppµ× supp ν; this cost can be modified by adding an appropriate
subharmonic function h(y), with large ∆h, to an equivalent cost y 7→ c(x, y) + h(y)
with 0 ≤ ∆y[c(x, y) + h(y)] which is C2 on suppµ× supp ν. Then, as in the proof of
[23, Theorem 7.1 (1)] this can be extended to a C2 subharnonic function on O ×O
without changing the optimal solution. The result [23, Theorem 4.1] can be applied
to this cost to get the dual optimizers, first β ∈ H1

0 (O) ∩ LSC(O), then

J(x, y) := sup
ξ≤τO

[β(By
ξ ) − c(x,By

ξ )],(4.1)

where ξ is a stopping time for Brownian motion, and τO is the exit time from the
domain O. Set α(x) = J(x, x) and p(x, y) = J(x, x) − J(x, y).

From the radial symmetry of µ and ν, and the expression of the dual problem,
we can assume that the dual optimizer β is radially symmetric. To see this, recall
that M is the group of d× d orthogonal matrices and H is the Haar measure on M.
Then, for each M ∈ M,

J(Mx,My) = α(Mx) − p(Mx,My) = sup
Mξ≤τO

[

β(BMy
Mξ ) − c(Mx,BMy

Mξ )
]

.

Since both Brownian motion and the cost c(x, y) = ±|x − y|α are invariant under
the orthogoal group (isometries of Rd) we see that for

J̄(x, y) =

∫

M∈M

J(Mx,My)dH(M) and β̄(y) =

∫

M∈M

β(My)dH(M),

it holds that

J̄(x, y) = sup
ξ≤τO

[

β̄(By
ξ ) − c(x,By

ξ )
]

.

Notice that β̄, ᾱ(x) := J̄(x, x) and p̄(x, y) := J̄(x, x)−J̄(x, y) are admissible and they
have the same optimal dual value as

∫
βdν −

∫
αdµ, thus they are dual optimizers.
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The rest of the proof is similar to that of [23, Theorem B.1]. We will use the radial
symmetry of β. We notice that the desired conclusion of our theorem is equivalent
to the following:

Claim 4.1. Let π be the measure with (B0, Bτ ) ∼ π. Consider a randomized
stopping time ξ with B0 ∼ µ, (B0, Bξ) ∼ σ where the disintegration σ(dx, dy) =
σx(dy)µ(dx) satisfies

(4.2) 0 ≺s(O) σx ≺s(O) πx for each µ-a.e. x,

which means that σ ≤ τ , and τ − σ is a (randomized) stopping time.
Then, for π-a.e. (x′, y′) and σ-a.e. (x, y), it holds that if |y| = |y′|, then the stopping

time τ − ξ restricted to paths with Bξ = y satisfies

c(x′, y′) + E
[
c(x,By

τ−ξ)
]
≤ E

[
c(x′, By′

τ ′ )
]

+ c(x, y),

for any stopping time τ ′ such that By′

τ ′ ∼ ϕy′
∼=R ψy ∼ By

τ−ξ.

To prove this claim notice that from [23, Theorem 4.7], we have for π∗-a.e. (x′, y′)
and σ-a.e. (x, y),

J(x′, y′) = β(y′) − c(x′, y′),(4.3)

J(x,By
τ−ξ) = J(x,Bx

τ ) = β(Bx
τ ) − c(x,Bx

τ ) = β(By
τ−ξ) − c(x,By

τ−ξ).(4.4)

On the other hand, from the definition (4.1), we have

J(x′, y′) ≥ E
[

β(By′

τ ′ ) − c(x′, By′

τ ′ )
]

= E
[

β(By
τ−ξ) − c(x′, By′

τ ′ )
]

(4.5)

where the first inequality holds for any τ ′ and the second one holds in particular for

those with By′

τ ′ ∼ ϕy′ ≡R ψy ∼ By
τ−ξ due to radial symmetry of β. Notice that from

[23, Theorem 4.7 (4.4)] we have

E
[

J(x,By
τ−ξ)

]

= J(x, y).(4.6)

Moreover,

J(x, y) ≥ β(y) − c(x, y) = β(y′) − c(x, y)

where the last equality uses the radial symmetry of β and the fact that |y| = |y′|.
Taking the expectation in (4.4), we see that the left hand sides of (4.3), (4.4) are

equal to the left hand sides of inequalities (4.5) and (4.6). Now, subtract the sum of
the two equations from the sum of the two inequalities and cancel the terms β(y)
and E

[
β(By

τ−ξ)
]
, to obtain

0 ≥ −c(x, y) − E
[

c(x′, By′

τ ′ )
]

+ c(x′, y′) + E
[

c(x,By
τ−ξ)

]

,

hence completing the proof.
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